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ABSTRACT 

Hypertension is the most common chronic disease in the world, yet the precise cause of 

elevated blood pressure (BP) often cannot be determined. Animal models have been useful for 

unraveling the pathogenesis of hypertension and for testing novel therapeutic strategies. The 

utility of animal models for improving understanding of the pathogenesis, prevention, and 

treatment of hypertension and its comorbidities depends on their validity for representing human 

forms of hypertension, including responses to therapy, as well as on the quality of studies in 

those models (such as reproducibility and experimental design). Important unmet needs in this 

field include development of models that mimic the discrete hypertensive syndromes that now 

populate the clinic (such as primary aldosteronism), a necessity to resolve ongoing controversies 

regarding the pathogenesis of hypertension, and developing new avenues for preventing and 

treating hypertension and its complications. Animal models may indeed be useful for addressing 

these unmet needs. 
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CLINICAL PROBLEM AND UNMET NEEDS  

Hypertension is the most common chronic disease in the world, and producesing substantial 

morbidity and mortality.  Yet, in the majority of individuals, the precise cause of elevated blood 

pressure (BP) cannot be determined. Risk factors for primary (formerly called ‘essential’) 

hypertension include advancing age, obesity, high dietary NaCl consumption, and low dietary 

potassium intake, however although these appear to contribute to, but not cause, hypertension. 

Renin-sodium profiling has been used to classify primary hypertension, suggesting that the 

phenotype is highly variable, but treatment remains largely empirical, and influenced by race and 

comorbid disease.   

A number of hypertensive subtypes also exist, and while they may comprise only a small 

percentage fraction of individuals with hypertension, they can nonetheless be relatively common, 

given the broad prevalence of hypertension itself.  Malignant hypertension is related to, but 

pathophysiologically distinct from, primary hypertension, as is the syndrome of preeclampsia.  

Genetic forms of hypertension with Mendelian inheritance are rare, but have helped to identify 

important blood pressure (BP) regulating pathways.  Secondary causes may involve the renal 

vasculature, endocrine organs, and the kidney, and may comprise up to 20% of cases of resistant 

hypertension.  Finally, an increasing number of drugs used to treat cancer and other conditions 

are now recognized as causing hypertension, which is often severe. Genetic forms of 

hypertension with Mendelian inheritance are rare, but have helped to identify important blood 

pressure (BP) regulating pathways.  Over the past 20 years, some the most important scientific 

breakthroughs have emanated from discovering the basis of rare subtypes of human 

hypertension. Among these are the solution of nearly all the monogenic causes of hypertension; 

identification of discrete somatic mutations that cause primary aldosteronism; the discovery that 

polymorphisms in the APOL1 gene underlie some racial disparities in hypertensive kidney 

disease; the discovery that placental insufficiency generates placental growth factor and 

soluble fms-like tyrosine kinase-1 (sFlt-1), factors that mark and contribute to preeclampsia; and 

finally, the recognition that certain anti-cancer drugs commonly cause hypertension by disrupting 

impairing the function of the vascular endothelium and the glomerulus. 

The initial animal models of hypertension to be developed involved constriction of renal 

arteries (‘Goldblatt kidney’) or parenchyma (Page Kidneys); the pathophysiology closely 

mimicked their human analogs. Yet, renovascular hypertension and ‘Page kidneys’ represent 
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only a small fraction of human hypertension.  Most experimental studies of hypertension using 

animals, therefore, have focused on understanding mechanisms of primary hypertension.   

While excellent animal models with good human fidelity have been developed for many of 

these rare causes of hypertension (1, 2), models of primary hypertension have been more difficult 

to develop, largely because the causes of the human disorder are not unclear. Of NIH-sponsored 

hypertension research, studies using angiotensin (ANG)- II infusion comprise a disproportionate 

share (nearly 50%) (3).  Only 4% of studies focus on aging, and 4% on deoxycorticosterone 

acetate (DOCA)-salt hypertension (which even itself does not model primary aldosteronism).  

Thus, an important unmet need is to develop better animal models that more closely mimic the 

discrete hypertensive syndromes that now populate the clinic, such as primary aldosteronism.  A 

corollary would be that the portfolio of hypertension research might more closely mimic the 

spectrum of human hypertension.   

A second important unmet need is to resolve ongoing controversies regarding pathogenesis. 

Proponents for individual pathways including the primacy of the nervous system, kidney, and 

vasculature in development of hypertension typically focused on their own views and interests, 

often independent of considerations of heritability, environmental exposure, and developmental 

programming.  Despite more than 50 years of work, there is no consensus integrating this range 

of contributing causative factors.  This persistent lack of convergence slows bona fide progress 

and can limit the impact of the field. Addressing this unmet need will require that we bring 

together diverse teams, with competing views, who are committed to this common goal. 

THE UTILITY AND VALIDITY OF ANIMAL MODELS OF HYPERTENSION  

Across a range of human diseases including hypertension, animal models have been useful for 

unraveling disease pathogenesis, providing incisive experimental strategies not possible in 

human studies. In hypertension, the utility of animal models for improving understanding of the 

pathogenesis, prevention, and treatment of hypertension and its comorbidities depends on: 1) 

their validity for representing human forms of hypertension, including responses to therapy, and 

2) the quality of studies in those models. Recently, the utility of animal studies in translational 

medical research has come under increasing scrutiny because of low study reproducibility and 

problems such as bias, poor experimental design and execution, analytical and logical errors, and 

incomplete reporting. (4-8). Published recommendations on ways to mitigate these issues should 

be considered for any studies utilizing animal models. It should be noted that over 1000 scientific 
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journals have endorsed guidelines designed to improve the reporting of animal experiments.  

Nonetheless, these should be applied cautiously, as excessive regulation may also hinder studies 

in animals. 

Various criteria have been used to assess the utility of animal models in translational medical 

research, including “face” validity, “construct” validity, and “predictive” validity (9).(9) By 

conventional definition, each animal model of hypertension has at least some rudimentary degree 

of “face” validity in that each demonstrates the primary diagnostic feature, an increase in BP 

compared to a level deemed to be normal. However, some models may have greater face validity 

than others with respect to other phenotypic aspects of hypertension, like age of onset, temporal 

course, severity, variability, and associated comorbidities. Given the clinical importance of 

hypertension-related target organ damage, it is noteworthy that models are also available 

exhibiting face validity with respect to risk for hypertension-related disturbances, such as left 

ventricular hypertrophy (LVH), metabolic abnormalities, heart failure, renal damage, and stroke 

(e.g., spontaneously hypertensive rats [SHR], Dahl salt sensitive ([DSS] rats).(10-16) However, 

other hypertension-associated conditions, such as spontaneous development of atherosclerosis, 

angina, andor acute myocardial infarction, are not typically observed in current models.    

While all typical animal models uniformly exhibit increased BP, the models vary considerably 

with respect to “construct” validity, defined by how faithfully they recapitulate key features of 

human hypertension such as genetic and environmental triggers or key pathophysiologic 

mechanisms. As in other fields, there is no ideal animal model of human hypertension, as all 

have inherent limitations in construct validity. For example, there are striking differences 

between humans and animals with respect to factors that influence BP, including genetics, 

physiology, anatomy, behavior, environmental conditions and triggers, etc. The nature of these 

differences, particularly between humans and rodents, has motivated efforts to study 

hypertension and related disorders in larger animals and non-human primates. In addition, it 

should be emphasized that the validity or utility of BP studies in animal models may be 

compromised by using BP measurement techniques involving anesthesia or other forms of stress, 

or those that do not allow for adequate assessment of BP over 24 hours and of key features of the 

BP wave form, including both systolic and diastolic pressure, as these may influence risk for 

cardiovascular events (17-19). 

