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Optimal Selection of Traffic Sensors:

An Information-Theoretic Framework
?

Ruzanna Mat Jusoh and Konstantinos Ampountolas

Abstract— This paper presents an information-theoretic

framework for the optimal selection of sensors across a traffic

network. For the selection of sensors a set covering integer pro-

gramming (IP) problem is developed. A measure of correlation

between random variables, reflecting a variable of interest, is

introduced as a “distance” metric to provide sufficient cover-

age and information accuracy. The ultimate goal is to select

sensors that are most informative about unsensed locations.

The Kullback-Leibler divergence (relative entropy) is used to

measure the dissimilarity between probability mass functions

corresponding to different solutions of the IP program. Efficient

model selection is a trade-off between the Kullback-Leibler di-

vergence and the optimal cost of the IP program. The proposed

framework is applied to the problem of developing sparse-

measurement traffic flow models with empirical inductive loop-

detector data of one week from a central business district

with about sixty sensors. Results demonstrate that the obtained

sparse-measurement rival models are able to preserve the shape

and main features of the full-measurement traffic flow models.

I. INTRODUCTION
Location science has a long history in single criterion lo-

cation problems characterized by the (maximum or average)
distance, or some measure more or less functionally related
to distance (e.g., average travel time, demand satisfaction).
The general problem is to locate new facilities or sensors to
optimize some objective or cover a spatial area of interest or
satisfy some demand points. Basic facility or sensor location
models include: set covering, maximal covering, p-center,
p-median, fixed charge, hub, and maxisum [1].

These models work well in spatial problems where dis-
tance as a metric is well defined. However, geometric as-
sumptions related to the metric are too strong in case of
monitoring spatio-temporal phenomena, such as traffic flow
in urban road networks by traffic detectors. Traffic congestion
propagates upstream in the network to random locations
(see e.g. [2]) and traffic sensors make noisy measurements
about the nearby regions, and this spatial sensing area is not
usually characterized by a regular disk. For example, sensors
located at arbitrary regions of the network can provide
similar information and thus should be excluded. On the
other hand, combining data from multiple sensors can give
good predictions. For the network of Glasgow city [2], it has
been demonstrated that signal control of an intersection is
affected by the traffic conditions even of relatively distant
links (irrespective of whether the intersection is located
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centrally or at the network boundaries). Moreover, the spatio-
temporal distribution of congestion in traffic networks affects
the shape of aggregated models used for traffic monitoring
[3], [4]. Thus the notion of combination of data from
multiple sensors is of fundamental importance and cannot
be easily characterized by existing spatial models relying
on the measure of distance. Except transport networks, the
sensor selection problem arises in various other applications,
including robotics, parametric identification of structural
systems [5], wireless networks [6], and others [7].

This work presents a novel methodology for the optimal
selection of sensors across a transport network, including
an information theoretic framework for efficient model se-
lection. For the optimal selection of sensors a set covering
IP problem is developed, which is NP-hard (even with only
polynomially many constraints [8]). Though polynomial time
algorithms with a constant-factor approximation guarantee
can be developed. A measure of correlation (based on mutual
information) between random variables, reflecting a variable
of interest, is introduced as a “distance” metric to provide
sufficient coverage and information accuracy. The ultimate
goal is to select sensors that are most informative about
unsensed locations. The problem of finding the configura-
tion that maximises mutual information is NP-complete [9].
In this work, the Kullback-Leibler divergence is used to
measure the dissimilarity between probability mass functions
corresponding to different solutions of the IP program (unlike
other works without making any assumption on the mea-
surement model and its distribution), and thus to quantify
the approximation error between different group of sensors.
Efficient model selection is a trade-off between the Kullback-
Leibler divergence and the optimal cost of the IP program.
The effectiveness of the proposed framework is demonstrated
with the use of empirical data.

II. INFORMATION THEORY
Let X be a discrete random variable that is completely

defined in a finite set X = {0, 1, 2, . . .}. The value pX(x) =
P(X = x) is the probability that the variable X takes the
value x. Then p(x) defines a probability mass function (pmf)
for the discrete random variable X with support X . All
random variables and distributions are considered discrete.

