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Abstract 

Nonlinear mixed convection of heat and mass in a stagnation-point flow of an impinging jet over a solid 

cylinder embedded in a porous medium is investigated by applying a similarity technique. The problem 

involves a heterogenous chemical reaction on the surface of the cylinder and nonlinear heat generation in 

the porous solid. The conducted analysis considers combined heat and mass transfer through inclusions of 

Soret and Dufour effects and predicts the velocity, temperature and concentration fields as well as the 

average Nusselt and Sherwood number. It is found that intensification of the nonlinear convection results 

in development of higher axial velocities over the cylinder and reduces the thickness of thermal and 

concentration boundary layers. Hence, consideration of nonlinear convection can lead to prediction of 
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higher Nusselt and Sherwood numbers. Further, the investigation reveals that the porous system deviates 

from local thermal equilibrium at higher Reynolds numbers and mixed convection parameter. 

Keywords: Nonlinear mixed-convection; Stagnation-point flow; Local thermal non-equilibrium; Nonlinear 

heat generation; Soret effect, Dufour effect. 

 

Nomenclature  

𝑎 cylinder radius (𝑚) 𝑆𝑐 Schmidt number 𝑆𝑐 =
𝜐

𝐷
 

𝑎𝑠𝑓  interfacial surface area per unit volume of 

the porous medium (𝑚−1) 

𝑆𝑟 Soret number  𝑆𝑟 =
𝐷.𝑘𝑓

𝑇∞

(𝑇𝑤−𝑇∞)

𝐶∞.𝛼
 

𝐵𝑖 Biot number 𝐵𝑖 =
ℎ𝑠𝑓𝑎𝑠𝑓.𝑎

4𝑘𝑓
 𝑆ℎ Sherwood number 

𝐶 fluid concentration (𝑘𝑔. 𝑚−3) 𝑆ℎ𝑚 average Sherwood number 

𝐶𝑝 specific heat at constant pressure 

(𝐽. 𝐾−1. 𝑘𝑔−1) 

𝑇 Temperature (𝐾) 

𝐶𝑠 concentration (𝑘𝑔. 𝑚−3) 𝑇𝑚 mean fluid temperature (𝐾) 

𝐷 molecular diffusion coefficient (𝑚2. 𝑠−1) 𝑢 , 𝑤 velocity components along (𝑟 − 𝜑 −

𝑧)-axis (𝑚. 𝑠−1) 

𝐷𝑓 
Dufour number 𝐷𝑓 =

𝐷.𝑘𝑓

𝐶𝑠.𝐶𝑝

𝐶∞

(𝑇𝑤−𝑇∞)𝜐
 𝑧 axial coordinate 

𝑓(𝜂) function related to u-component of velocity Greek symbols 

 

𝑓 ́(𝜂) Normalised velocity related to w 

component  

𝛼 thermal diffusivity (𝑚2. 𝑠−1) 

ℎ heat transfer coefficient (𝑊. 𝐾−1. 𝑚−2) 𝛽𝐶  nonlinear mixed convection 

parameter for concentration 𝛽𝐶 =

𝛽4.𝐶∞

𝛽3
 

ℎ𝑠𝑓 interstitial heat transfer coefficient 

(𝑊. 𝐾−1. 𝑚−2) 

𝛽𝑡  nonlinear mixed convection 

parameter for temperature  𝛽𝑡 =

𝛽2(𝑇𝑤−𝑇∞)

𝛽1
 

𝑘 thermal conductivity (𝑊. 𝐾−1. 𝑚−2) 𝛾 modified conductivity ratio  𝛾 =
𝑘𝑓

𝑘𝑠
 

𝑘̅ freestream strain rate (𝑠−1) 𝛾∗ Damköhler number 𝛾∗ =
𝑘𝑅.𝑎

2𝐷

1

𝐶∞
 

𝑘1 permeability of the porous medium (𝑚2) 𝜂 
similarity variable, 𝜂 = (

𝑟

𝑎
)

2

 

𝑘𝑚 mass transfer coefficient (𝑚. 𝑠−1) 𝜃(𝜂) non-dimensional temperature 

𝑘𝑅  Kinetic constant (𝑘𝑔. 𝑚−2. 𝑠−1) 𝜆 Permeability parameter, 𝜆 =
𝑎2

4𝑘1
 

𝑘𝑇 thermal diffusion ratio   

𝑁∗ ratio of concentration to thermal buoyancy 

forces 𝑁∗ =
𝛽3..𝐶∞

𝛽1(𝑇𝑤−𝑇∞)
 

𝜀 porosity 
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𝑁𝑢 Nusselt number Λ dimensionless temperature difference 

 Λ =
(𝑇𝑤−𝑇∞)

𝑇∞
 

𝑁𝑢𝑚 Nusselt number averaged over the surface 

of the cylinder  

𝜇 dynamic viscosity of fluid (𝑁. 𝑠. 𝑚−2) 

𝑝 Pressure (𝑃𝑎) 𝜐 kinematic viscosity of the fluid 

(𝑚2. 𝑠−1) 

𝑃 Dimensionless fluid pressure 𝜌 Density of fluid (𝑘𝑔. 𝑚−3) 

𝑃0 The initial pressure (𝑃𝑎) 𝜙 Dimensionless concentration 

𝑃𝑟 Prandtl number 𝜑 Angular (circumferential) coordinate 

 

𝑄𝐻  heat source parameter 𝑄ℎ =
𝑄1𝑎2

4𝑘𝑓
 Subscripts 

 

𝑞𝑚 mass flow at the wall (𝑘𝑔. 𝑚−2. 𝑠−1) 𝑤 condition on the surface of the 

cylinder 

𝑞𝑤  heat flow at the wall (𝑊. 𝑚−2) ∞ far field 

𝑟 radial coordinate 𝑓 fluid 

𝑅𝑒 Freestream Reynolds number  𝑅𝑒 =
𝑘̅.𝑎2

2𝜐
 𝑠 solid 

 

1. Introduction 

The problem of impinging flow over a porous foam has received a sustained attention in engineering 

literature [1,2,3,4]. This is due to the wide application of this flow configuration in heat sinks [5] and 

chemical reactors [6]. In particular, the use of stagnation-point flows over surfaces covered by a porous 

medium are common in catalytic chemical reactors [7,8]. Since temperature and concentration of species 

have pronounced effects upon the performance of catalytic reactors, accurate prediction of these 

quantitates is of primary importance in reactor design. For heterogenous catalysts covered by porous 

inserts, this requires precise analysis of transport phenomena in the porous medium through considering 

the combined modes of heat and mass transfer.  