Predictive Validity and the Primary Reason for using Animal Models in Hypertension Research 
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The main goal of studying animal models of hypertension is to help develop improved 

approaches to preventing and treating high BP and its complications. Therefore, from a practical 

perspective, the most important aspect of such a model is “predictive” validity, defined by its 

value for guiding development of effective preventive or therapeutic interventions in humans. 

This raises several corollaries. What are the major obstacles and unmet needs for effectively 

preventing and treating hypertension and its complications? How useful are studies in a 

particular animal model(s) of hypertension for addressing these unmet needs? Some of the 

obstacles to achieving effective BP control and reduction of associated cardiovascular risk are 

related to behavioral issues leading to poor adherence to therapies or preventive measures, where 

application of animal models is unlikely to be productive. 

On the other hand, the problem of resistant hypertension is an area where animal models 

could have significant utility.  Even in patients thought to be taking the requisite antihypertensive 

drugs as prescribed, the prevalence of treatment-resistant hypertension is estimated to be in the 

range of 10-15% (20). While this may well be an overestimate, many individuals could still 

benefit from availability of new therapies, particularly since this group of patients is at high risk 

for complications of hypertension. Development of successful vaccines or device-based therapies 

could be particularly helpful for improving BP control in patients who cannot be controlled with 

conventional therapies, are not adherent to antihypertensive treatments, or in those being 

prescribed suboptimal therapies. It is also conceivable that new antihypertensive therapies might 

reduce the sizeable cardiovascular risk that persists in treated hypertensive patients with 

seemingly good BP control and other determinants of cardiovascular disease. While traditional 

antihypertensive agents do not necessarily completely abolish the cardiovascular risk of the 

treated hypertensive patient (21), further research is required to determine the extent to which 

such residual risk is related to unrecognized inadequate BP control, or to some underlying 

mechanism of hypertension that is conferring increased cardiovascular risk beyond just effects of 

elevated BP. While better approaches addressing the issue of suboptimal BP control are required, 

important unmet needs exist for developing new avenues for treating hypertension and its 

complications (19-22). (19-22) Animal models may indeed be useful for addressing these unmet 

needs. 

Predictive Value of Animal Models for Improving Management of Hypertension 

The utility of animal models for developing better approaches to the prevention and treatment 
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of human disease has been controversial. A major concern is the poor success rate for new drugs 

advanced to clinical trials on the basis of pre-clinical studies in animal models (9).(9) However, 

On the other hand, animal models have a verified track record in some human disorders, 

including hypertension, where all clinically effective antihypertensive drugs lower BP (9).  In 

this regard, all major classes of antihypertensive drugs in use today have been demonstrated to 

substantially reduce BP in one or more of the most commonly used animal models of 

hypertension (SHR, DSS rat, renal artery stenosis, mineralocorticoid-salt model) (10, 22).(10, 

22) For example, the SHR responds to the antihypertensive effects of almost all classes of drugs 

approved for treatment of hypertension. Because hypertension is a multifactorial heterogeneous 

disorder, and pharmacokinetic/pharmacodynamic variables may also vary among models, the 

magnitude of the BP response to a given antihypertensive treatment can vary greatly among 

animal models, just as among different patient subgroups. The availability of a wide variety of 

animal models is advantageous for generating hypotheses regarding the pathogenesis, 

prevention, and treatment of different forms of high BP in humans. Nonetheless, some 

approaches to lowering BP were apparently first tested in humans (e.g., ablation of sympathetic 

nerves, diet therapies, weight reduction, or supplemental potassium, and various drugs) 

questioning the need for research on animal models of human disorders. (23). Finally, because 

the main goal of treating hypertension is reducing risk for devastating cardiovascular 

complications, one could argue that the most valuable animal models should provide insights 

into prevention and treatment of these complications. 

Since understanding of the pathogenesis of human hypertension remains obscure, attempts to 

generalize study observations from a single animal model to the human circumstance should be 

viewed with considerable skepticism.  Ideally, studies in multiple models may be most helpful in 

providing a more complete view of the potential clinical relevance of mechanisms and 

therapeutic responses observed in experimental studies of hypertension, and in stimulating 

hypotheses about responses in subsets of hypertensive humans Nevertheless, studies in animal 

models of hypertension have successfully tested important hypotheses relevant to human 

hypertension, and have motivated clinical research studies leading to significant improvements in 

clinical management and outcomes, such as key applications of angiotensin converting enzyme 

inhibitors, (24, 25), dihydropyridine calcium channel blockers, angiotensin receptor blockers, 

and renin inhibitors to hypertension treatment. The history of the development of renin inhibitors 
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illustrates both the value and potential pitfalls of using animal models of hypertension to predict 

BP lowering effects of new molecules in hypertensive humans. Because of species differences in 

drug pharmacokinetics and in the amino acid sequence of renin especially in rodents, results in 

both non-primate and primate models were critical for defining applications of these agents in 

humans. (26-28). Overall, translational research in animal models of hypertension has largely 

been a success story in of modern medicine.  We suggest that judicious use of such models will 

continue to guide successful identification and advancement of interventions. 

LARGE VS. SMALL ANIMAL MODELS OF HYPERTENSION  

In selecting the most appropriate model of hypertension, one of the first decisions facing 

researchers is the choice between small and large animal models. Several factors must be 

considered, including the research scope and objectives, institutional resources, experimental 

cost, animal welfare, and practical suitability. The pros and cons of these models need to be 

thoroughly evaluated to select the best model to meet a particular research purpose (Table A).  

Small animal models are most commonly employed to study hypertension, providing useful 

insights. For example, these models may target specific factors implicated in the pathogenesis of 

human hypertension, including salt sensitivity, activation of the renin-angiotensin-aldosterone 

system (RAAS), and genetic factors. Rats and mice offer several advantages over larger animal 

models, like cost effectiveness, short gestation period, and tractability for genetic manipulation. 

However, reliable measurement of BP is challenging in small animals, surgical procedures are 

technically difficult, and the amount of sample available, particularly plasma and urine, may be 

limiting. Nevertheless, recent advances in imaging and surgical interventions have addressed 

some of these issues and have greatly streamlined the assessment of target organ damage (29).  

One of the most significant advantages of rodent models is ready availability of techniques for 

precise genetic alterations through whole-body or cell-specific gene deletions (knockout) or gene 

editing, allowing mechanistic studies to elucidate molecular mechanisms and identify novel 

targets for therapy, which are further enhanced by the relatively larger availability of specific 

antibodies for molecular studies compared to large animals. One great advantage of the rat is the 

existence of numerous genetic strains exhibiting robust spontaneous hypertensive phenotypes at 

baseline or through induction by environmental conditions. In addition, the rat is easy and cost 

effective to maintain, house and breed, yet large enough for most analytical studies, including 

long term, dynamic cardiovascular monitoring, and blood and tissue sampling.  Since these rat 
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models exhibit many phenotypic characteristics observed in human hypertension, they have been 

widely used to examine both the genetic and the mechanistic basis of hypertension. In recent 

years, many of these physiological monitoring techniques have been adapted to mice, which bear 

lower experimental and maintenance costs compared to rats.  In addition, there is a very wide 

range of specific antibodies available commercially for mouse that can be used for monitoring 

and in vivo treatment studies. 

