<u>Hyperintensities in Mild Acute Focal Neurology</u> <u>Supplementary File</u>

<u>Aims</u>

- Assess whether there was a difference in the total Scheltens score for patients with different final diagnoses (i.e. minor stroke, TIA, migraine, functional neurological disorder, other) and separately explore whether sex played a role.* A secondary aim was to ascertain the observed power, for this part of the analysis, to allow for appropriate interpretation of the results and also inform future study designs.
 *Note: The final diagnosis was made by the stroke consultant or senior registrar responsible for each patient.
- 2. Assess whether there was an association between the total Scheltens score and the following variables: sBP; dBP; pulse pressure; mRS; NIHSS; MoCA; cumulative score of five risk factors; age. A secondary aim was to assess whether there was an association between each individual component of the Scheltens scale (i.e. WMH, GMH, PVH, IFTH) and the above list of variables. The purpose of this was to explore whether statistically significant results in relation to the total Scheltens score (i.e. global changes) were also reflected at the regional level with the individual components of the Scheltens scale and identify any patterns of clinical relevance.

Methods

Ethical Approval

Approval for this study was granted by the North of Scotland Research Ethics Committee (reference number: 11/NS/0030). The study was also registered with the NHS Grampian Research and Development Department (reference number: 2011ST003). Written informed consent was obtained, from all study participants, prior to taking part in any research activity.

Study Design

This was a prospective neuroimaging study with patients referred from the NHS Grampian neurovascular clinic or the Acute Stroke Unit, between 2012 and 2014, with acute focal minor neurological symptoms consistent with a possible diagnosis of short duration ischemia (Easton *et al.*, 2009; Fischer *et al.*, 2010) for whom MRI would have been the investigation of choice. In terms of exclusion criteria, apart from standard MRI contraindications, the following also applied: i) < 18 years; ii) hemorrhagic stroke; iii) chronic mental health or neurodegenerative condition and brain tumours; and iv) moderate to severe carotid artery stenosis from doppler ultrasound. A detailed list of the inclusion and exclusion criteria is available by Varsou *et al.* (2014).

Scanning Protocol

Imaging data were acquired on the Aberdeen Biomedical Imaging Centre 3.0 Tesla Philips Achieva X-series MRI scanner (Philips Healthcare, Best, The Netherlands; <u>http://www.philips.com/global/index.page</u>) with a Siemens 32-channel receive-only phased-array head coil (Siemens Medical Systems, Iselin, NJ; <u>http://www.healthcare.siemens.co.uk</u>). The structural sequences had the following parameters:

- i) axial T₂-weighted short- τ inversion recovery spin echo structural sequence with a total acquisition time of 3 minutes and 6 seconds (repetition time of 3000 ms, echo time of 80 ms, inversion time τ of 100-150 ms, flip angle of 90°, 230 × 184 × 129 mm³ field of view, 0.8 × 0.8 mm² voxel size, and 26 slices);
- ii) axial FLAIR spin echo structural sequence with a total acquisition time of 5 minutes and 52 seconds (repetition time of 11000 ms, echo time of 125 ms, refocusing angle of 120° , $230 \times 230 \times 144 \text{ mm}^3$ field of view, $0.7 \times 0.9 \text{ mm}^2$ voxel size, and 29 slices).

Scoring of Hyperintensities

The signal hyperintensities were assessed on axial T_2 and FLAIR MRI structural scans, provided by NHS Grampian PACS, using the Scheltens semiquantitative visual scoring scale by Murray *et al.* (2012). The WMH and PVH were assessed on FLAIR, whereas the GMH and IFTH were assessed on T_2 . This method has a good interobserver and intraobserver reliability for total scores when compared to alternative scales (Murray, 2012). The Scheltens scale also quantifies the number and size of lesions within each of the different anatomical areas providing information not only at the global, but also the regional level (Scheltens *et al.*, 1993; Scheltens *et al.*, 1998). A trained assessor (OV), who was blinded to the patients' diagnosis at the time of the scoring, assessed the scans using the Scheltens scale. Additional information about the methodology is available in Murray *et al.* (2012) and Varsou *et al.* (2015).

Cumulative Risk Factors Score

A cumulative risk factors score was calculated from the following past medical history questions: i) hypertension; ii) hyperlipidemia; iii) diabetes mellitus; iv) ischemic heart disease; and v) previous TIA or stroke. A point was awarded for 'yes' answers to each of the above with the potential minimum to maximum range being 0 to 5.

Normality Test & Log Transformations

The Shapiro-Wilk test was used to assess normality for all numerical variables. Any variable, which was not normally distributed, was subsequently log transformed to base 10 (i.e. common log). The constant number '3' was also added to any variable that had values of 0, as it is not possible to take the log of 0. Details of the normality tests and log transformations are included in the table below.