       The basic problem of convective heat transfer in a porous foam placed on a flat solid surface and subject 

to an impinging flow has been studied extensively, e.g. [9,10,11]. For conciseness reasons, here those 

studies are not reviewed, and the reader is referred to the previous works of the authors for comprehensive 

reviews of literature [12,13,14]. It is, nonetheless, emphasised that most previous investigations of 

stagnation-point flow through porous media assumed local thermal equilibrium in porous media, see for 

example [15,16,17]. This assumption although offering a mathematical convenience, can jeopardise the 

accuracy of analysis in porous media that include chemical reactions [18,19]. Therefore, the less restrictive 

assumption of local thermal non-equilibrium should be in place, instead. This requires addition of two 

energy equations for the solid and fluid phases of the porous medium and thus makes the problem 

mathematically involved. Such analysis was conducted by Jang and Tzeng [20], who considered impinging 

cooling of porous metallic foam heat sink under local thermal non-equilibrium. These authors found that 

implementation of a highly porous foam can boost the heat transfer from the flat plate by a factor of two or 
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three [20]. In a subsequent work, the same group of authors repeated the analysis experimentally and 

confirmed their numerical findings [21]. Later, Wong and Saeid [22] advanced this heat transfer study 

through inclusion of buoyancy effects and considering mixed convection in their numerical investigation. 

They conducted an extensive parametric study and showed that thermal conductivity ratio and Biot 

number in the porous medium are the key parameters for maintaining the system under local thermal 

equilibrium [22]. The results of Wong and Saeid further indicated that increasing the porosity of the metal 

foam can lead to higher values of Nusselt number. Later, Wong used a similar numerical setting in an 

experimental and numerical study of impinging flow on a porous block and demonstrated an overall 

similarity between the experimentally recorded and computationally predicted temperature fields [23]. 

The same problem under turbulent flow regime was investigated numerically by Hwang and Yang [24], 

who reported that the qualitative trends in heat transfer behaviour of the system are similar to that under 

laminar flow.   

    Currently, there exist several studies on mixed convection in stagnation-point flow in porous media. 

Marafie et al. [25] conducted a numerical work on this problem by applying a finite element technique. In 

keeping with Jang and Tzeng [20], Marafie et al. showed that addition of the impinging flow enhances the 

rate of heat transfer by more than two times [25]. These authors showed that there is a critical height of 

the porous block. Thickening the porous block prior to reaching the critical height results in increasing the 

Nusselt number. However, further thickening of the block beyond the critical thickness leads to reduction 

of Nusselt number [25]. Harris and co-workers [26] presented a similarity analysis of the boundary layer 

flows at the stagnation-point upon a porous block located vertically. A computational study about mixed 

convection in jet flows over a porous insert showed that increases in Reynolds number and jet width render 

higher values of the mean Nusselt number [27]. It was further demonstrated that Nusselt number is 

enhanced by reducing the gap between the impinging flow and the heated part [27]. 

       In the work of Kokubun and Fichini [28] an analytical solution was presented for the impinging flows 

over an infinitely long, horizontally positioned porous plate, experiencing different types of thermal 

boundary conditions. This investigation revealed that a dimensionless parameter, involving information 

about the transfer characteristics of the fluid and porous solid, governs the process of heat transfer. A 

numerical and experimental study was conducted by Feng et al. [29] on the problem of stagnation-point 

flow over a heated porous plate. They investigated a metal porous medium and a finned metal foam and 

showed that increases in the metal foam thickness reduce the heat transfer coefficient. However, such trend 

was not observed for the metal finned foam [29]. In a relatively recent study, Buonomo et al. [30] analysed 

the heat transfer process as a laminar jet vertically interacts with a horizontal, confined porous plate in an 

axisymmetric setting. Buonomo et al. showed that that Peclet number dominates the assisting and opposing 

configurations of free and forced convection [30]. Makinde [31] and Rosca and Pop [32] examined mixed 

convection in stagnation-point flows impinging on a vertical porous plate. Magnetic effects and radiation 

of heat were also included in the analysis of mixed convection inside vertical, porous inserts [33]. An 

important common point in almost all studies on mixed convection in porous media is consideration of flat 

porous plates and thus, curved porous configurations have been rarely investigated.  

         Nonlinear convection was included in a recent numerical work by Qayyum et al. [34], who analysed 

the nonlinear convection of a nanofluid over a heated stretching surface. Nonlinearity was included in the 
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problem by considering nonlinear temperature and concentration terms in the form of   (𝑇 − 𝑇∞)2  and  

(𝐶 − 𝐶∞)2 in the buoyancy term of momentum equation.  Similar studies were conducted by Qayyum et al. 

[35] and Hayat et al. [36], who further included a heat source that was linearly dependent upon the fluid 

temperature. It is essential to note that the works of Qayyum et al. [34,35] and Hayat et al. [36] were not 

concerned with flows inside porous media. Other recent investigations of nonlinear convection in boundary 

layer flows include those of Hayat et al. [37] and Khan et al. [38]. It appears that currently there is no study 

on nonlinear convection in porous media.  

      The present study aims to fill the gaps identified in the preceding review of literature. Towards this goal, 

nonlinear mixed convection of heat and mass in a stagnation-point flow developed over a cylinder 

embedded in porous media is investigated numerically. To establish a direct connection to catalytic 

chemical reactors, it is assumed that a simple surface reaction takes place at the external surface of the 

cylinder.   

 

 

Fig. 1 Schematics of the investigated problem: a vertical cylinder embedded in porous media under radial 

stagnation flow. 

 

2. Theoretical and numerical methods 

2.1. Configuration of the problem, governing equations and assumptions  

A schematic of the problem under investigation is shown in Figure 1. A cylinder with radius a centred at 

r= 0 has been coated by a catalyst and embedded in a porous medium. Surface temperature on the external 

wall of the cylinder is maintained constant. The external flow over the cylinder includes an axisymmetric 

radial stagnation-point flow with the strain rate of k . The current analysis considers the following 

assumptions.  