Major advantages of large animal models, such as pig and primate, are their anatomical, 

physiological, and hemodynamic similarities to humans, combined with developmental 

pathophysiology in general, and specifically of hypertension, that may also more closely 

resemble humans compared to small animal models. They are alsoThe major advantage of large 

animal models, such as pig and primate, are their anatomical, physiological, and hemodynamic 

similarities to humans, where pathophysiology of hypertension may also more closely resemble 

humans, compared to small animal models (Table A). Large animals are particularly suitable for 

linear studies of hemodynamic consequences of long-term elevation of BP, with the added 

advantage of opportunities for repeated sampling of plasma and abundant tissues in which to 

quantify and often follow functional and structural injury in target organs in vivo and ex 

vivofunctional and structural injury in target organs.  Hence, integrated longitudinal data may be 

obtained in the same animal. A major disadvantage, however, is limited availability of 

genetically modified large animal models of hypertension compared to the breadth of genetically 

modified rodents. This is largely related to the higher costs of maintenance, longer reproductive 

cycles, and labor-intensive experiments in large animals. Along with lack of other reagents such 

as specific antibodies, this restricts the mechanistic depth of some studies using large animals.  

Finally, ethical issues have been raised for studies utilizing non-human primates.  

The most frequently used large animals for hypertension studies are the swine, non-human 

primates, sheep, and to a declining extent, dogs. The means to induce hypertension generally 

require pharmacological or surgical approaches. Pharmacological interventions using chronic 

infusions of Ang II, glucocorticoids, or DOCA (with and without high-salt diet) in pigs or dogs 

(30-33) are less frequently used than in smaller animals, partly due to the high cost of body-size 

titrated doses of drugs required over prolonged periods of time. On the other hand, surgical 

induction of hypertension is relatively simple, widely used, well tolerated, and carries a low risk 

for surgery-related mortality. These interventions include constriction of the aorta by extra-
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vascular banding (34), implantable adjustable occluders in the supra-renal aorta (35, 36) or renal 

arteries (37, 38), or intra-vascular devices in the renal arteries (39). These methods provide 

reliable models of chronic hypertension primarily of renovascular origin. The use of adjustable 

occluders to restrict blood flow afford controlling the degree of insult leading to hypertension, 

which provides opportunities for determining the extent of BP elevation required to trigger target 

organ injury and understanding how the process of end-organ damage unfolds. Intra-arterial 

devices such as coils (39, 40) that induce a progressive narrowing of the renal arterial lumen may 

mirror the obstructive role of plaques in human renal artery stenosis, and thus more closely 

recapitulate the pathophysiology of this well-documented clinical condition. Unlike adjustable 

occluders, the resulting degree of obstruction and target organ injury achieved by intra-vascular 

devices is often variable, again mimicking the clinical course of disease development. Finally, 

recent data show the potential of the African green monkey as a model of spontaneous 

hypertension (41). Hypertension in this model seems to develop without the need of external 

interventions, exacerbates with aging, and is associated with target organ injury, which may offer 

a new avenue for translational hypertension research. 

PLATFORMS OF EXPERIMENTAL HYPERTENSION: GENETIC  

Genetic Rat Models of Hypertension  

The complex nature of hypertensive phenotypes in combination with the polygenic mode of 

inheritance of hypertension requires appropriate models amenable to study.  Great insight has 

been gained from genetic studies of human hypertension and from mechanistic studies in 

experimental animal models of hypertension, summarized in other sections in this Statement. 

A number of rat genetic models of hypertension that have been utilized in genetic, (patho)-

physiological, and pharmacological studies (42-46).  Rat strains exhibiting genetic hypertension 

include the SHR, DSS rat, the Fawn Hooded Hypertensive rat (FHH), the Milan Hypertensive 

Strain (MHS), the Lyon Hypertensive (LH) rat, the Sabra Hypertensive (SH) rat, the Genetically 

Hypertensive (GH) rat, and the Inherited Stress-Induced Arterial Hypertension rats (ISIAH) 

model. Of these, the most commonly studied is the SHR; in the past 10 years, over 4500 articles 

were indexed in PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) under the term 

“Spontaneously Hypertensive Rats”.  In contrast, the next most commonly cited model, the 

“Dahl Salt Sensitive Rat”, was indexed 585 times over the same time span, while the other 

genetic rat strains were indexed less frequently. In addition to the above-described inbred strains, 

https://www.ncbi.nlm.nih.gov/pubmed/
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there are a number of congenic and transgenic animals exhibiting hypertensive phenotypes. 

While too numerous to conveniently list in this space, these other strains are commonly based 

upon the genetic background of the major strains listed above. The following section provides a 

brief overview of the origin of a number of these strains, their general experimental applications, 

considerations for choosing a rat genetic model of hypertension, and the advantages and 

limitations of rat models. 

Commonly Utilized Strains: The majority of the genetically hypertensive rats have been 

derived from outbred Wistar or Sprague-Dawley breeding stock with selection for hypertension-

related traits.  These models provide reliable and reproducible phenotypes that are often 

representative of clinical observations. The severity of hypertension and of related phenotypes is 

different among strains and can be a consideration when choosing an animal for study; a number 

of reviews and resources provide comprehensive information (42-46).  Moreover, direct 

comparisons of the hypertensive phenotypes and general body characteristics of several of the 

genetic strains provide insight into the different degree of disease attained under similar 

conditions.   

SHR: The SHR rat strain originated in Kyoto, Japan, from the cross of an outbred Wistar male 

rat, which exhibited spontaneously elevated BP, and a female with slightly elevated BP (47). 

Subsequent brother-sister mating was continued with selection for animals with systolic BP over 

150mmHg.  The inbred strain was subsequently established in the US in the late 1960’s after 20 

generations of inbreeding at NIH (48) and spontaneously develops hypertension as adult animals. 

The SHR is widely used in different studies as a rat model of primary or essential hypertension. 

This strain, or substrains such as the Stroke-Prone SHR (49, 50), has proven useful in studies of 

stroke, vascular function, autonomic regulation, renal function, therapeutic interventions, and the 

genetics of essentialprimary hypertension.   

Dahl Salt-Sensitive Rats: DSS rats were developed by Lewis Dahl, who observed the 

beneficial effects of low sodium-containing diets in the 1950’s (51), and examined the influence 

of different salt diets on BP in outbred Sprague-Dawley (SD) rats.  Selective breeding of those 

rats fed high salt that developed hypertension led to the inbred DSS rats, which are often used in 

experiments examining the kidney, vasculature, and genetics in hypertension (51). Selective 

breeding of rats resistant to salt-sensitive hypertension led to the inbred Dahl salt resistant rats.  

Fawn Hooded Hypertensive Rat: The FHH model was derived by inbreeding the outbred 
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fawn-hooded (or fawn-headed) rat originally characterized for its bleeding disorder (52). The 

outbred rats were demonstrated to have an elevated mean arterial pressure in comparison to 

Wistar rats and were subsequently inbred by Provoost to produce two strains designated the 

hypertensive FHH and the normotensive fawn-hooded (also known as FHL) rat (53).  The FHH 

has been useful to address the genetics of hypertension and chronic kidney disease.  

Milan Hypertensive Strain: The MHS rats were derived from Wistar rats observed to have 

elevated BP (54, 55); the rats were inbred for multiple generations to establish a strain that 

spontaneously develops hypertension soon after weaning and plateaus at 7-8 weeks of age. MHS 

rats have been used to study essentialprimary hypertension.  The Milan Normotensive Strain has 

also recently proved useful for investigating genetic mechanisms mediating impaired myogenic 

responses and susceptibility to development of proteinuria and renal injury (56). 