The (Shannon) entropy of a pmf is a non-negative measure
of the amount of “uncertainty” in the distribution [10].

Definition 1 (Entropy): The entropy H[p(x)] of a distri-
bution p(x) is defined by (when the sum exists)

H[p(x)] , �
X

x2X
p(x) log p(x) = �E[log p(X)] . (1)
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Note that H[p(x)] and H[X] are equivalent. The operator
Ep[·] denotes expectation, where X is drawn according to
the distribution p(x). Here entropy is measured in bits (base
2 logarithm) and 0 log 0 is defined to be 0.

The relative entropy or the Kullback-Leibler divergence

(KL-div) of two distributions is denoted as �(p k q). It is a
measure of the inefficiency of assuming that the distribution
is q when the true (reference) distribution is p. It arises as
an expected logarithm of the likelihood ratio [11].

Definition 2 (Relative Entropy; KL Divergence): Let
p(x), q(x), x 2 X , be two pmf with q(x) ⌧ p(x). The
relative entropy of q(x) with respect to p(x) (reference
distribution), or the Kullback-Leibler divergence of q(x)
from p(x) is defined as

�(p k q) =
X

x2X
p(x) log

p(x)

q(x)
= Ep


log

p(X)

q(X)

�
. (2)

Here 0 log 0/p and 0 log 0/0 are defined to be 0, while
p log p/0 is defined to be 1. The KL-div is not symmetric
under interchange of the distributions p and q (�(p k q) 6=
�(q k p)), and it does not obey the triangle inequality, i.e.,
it is not a classic distance measure.

Convergence of probability distributions, pn ! p, means
point-wise convergence, that is, pn(x) ! p(x) for each x 2
X . A key property of KL-div is that it is non-negative and
zero if and only if two distributions are equal.

Lemma 1: Let p(x), q(x), x 2 X , be two pmf. Then
�(p k q) � 0, with equality iff p(x) = q(x) for all x 2 X .
In general the KL-div is unbounded from above, since we can
find distributions that are arbitrarily close in total variation
but with arbitrarily high relative entropy. Pinsker’s inequality
gives a lower bound on the relative entropy in terms of
the total variation distance. It suggests that convergence in
relative entropy, �(p k qn) ! 0 as n ! 1, where qn is a
sequence of rival distributions, implies convergence in the
total variation `1 metric.

Consider two random variables X defined in a finite set
X and Y defined in a finite set Y with marginal pmf p(x)
and p(y), respectively; a joint pmf p(x, y) and a conditional
pmf p(x | y). Similarly to the definition of the entropy of
a single variable, we define the joint entropy of a pair of
random variables.

Definition 3 (Joint Entropy): The joint entropy H[X,Y ]
of two discrete variables X and Y with a joint pmf p(x, y)
is defined as

H[X,Y ] , �
X

x2X

X

y2Y
p(x, y) log p(x, y) = �E[log p(X,Y )] .

It represents the amount of info needed on average to
determine the value of two random variables. Mutual infor-
mation is the reduction in uncertainty of a random variable
conditional on the knowledge of another random variable.

Definition 4 (Mutual Information): The mutual informa-
tion between two random variables, X and Y , is the di-
vergence of the product of their marginal distributions from
their actual joint distribution:

I [X;Y ] , �(p(x, y) k p(x) p(y))= E
p(x,y)


log

p(X,Y )

p(X) p(Y )

�
.

The mutual information I [X;Y ] is symmetric in X and Y

and always non-negative and is equal to zero if and only if
X and Y are independent.

The following proposition provides a measure of informa-
tion correlation between two random variables with the use
of the conditional, joint entropy and mutual information.

Proposition 1 (A measure of information correlation):

The quantity

%(X,Y ) =
I [X;Y ]

H[X,Y ]
, (3)

is a measure of information correlation between the random
variables X and Y , where 0  %  1. Furthermore, if X and
Y are identically distributed, but not necessarily independent
then the measure of information correlation is given by

%(X,Y ) =
I [X;Y ]

H[X]
. (4)

The measure of information correlation % given by (3) or (4)
is zero if and only if X and Y are independent, while % is
one if and only if X and Y have a one-to-one relationship.
Proof: Omitted due to space limitations.