Variable	Shapiro-Wilk	Log Transformation
Scheltens score	W (100) = 0.959, p=0.004	Lg10 (Scheltens score)
WMH	W (100) = 0.932, p<0.001	Lg10 (WMH)
GMH	W (100) = 0.971, p=0.028	Lg10 (GMH)
PVH	W (100) = 0.868, p<0.001	Lg10 (PVH)

IFTH	W (100) = 0.972, p=0.029	Lg10 (IFTH)
sBP	W (96) = 0.929, p<0.001	Lg10 (sBP)
dBP	W (96) = 0.926, p<0.001	Lg10 (dBP)
PP	W (96) = 0.945, p=0.001	Lg10 (PP)
mRS	W (100) = 0.525, p<0.001	Lg10 (mRS+3)
NIHSS	W (99) = 0.503, p<0.001	Lg10 (NIHSS+3)
MoCA	W (80) = 0.812, p<0.001	Lg10 (MoCA)
risk factors score	W (100) = 0.695, p<0.001	Lg10 (RF+3)
age	W (100) = 0.980, p=0.138	not log transformed

Statistical Analysis

A one-way ANOVA was used to assess for any significant differences between the total Scheltens scores and the different diagnoses. The observed power of this statistical test was also calculated. For the ANOVA, p values of < 0.05 were accepted as statistically significant. The Pearson's correlation coefficient was used to assess whether there was an association total/individual between the Scheltens scores and the various physical measurements/clinical assessments. The above analysis was performed in SPSS version 25 (IBM Corporation, Armonk, NY; http://www-01.ibm.com/software/analytics/spss/) by two independent researchers (OV & KT), who crosschecked all results to ensure no errors. To control for type I error (i.e. false positives) resulting from the multiple correlations, the Benjamini-Hochberg FDR procedure (Benjamini and Hochberg, 1995) was applied by an independent researcher (MS) as described in later parts of this supplementary file.

Descriptive Statistics

	Desci			
			Statistic	Std. Error
Age (years)	Mean		50.95	1.202
	95% Confidence	Lower Bound	48.56	
	Interval for Mean	Upper Bound	53.34	
	5% Trimmed Mean		51.14	
	Median		51.50	
	Variance		144.533	
	Std. Deviation		12.022	
	Minimum		21	
	Maximum		82	
	Range		61	
	Interquartile Range		16	
	Skewness		287	.241
	Kurtosis		313	.478

	Sex					
					Cumulative	
		Frequency	Percent	Valid Percent	Percent	
Valid	Male	55	55.0	55.0	55.0	
	Female	45	45.0	45.0	100.0	
	Total	100	100.0	100.0		

Final diagnosis

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	TIA	17	17.0	17.0	17.0
	Minor stroke	33	33.0	33.0	50.0
	Migraine	25	25.0	25.0	75.0
	Non-organic	7	7.0	7.0	82.0
	Other	18	18.0	18.0	100.0
	Total	100	100.0	100.0	

Clarification of final diagnosis if other

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid		82	82.0	82.0	82.0
	Acute vestibular	1	1.0	1.0	83.0
	neuronitis				
	Anxiety	2	2.0	2.0	85.0
	Ballismus	1	1.0	1.0	86.0
	Global transient	1	1.0	1.0	87.0
	amnesia				
	Left ulnar neuropathy	1	1.0	1.0	88.0
	Meniere's disease	1	1.0	1.0	89.0
	Minor contusion or	1	1.0	1.0	90.0
	focal seizure				
	Neuropraxia	1	1.0	1.0	91.0
	Partial seizure	1	1.0	1.0	92.0
	Sporadic CJD	1	1.0	1.0	93.0
	Stress	2	2.0	2.0	95.0
	Subacute cerebellar	1	1.0	1.0	96.0
	infarct and migraine				
	Unclear	4	4.0	4.0	100.0
	Total	100	100.0	100.0	

Descriptives						
			Statistic	Std. Error		
Sum of risk	Mean		.72	.109		
factors	95% Confidence	Lower Bound	.50			
	Interval for Mean	Upper Bound	.94			
	5% Trimmed Mean		.61			
	Median		.00			
	Variance		1.194			
	Std. Deviation		1.092			
	Minimum		0			
	Maximum		4			
	Range		4			
	Interquartile Range		1			
	Skewness		1.387	.241		
	Kurtosis		.812	.478		

Descriptives

	Descripti	VCJ		
			Statistic	Std. Error
Systolic blood	Mean		128.33	1.807
pressure (mmHg)	95% Confidence	Lower Bound	124.75	
	Interval for Mean	Upper Bound	131.92	
	5% Trimmed Mean		127.34	
	Median		125.00	
	Variance		313.467	
	Std. Deviation		17.705	
	Minimum		98	
	Maximum		200	
	Range		102	
	Interquartile Range		20	
	Skewness		1.103	.246
	Kurtosis		2.210	.488