Lyon Hypertensive Rats: In the late 1960’s, a group in France selected outbred SD rats for 

elevated, normal, or decreased BP, and that were subsequently inbred for multiple generations 

into strains with low, normal, or high BP (57, 58).  A separation of BP between the strains is 

evident at a relatively early age (5 weeks), and is subsequently sustained. These strains have 

been used for renal, metabolic, autonomic, cardiac and genetic studies (59).     

Sabra Hypertensive Rats: SBH rats were originally derived from Sabra outbred rats by 

brother/sister mating and selection for high BP following unilateral nephrectomy and treatment 

with DOCA and dietary sodium chloride (60, 61).  A secondary round of inbreeding more 

recently re-derived the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat models, 

which are also sensitive or resistant to DOCA-salt treatment (62).  The SBH rats have therefore 

been useful for genetic studies examining environmental interactions on BP.  

Experimental Use And Considerations: The most distinct advantage of the rat genetic 

models of hypertension are the similarities of the BP/hypertension phenotypes to those observed 

in patients and the genetic basis of disease development that occurs in these animals.  In 

combination with the relatively low costs associated with maintenance of rat colonies, the ease of 

experimental studies, and their relatively rapid growth and reproductive rate, the genetic rat 

models have been popular for experimental studies of hypertension. 

Genetics of hypertension: The inbred genetic rats have served as useful model systems to 

identify BP quantitative trait loci (QTL), regions on the genome that contribute to the elevation 
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of BP.  With the development and application of polymorphic microsatellite markers to identify 

BP QTL, linkage-mapping approaches were extensively used to study inheritance of 

hypertension in rat models.  Subsequent studies to validate these QTL were performed through 

the generation of congenic or consomic strains (46, 63). The subsequent identification of genes 

within these QTL has been dependent upon complementary approaches including transcriptomic 

analyses, gene sequencing, and gene editing approaches.  Perhaps the ultimate question related to 

the use of rat genetic models is the applicability of findings to human hypertension.  

Encouragingly, comparative mapping strategies have identified overlap of QTL’s detected in rat 

and human linkage studies (64), indicating that findings in rat models of hypertension may be 

translatable to human disease. 

Phenotypes and mechanism of hypertension: In the past 10 years, a major technological 

breakthrough occurred with the use of gene-editing technology to manipulate the rat genome.  

The zinc finger nuclease methodology for gene manipulation, pioneered by Geurts and Jacob 

(65), has permitted assessment of function of genes identified in human association studies to be 

examined in animals with a hypertensive genetic background (45, 66).  This approach has 

permitted elucidation of the function of a number of genes that associate with hypertension in 

human genome-wide association studies (GWAS).  Of note, the functional importance of various 

gene products with previously unrecognized function in the regulation of BP (e.g., an adherens 

junction protein, immune signaling proteins, a secreted metalloproteinase) have been revealed 

through the use of this technology in genetically hypertensive rats.  Similar studies are also 

underway using the more recently developed methods of gene manipulation involving CRISPR-

Cas system based technologies. 

Considerations: Important considerations to take into account with the use of genetic rat 

models include the choice of the appropriate model for a particular research question, the need to 

ensure an appropriate genetic background of the experimental and control rats, and the 

requirement for a controlled environment.  It should be noted that the basic genetic architecture 

of the SHR, and of other inbred strains in which the animals are homozygous at virtually all loci, 

is quite different from the genetic architecture of humans. The various genetic rat strains can be 

used as models of slowly-developing primary hypertension (48, 67, 68), juvenile hypertension 

(69, 70), salt-induced hypertension (51), and hypertension associated with end-organ damage 

(56)various genetic rat strains can be used as models of slowly developing essential 
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hypertension, juvenile hypertension, salt-induced hypertension, and hypertension-associated with 

end-organ damage. However, understanding the genetic composition of the hypertensive strain 

and the choice of an appropriate control strain are important (66).  A direct comparison of two 

strains of commonly-used DSS rats demonstrated over 1.3 million different base pairs between 

the strains, and a significant difference in BP when the rats were fed a high salt diet (45).  

Genetic differences between control strains must also be considered. Kurtz and Morris (48) 

demonstrated that the Wistar Kyoto (WKY) rat, a common genetic control for SHR, had 

profound differences in phenotypes (growth rate and BP) when obtained from different 

commercial suppliers.  Moreover, all “control” strains are necessarily limited in the absence of a 

complete understanding of the genetic differences between the control and hypertensive strains. 

These examples emphasize the importance of careful identification of and consistent use of 

strains when performing experiments.  Equally important are environmental influences on 

phenotypes. In inbred DSS rats, a simple substitution of the sodium-independent components of 

the diet could profoundly alter the salt-sensitive hypertension and renal damage phenotype (71). 

In summary, genetic rat models have demonstrated great utility and provided exceptional 

insight into the genetics and pathophysiology of hypertension.  A researcher interested in 

employing such models should carefully consider the disease traits of the different strains and 

appropriate genetic controls, and pay careful attention to controlling the environment.     

Transgenic models of hypertension  

The construction of high density comparative genetic maps between mouse, rat and human 

(72) reinforces the similarities (as well as differences) between these species. The millennium 

genome project for hypertension (73) stated as its aim the identification of hypertension-

susceptibility genes and pathways by a systemic multiple candidate gene approach. Candidate 

genes identified as possible contributors by GWAS screening can be interrogated in animal 

models using transgenesis - the stable introduction of modifications into the genome.  

Gene addition, resulting in over-expression of a given gene of interest, was classically 

achieved by microinjection of DNA into the single-cell embryo and monitoring its subsequent 

expression and phenotypic effect in the mouse (74, 75), and subsequently in rats and other 

species. Alternatively, the using of bacterial artificial chromosomes (BACs), which incorporate 

100s of kilobases of DNA, human chromagranin variants have been analyzed in mouse models, 

for their ability to reduce the risk of hypertension (76, 77). Gene targeting, resulting in loss of 
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gene function, was also achieved initially in the mouse following the development of embryonic 

stem cells (ESC).  The gene-targeting construct is introduced by transfection or electroporation 

into ESC, and those cells that have been correctly targeted by homologous recombination, are 

selected and injected into blastocysts. The resultant chimaeras are then bred and their progeny 

screened for incorporation of the genetic modification.  

ESC technology led to the supremacy of the mouse for generating new animal modeling of 

human disease over the following 25 years. Many developments, improvements and refinements 

in gene targeting during this time allowed the researcher to introduce precise and ever more 

ingenious genetic changes (Table A). Gene expression cassettes may be targeted to safe havens 

such as the ROSA 26 locus (78, 79). Fluorescent reporters, expressed in place of the gene of 

interest, but under its endogenous promoter, highlight the tissue- or developmental-specific 

pattern of expression. In some cases knockout of a gene may prove to be embryonic lethal, 

because it contributes to a critical stage in development. By flanking key exons of the gene with 

loxP sites and crossing the transgenic animal with animals that express the enzyme Cre 

Recombinase in a tissue- or developmental-specific manner, the gene can be knocked out later in 

development. Alternatively, transgene expression may be driven by an inducible promoter, so 

that its expression is under the control of the researcher. 

Prior to 2008 gene knockout in the rat or rabbit relied upon random mutagenesis using N-

ethyl-N-nitosourea, transposon-based systems such as Sleeping beauty, or spermatagonial stem 

cell targeting. Following identification of the signaling pathways that control self-renewal and 

differentiation of ESC, it was discovered that incorporation of certain inhibitors in rat ESC 

growth medium was sufficient to maintain them in the self-renewal, pluripotent state (80, 81), 

and a variety of species are now targetable through the ESC route. Hence, all the techniques 

developed in mice are potentially applicable to other species, like APOE knockout in rabbit (82). 