• The fluid flow is under steady-state condition. It is also laminar and incompressible, while the 

cylinder is infinitely long and features zero permeability. 
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• The catalytic reactions on the surface of the cylinder are temperature independent and of zeroth 

order [39,40,41].  

• Soret and Dufour effects on the transport of heat and mass are taken into account.  

• The porous medium around the cylinder is under local thermal non-equilibrium (LTNE) and is also 

homogenous and isotropic. 

• Thermal radiation and frictional dissipation of the flow kinetic energy are ignored. However, 

gravitational effects and nonlinear convection of heat and mass are considered. 

• Density and heat conductivity as well as porosity and specific heat capacities are constant. As a 

result, the thermal dispersion in the porous medium is negligibly small. 

• Pore-scale Reynolds number is moderate and therefore, Forchheimer term in the model of 

momentum transfer is ignored. 

It is clarified that zeroth order surface reactions are often used to approximate the kinetics of many 

catalytic reactions [42]. Hence, they are of practical importance.   

         Assuming a nonlinear, double-diffusive mixed convection and by employing a cylindrical coordinate 

the governing equations and boundary conditions, can be written in the following forms. 

The conservation of mass: 

𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
= 0. 

(1) 

 

Momentum transfer in the radial direction is governed by 

1

𝜀2 (𝑢
𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) =  −

1

𝜌

𝜕𝑝

𝜕𝑟
+

𝜐

𝜀
(

𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2 +
1

𝑟2

𝜕2𝑢

𝜕𝜑2 +
𝜕2𝑢

𝜕𝑧2 ) −
𝜐

𝑘1
𝑢, (2) 

 

and that in the axial direction it is given by [37,38] 

1

𝜀2
(𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
)

=  −
1

𝜌

𝜕𝑝

𝜕𝑧
+

𝜐

𝜀
(

𝜕2𝑤

𝜕𝑟2
+

1

𝑟

𝜕𝑤

𝜕𝑟
+

1

𝑟2

𝜕2𝑤

𝜕𝜑2
+

𝜕2𝑤

𝜕𝑧2
 ) ∓ 𝑔 [𝛽1(𝑇𝑓 − 𝑇∞) + 𝛽2(𝑇𝑓 − 𝑇∞)

2
]

+ 𝑔[𝛽3(𝐶 − 𝐶∞) + 𝛽4(𝐶 − 𝐶∞)2] −
𝜐

𝑘1

𝑤. 

(3) 

 

Equation (3) includes the nonlinear terms appearing as body forces on the right-hand side. The transfer of 

heat in the fluid phase reduces to 

𝑢
𝜕𝑇𝑓

𝜕𝑟
+ 𝑤

𝜕𝑇𝑓

𝜕𝑧
= 𝛼𝑓 (

𝜕2𝑇𝑓

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑓

𝜕𝑟
+

1

𝑟2

𝜕2𝑇𝑓

𝜕𝜑2
+

𝜕2𝑇𝑓

𝜕𝑧2
 ) +

ℎ𝑠𝑓 . 𝑎𝑠𝑓

𝜌. 𝐶𝑝

(𝑇𝑠 − 𝑇𝑓) 

+
𝐷 𝑘𝑇

𝐶𝑠 .𝐶𝑝
(

𝜕2𝐶

𝜕𝑟2 +
1

𝑟

𝜕𝐶

𝜕𝑟
+

1

𝑟2

𝜕2𝐶

𝜕𝜑2 +
𝜕2𝐶

𝜕𝑧2 ). 

(4) 

 

The last term on the left-hand side of Eq. (4) denotes Dufour effect [39,40]. The transfer of heat in the solid 

phase of the porous medium is expressed by  

𝑘𝑠 (
𝜕2𝑇𝑠

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑠

𝜕𝑟
+

1

𝑟2

𝜕2𝑇𝑠

𝜕𝜑2
+

𝜕2𝑇𝑠

𝜕𝑧2
 ) − ℎ𝑠𝑓  . 𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑓) + [𝑄1(𝑇𝑠 − 𝑇∞) + 𝑄2(𝑇𝑠 − 𝑇∞)2] = 0. 

(5) 

 

The following equation governs the transport of chemical species throughout the porous medium in which 

the thermal diffusion of mass (Soret effect) has been considered [40,41]: 
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𝑢
𝜕𝐶

𝜕𝑟
+ 𝑤

𝜕𝐶

𝜕𝑧
= 𝐷 (

𝜕2𝐶

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
+

1

𝑟2

𝜕2𝐶

𝜕𝜑2
+

𝜕2𝐶

𝜕𝑧2
 ) +

𝐷 𝑘𝑇

 𝑇𝑚

(
𝜕2𝑇𝑓

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑓

𝜕𝑟
+

1

𝑟2

𝜕2𝑇𝑓

𝜕𝜑2
+

𝜕2𝑇𝑓

𝜕𝑧2
 ). 

(6) 

 

 

In Eq. (4-6) the subscripts “f” and “s”, denote the fluid and solid phase of the porous medium, respectively.  

The boundary conditions of momentum equations are given by the followings.  

 

𝑟 = 𝑎:     𝑤 = 0 ,    𝑢 = 0, (7) 

 

𝑟 = ∞:     𝑤 = 2𝑘̅𝑧 ,   𝑢 = −𝑘̅ (𝑟 −
𝑎2

𝑟
), (8) 

 

The no-slip condition over the external wall of the cylinder are represented by Equation (7). Further, Eq. 

(8) implies that the solution of viscous flow behaves similar to that for Hiemenz flow, the potential flow 

solution as 𝑟 → ∞  [43,44,45]. This can be verified by starting from the continuity equation in the 

followings. −
1

𝑟

𝜕(𝑟𝑢)

𝜕𝑟
=

𝜕𝑤

𝜕𝑧
 Constant = 2𝑘̅𝑧 and integrating in 𝑟 and 𝑧 directions with boundary conditions, 

𝑤 = 0 when 𝑧 = 0 and 𝑢 = 0 when 𝑟 = 𝑎. 