Descriptives	5		
		Statistic	Std. Error
		80.21	1.087
onfidence	Lower Bound	78.05	
Interval for Mean	Upper Bound	82.37	
mmed Mean		79.73	
n		80.00	
се		113.367	
eviation		10.647	
um		50	
	Descriptives onfidence al for Mean mmed Mean n ce eviation um	Descriptives Descriptives Lower Bound Upper Bound mmed Mean n ce eviation um	StatisticStatisti

Maximum	119	
Range	69	
Interquartile Range	15	
Skewness	.827	.246
Kurtosis	2.541	.488

			Statistic	Std. Error
Pulse	Mean		48.13	1.330
pressure	95% Confidence	Lower Bound	45.48	
(sBP-dBP;	Interval for Mean	Upper Bound	50.77	
mmHg)	5% Trimmed Mean		47.53	
	Median		45.00	
	Variance		169.816	
	Std. Deviation		13.031	
	Minimum		17	
	Maximum		94	
	Range		77	
	Interquartile Range		18	
	Skewness		.772	.246
	Kurtosis		1.190	.488

	Descriptiv	es		
			Statistic	Std. Error
Modified Rankin Scale	Mean		.30	.061
(0-6)	95% Confidence	Lower Bound	.18	
	Interval for Mean	Upper Bound	.42	
	5% Trimmed Mean		.22	
	Median		.00	
	Variance		.374	
	Std. Deviation		.611	
	Minimum		0	
	Maximum		4	
	Range		4	
	Interquartile Range		1	
	Skewness		2.977	.241
	Kurtosis		13.043	.478

			Statistic	Std. Error
NIHSS (/42)	Mean		.32	.073
	95% Confidence	Lower Bound	.18	
	Interval for Mean	Upper Bound	.47	
	5% Trimmed Mean		.20	
	Median		.00	
	Variance		.527	
	Std. Deviation		.726	
	Minimum		0	
	Maximum		3	
	Range		3	
	Interquartile Range		0	
	Skewness		2.519	.243
	Kurtosis		5.998	.481

Descriptives

			Statistic	Std. Error
MoCA (/30)	Mean		28.61	.172
	95% Confidence	Lower Bound	28.27	
	Interval for Mean	Upper Bound	28.95	
	5% Trimmed Mean		28.78	
	Median		29.00	
	Variance		2.367	
	Std. Deviation		1.538	
	Minimum		23	
	Maximum		30	
	Range		7	
	Interquartile Range		2	
	Skewness		-1.501	.269
	Kurtosis		2.324	.532

	Descriptiv	E 3		
			Statistic	Std. Error
Total Scheltens	Mean		28.49	1.193
score (/93)	95% Confidence	Lower Bound	26.12	
	Interval for Mean	Upper Bound	30.86	
	5% Trimmed Mean		27.93	
	Median		28.00	
	Variance		142.212	
	Std. Deviation		11.925	
	Minimum		6	

Maximum	73	
Range	67	
Interquartile Range	13	
Skewness	.755	.241
Kurtosis	1.404	.478

			Statistic	Std. Error
White matter	Mean		9.44	.594
hyperintensities (/30)	95% Confidence	Lower Bound	8.26	
	Interval for Mean	Upper Bound	10.62	
	5% Trimmed Mean		9.07	
	Median		8.00	
	Variance		35.299	
	Std. Deviation		5.941	
	Minimum		1	
	Maximum		30	
	Range		29	
	Interquartile Range		7	
	Skewness		.992	.241
	Kurtosis		.904	.478

	Descriptiv	es		
			Statistic	Std. Error
Periventricular	Mean		4.41	.166
hyperintensities (/9)	95% Confidence	Lower Bound	4.08	
	Interval for Mean	Upper Bound	4.74	
	5% Trimmed Mean		4.29	
	Median		4.00	
	Variance		2.749	
	Std. Deviation		1.658	
	Minimum		1	
	Maximum		9	
	Range		8	
	Interquartile Range		2	
	Skewness		1.111	.241
	Kurtosis		1.061	.478

			Statistic	Std. Error
Grey matter	Mean		8.27	.386
hyperintensities (/30)	95% Confidence	Lower Bound	7.50	
	Interval for Mean	Upper Bound	9.04	
	5% Trimmed Mean		8.16	
	Median		8.50	
	Variance		14.906	
	Std. Deviation		3.861	
	Minimum		1	
	Maximum		21	
	Range		20	
	Interquartile Range		5	
	Skewness		.427	.241
	Kurtosis		.504	.478

Descriptives

			Statistic	Std. Error
Infra-tentorial foci of	Mean		6.36	.322
hyperintensity (/24)	95% Confidence	Lower Bound	5.72	
	Interval for Mean	Upper Bound	7.00	
	5% Trimmed Mean		6.28	
	Median		6.00	
	Variance		10.354	
	Std. Deviation		3.218	
	Minimum		1	
	Maximum		15	
	Range		14	
	Interquartile Range		4	
	Skewness		.298	.241
	Kurtosis		347	.478