III. PARSIMONIOUS TRAFFIC FLOW MODELS
AND OPTIMAL SELECTION OF SENSORS

A. Motivation

Network-wide traffic models, like the so-called macro-
scopic fundamental diagram (MFD) of urban road networks,
have been found to be particularly useful for monitoring
traffic congestion in urban areas [12], [13], [14]. Recent
simulation studies have confirmed that a sparse-measurement
model [15], which involves a small number of sensors and
corresponding measurements, can be used for the monitoring
and perimeter control of congested urban areas [16]. In
this direction, [17] proposed a quasi-optimal strategy for
link selection. This work develops a rigorous framework for
building sparse-measurement models, which are in principle
less costly. These models should preserve the main features
of a full-measurement model, e.g., capacity, critical density.

A full-measurement model can be constructed by flow-
occupancy measurements of n inductive-loop detectors
placed at appropriate network locations, a mid-block detector
is usually placed in each link of the network. A sparse-
measurement diagram can be then constructed by selecting
only a number of k < n detectors. Clearly, different levels of
network coverage in terms of selected detectors k can provide
different levels of accuracy. In principle, this is a combina-
torial problem where the number of possible combinations
is given by,

�n
k

�
= n!

k!(n�k)! . Depending on the size of the
network and number of sensors, checking these combinations
would be overwhelming and practical impossible. As an
example, the San Francisco network (financial district and
south of market) in [16] includes around n = 400 links. If
k = 100 links selected (25%) then the number of sparse-
measurement MFD to be examined is 2.24⇥1096. Note that
the total number of elementary particles in the universe is
around 1080 (Eddington number).
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Fig. 1. The set covering problem.

To overcome this difficulty, this work proposes to formu-
late the network coverage problem as a sensor (“facility”)
location problem. The idea here is to select a subset of links
from a given candidate set, and place in each of these links a
“sensor” that will provide flow-occupancy measurements to
construct the sparse-measurement traffic flow model. This is
combinatorial optimization problem and can be formulated
as an integer programming problem where a 0-1 decision
variable associated with selecting any given link for sensor
selection, at a given cost. This problem is NP-hard even with
only polynomially many constraints, see e.g. [8].

B. Optimal Selection of Sensors

For the selection of sensors a set covering model is
employed where the number of sensors p to be selected is not
known in advance (unlike to p-center or p-median models).
A formal definition of the set covering problem is as follows:

Definition 5 (Set Covering Problem): Let U be a finite set
of cardinality n and let S = {S1, S2, . . . , Sm} be a family of
subsets of U , whose union equals the universe, U =

Sm
j=1 Sj .

Find a minimum-cardinality subfamily C ✓ S that covers the
universe set U , i.e., the union of all sets in C is U .
Clearly, such a cover exists if and only if the union of
all sets in S is U , and we assume this for the rest of the
paper. For instance, a network with n sensors and universe
U = {1, 2, . . . , n} can be covered by S = {S1, S2, . . . , Sn},
where each Sj = {j} is a singleton. Of course the cardinality
of S in this case is n (i.e., maximum), given that all sensors
are selected. On the other hand, multiple sensors can be
assigned to a single set Sj if they are correlated and provide
the same amount of information or coverage, and thus the
cardinality of S can be accordingly reduced (see Fig. 1). The
ultimate objective is to find a minimum-cardinality subfamily
C of S that covers the universe set U . The cardinality k  m

of C is free and will be specified by the optimization.
The integer programming (IP) problem formulation reads:

min
�

f(�) =
mX

j=1

wj�j

subject to:
mX

j=1

cij�j � 1, 8 i 2 U , i 2 Sj , (5)

�j 2 {0, 1}, 8 j 2 {1, . . . ,m},

where U is the universe set, wj is the fixed cost of assigning
a sensor to set Sj , cij is a binary covering constant that takes
the value 1 if element of i 2 U is covered by set Sj (within
“distance” �) and the value 0 otherwise. Finally, a variable
�j is introduced for every set Sj , with the intended meaning
that �j = 1 when Sj is selected, and �j = 0 otherwise.