      The boundary conditions for the transport of thermal energy are given by 

𝑟 = 𝑎:     𝑇𝑓 = 𝑇𝑤 = Constant, 

                𝑇𝑠 = 𝑇𝑤 = Constant, 

 

𝑟 = ∞:    𝑇𝑓 = 𝑇∞, 

                𝑇𝑠 = 𝑇∞, 

(9) 

where 𝑇𝑤  is the temperature of the surface of cylinder and 𝑇∞ is that of the free-stream flow. 

      The boundary condition for mass transfer is given by 

𝑟 = 𝑎:     
𝜕𝐶

𝜕𝑟
= −

𝑘𝑅

𝐷
= Constant, 

𝑟 = ∞:     𝐶 → 𝐶∞ 

(10) 

where 𝐷 is the Fickian diffusion coefficient and 𝑘𝑅  is the kinetic constant pertinent to a zeroth order 

heterogenous reaction [40,41], and 𝐶∞ denotes concentration of species in the free-stream.  

 

2.2 Self-similar analysis 

The governing Eqs. (1-6) are reduced by applying the following similarity transformations. 

𝑢 = −
𝑘̅. 𝑎

√𝜂
𝑓(𝜂) ,          𝑤 = [2𝑘̅𝑓 ́(𝜂)]𝑧 ,          𝑝 = 𝜌𝑓𝑘̅2𝑎2𝑃, 

(11) 

 

in which 𝜂 = (
𝑟

𝑎
)

2

 is the non-dimensional radial variable. Relations (11) satisfy the continuity of mass (Eq. 

(1)) and substitution into momentum equations (Eqs. (2) and (3)) renders the following system of coupled, 

ordinary differential equations. 

 

[𝜂𝑓 ́ ́ ́ + 𝑓 ́ ́] +
1

𝜀2 𝑅𝑒[1 + 𝑓𝑓 ́ − (𝑓 ́)2] + 𝜆[1 − 𝑓 ́] ∓ 𝜆1𝜃𝑓[1 + 𝛽𝑡 . 𝜃𝑓] + 𝜆1. 𝑁∗. 𝜙[1 + 𝛽𝐶 . 𝜙] = 0, (12) 
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𝑃 − 𝑃0 = −
1

2𝜀2
(

𝑓2

𝜂
) −

1

𝜀
[(

𝑓 ́

𝑅𝑒
) +

𝜆

𝑅𝑒
∫

𝑓

𝜂
𝑑𝜂

𝜂

1

] − 2 [
1

𝜀2
+

𝜆

𝑅𝑒
] (

𝑧

𝑎
)

2

, 

 

(13) 

 

in which 𝑅𝑒 =
𝑘̅.𝑎2

2𝜐
 shows Reynolds number of the freestream, 𝜆 =

𝑎2

4𝑘1
 is the permeability parameter, 𝜆1 =

𝐺𝑟

𝑅𝑒2 =
𝑔.𝛽1(𝑇𝑤−𝑇∞)

4𝑎𝑘̅2  is the dimensionless mixed convection parameter, 𝛽𝑡 =
𝛽2(𝑇𝑤−𝑇∞)

𝛽1
  is nonlinear mixed 

convection parameter for temperature, 𝛽𝐶 =
𝛽4.𝐶∞

𝛽3
  denotes nonlinear mixed convection parameter for 

concentration, 𝑁∗ =
𝛽3.𝐶∞

𝛽1(𝑇𝑤−𝑇∞)
 represents ratio of concentration to thermal buoyancy forces and prime 

represents differentiation with respect to the radial variable 𝜂.     

   Considering the transport of momentum, the boundary conditions for Eq. (12) reduce to 

𝜂 = 1:          𝑓 ́(1) = 0 ,          𝑓(1) = 0, (14) 

 

𝜂 → ∞:          𝑓 ́(∞) = 1. (15) 

 

The following transformation is introduced [45,46], to non-dimensionalise the energy equation, 

𝜃𝑓(𝜂) =
𝑇𝑓(𝜂) − 𝑇∞

𝑇𝑤 − 𝑇∞

. 
(16) 

 

By substituting of Eqs. (11) and (16) into Eq. (4) and through ignoring the dissipation terms, the following 

relation is developed 

 

𝜂𝜃 ́ ́𝑓 + 𝜃 ́𝑓 + 𝑅𝑒. 𝑃𝑟. (𝑓. 𝜃 ́𝑓) + 𝐵𝑖(𝜃𝑠 − 𝜃𝑓) + 𝐷𝑓. 𝑃𝑟[𝜂𝜙 ́ ́ + 𝜙 ́] = 0, (17) 

 

where, 𝐵𝑖 =
ℎ𝑠𝑓𝑎𝑠𝑓.𝑎

4𝑘𝑓
 is the Biot number and 𝐷𝑓 =

𝐷.𝑘𝑇

𝐶𝑠.𝐶𝑝

𝐶∞

(𝑇𝑤−𝑇∞)𝜐
 is the Dufour number and the pertinent 

boundary conditions can be written as: 

𝜂 = 1:            𝜃𝑓(1) = 1 

 

𝜂 → ∞:          𝜃𝑓(∞) = 0 

(18a) 

 

(18b) 

 

Substitution of Eqs. (11) and (16) into Eq. (5) results in 

 

𝜂𝜃 ́ ́𝑠 + 𝜃 ́𝑠 − 𝐵𝑖. 𝛾(𝜃𝑠 − 𝜃𝑓) + 𝑄ℎ . 𝛾. 𝜃𝑠[1 + 𝛽ℎ. 𝜃𝑠] = 0, (19) 

 

where, 𝛾 =
𝑘𝑓

𝑘𝑠
 is the modified conductivity ratio, 𝑄ℎ =

𝑄1𝑎2

4𝑘𝑓
 denotes the heat source parameter, 𝛽ℎ =

𝑄2(𝑇𝑤−𝑇∞)

𝑄1
 is the nonlinear heat source parameter, while the boundary conditions are expressed by: 

𝜂 = 1:          𝜃𝑠(1) = 1 

 

𝜂 → ∞:          𝜃𝑠(∞) = 0 

(20a) 

 

(20b) 
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Transformation (21) is used, to non-dimensionalise the mass transfer Eq. (6),  

𝜙(𝜂) =
𝐶(𝜂) − 𝐶∞

𝐶∞

. 
(21) 