Statistical Analysis

ANOVA Total Scheltens Score

Between-Subjects Factors

		Value Label	Ν
Final diagnosis	1	TIA	17
	2	Minor stroke	33
	3	Migraine	25
	4	Non-organic	7

5 Other 18			
	5	Other	18

Descriptive Statistics

Dependent Variable: Lg10					
		Std.			
Final diagnosis	Mean	Deviation	Ν		
TIA	1.4140	.16726	17		
Minor stroke	1.4641	.23291	33		
Migraine	1.3893	.17140	25		
Non-organic	1.3029	.20734	7		
Other	1.3936	.20664	18		
Total	1.4129	.20262	100		

Levene's Test of Equality of Error Variances^{a,b}

		Levene			
		Statistic	df1	df2	Sig.
Lg10	Based on Mean	.905	4	95	.464
	Based on Median	.838	4	95	.505
	Based on Median and with adjusted df	.838	4	89.570	.505
	Based on trimmed	.907	4	95	.463
	mean				

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Dependent variable: Lg10

b. Design: Intercept + Final_diagnosis

Tests of Between-Subjects Effects

Dependent Variable	e: Lg10							
	Type III							
	Sum of		Mean			Partial Eta	Noncent.	Observed
Source	Squares	df	Square	F	Sig.	Squared	Parameter	Power ^b
Corrected Model	.192ª	4	.048	1.177	.326	.047	4.709	.357
Intercept	148.060	1	148.060	3632.209	.000	.975	3632.209	1.000
Final_diagnosis	.192	4	.048	1.177	.326	.047	4.709	.357
Error	3.872	95	.041					
Total	203.693	100						
Corrected Total	4.064	99						

a. R Squared = .047 (Adjusted R Squared = .007)

b. Computed using alpha = .05

ANOVA Total Scheltens Scores by Gender <u>MALE</u>

		Value Label	Ν		
Final diagnosis	1	TIA	9		
	2	Minor stroke	19		
	3	Migraine	13		
	4	Non-organic	2		
	5	Other	12		

Between-Subjects Factors^a

a. Sex = Male

Descriptive Statistics^a

Dependent Variable: Lg10					
		Std.			
Final diagnosis	Mean	Deviation	Ν		
TIA	1.3721	.19460	9		
Minor stroke	1.4587	.24027	19		
Migraine	1.4245	.06442	13		
Non-organic	1.4956	.06853	2		
Other	1.3393	.22319	12		
Total	1.4118	.19625	55		

a. Sex = Male

Levene's Test of Equality of Error Variances^{a,b,c}

		Levene			
		Statistic	df1	df2	Sig.
Lg10	Based on Mean	3.301	4	50	.018
	Based on Median	2.539	4	50	.051
	Based on Median and with adjusted df	2.539	4	39.061	.055
	Based on trimmed	3.230	4	50	.020
	mean				

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

a. Sex = Male

- b. Dependent variable: Lg10
- c. Design: Intercept + Final_diagnosis

Tests of Between-Subjects Effects^a

Dependent Variable	e: Lg10							
	Type III							
	Sum of		Mean			Partial Eta	Noncent.	Observed
Source	Squares	df	Square	F	Sig.	Squared	Parameter	Power ^c
Corrected Model	.135 ^b	4	.034	.869	.489	.065	3.475	.257
Intercept	61.010	1	61.010	1568.756	.000	.969	1568.756	1.000
Final_diagnosis	.135	4	.034	.869	.489	.065	3.475	.257
Error	1.945	50	.039					
Total	111.697	55						
Corrected Total	2.080	54						

a. Sex = Male

b. R Squared = .065 (Adjusted R Squared = -.010)

c. Computed using alpha = .05

FEMALE

		•	
		Value Label	Ν
Final diagnosis	1	TIA	8
	2	Minor stroke	14
	3	Migraine	12
	4	Non-organic	5
	5	Other	6

Between-Subjects Factors^a

a. Sex = Female

Descriptive Statistics^a

Dependent Variable: Lg10

		Std.	
Final diagnosis	Mean	Deviation	Ν
TIA	1.4611	.12600	8
Minor stroke	1.4715	.23130	14
Migraine	1.3510	.23770	12
Non-organic	1.2258	.19318	5
Other	1.5021	.11992	6
Total	1.4143	.21238	45

a. Sex = Female

Levene's Test of Equality of Error Variances^{a,b,c}

		Levene			
		Statistic	df1	df2	Sig.
Lg10	Based on Mean	.803	4	40	.530
	Based on Median	.595	4	40	.668
	Based on Median and with adjusted df	.595	4	29.468	.669
	Based on trimmed	.731	4	40	.576
	mean				

Tests the null hypothesis that the error variance of the dependent variable is equal across groups.