The solution of this problem �⇤ provides the optimal sensor
selection (selected sensors) and the minimum-cardinality of
C where k , card(C) = f(�⇤), provided wj = 1, 8 j.

To solve problem (5) the binary covering constants cij

must be specified. This matrix can be constructed if the
“distance” � is appropriately defined. In the classic facility
location problem, � has the meaning of spatial distance.
Here the spatial distance cannot be employed as a metric
as explained in Section I. A measure of correlation based
on the correlation or mutual information (see Section II)
between random variables can be used as a “distance” metric
to provide sufficient coverage and information accuracy.

Consider a transport network with n mid-block link sen-
sors reporting flow and occupancy observations. Suppose that
the time-occupancy data in each sensor is described by a
discrete random variable Xi 2 X (the time index is omitted
for clarity), i = 1, 2, . . . , n with X = {0, 1, 2, . . . , 100}
the finite set of occupancy observations (0-100%). The main
idea here is to look for the correlation of all pairs (Xi, Xj)
for all i, j = 1, 2, . . . , n, see (3), (4). High correlated
random variables (with % ⇡ 1) provide on average the
same information (their expected value is the entropy (1)),
and thus their measurements contribute in the same way in
the construction of the traffic model. Therefore, it would
be desirable the IP problem (5) to exclude a number of
those detectors providing similar coverage. On the other
hand, low correlated or independent random variables (with
% ⇡ 0) provide more information and their measurements are
important for the construction of the traffic model. It is thus
desirable, the IP problem (5) to include those detectors in
the final solution. With these observations in mind a natural
selection of “distance” is � = %. For given �, the binary
covering matrix C =

⇥
cij

⇤
is given then by

cij =

(
1, if dij � �,

0, otherwise,
i, j = 1, 2, . . . , n, (6)

with dij = %(Xi, Yj).
Clearly if � = 1 has chosen then C = In and the

IP optimal solution is f(�⇤) = n, i.e., all sensors are
selected �j = 1, 8 j (full-measurement model). If � < 1
then the optimization will exclude a number of sensors
and a sparse-measurement model can be constructed from
the selected sensors. Obviously, the accuracy of the traffic
model approximation will be reduced (e.g., its shape will
change) as � decreased, but the optimal value of the objective
function in (5) will be improved. This procedure reduces
significantly the number of sensor locations that need to be
checked, thus speeding up computation of the IP. Second,
it provides an upper-bound on the value of the optimal
selection (for � = 1), which can be used to bound the
cost of other exact or heuristic approaches. To check the
accuracy of the traffic model approximation for a particular
� (i.e., for a particular solution of (5)) we calculate its sparse-
measurement pmf. We then compare (see KL-div) the sparse-
measurement candidate pmf with an empirical (ground truth)
reference pmf reflecting the full-measurement model.
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C. Kullback-Leibler Divergence and Model Selection

To achieve this goal, we use the information-theoretic KL-
div (2), to measure the dissimilarity or “distance” between
pmf corresponding to different models obtained from the
solution of the IP problem (5) for different �. Entropy (1)
reflects the average information included in our data set
and gives a theoretical lower bound on the number of bits
needed to encode a random variable X or its pmf pX(x).
The KL-div reflects the average loss of using another code
(or model q(x)) to encode a random variable X or its
pmf p(x). Certainly, we are interested in pmf or models
that preserve the most information from our original data
(i.e., from the empirical pmf). The relative entropy can also
be interpreted as the information gain achieved about X

if p can be used instead of q. Under certain regulatory
conditions, KL-div is a monotonically decreasing function
with information gain, while it is zero if and only if two
distributions are equal (see Lemma 1). Therefore KL-div
minimisation leads to information loss minimisation. On the
other hand, the optimal value of the objective function in (5)
is improved with information loss as � is decreased while
KL-div is increased. Note that KL-div is unbounded from
above (see Section II). Concluding, efficient model selection
(and sparse-measurement MFD approximation) is a trade-off
between the KL-div and the cost of the cost function in (5).