 

By Substituting Eqs. (14) and (16) into Eq. (6), the following equation is developed 

 

𝑃𝑟[𝜂𝜙 ́ ́ + 𝜙 ́] + 𝑆𝑟. 𝑆𝑐[𝜂𝜃 ́ ́𝑓 + 𝜃 ́𝑓] + 𝑅𝑒. 𝑃𝑟. 𝑆𝑐(𝑓. 𝜙 ́) = 0 (22) 

 

where, 𝑆𝑐 =
𝜐

𝐷
 is the Schmidt number and 𝑆𝑟 =

𝐷.𝑘𝑇

𝑇𝑚

(𝑇𝑤−𝑇∞)

𝐶∞.𝛼
  is the Soret number, and the boundary 

conditions are: 

𝜂 = 1:          𝜙 ́(1) = −𝛾∗ 

 

𝜂 → ∞:        𝜙(∞) = 0 

(23a) 

 

(23b) 

in which,  𝛾∗ =
𝑘𝑅.𝑎

2𝐷

1

𝐶∞
 is the Damköhler number. Numerical solutions for Eqs. (12), (17), (19) and (22), 

along with the boundary conditions (14-15), (18), (20), (23) are developed by employing an implicit, 

iterative tri-diagonal finite-difference method [47].  

 

2.3 Nusselt and Sherwood numbers 

The rate of heat transfer for the fluid phase and the local convection coefficient are defined as 

ℎ =
𝑞𝑤

𝑇𝑤 − 𝑇∞

=
−𝑘𝑓 (

𝜕𝑇𝑓

𝜕𝑟
)

𝑟=𝑎

𝑇𝑤 − 𝑇∞

= −
2𝑘𝑓

𝑎

𝜕𝜃𝑓(1)

𝜕𝜂
, 

(24) 

 

and 

𝑞𝑤 = −
2𝑘𝑓

𝑎

𝜕𝜃𝑓(1)

𝜕𝜂
𝑇𝑤 − 𝑇∞. 

(25) 

 

Thus, Nusselt number calculated on the external surface of the cylinder is expressed by 

𝑁𝑢 =
ℎ. 𝑎

2𝑘𝑓

= −𝜃́(1). 
(26) 

 

In a similar way, the local rate of mass transfer and mass transfer coefficient and are given by 

𝑘𝑚 =
𝑞𝑚

𝐶𝑤 − 𝐶∞

=
−𝐷 (

𝜕𝐶

𝜕𝑟
)

𝑟=𝑎

𝐶𝑤 − 𝐶∞

= −
2𝐷

𝑎

𝜕𝜙(1)

𝜕𝜂
. 

(27) 

 

and 

𝑞𝑚 = −
2𝐷

𝑎

𝜕𝜙(1)

𝜕𝜂
𝐶𝑤 − 𝐶∞. 

(28) 

 

Therefore, Sherwood number can be written as  

𝑆ℎ =
𝑘𝑚. 𝑎

2𝐷
= −𝜙́(1). 

(29) 

 

2.5 Grid independency and validation 

To ensure achieving numerical results that are grid independent, values of the surface averaged Nusselt 

and Sherwood number were computed for grid sizes of 51 × 18, 102 × 36, 204 × 72, 408 × 144 and 
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816 × 288. As shown in Table 1, there are no considerable changes in the average Nusselt and Sherwood 

numbers for the (𝜂, 𝜑) mesh sizes of (204 × 72), (408 × 144) and (816 × 288). Hence, a (408 × 144) grid 

in 𝜂 − 𝜑 directions was chosen for the computational domain of the current work. To capture the sharp 

gradients of velocity, temperature and concentration around the external surface of the cylinder, a non-

uniform grid was applied in 𝜂-direction, while a homogeneous mesh was used in the angular direction. In 

the current work, the computational domain extends to 𝜑𝑚𝑎𝑥 = 360° and 𝜂𝑚𝑎𝑥 = 15. It is important to note 

that 𝜂𝑚𝑎𝑥   essentially corresponds to 𝜂 → ∞. This is because for all cases investigated in this work,  𝜂𝑚𝑎𝑥   is 

located outside the concentration, momentum and thermal boundary layers. It is assumed that when the 

disparity between the two consecutive iterations becomes less than10−7,  the convergence criterion in the 

numerical simulations has been met and thus the iterative process is stopped. On the basis of the utilised 

numerical method, the numerical error is deemed to be of 𝑂(∆𝜂)2[47]. 

 

Table 1 Verification of grid independency at 𝐷𝑓 = 1.0 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝜆 = 10 , 𝑆𝑐 = 0.1. 

Mesh size 𝑁𝑢𝑚 𝑆ℎ𝑚 

51×18 1.540873 0.588014 

102×36 1.499256 0.555648 

204×72 1.479155 0.527381 

408×144 1.465920 0.467275 

816×288 1.465773 0.468014 

 

 

     Tables 2 and 3 show that for very large permeability and porosity of one (a clear region) and when the 

mass transfer and gravitational effects are suppressed, the numerical simulations developed in Section 2 

reduce to those of Wang [48] and Gorla [49] for the impinging flow on a circular cylinder.  Also, although 

not shown in this section, it was verified that for large Biot numbers the current LTNE results become 

identical to those developed in an earlier work of the authors under LTE condition [12]. This rational trend 

provides another evidence for correctness of the current simulations.   

 

Table 2. Validation of the numerical method by comparison between the current simulations and those of 

Wang [38] for large porosity and permeability.  

𝑅𝑒 = 10 𝑅𝑒 = 1.0  

𝜼 Current simulations Wang [38]  Current simulations Wang [38] 

𝒇́ 𝒇 𝒇́ 𝒇 𝒇́ 𝒇 𝒇́ 𝒇 

0.06610 0.06631 0.58982 0.06638 0.25993 0.02693 0.25302 0.02667 1.2 

0.21379 0.21393 0.84821 0.21400 0.43710 0.09652 0.43724 0.09665 1.4 

0.39535 0.39541 0.94852 0.39532 0.57329 0.19828 0.57315 0.19836 1.6 

0.58926 0.58914 0.98380 0.58919 0.67438 0.32365 0.67444 0.32361 1.8 

0.78729 0.78735 0.99522 0.78731 0.75046 0.46683 0.75054 0.46674 2.0 
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Table 3. Comparison between the current simulations and those of Gorla [39] for very large porosity and 

permeability. 