- a. Sex = Female
- b. Dependent variable: Lg10
- c. Design: Intercept + Final_diagnosis

Tests of Between-Subjects Effects^a

Dependent Variable	: Lg10							
	Type III							
	Sum of		Mean			Partial Eta	Noncent.	Observed
Source	Squares	df	Square	F	Sig.	Squared	Parameter	Power ^c
Corrected Model	.335 ^b	4	.084	2.033	.108	.169	8.131	.556
Intercept	76.052	1	76.052	1844.434	.000	.979	1844.434	1.000
Final_diagnosis	.335	4	.084	2.033	.108	.169	8.131	.556
Error	1.649	40	.041					
Total	91.997	45						
Corrected Total	1.985	44						

a. Sex = Female

b. R Squared = .169 (Adjusted R Squared = .086)

c. Computed using alpha = .05

Correlations Total Scheltens Score

Correlations					
		Lg10Sceltens	Age		
Lg10Scheltens	Pearson	1	.550**		
	Correlation				
	Sig. (2-tailed)		.000		
	Ν	100	100		
Age	Pearson	.550**	1		
	Correlation				

Sig. (2-tailed)	.000	
Ν	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations						
		Lg10Scheltns	Lg10MoCA			
Lg10Scheltens	Pearson	1	280*			
	Correlation					
	Sig. (2-tailed)		.012			
	Ν	100	80			
Lg10MoCA	Pearson	280 [*]	1			
	Correlation					
	Sig. (2-tailed)	.012				
	N	80	80			

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations				
		Lg10Scheltens	Lg10sBP	
Lg10Scheltens	Pearson	1	.340**	
	Correlation			
	Sig. (2-tailed)		.001	
	N	100	96	
Lg10sBP	Pearson	.340**	1	
	Correlation			
	Sig. (2-tailed)	.001		
	N	96	96	

**. Correlation is significant at the 0.01 level (2-tailed).

		Lg10Scheltens	Lg10dBP
Lg10Schletens	Pearson	1	.133
	Correlation		
	Sig. (2-tailed)		.198
	Ν	100	96
Lg10dBP	Pearson	.133	1
	Correlation		
	Sig. (2-tailed)	.198	
	Ν	96	96

		Lg10Scheltens	Lg10PP
Lg10Scheltens	Pearson	1	.325**
	Correlation		
	Sig. (2-tailed)		.001
	N	100	96
Lg10PP	Pearson	.325**	1
	Correlation		
	Sig. (2-tailed)	.001	
	Ν	96	96

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

		Lg10Scheltes	Lg10 RF
Lg10Scheltens	Pearson	1	.228*
	Correlation		
	Sig. (2-tailed)		.022
	Ν	100	100
Lg10RF	Pearson	.228*	1
	Correlation		
	Sig. (2-tailed)	.022	
	Ν	100	100

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations			
		Lg10Scheltens	Lg10mRS
Lg10Scheltens	Pearson	1	.145
	Correlation		
	Sig. (2-tailed)		.149
	Ν	100	100
Lg10mRS	Pearson	.145	1
	Correlation		
	Sig. (2-tailed)	.149	
	Ν	100	100

		Lg10Scheltens	Lg10NIHSS
Lg10Scheltens	Pearson	1	.210*
	Correlation		
	Sig. (2-tailed)		.037

	N	100	99
Lg10NIHSS	Pearson	.210*	1
	Correlation		
	Sig. (2-tailed)	.037	
	N	99	99

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations Individual Scheltens Scores <u>WMH</u>

Correlations

		Lg10WMH	Age
Lg10WMH	Pearson	1	.585**
	Correlation		
	Sig. (2-tailed)		.000
	Ν	100	100
Age	Pearson	.585**	1
	Correlation		
	Sig. (2-tailed)	.000	
	Ν	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations				
		Lg10WMH	Lg10MoCA	
Lg10WMH	Pearson	1	300**	
	Correlation			
	Sig. (2-tailed)		.007	
	Ν	100	80	
Lg10MoCA	Pearson	300**	1	
	Correlation			
	Sig. (2-tailed)	.007		
	Ν	80	80	

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations			
		Lg10WMH	Lg10sBP
Lg10WMH	Pearson	1	.309**
	Correlation		
	Sig. (2-tailed)		.002
	N	100	96

Lg10sBP	Pearson Correlation	.309**	1
	Sig. (2-tailed)	.002	
	Ν	96	96

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations			
		Lg10WMH	Lg10dBP
Lg10WMH	Pearson	1	.073
	Correlation		
	Sig. (2-tailed)		.482
	Ν	100	96
Lg10dBP	Pearson	.073	1
	Correlation		
	Sig. (2-tailed)	.482	
	N	96	96

Correlations

		Lg10WMH	Lg10PP
Lg10WMH	Pearson	1	.352**
	Correlation		
	Sig. (2-tailed)		.000
	Ν	100	96
Lg10PP	Pearson	.352**	1
	Correlation		
	Sig. (2-tailed)	.000	
	Ν	96	96