IV. EMPIRICAL DATA & RESULTS
A. Data Description and Setup

Flow-occupancy experimental data (1.5-min samples)
from 58 inductive-loop mid-block detectors and spanning
one week in June 2006 [18], were available for the testing
of the proposed data inference and model selection scheme.
This data set was obtained in a field evaluation of the
TUC/HYBRID signal control strategy with the semi-real-
time strategy TASS developed by Siemens in the central
business district (CBD) of Chania, Greece [18]. The CBD
includes about 24 closely spaced signalised intersections
and 71 links with varying lengths. It has been showed in
[19] that the CBD exhibits a network-wide MFD that is
reproduced under different traffic conditions (different days)
but its shape and critical parameters (e.g., critical occupancy)
depend on the applied signal control and the distribution of
congestion in the network. Figs 2(a) and 2(c) depict the
full-measurement MFD (circulating flow versus occupancy
obtained from 58 sensors, indicated with black dots) for
two representative weekdays (Monday and Friday). Each
measurement point on the MFD corresponds to 1.5 min.

The full-measurement MFD of each day is approx-
imated by a number of models obtained from the
solution of the IP problem (5) for different � 2
{0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1}. These � values were
selected to investigate the effectiveness and accuracy of ap-
proximation whenever highly correlated data (in descending
order) are excluded from the IP formulation (as reflected
in C matrix). For each IP solution (� value) the minimum-
cardinality subfamily C ✓ S is obtained and then used to
calculate the corresponding pmf q� .

TABLE I
SOLUTION OF THE SET COVERING PROBLEM, ENTROPY AND KL-DIV

FOR MONDAY & FRIDAY & DIFFERENT d � � VALUES.
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Consider a random vector X of random variables

X1, X2, . . . , Xk (time index is omitted) defined in a finite
set X 2 {0, 1, 2, . . . , 100} (occupancy 0-100%), with k ,
card(C) = f(�⇤). The value pX(x) = P(Xk = x, for all k)
is the probability that the random vector X takes the value
x. Now for a given time-occupancy data set the pmf p(x) is:

P(Xk = x, for all k) =
�x + 1

N +
PN�1

i=0 �i

, (7)

with N , card(X ) and �x the frequency of observation x

in the dataset. Eq. (7) is a smoothing technique to obtain
a satisfactory probabilistic model in case of data sparsity
(e.g., if many events x are unobserved �x = 0). Note that
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(a): Monday d � 0.65 (20 links) (b): Monday d � 0.7 (27 links) (c): Monday d � 0.9 (56 links)
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Fig. 2. Full-measurement (black dots) and sparse-measurement MFD approximations (pink and blue circles) for � 2 {0.65, 0.7, 0.9}.

entropy and KL-div require p(x), q(x) > 0 and pmf that sum
to 1. Given the pmf q

�(x) for each IP solution (for each
� 2 {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1}), entropy and KL-
div �(p k q�) are then calculated to investigate the accuracy
of different models. Here p(x) is the empirical (ground truth)
reference pmf reflecting the full MFD.

B. Optimal Sensor Selection and Model Selection

Table I displays the obtained results from the solution of
the IP problem (5) for Monday and Tuesday and different
� 2 {0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 1}. As can be seen,
the optimal value of the IP solution as reflected from the
cardinality of C is improved (i.e., less sensors selected) as
� decreases. On the other hand, KL-div is increased as �

decreases reflecting the information loss under data sparsity.
An important observation is that the optimal value of the IP
solution is different from day to day for the same �. For
instance, d � 0.7 for Monday results 27 sensors (around
47%) while the same � for Friday results 36 sensors (around
62%). Note that each IP solution in Table I except the optimal
cost of sensor allocation (cardinality of C) provides the subset
of links (numbers in brackets) selected for sensor selection.