𝜽 𝒇 𝑹𝒆 

 Current 

simulations 

Gorla [39] Current 

simulations 

Gorla [39] 

0.84557 0.84549 0.12051 0.12075 0.01 

0.73701 0.73715 0.22659 0.22652 0.1 

0.46045 0.46070 0.46683 0.46647 1.0 

0.02983 0.02970 0.78725 0.78731 10 

 

 

(a) 

 

(b) 
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Fig. 2. Variation of velocity related to w component 𝑓 ́(𝜂) for varying (a) Reynolds number, (b) 

dimensionless mixed convection parameter, 𝐷𝑓 = 0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 =

10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 

 

3. Results and discussion 

3.1. Temperature and concentration fields 

Figure 2a depicts the radial distribution of nondimensionalised axial velocity (𝑓′) for different Reynolds 

numbers. As expected, there is a hydrodynamic boundary layer over the cylinder in which flow velocity 

features an overshoot. In keeping with the classical behaviours of viscous flows at low Reynolds number, 

the hydrodynamic boundary layer grows in thickness as Reynolds number decreases. Figure 2a also shows 

that the amplitude of the overshoot increases for lower values of Reynolds number. The observed 

overshoot is because of the influence of buoyancy forces upon the fluid velocity, which becomes more 

noticeable in low momentum flows. Figure 2b further elaborates on this by showing the radial variation of 

axial velocity for different mixed convection parameter. At low values of mixed convection parameter, for 

which the flow approaches forced convection, there is almost no velocity overshoot and a typical profile of 

forced convection boundary layer is recaptured. However, by increasing the share of natural convection at 

higher values of mixed convection parameter, the velocity over shoot grows in magnitude. Interestingly, as 

the numerical value of mixed convection exceeds 10, the thickness of the hydrodynamic boundary layer 

becomes nearly indifferent to this value. This along with the trend observed in Fig. 2a confirms that the 

boundary layer thickness in the current problem is dominated by Reynolds number.  

 

 

 

 

 

 

(a) 
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(b) 

 

Fig. 3. Variation of velocity related to w component 𝑓 ́(𝜂) for different values of (a) nonlinear mixed 

convection parameter for temperature, (b) nonlinear mixed convection parameter for concentration, 

𝐷𝑓 = 0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 

 

     Figure 3 shows the effects of nonlinear mixed convection upon the profiles of dimensionless axial 

velocity. Both parts of this figure indicate that strengthening of nonlinear convection results in higher 

amplitudes of velocity overshoot in the hydrodynamic boundary layer. Yet, in agreement with that 

discussed earlier, the boundary layer thickness remains independent of nonlinear mixed convection. This 

is an important result as it illustrates the influence of nonlinear mixed convection upon the hydrodynamics 

of the problem. Figure 3b implies that such influences can be significant. Figure 3 clearly shows that the 

influences of nonlinear mixed convection parameter for concentration (𝛽𝑐) are stronger than those of 
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nonlinear mixed convection for temperature (𝛽𝑇). The reason for this difference is not immediately obvious 

and is most probably due to the strongly nonlinear nature of momentum transport in mixed convection, as 

reflected by Eq. (12). Unlike conventional mixed convection modelling, the current problem models the 

buoyancy effects of temperature and concentration difference through strongly nonlinear terms (see Eq. 

(3)). This can lead to complex interactions between transport of momentum and those of heat and mass 

(Eqs. (4), (5), (6)), and imbalance the effects of mixed convection parameters upon momentum transfer.  

 

(a) 

 

(b) 

 

Fig. 4. Variation of dimensionless fluid temperature 𝜃𝑓(𝜂) for varying (a) Reynolds number, (b) 

dimensionless mixed convection parameter, 𝐷𝑓 = 0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 =

10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 



15 
  

 

     The effects of Reynolds number and permeability of the porous medium on the dimensionless 

temperature of the fluid phase are shown in Fig. 4. According to Fig. 4a, at any radial distance from the 

surface of the cylinder, increases in Reynolds number result in reduction of the dimensionless temperature 

of the fluid. It should be noted that according to the definition of dimensionless temperature (Eq. 6) lower 

values of this quantity imply a fluid temperature close to that of the impinging flow and the values of 

dimensionless temperature close to unity indicate proximity to the wall temperature. Figure 4a shows that 

at any radius, increases in Reynolds number result in the reduction of fluid temperature. It also shows that 

the thickness of thermal boundary layer decreases at higher values of Reynolds number. It will be later 

shown that this trend is associated with an increase in the rate of heat transfer. This is to be expected as, in 

general, increases in Reynolds number and reduction in the thickness of thermal boundary layer intensify 

the convective heat transfer [50]. Figure 4b shows that increases in mixed convection parameter leads to 

reduction of the dimensionless temperature of the fluid and formation of thinner thermal boundary layer. 

Hence, convective heat transfer is stronger at higher values of mixed convection parameter.  Once again, 

this is an anticipated result as Reynolds number and therefore the strength of forced convection has been 

kept constant in Fig. 4b. Thus, increases in mixed convection strengthen the contribution of natural 

convection with the heat transfer process.  

 

 

 

 

 

 

(a) 

 

(b) 
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Fig. 5. Variation of dimensionless fluid temperature 𝜃𝑓(𝜂) for different values of (a) nonlinear mixed 

convection parameter for temperature, (b) nonlinear mixed convection parameter for concentration, 

𝐷𝑓 = 0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 

 

         Figure 5 depicts the effects of 𝛽𝑐  and 𝛽𝑇 on the dimensionless temperature of the fluid. According to 

this figure, increases in either of 𝛽𝑐  or 𝛽𝑇 result in the reduction of dimensionless temperature and lessen 

the thickness of thermal boundary layer. It follows that the increases in the nonlinear convection 

parameters intensify the rate of heat transfer. Comparison of  Figs. 5a and 5b shows that the influences of 

𝛽𝑐  upon the reduction of boundary layer thickness are stronger than those of 𝛽𝑇 . This can be attributed to 

the behaviour observed in Fig. 3 in which variations in  𝛽𝑐  affect the velocity field more significantly in 

comparison with 𝛽𝑇 .  Larger velocities induced at higher values of 𝛽𝑐  strengthen mixed convection of heat 

and induce higher rates of heat transfer and smaller thicknesses of the thermal boundary layer. Figure 5b 

further shows that increases in 𝛽𝑐  lead to a slight decrease in the thickness of thermal boundary layer. This 

implies that by intensifying nonlinear mixed convection the characteristics of thermal boundary layer 

approach those of forced convection.  