**. Correlation is significant at the 0.01 level (2-tailed).

		Lg10WMH	Lg10RS
Lg10WMH	Pearson	1	.210*
	Correlation		
	Sig. (2-tailed)		.036
	Ν	100	100
Lg10RS	Pearson	.210*	1
	Correlation		
	Sig. (2-tailed)	.036	

Ν	100	100

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations			
		Lg10WMH	Lg10mRS
Lg10WMH	Pearson	1	.169
	Correlation		
	Sig. (2-tailed)		.093
	Ν	100	100
Lg10mRS	Pearson	.169	1
	Correlation		
	Sig. (2-tailed)	.093	
	N	100	100

Correlations

		Lg10WMH	Lg10NIHSS
Lg10WMH	Pearson	1	.155
	Correlation		
	Sig. (2-tailed)		.127
	Ν	100	99
Lg10NIHSS	Pearson	.155	1
	Correlation		
	Sig. (2-tailed)	.127	
	Ν	99	99

<u>PVH</u>

Correlations Lg10PVH Age Lg10PVH .467** Pearson 1 Correlation Sig. (2-tailed) .000 Ν 100 100 .467** Pearson 1 Age Correlation Sig. (2-tailed) .000 Ν 100 100

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations			
		Lg10PVH	Lg10MoCA
Lg10PVH	Pearson	1	202
	Correlation		
	Sig. (2-tailed)		.072
	Ν	100	80
Lg10MoCA	Pearson	202	1
	Correlation		
	Sig. (2-tailed)	.072	
	N	80	80

Correlations			
		Lg10PVH	Lg10sBP
Lg10PVH	Pearson	1	.188
	Correlation		
	Sig. (2-tailed)		.066
	Ν	100	96
Lg10sBP	Pearson	.188	1
	Correlation		
	Sig. (2-tailed)	.066	
	Ν	96	96

Correlations

		Lg10PVH	Lg10dBP
Lg10PVH	Pearson	1	033
	Correlation		
	Sig. (2-tailed)		.753
	Ν	100	96
Lg10dBP	Pearson	033	1
	Correlation		
	Sig. (2-tailed)	.753	
	Ν	96	96

		Lg10PVH	Lg10PP
Lg10PVH	Pearson	1	.277**
	Correlation		
	Sig. (2-tailed)		.006
	Ν	100	96

Lg10PP	Pearson Correlation	.277**	1
	Sig. (2-tailed)	.006	
	Ν	96	96

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations			
		Lg10PVH	Lg10RS
Lg10PVH	Pearson	1	.271**
	Correlation		
	Sig. (2-tailed)		.006
	Ν	100	100
Lg10RS	Pearson	.271**	1
	Correlation		
	Sig. (2-tailed)	.006	
	Ν	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Correla	tions
---------	-------

		Lg10PVH	Lg10mRS
Lg10PVH	Pearson	1	.150
	Correlation		
	Sig. (2-tailed)		.138
	Ν	100	100
Lg10mRS	Pearson	.150	1
	Correlation		
	Sig. (2-tailed)	.138	
	Ν	100	100

		Lg10PVH	Lg10NIHSS
Lg10PVH	Pearson	1	.201*
	Correlation		
	Sig. (2-tailed)		.046
	Ν	100	99
Lg10NIHSS	Pearson	.201*	1
	Correlation		
	Sig. (2-tailed)	.046	

	Ν			99		99
 				 1 / 0 .	 	

*. Correlation is significant at the 0.05 level (2-tailed).

<u>GMH</u>

Correlations			
		Lg10GMH	Age
Lg10GMH	Pearson	1	.399**
	Correlation		
	Sig. (2-tailed)		.000
	Ν	100	100
Age	Pearson	.399**	1
	Correlation		
	Sig. (2-tailed)	.000	
	Ν	100	100

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations			
		Lg10GMH	Lg10MoCA
Lg10GMH	Pearson	1	153
	Correlation		
	Sig. (2-tailed)		.177
	Ν	100	80
Lg10MoCA	Pearson	153	1
	Correlation		
	Sig. (2-tailed)	.177	
	N	80	80

		Lg10GMH	Lg10sBP
Lg10GMH	Pearson	1	.355**
	Correlation		
	Sig. (2-tailed)		.000
	Ν	100	96
Lg10sBP	Pearson	.355**	1
	Correlation		
	Sig. (2-tailed)	.000	
	Ν	96	96

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations			
		Lg10GMH	Lg10dBP
Lg10GMH	Pearson	1	.243*
	Correlation		
	Sig. (2-tailed)		.017
	Ν	100	96
Lg10dBP	Pearson	.243*	1
	Correlation		
	Sig. (2-tailed)	.017	
	N	96	96

*. Correlation is significant at the 0.05 level (2-tailed).