More recently, generation of transgenic animals has been transformed by the introduction of 

gene editing technologies using sequence-specific nucleases. The first of these, Zinc Finger 

nuclease (ZFN) targeting, requires two ZFNs to bind upstream and downstream of the target site, 

eventuating in a double strand break at the target site. The cell repairs the break, but it often 

results in introduction of small deletions or insertions. If the target site is within an exon, then 

such changes may lead to missense or nonsense mutations, effectively knocking out the target 

gene (83). Alternatively, a single strand oligo or plasmid can be added to direct a desired 
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sequence alteration or insertion at the target site. Geurts et al (65, 84, 85) used ZFNs (and 

subsequently CRISPr Cas9) to systematically knockout a number of GWAS candidate 

cardiovascular disease-related genes (86) through the PhysGen Knockout program.  

Transcription activator-like effector nucleases (TALENs) are a second class of nucleases, 

which also bind up- and down-stream of the target site and require the close proximity of FokI 

monomers to introduce a double strand break. Unlike ZFNs, TALENs targeting a specific 

sequence can be readily constructed from libraries of domains, each of which recognizes one 

nucleotide, making them widely accessible and relatively cheap. Recently, TALENs were used 

to generate two Pde1a null mouse lines, which revealed a role for phosphodiesterase 1 in BP 

regulation in addition to renal pathogenesis (87). 

The third and most readily available nuclease class is the clustered regularly interspaced short 

palindromic repeat (CRISPr/Cas9) system derived from the bacterial immune system of 

Streptococcus pyogenes. Though the CRISPr/Cas9 system is susceptible to off-target events, it 

has proved its worth in generating knockout models in a wide range of species. Of note is the 

recent CRISPR/Cas9 targeted knockout and subsequent knock-in of a 19bp indel polymorphism 

in a rat long non-coding RNA (Rffl-inc1). (88). Recent advances in CRISPR technology include 

generation of Cas9 derivatives with increased specificity (89, 90) and altered PAM recognition 

sequences (91) and development of other CRISPRs from alternative bacterial sources (92). The 

versatility of nucleases extends to the generation of large-scale deletions (93) and insertions (94), 

which allows for the humanization of animal models.  

Gene reduction or knockout has also been achieved using siRNAs. To prevent rapid 

degradation in vivo, miRNA mimics or anti-miR oligonucleotides require chemical 

modifications such as locked nucleic acid (LNA) modifications. LNA-modified anti-miRs 

proved to be effective in targeting miR-29b, which affects collagen gene expression in the renal 

medulla in DSS rats (95). Genetic modification can be achieved using recombinant lentiviral or 

adeno-associated viral-mediated delivery. Adverse reactions to the delivery vehicle need to be 

addressed, in addition to target specificity and cellular uptake (96). 

Cell ablation is a transgenic technique with numerous potential applications. Classically, 

diphtheria toxin A was used to achieve cell ablation (97). More recently, introduction of the 

nitro-reductase gene, together with pharmacological treatment with a pro-drug, Metronidazole or 

KillerRed, a far-red fluorescent protein, which is phototoxic to the cell on exposure to 



 Lerman LO, et al,      

 

Page 17 

appropriate laser light, have been used (98). Optogenetic cell ablation can be tightly controlled 

both spatially and temporally, allowing single cells to be ablated (99).  

The application of transgenesis to hypertension research 

The utilities of a transgenic model for investing the role of a specific gene in hypertension 

might include: 1) elucidating its basic function; 2) mechanistic understanding of its involvement 

in a particular pathway; 3) determining its contribution to essentialprimary hypertension; and 4) 

faithfully modeling the etiology of human hypertension, with a view toward identifying new 

therapeutic targets and drug treatments. 

Many candidate genes for human hypertension identified by GWAS have been individually 

found to make only small contributions to BP (<1mm Hg), suggesting that there are no common 

gene variants with major effects to promote essentialprimary hypertension (100-102). Though 

considerable basic knowledge regarding the complexities of homeostatic BP control has been 

gleaned from these studies, the lack of clinically relevant therapeutic targets emerging from this 

work is disappointing. Recently, a SNP in the third intron of the PHACTR1 gene, identified 

through GWAS studies, has been shown to enhance endothelin-1 expression in the vasculature 

(103). This is an example of a common non-coding variant contributing to vascular disease and 

hypertension. Similarly, Ji et al (104) found that rare gene variants in 3 genes, Na+-K+-2Cl- 

cotransporter [NKCC]2, ROMK and NCC, causing rare Mendelian syndromes with recessive 

inheritance, are surprisingly common, with 1 in 64 subjects in the Framingham Heart Study 

cohort carrying such a mutation (104). Since such rare variants cannot be detected by GWAS, 

this suggests that whole genome sequencing may be a more fruitful source of rare gene variants 

or epigenetic modifications that potentially contribute to individual propensity for hypertension. 

Relevant transgenic models might then be designed to confirm the effect of such variants on BP, 

and provide a valuable test-bed for therapeutic development. While the clinical relevance of a 

particular model is an important consideration, advancing understanding of basic mechanisms of 

hypertension is also of value and not incompatible with long-term translational goals.  

With the abundance of gene targeting tools particularly for the mouse, substantial basic 

understanding of rare Mendelian disorders associated with altered BP and renal sodium handling 

has been gained.  A mouse model of Liddle’s syndrome (2) containing a gain-of-function stop 

codon in -ENaC (reflecting the human mutation) exhibits normal BP unless placed on a high 

salt diet, when mice develop hypertension and hypokalemia. The hypervolemia suggested by 
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increased sodium reabsorption and low aldosterone on normal salt diet, together with salt-

sensitivity, replicates the human syndrome. The basic mechanisms of positive modulators of 

ENaC trafficking or expression, such as Sgk1, and Af17 and negative modifiers such as Nedd4-2 

have all been revealed with respective animal knockout models.  

Mice lacking NKCC2, which models Bartter syndrome, die from dehydration prior to 

weaning because of uncompensated polyuria (105). Bartter syndrome can also be modeled by 

knockout of ROMK (106) with animals exhibiting hypotension. NCC knockout, despite 

recapitulating features of Gitelman’s syndrome such as hypocalciuria, causes no reduction in BP 

unless the animals are put on a low salt diet (107). Renal knockout of Nedd4-2 (108) leads to 

salt-sensitive hypertension with increased NCC phosphorylation. NCC is also activated in 

Gordon’s syndrome through mutations in WNK4 (109), leading to hypertension and 

hyperkalemia. 

Rare conditions such as the syndrome of apparent mineralocorticoid excess, where 

hydroxysteroid dehydrogenase (Hsd)11b2 deficiency allows the mineralocorticoid receptor to be 

activated illicitly by glucocorticoids, have been modeled in both mouse (110-112) and rat (83) 

models. The global mouse knockout (112) replicates the human syndrome with hypertension and 

hypokalemia, and heterozygous animals exhibit salt-sensitivity (110). Recently, kidney-specific 

knockout of mouse Hsd11b2 was found to be sufficient to cause salt-sensitive hypertension 

attributed to ENaC and NCC activation (111). 

Renin knockout in both mouse (113, 114) and rat (115), results in significant hypotension. 