Figs 3(a) and 3(b) display the obtained pmf (models) for
Monday and Friday and different � 2 {0.65, 0.8, 0.9, 1}. The
pmf for � = 1 (58 links) corresponds to the full-measurement
MFD shown in Figs 2(a) and 2(d). All models indicate
a geometric distribution with P(X = x) = (1 � p)x p,
x = 0, 1, 2, . . .. Figs 3(c) and 3(d) depict the optimal cost
of the IP problem versus KL-div for different � on Monday
and Friday. The primary vertical axis on the left is used for
the optimal cost of the IP problem, whereas the secondary
vertical axis on the right side is for the KL-div. These plots
indicate the trade-off between sensor allocation costs and
information loss or information gain. Figs 3(c) and 3(d)

suggest that IP solutions for any � � 0.75 and � � 0.7
are acceptable on Monday and Friday, respectively. Models
corresponding to � = 0.75 (39 sensors, Monday) and � = 0.7
(36 sensors, Friday) can be selected for the construction of
the sparse-measurement MFD, since they provide the best
trade-off between sensor allocation costs and info loss.

Figs 3(e) and 3(f) present collective results for all data sets
spanning one week. Fig. 3(e) gives the entropy for each day
if 58 sensors selected (� = 1), the theoretical lower bound
on the number of bits needed to encode the pmf of each day.
As can be seen, Monday and Wednesday (market is closed in
the evening) indicate more or less the same lower bound. The
same observation holds for Tuesday and Thursday (market
is open in the evening). These two days are busier compared
to Monday and Tuesday and thus more bits of information is
needed to encode their models. Friday is usually congested
and reveals high entropy.

Fig. 3(f) depicts the KL-div (dissimilarity between the pmf
of the full MFD for � = 1 and rival models corresponding
to different solutions of the IP program, i.e., different � < 1)
trajectories in function of � for seven days. This graph con-
firms that KL-div is monotonically decreasing (by definition)
with respect to �, it is nonnegative and zero if and only if
two pmf are equal (case of � = 1). For � = 0.6 on Saturday
KL-div is decreased (see � = 0.65) due to the discrete nature
of the pmf and data sparsity. These trajectories also reflect
the information loss induced by selecting � smaller to 1.

Fig. 2 depicts the sparse-measurement MFDs (circle mark-
ers in colour) obtained for selected models (� values, see
pmf in Figs 3(a)–(b)) when contrasted with the empirical
full-measurement (reference or ground truth) MFD (circle
markers in black). As can be seen in Figs 2(a)–2(c), the
model with � = 0.9 provides excellent approximation of
the full-measurement MFD while approximation deteriorates
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Fig. 3. (a)-(b): PMFs for different �; (c)-(d): KL-div vs IP cost; (e) Entropy (in bits) for one week; (f) KL-div in function of � for one week.

for models with � < 0.75 (cf. Fig. 3(c)). Similarly, models
with � 2 {0.7, 0.9} provide excellent approximation of
the full-measurement MFD of Friday (cf. Figs 2(d)–2(f)
with Fig. 3(d)). Most of the models preserve the shape
and main features of the full-measurement MFD. These
results underline the satisfactory performance of the pro-
posed information-theoretic framework in model selection
and sparse-measurement MFD approximation.

V. CONCLUSIONS
This paper developed an information-theoretic framework

for the efficient model selection and approximation of sparse-
measurement MFDs. A measure of correlation between
random variables is introduced as a “distance” metric to
provide sufficient coverage and information accuracy. The
KL-divergence was used to measure the dissimilarity be-
tween probability mass functions corresponding to different
models obtained from the solution of a set covering prob-
lem. The proposed framework was evaluated with empirical
loop-detector data of one week from a CBD with around
sixty sensors. Results demonstrated that the obtained sparse-
measurement rival diagrams were able to preserve the shape
and main features of the full-measurement diagram. There-
fore approximated MFDs, which are in principle less costly
in terms of infrastructure requirements, can be used for the
efficient monitoring and control of congested urban areas.
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