	Correlations			
		Lg10GMH	Lg10PP	
Lg10GMH	Pearson	1	.245*	
	Correlation			
	Sig. (2-tailed)		.016	
	Ν	100	96	
Lg10PP	Pearson	.245*	1	
	Correlation			
	Sig. (2-tailed)	.016		
	Ν	96	96	

*. Correlation is significant at the 0.05 level (2-tailed).

		Lg10GMH	Lg10RS
Lg10GMH	Pearson	1	.183
	Correlation		
	Sig. (2-tailed)		.069
	Ν	100	100
Lg10RS	Pearson	.183	1
	Correlation		
	Sig. (2-tailed)	.069	
	Ν	100	100

Correlations			
		Lg10GMH	Lg10mRS
Lg10GMH	Pearson	1	.076
	Correlation		
	Sig. (2-tailed)		.452
	Ν	100	100
Lg10mRS	Pearson	.076	1
	Correlation		
	Sig. (2-tailed)	.452	
	N	100	100

		Lg10GMH	Lg10NIHSS
Lg10GMH	Pearson	1	.207*
	Correlation		
	Sig. (2-tailed)		.040
	Ν	100	99
Lg10NIHSS	Pearson	.207*	1
	Correlation		
	Sig. (2-tailed)	.040	
	Ν	99	99

*. Correlation is significant at the 0.05 level (2-tailed).

<u>IFTH</u>

Correlations			
		Lg10IFTH	Age
Lg10IFTH	Pearson	1	.229*
	Correlation		
	Sig. (2-tailed)		.022
	Ν	100	100
Age	Pearson	.229*	1
	Correlation		
	Sig. (2-tailed)	.022	
	N	100	100

*. Correlation is significant at the 0.05 level (2-tailed).

Correlations					
		Lg10IFTH	Lg10MoCA		
Lg10IFTH	Pearson	1	193		
	Correlation				
	Sig. (2-tailed)		.086		
	Ν	100	80		
Lg10MoCA	Pearson	193	1		
	Correlation				
	Sig. (2-tailed)	.086			
	N	80	80		

		Lg10IFTH	Lg10sBP
Lg10IFTH	Pearson	1	.171
	Correlation		
	Sig. (2-tailed)		.095
	Ν	100	96
Lg10sBP	Pearson	.171	1
	Correlation		
	Sig. (2-tailed)	.095	
	Ν	96	96

Correlations

		Lg10IFTH	Lg10dBP
Lg10IFTH	Pearson	1	.054
	Correlation		
	Sig. (2-tailed)		.599
	Ν	100	96
Lg10dBP	Pearson	.054	1
	Correlation		
	Sig. (2-tailed)	.599	
	Ν	96	96

		Lg10IFTH	Lg10PP
Lg10IFTH	Pearson	1	.158
	Correlation		
	Sig. (2-tailed)		.124
	Ν	100	96

Lg10PP	Pearson Correlation	.158	1
	Sig. (2-tailed)	.124	
	N	96	96

		Lg10IFTH	Lg10RS
Lg10IFTH	Pearson	1	.102
	Correlation		
	Sig. (2-tailed)	.314	
	Ν	100	100
Lg10RS	Pearson	.102	1
	Correlation		
	Sig. (2-tailed)	.314	
	Ν	100	100

Correlations

		Lg10IFTH	Lg10mRS
Lg10IFTH	Pearson	1	.048
	Correlation		
	Sig. (2-tailed)		.633
	Ν	100	100
Lg10mRS	Pearson	.048	1
	Correlation		
	Sig. (2-tailed)	.633	
	Ν	100	100

		Lg10IFTH	Lg10NIHSS
Lg10IFTH	Pearson	1	.127
	Correlation		
	Sig. (2-tailed)		.211
	Ν	100	99
Lg10NIHSS	Pearson	.127	1
	Correlation		
	Sig. (2-tailed)	.211	
	Ν	99	99

Multiple Comparison Correction

To control for type I error (i.e. false positives) resulting from multiple comparisons during the above correlations, the FDR method described by Benjamini and Hochberg *et al.* (1995) was applied to all p values by an independent researcher (MS). In the Benjamini-Hochberg procedure, all p values are arranged in ascending order and their critical values are calculated using the formula below:

 $\left(\frac{i}{m}\right)Q$

i= rank m=total number of tests Q=FDR threshold

The next step involves identification of the highest p value that is smaller than its corresponding critical value. All p values above this point (i.e. lower p values) are considered as significant. The table below summarizes this method as applied to our dataset with the point from which p values and above (i.e. lower p values) should be considered as significant highlighted in grey for two different thresholds.