Knockout of the duplicated renin gene, Ren2, has no effect on BP in the mouse (114), but its 

over-expression in the SD rat leads to extreme hypertension (116). Subsequent crossing of the 

transgene onto inbred strains of rat that are susceptible (F344) or resistant (Lewis) to malignant 

hypertension, allowed identification of angiotensin converting enzyme as a modifier of end 

organ damage (117). The model has been improved further by placing expression of the mouse 

renin gene under an inducible (Cyp1a1) promoter (118). The timing and severity of hypertension 

in the Cyp1a1(Ren2) transgenic rat is thus under the control of the researcher. 

The action of AngII in the proximal tubule was determined in Ang receptor (AT1a)-deficient 

mice. Kidney expression of AT1a is necessary for AngII dependent hypertension, and specific 

removal (119, 120) or overexpression (120) in proximal tubules causes hypo- or hypertension, 

respectively, on normal salt diet. Meanwhile, animals lacking all three Ang II receptors reveal 
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that AngII controls BP by acting solely through these receptors (121). Humanization of both rats 

and mice with human renin and Ang genes (122, 123) has been useful for establishing species 

specificity of the RAAS, but more importantly such transgenics are useful for investigating the 

function of different haplotypes and species-specific RAAS inhibition. 

Conditional knockouts have been used to investigate the roles of endothelin-1 (ET1) and its 

receptor, ETA. Specific knockout of ET-1 in the collecting duct causes hypertension and sodium 

retention (124), while knockout of the ETA receptor in collecting duct prevents receptor 

antagonist related fluid retention (125). 

Gene knockdown is a potential therapeutic strategy. When adenovirus was used to direct anti-

miR against the AT1a receptor to the paraventricular nucleus of SHR, hypertension was 

attenuated (126). Likewise, siRNA against Nox2 or Nox4 has been used to attenuate BP in the 

aldosterone-salt mouse model (127). Transgenic technology has been used to ascertain the 

causative genes in multiple models of essentialprimary and salt-sensitive hypertension. For 

example, knocking out either NADPH oxidase 4 (Nox4) or the subunit, p67phox on the Dahl salt-

sensitive background significantly ameliorates both salt-sensitivity and albuminuria (128, 129).  

An extensive list of transgenic models that exhibit salt-sensitive hypertension is given in a recent 

AHA review (130). 

The size of the mouse can sometimes preclude its use in studies where substantial or multiple 

sampling is required. Though surgical instrumentation is routine (e.g. telemetric devices), there 

may be time constraints where, for example, battery life is limiting. Historically, the rat has been 

the model of choice in the pharmaceutical industry, so there is a wealth of physiological 

knowledge associated with this species (131). With development of protocols for ESC isolation 

and gene editing, rats, rabbits, and larger animals are now more likely to be considered as useful 

genetic model systems. With the rapidly expanding range of tissue and spatio-temporal controls 

that can be placed on the gene(s) of interest, and the possibility for multiple targeting or 

humanization, animal models can now be designed to answer ever more complex questions 

relating to human disease. 

There are caveats to the use of transgenic modeling, and these must be considered on a case–

by-case basis. Vector sequences may cause anomalous expression of a reporter, as reported in the 

vasculature of fli1:EGFP zebrafish (132). The pharmacological profile of the mouse and the rat 

may differ from that of the human, exemplified by the TRPA1 channel (133). Homologues to 
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human genes may be absent in animal models, or vice-versa. Finally, there may also be species-

specific differences in genetic mechanisms of disease progression or end-organ damage (134).  

The optically clear zebrafish has been very successful in informing basic understanding of 

organ development or function (135, 136). The advantage of ex-vivo development, together with 

optical clarity, facilitates the use of unparalleled optical and imaging techniques such as SPIM, 

optogenetics and optical ablation techniques. Whilst a relatively new species in cardiovascular 

science, the use of Zebrafish for studies of heart development and function and the cardio-renal 

axis combined with its facile genetic tractability and utility for high throughput screening of 

drugs and small molecules position it as a likely important species in future translational studies. 

In summary, transgenic technology affords a great deal of scope for generation of informative 

animal models, from identification of gene function to humanization. SNPs, suspected of being 

disease-related, can be investigated in vivo and potential therapeutic strategies tested. Also, with 

the latest developments in stem cell technology and genome editing, the choice of species is no 

longer limited to small rodents. 

Large animal genetic models  

Large animal models of spontaneous hypertension have been recognized and developed over 

the past 50 years.  Spontaneous (or primary) elevation of BP has been reported in a variety of 

large animal species including chickens, turkeys (137), rabbits (138), swine (139), dogs (140) 

and nonhuman primates (141).  In the avian species, elevated BP likely does not represent true 

“hypertension”, since BP differences are characteristic of comparisons with other species rather 

than intra-species variation. Other large animal models show intra-species variation in BP by 

individuals, indicative of hypertension and similar to that observed in humans.  Those species all 

exhibit clear genetic correlates among individuals with strong degrees of heritability.  Similar to 

the SHR, selective breeding of New Zealand and Dutch white rabbits generated one of the 

earliest large animal models of hypertension (138). Hypertensive animals tended to exhibit 

varying degrees of renal pathologies, possibly reflecting cause and/or a consequence of the 

hypertension. 

There are large animal models of spontaneous hypertension in dogs and swine exhibiting 

significant elevation in BP that is spontaneous and may be expanded by selective breeding.  

Interestingly, both dog (140, 142) and pig (139) models of spontaneous hypertension also have 

LVH, one of the most common cardiovascular complications of human hypertension portending 
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significant risk for morbidity and mortality. The canine model was derived from diagnosed 

essential primary hypertension in a female Siberian husky selectively bred over a 5-year period 

to normotensive males.  The offspring produced a colony of hypertensive animals with dominant 

heritability. Similar to the rabbit model, subsets of Guizhou mini-pigs and Sichuan domestic pigs 

exhibit renal disease with mild renal fibrosis, which may be partly responsible for hypertension 

(139).  In this spontaneous model of systemic hypertension, bilateral renal denervation 

normalized BP (143). The swine model also demonstrates spontaneous hypertension, due to a 

neurogenic mechanism potentially related to increased renal sympathetic outflow. Yet, unlike 

non-human primate models, mini-pigs do not typically have elevated heart rates. 

A nonhuman primate model of systemic hypertension was first reported in a small number of 

individual African Green Monkeys or vervets (144).  These findings have recently been 

extensively expanded through phenotyping of nearly 400 animals by forearm plethysmography 

(141). In this model, the mechanism is likely to be neurological in origin based upon the direct 

correlation between BP to elevated heart rate.  Although RAAS components were unaltered, 

these monkeys developed significant renal pathology in glomeruli and small vessels, resembling 

humans with essentialprimary hypertension.  Since the vervet genome has now been fully 

sequenced and a basic annotation published (145), defining the genomic mechanisms underlying 

the development of spontaneous hypertension may be possible.  Accordingly, this nonhuman 

primate model may have substantial utility for translational research on the genetic basis of 

human essentialprimary hypertension. 

PLATFORMS OF EXPERIMENTAL HYPERTENSION: INDUCED  

Renovascular  

The pioneering work by Goldblatt (37) and later Page (146) in the 1930s planted the seed for 

the development of surgically induced models of hypertension and opened a new chapter for 

hypertension research. Their work positioned the kidney and renal arteries on the complex map 

of the pathophysiology of hypertension and disclosed the unique relationship between the kidney 

and BP control that also propelled the development of various therapeutic interventions. Surgical 

induction of hypertension by reducing blood flow in the suprarenal aorta or main renal arteries 

with and without removal of renal mass, inducing compression of the renal parenchyma, subtotal 

nephrectomy, or sinoaortic baroreceptor denervation, are applicable to both small and large 

animal models with similar outcomes, underscoring pathophysiological mechanisms of 
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hypertension that likely are conserved across species.  