(a) 
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(b) 

 

Fig. 6. Variation of dimensionless fluid temperature 𝜃𝑓(𝜂) for varying (a) Dufour number, (b) Biot 

number, 𝐷𝑓 = 0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ =

0.1. 

 

      The effects of Dufour and Biot number on the dimensionless temperature of the fluid are shown in Fig. 

6. According to this figure, variation in Dufour number leaves modest effects on the fluid temperature. 

Magnification of Dufour effect slightly increases the dimensionless temperature of fluid and hence renders 

lower rates of heat transfer. Yet, variation in Biot number appears to feature more pronounced impacts on 

the fluid temperature. Figure 6a clearly shows that dimensionless fluid temperatures are smaller at lower 

values of Biot number. This is to be expected, as a low Biot number implies high thermal conductivity of the 

porous medium, which is a well-known factor in enhancement of heat transfer in porous media [51].  
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(a) 

 

(b) 

 

Fig. 7. Variation of dimensionless solid temperature 𝜃𝑠(𝜂) for varying (a) Reynolds number, (b) heat 

source parameter, 𝐷𝑓 = 0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 =

0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 

 

     Figure 7a shows that changes in Reynolds number has no considerable effect on the dimensionless 

temperate of the porous solid phase. However, variation in heat source parameter can significantly alter 

the porous solid temperature (Fig. 7b).  As shown in Fig. 8a, Biot number has also a significant effect on the 

temperature of the porous solid phase. At lower Biot numbers, the thermal conductivity of the porous solid 

is much larger than the convective cooling of the fluid medium. Hence, the solid phase approaches thermal 

equilibrium with the external surface of the cylinder. Increases in the Biot number and therefore 

strengthening the heat exchanges between the two phases of solid and fluid in the porous medium cause a 

drop in the temperature of the porous solid. 
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(a) 

 

(b) 

 

Fig. 8. (a) Response of dimensionless solid temperature  𝜃𝑠(𝜂) to changes in the value of Biot number, 

(b) Response of 𝜙(𝜂)  for different values of Reynolds number, 𝐷𝑓 = 0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 =

5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 

 

       Figure 8b illustrates the radial distribution of dimensionless concentration for varying values of 

Reynolds number. This figure shows a similar behaviour to that observed in Fig. 4a wherein dimensionless 

temperature drops by increases in Reynolds number. In both cases, increasing Reynolds number leads to 

reduction of the boundary layer thickness (thermal and concentration) and increases in the rate of 

transport (as shown in the following section). 
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(a) 

 

(b) 

 

Fig. 9. Response of dimensionless concentration  𝜙(𝜂) to different values of (a) dimensionless mixed 

convection parameter, (b) nonlinear mixed convection parameter for concentration, 𝐷𝑓 = 0.1 , 𝐵𝑖 =

0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 

 

 It should be noted that these results are further supported by the analogy between heat and mass transfer. 

Figure 9 shows the effects of mixed convection and nonlinear convection parameters upon the radial 

profiles of concentration.  Higher values of mixed and nonlinear convection parameters (𝛽𝑐) cause 

reductions in the thickness of the concentration boundary layer. Once again, these findings are in 

qualitative agreement with those of temperature variation. Nonetheless, the effects of 𝛽𝑐  on the thermal 

boundary layer appear to be stronger than those on the concentration boundary layer. Figure 10 shows 
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that depending upon the sign of Soret number, thermal diffusion can either enhance or suppress mass 

transfer process. For the set of parameters shown in Fig. 10, positive values of Soret number tend to 

increase the value of dimensionless concentration and reduce the rate of mass transfer, while the negative 

values of Soret number have the opposite effect.     

 

Fig. 10. Response of dimensionless concentration 𝜙(𝜂) to different values of Soret number 𝐷𝑓 =

0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 

 

   Deviation from local thermal equilibrium and, Nusselt and Sherwood numbers  

Deviation from the state of local thermal equilibrium in porous media with chemical reactions has been 

already reported [18,19, 52-56].  However, many numerical works still use local thermal equilibrium for 

reactive flows in porous media. Here, a systematic examination of the local thermal equilibrium of the 

system is put forward to identify the trends in deviation from local thermal equilibrium. Figure 11 shows 

surface plots of the temperature difference between the solid and fluid phase in the porous medium against 

Biot number and radial coordinate and for different values of a few pertinent parameters. Biot number is 

known to be a key dimensionless parameter in evaluation of local thermal equilibrium and is therefore 

chosen as one of the main variables. In Figure 11, the values of temperature difference close to one, indicate 

strong tendency towards local thermal nonequilibrium. However, as the temperature difference 

approaches zero local thermal equilibrium conditions are retained. As anticipates for all investigated cases, 

lower values of Biot number push the system towards local thermal non-equilibrium. This is because of the 

poor heat exchanges between the porous solid and fluid at smaller Biot numbers that allow for the 

development of a sizeable temperature difference between the two.  
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(a) 

 

(b) 

 

(c) 

 

Fig. 11. Temperature difference between the fluid and porous solid phase, for different values of (a) 

Reynolds number, (b) dimensionless mixed convection parameter, (c) permeability parameter, 𝐷𝑓 =

0.1 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10 , 𝜆1 = 10 , 𝛽𝑡 = 0.1,  𝛽𝑐 = 0.3 , 𝛽ℎ = 0.1. 
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         Figure 11 shows that for all values of Biot number, there is a finite temperature difference close to the 

surface of the solid. This region marks the thermal boundary layer and as shown in Fig. 11a, it is thicker at 

lower values of Reynolds number. Outside this region and for larger radii, the temperature difference 

increases slightly which is due to small changes in the temperature of porous solid.  Figure 11a further 

shows that increasing Reynolds number intensifies the deviation from local thermal equilibrium, while 

Figs. 11b and 11c indicate that increases in mixed convection and permeability parameters have the same 

effect.  