				FDR=0.05	FDR=0.1
	Variable	p value	Rank	(i/m)Q	(i/m)Q
Scheltens	Age	0	1	0.00125	0.0025
PVH	Age	0	2	0.0025	0.005
WMH	Age	0	3	0.00375	0.0075
WMH	PP	0	4	0.005	0.01
GMH	Age	0	5	0.00625	0.0125
GMH	sBP	0	6	0.0075	0.015
Scheltens	sBP	0.001	7	0.00875	0.0175
Scheltens	PP	0.001	8	0.01	0.02
WMH	sBP	0.002	9	0.01125	0.0225
PVH	PP	0.006	10	0.0125	0.025
PVH	RS	0.006	11	0.01375	0.0275
WMH	MoCA	0.007	12	0.015	0.03
Scheltens	MoCA	0.012	13	0.01625	0.0325
GMH	РР	0.016	14	0.0175	0.035
GMH	dBP	0.017	15	0.01875	0.0375
Scheltens	RF	0.022	16	0.02	0.04
IFTH	Age	0.022	17	0.02125	0.0425
WMH	RS	0.036	18	0.0225	0.045
Scheltens	NIHSS	0.037	19	0.02375	0.0475
GMH	NIHSS	0.04	20	0.025	0.05
PVH	NIHSS	0.046	21	0.02625	0.0525
PVH	sBP	0.066	22	0.0275	0.055
GMH	RS	0.069	23	0.02875	0.0575

PVH	MoCA	0.072	24	0.03	0.06
IFTH	MoCA	0.086	25	0.03125	0.0625
WMH	mRS	0.093	26	0.0325	0.065
IFTH	sBP	0.095	27	0.03375	0.0675
IFTH	PP	0.124	28	0.035	0.07
WMH	NIHSS	0.127	29	0.03625	0.0725
PVH	mRS	0.138	30	0.0375	0.075
Scheltens	mRS	0.149	31	0.03875	0.0775
GMH	MoCA	0.177	32	0.04	0.08
Scheltens	dBP	0.198	33	0.04125	0.0825
IFTH	NIHSS	0.211	34	0.0425	0.085
IFTH	RS	0.314	35	0.04375	0.0875
GMH	mRS	0.452	36	0.045	0.09
WMH	dBP	0.482	37	0.04625	0.0925
IFTH	dBP	0.599	38	0.0475	0.095
IFTH	mRS	0.633	39	0.04875	0.0975
PVH	dBP	0.753	40	0.05	0.1

List of Abbreviations

TIA: transient ischemic attack dBP: diastolic blood pressure sBP: systolic blood pressure PP: pulse pressure mRS: modified Rankin score MoCA: Montreal cognitive assessment NIHSS: national institutes of health stroke scale WMH: white matter hyperintensities GMH: grey matter hyperintensities PVH: periventricular hyperintensities IFTH: infratentorial hyperintensities MRI: magnetic resonance imaging PACS: picture archiving and communication system ANOVA: analysis of variance FDR: false discovery rate

Contributions

OV: Study design; Participant assessment; Hyperintensities scoring; Statistical analysis; Manuscript write up; Manuscript review.

KT: Statistical analysis; Manuscript write up; Manuscript review.

MS: Study design; Post-hoc statistical analysis; Manuscript review.

CDF: Study design; Post-hoc statistical analysis; Manuscript review.

ADM: Training for hyperintensities scoring; Manuscript review.

CS: Study design; Manuscript review; co-PI.

MJM: Study design; Patient recruitment; Final diagnosis; Manuscript review; Pl.

References

Easton, J., D., Saver, J., L., Albers, G., W., Alberts, M., J., Chaturvedi, S., Feldmann, E., *et al.* (2009). Definition and evaluation of transient ischaemic attack. *Stroke*, 40, pp. 2276–2293.

Fischer, U., Baumgartner, A., Arnold, M., Nedeltchev, K., Gralla, J., De Marchis, G., M., *et al.* (2010). What is a minor stroke? *Stroke*, 41, pp. 661–666.

Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J Royal Stat Soc*, 57, pp. 289–300.

Murray, A. D. (2012). Brain white matter hyperintensities: correlates in normal ageing and relevance in Alzheimer's disease (published online PhD thesis). University of Aberdeen, UK.

Scheltens, P., Barkhof, F., Leys, D., Pruvo, J., P., Nauta, J., J., Vermersch, P., *et al.* (1993). A semiquantative rating scale for the assessment of signal hyperintensities on magnetic resonance imaging. *J Neurol Sci*, 114, pp. 7–12.

Scheltens, P., Erkinjunti, T., Leys, D., Wahlund, L., O., Inzitari, D., del Ser, T., *et al.* (1998). White matter changes on CT and MRI: an overview of visual rating scales. *Eur Neurol*, 39, pp. 80–89.

Varsou, O. (2014). *Neuroimaging of patients with acute focal neurological symptoms: Investigating new functional and structural magnetic resonance imaging measures* (PhD thesis). University of Aberdeen, UK. ISNI: 0000 0004 5360 5409.