A common pathophysiological feature shared by models of renovascular hypertension is the 

driver of hypertension and target organ damage:  a reduction of blood flow to the kidneys 

resulting in decreased perfusion pressure activating the RAAS, leading to vasoconstriction, and 

salt/water retention, with systemic hypertension developing in a matter of days. Systemic 

hypertension induces progressive endothelial dysfunction, stretch, and organ damage, whereas 

chronic reduction of blood flow to the kidneys leads to tissue ischemia and subsequent release of 

hypoxia-activated factors and oxidative stress that activate inflammation. These processes in turn 

induce microvascular remodeling, fibrosis, and loss of renal function, which likely play a dual 

role by both maintaining hypertension and promoting target organ injury.  

Alternative approaches to surgically-induced hypertension, although less widely used, include 

direct damage of the renal parenchyma through compression (147), renal micro-embolization 

(148), and ureteral obstruction (149, 150), which often also activate the RAAS and elicit 

inflammation, renal fibrosis, and subsequent loss of renal function. A potential limitation of these 

approaches is a difficulty in controlling the degree of renal damage, and thus the development 

and severity of hypertension is less predictable. Another potential limitation is clinical relevance, 

since hypertension caused by parenchymal compression is infrequent in humans. Nevertheless, 

hypertension can be observed in humans with renal masses, such as subcapsular hematomas, 

tumors. Parenchymal compression has also been implicated in development of hypertension 

associated with obesity (151), thus potentially conferring significance for these surgical models 

of hypertension. 

Summary: Recommendations for using animal models of renovascular hypertension 

Although reduction of blood flow to the kidneys or induction of parenchymal injury represent 

less than 10% of the cases of clinical hypertension, target organ injury develops in a similar 

pattern to essentialprimary hypertension. Yet, models of secondary hypertension might be more 

suitable for assessing target organ injury and developing therapeutic interventions than for 

understanding the pathogenesis of human essentialprimary hypertension. Furthermore, the 

prominent involvement of the RAAS in many of these models may distinguish secondary 

hypertension from some forms of low-renin hypertension.  

Large animal models of renovascular hypertension may have several advantages beyond their 
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anatomical, physiological, and pathophysiological similarities to humans. For example, they may 

be more amenable than rodents for studies in chronic stable hypertension, allowing longitudinal 

quantification of relevant hemodynamic and biochemical parameters that characterize the 

progression of hypertension, target organ injury, and response to therapeutic interventions in a 

translational fashion (152). On the other hand, targeted interventions to resolve the vascular 

occlusion (153-157) are now feasible in both small and large animal models. Thus, both types of 

models might be used to tease out the driving force initiating hypertension, studying the potential 

for reversibility of target organ injury, and identifying mechanisms of organ damage that may be 

independent from hypertension. 

The ability to induce renovascular hypertension in genetically modified rodents offers unique 

opportunities for in-depth elucidation of pathophysiological mechanisms, opening the possibility 

for a more comprehensive understanding of the consequences of hypertension. Finally, both 

large and small animal models of renovascular hypertension offer the possibility of imposing 

other comorbidities, such as metabolic derangements, and determining their contributions to 

target organ damage (40, 158, 159) thereby realistically mimicking the clinical population of 

elderly hypertensive patients in which multiple cardiovascular risk factors often coexist. 

Angiotensin II-Dependent Hypertension 

The RAAS plays a fundamental role in normal sodium and water homeostasis. Accordingly, 

one of the most widely used pre-clinical models of hypertension, particularly in rodents, is 

chronic subcutaneous infusion of Ang II. The utility of this model accrues in part from 

resembling some forms of human hypertension.  The RAAS is broadly activated in human 

essentialprimary hypertension, and the level of BP elevation achieved with commonly used 

doses of Ang II in mice is on par with that seen in uncontrolled, Stage II hypertension. After 4 

weeks of chronic Ang II infusion in susceptible rodent strains, target organ damage is quite 

similar to that seen in human patients with sustained elevations in BP, including cardiac 

hypertrophy, vascular remodeling, and chronic kidney disease (160-163). Nevertheless, because 

the renal vasoconstriction attributable to Ang II can induce ischemia, particularly at higher doses, 

chronic Ang II infusion more closely models the renal injury that accrues from chronic renal 

ischemia in human hypertension rather than from barotrauma (164). 

 The Ang II infusion model was employed in early dog studies that characterized the 

functions of the RAAS (165, 166), but was adapted for chronic subcutaneous infusion in rodents. 
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Among rodents, rats develop target organ injury in response to Ang II more readily than mice 

and can more easily be surgically implemented with BP monitoring devices. On the other hand, 

mice breed more quickly, have a rapid onset of hypertension, and are amenable to gene targeting 

even within selected cell lineages. Among mouse strains, C57LB/6 mice are more resistant to 

renal injury and are not salt-sensitive, making this strain ideal for investigating RAAS-dependent 

hypertension in the absence of these 2 conditions (167, 168). By contrast, 129SVE mice are salt- 

sensitive, more susceptible to kidney injury, and manifest greater levels of BP elevation at 

similar AngII doses relative to C57BL/6(169). Mice from the FVB strain develop marked injury 

in several compartments within the kidney during Ang II infusion, particularly when combined 

with unilateral nephrectomy (170). Thus, the choices of species and strain are key considerations 

when designing experiments employing chronic Ang II infusion. 

In mouse studies, several doses of Ang II have been employed to induce and analyze 

hypertension of different severities. The “slow pressor” dose of 400ng/kg/min Ang II may mimic 

the gradual onset of hypertension in humans with essentialprimary hypertension (171). The 

intermediate dose of 490-500 ng/kg/min is the most widely used in recent years (161). A higher 

dose of 1000ng/kg/min Ang II was used to dissect the functions of AT1 receptors in distinct 

tissue pools during hypertension, and in conjunction with other modifications can provoke 

measurable renal damage in susceptible strains (162). Even higher doses are employed, albeit 

less commonly, to provoke cardiac fibrosis (172). Notably, these doses far exceed Ang II levels 

observed naturally in hypertensive humans. 

 The duration of infusion can be adjusted based on the cardiovascular control center 

studied. Acute BP effects of Ang II can be appreciated within seconds to minutes (173), whereas 

with chronic subcutaneous infusions of ≥ 500 ng/kg/min Ang II, increases in BP emerge within 

the first 24 hours (160). Vascular remodeling due to Ang II is evident within 2 weeks (161), and 

cardiac hypertrophy at 2-4 weeks (160, 174). Renal injury is reproducible at 4 weeks on 

susceptible strains (162, 175), but far more robust after 8 weeks (170). Thus, investigators should 

titrate the Ang II dose and study duration based the experimental question. 

The current state-of-the-art methodology for measuring BPs during chronic Ang II infusion is 

radiotelemetry (176). Using the older method of tail-cuff plethysmography the level of 

vasoconstriction with higher dose Ang II is so profound (164, 168), that extrapolating BP from 

blood flow velocity through the tail circulation may be misleading. Radiotelemetry also permits 
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accurate measurement of heart rate and arrhythmias.  

A few modifications to murine Ang II infusion can enhance its applicability to study injury 

and salt sensitivity. Unilateral nephrectomy, high salt diet, and/or an extended infusion period (8 

weeks) can yield more robust renal damage in mice (162, 170). As Ang II promotes sodium 

retention, a low salt diet can be added to chronic Ang II to understand the extent to which the BP 

elevation seen during Ang II accrues from its capacity to promote sodium retention (163).  