Table 4 Impact of Prandtl and Schmidt number on the surface averaged Sherwood, Nusselt and Bejan 

number, 𝐷𝑓 = 1.0 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10, 𝜆1 = 1.0, 𝛽𝑡 = 0.1, 𝑁∗ = 1.0, 𝛽𝑐 = 0.1. 

𝑸𝑯 𝑁𝑢𝑚 𝑆ℎ𝑚 𝜷𝒉 𝑁𝑢𝑚 𝑆ℎ𝑚 𝝀𝟏 𝑁𝑢𝑚 𝑆ℎ𝑚 

0 1.469322 0.451961 0 1.735314 0.464441 0.01 1.719318 0.4641069 

0.3 1.461031 0.452993 0.3 1.729541 0.464954 0.1 1.720283 0.4711376 

0.5 1.457821 0.453015 0.5 1.719562 0.465453 1.0 1.729816 0.4774410 

0.8 1.451811 0.453882 0.8 1.715213 0.466363 10 1.814899 0.4831836 

1.0 1.443716 0.454287 1.0 1.711546 0.467474 50 2.074300 0.4958993 

 

Table 5 Impact of Reynolds number and nonlinear convection parameters on the surface averaged 

Sherwood, Nusselt and Bejan number, 𝐷𝑓 = 1.0 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 10 , 𝑆𝑐 = 0.1 , 𝜆 = 10, 𝜆1 =

10, 𝛽𝑡 = 0.1, 𝑁∗ = 50, 𝛽𝑐 = 0.1.  

𝑹𝒆 𝑁𝑢𝑚 𝑆ℎ𝑚 𝜷𝒕 𝑁𝑢𝑚 𝑆ℎ𝑚 𝜷𝒄 𝑁𝑢𝑚 𝑆ℎ𝑚 

0.1 1.180332 0.4418018 0 1.644079 0.4580463 0 1.648651 0.4580465 

1.0 1.667559 0.4563104 5.0 1.653584 0.4582736 5.0 1.844146 0.4645073 

10 2.695047 0.5030617 10 1.662801 0.4584938 10 1.986441 0.4695192 

50 3.951993 0.5532836 15 1.671753 0.4587073 15 2.100038 0.4736521 

100 4.809386 0.5751724 20 1.680457 0.4589147 20 2.195405 0.4771866 

 

Table 6 Impact of Dufour, Soret and Biot number on the surface averaged Sherwood, Nusselt and Bejan 

number, 𝐷𝑓 = 1.0 , 𝐵𝑖 = 0.1 , 𝑆𝑟 = 0.5 , 𝑅𝑒 = 5.0 , 𝑆𝑐 = 0.1 , 𝜆 = 10, 𝜆1 = 1.0, 𝛽𝑡 = 10, 𝑁∗ = 50, 𝛽𝑐 = 0.1.  

𝑫𝒇 𝑁𝑢𝑚 𝑆ℎ𝑚 𝑺𝒓 𝑁𝑢𝑚 𝑆ℎ𝑚 𝑩𝒊 𝑁𝑢𝑚 𝑆ℎ𝑚 

0 2.016361 0.4696653 1.0 2.042746 0.4545306 0.1 1.986443 0.4695192 

0.3 1.925952 0.4692409 0.5 1.986442 0.4695192 1.0 1.914141 0.4703451 

0.5 1.864596 0.4689814 0 1.932564 0.4831708 10 1.755759 0.4723857 

0.7 1.802364 0.4687411 -0.5 1.881332 0.4955133 100 1.664307 0.4744152 

1.0 1.707362 0.4684174 -1.0 1.832952 0.5065943 200 1.652145 0.475334 

 

         The values of the surface averaged Nusselt and Sherwood number calculated for several different 

parameters are shown in Tables 4, 5 and 6. Values of surface-averaged Nusselt and Sherwood number vary 

slightly by changes in the nonlinear heat generations (see Table 4). However, they are quite sensitive to 

changes in permeability parameter. Also, as discussed earlier, increases in Reynolds number and nonlinear 
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convection parameters (𝛽𝑐  and 𝛽𝑇), magnify the values of Nusselt and Sherwood number (see Table 5). The 

extent of these magnification is quite strong for Reynolds number and 𝛽𝑐  but rather insignificant for 𝛽𝑇 . 

Finally, as shown in Table 6, increases in Biot and Dufour number reduce Nusselt and Sherwood number. 

Nonetheless, depending upon its sign, Soret effect can either increase or reduce Nusselt number [57-60].   

 

4. Conclusions  

Combined transport of heat and mass through mixed convection set by the impingement of a flow over a 

vertical cylinder embedded in a porous medium was considered. The surface of cylinder was coated with a 

catalytic material leading to the occurrence of a heterogenous chemical reaction. Nonlinear convection of 

heat and mass as well as nonlinear heat generations were considered, and the formulation of the problem 

included Soret and Dufour effects. The nonlinear governing equations were reduced to a system of ordinary 

differential equations by using similarity variables. A finite difference method was then used to solve the 

coupled, nonlinear ordinary differential equations. The findings of this study can be summarised as follows.  

• Increasing Reynolds number results in the reduction of the thicknesses of thermal and 

concentration boundary layers. Consequently, it enhances the value of Nusselt and Sherwood 

number. 

• Higher values of nonlinear mixed convection parameters make the boundary layers thinner and 

therefore enhance the rate of heat and mass transfer.  

• The effects of nonlinear mixed convection parameter for concentration appeared to be stronger 

than those of thermal mixed convection. 

• Soret and Dufour numbers were found to be influential on the value of Sherwood and Nusselt 

number. Nonetheless, their effects are either comparable or less than the influences of nonlinear 

mixed convection.  

• Deviation of the porous system from local thermal equilibrium was systematically examined. This 

showed that increases in Reynolds and mixed convection parameters push the system towards 

local thermal non-equilibrium.    

Th current study clearly demonstrated the potential significance of nonlinear mixed convection. Future 

studies will focus on exploring the complex interaction between momentum transfer and nonlinear 

convection of heat and mass. 
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