Summary and Future Considerations. While an aggressive pharmacological challenge to 

induce hypertension has obvious limitations, in several circumstances chronic Ang II infusion 

offers distinct advantages. First, it is the most direct approach for investigating the in vivo 

actions of angiotensin receptors and their downstream signaling cascades. Second, pairing 

chronic subcutaneous Ang II infusions with acute IV infusions allows a comprehensive profile of 

a protein’s vascular and renal functions during RAAS activation. Third, the model is 

reproducible across species. Finally, chronic Ang II infusion engages all the cardiovascular 

control centers in pathogenesis, allowing in vivo assessment of interactions between sympathetic 

and immune activation, systemic and renal vasoconstriction, and renal sodium transport. Thus, 

chronic Ang II infusion remains a useful tool to dissect coordinated contributions of multiple 

cardiovascular control centers in hypertension. 

Mineralocorticoid-Salt hypertension  

Administration of mineralocorticoids together with a high salt diet can induce hypertension in 

both large and small animals. In animals given a high salt-intake, administration of 

deoxycorticosterone (DOC), usually in the form of deoxycorticosterone acetate (DOCA), has 

been the most widely used approach for inducing mineralocorticoid-salt hypertension.  

Deoxycorticosterone DOC appears to have both glucocorticoid and mineralocorticoid properties, 

but its tendency to cause sodium retention appears central to the DOCA-salt model. Its 

mineralocorticoid potency, however, is less than that of aldosterone itself.  While elevated levels 

of deoxycorticosterone DOC can contribute to some rare human forms of hypertension, the most 

common human form of mineralocorticoid-dependent hypertension involves hyperaldosteronism.  

Thus, the development of animal models of hyperaldosteronism is a subject of considerable 

scientific interest (177). Recently, for example, a mouse model of aldosterone-salt hypertension 

was developed by transgenically expressing the human gene for aldosterone synthase under 

control of the human promoter for the gene encoding 11β hydroxylase (178).  
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Early studies showed that the effects of mineralocorticoids like DOCA were greatly enhanced 

in animals ‘sensitized’ to its actions by a high salt intake (typically 0.6-1% NaCl in drinking 

water) and often by uninephrectomy (179).  While initial studies emphasized the need for 

extremely high DOCA doses, lower doses reproducibly induce hypertension; doses typically 

currently range from 20-50 mg/kg (in rats) (180). Notably, using saline drinking solution without 

access to free water imposes a non-physiological stress on the animals that may affect the results; 

further, the models often become hypokalemic, and some investigators have therefore 

supplemented potassium.  Although rats are most commonly used for this model, it has been 

employed successfully using many different species, including mice, dogs, sheep, and pigs.  The 

model manifests low plasma renin activity (and low circulating AngII), so it bears some 

similarity to a common form of primary human hypertension, low renin hypertension. 

 

The DOCA-salt model appears to have volume-dependent, vascular, and neurogenic 

components.  Mineralocorticoids, dietary salt loading, and uninephrectomy would each be 

expected to promote increases in extracellular fluid volume, and it is thus not surprising that salt 

and water balances can be positive, especially early in the course of mineralocorticoid-salt 

administration.  Both plasma and extracellular fluid (ECF) volume are expanded (181), and these 

effects may appear to be sustained (182). However, the extent to which a high salt diet causes 

greater sodium retention and volume expansion in animals treated with deoxycorticosteroneDOC 

or aldosterone than in non-treated salt-loaded controls remains controversial (183).   While the 

classical model of mineralocorticoid-salt hypertension typically involves expansion of blood 

volume and ECF volume, hypertension may occur even when prominent volume expansion does 

not occur, as in the setting of a normal salt diet (182).  It should be noted that administration of 

mineralocorticoids to animals given a low salt diet usually induces little or no effect on BP.  

 

Shortly after DOCA-salt hypertension was described, it was recognized to have a substantial 

neurogenic component. DOCA-salt animals typically manifest sympathetic hyperactivity, 

perhaps resulting in part from increased plasma osmolality, which regulates lumbar sympathetic 

nerve activity. DOCA has been postulated to sensitize the brain to salt and osmolality (184). 
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Sympathetic hyperactivity increases vasoconstriction in both arterioles and in the venous 

circulation.  The importance of these effects has been supported by reports that lesions in the 

area postrema, anterolateral third ventricle, and paraventricular nucleus of the hypothalamus 

attenuate the hypertension (185). 

Although DOCA-salt hypertension is characterized by suppressed plasma renin activity, Ang 

II concentrations in the brain may actually increase, likely contributing to sympathetic activation 

and salt and water retention through effects on brain AT1 receptors (186). There is also evidence 

for a role of the prorenin receptor in these processes, as its blockade reduces BP in DOCA-salt 

animals (187).  In contrast, intrarenal RAAS does not appear to play a major role. The early 

studies of Selye and others indicated that DOCA-salt animals exhibited substantial systemic 

inflammation (188).  More recently, interest in the immune contribution to hypertension 

generally has reemerged. Harrison and colleagues have shown that T cells are important for the 

full effects of DOCA-salt to increase BP and to enhance superoxide production, clearly 

implicating a role for T cells in the model (161). 

In summary, the combination of mineralocorticoid treatment and  a high- salt intake, and 

sometimes with uninephrectomy, provides a reliable animal model that can develop severe 

hypertension with some features of human low-renin hypertension. Studies of such models might 

provide insight into the salutary effects of mineralocorticoid receptor blockade in the setting of 

resistant hypertension, even in patients without frank hyperaldosteronism. Thus, the 

mineralocorticoid-salt models may have broad applicability to those hypertensive patients in 

whom controlling BP presents a challenge. Such models could also have value for understanding 

why cardiovascular risk may be higher in humans with primary aldosteronism than in individuals 

with similar BP levels and hypertension of unknown etiology, 

Renoprival Hypertension  

The prevalence of hypertension among patients with kidney disease highlights the relevance 

of renoprival models to human hypertension, as more than 90% of patients with end-stage kidney 

disease are afflicted with hypertension. Pre-clinical renoprival models correspond precisely to 

the phenotype in the nephrology clinic that garners concern – a hypertensive patient who has 

developed chronic kidney disease. Another salient feature of renoprival models is the impairment 

in salt excretion that accrues from reduced nephron mass, allowing one to study the salt-

sensitivity that afflicts roughly half of human hypertensive patients. 
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 Remnant kidney models were developed in rats to explore the adaptive effects of renal 

mass reduction on the remaining nephrons (189). Accordingly, use of this model revealed the 

detrimental consequences of glomerular hyper-filtration, and the benefits of lowering glomerular 

pressure via inhibition of the RAAS. Extrapolation from these rat models provided some of the 

rationale for use of RAS blockers in patients with kidney disease and hypertension.  Infarction of 

2/3 of one rat kidney leads to BP elevation, whereas 2/3 nephrectomy together with total 

contralateral nephrectomy, the modern “subtotal nephrectomy” model, yields both hypertension 

and glomerulosclerosis.  In rats, 2/3 nephrectomy is typically performed on the left kidney and 

achieved via ligation of the posterior branch and the inferior segment of the renal artery (190). 

Adaptation to mice, typically as a “3/4” nephrectomy (1 nephrectomy plus resection of half the 

contralateral kidney), is technically challenging but has been executed with ligation of renal 

artery segments as in rats (191) or with direct excision of half a kidney using electrocautery or 

glue to achieve hemostasis (192). Hypertension develops universally in remnant kidney rats. By 

contrast, subtotal nephrectomy in mice induces hypertension in the 129SVE salt-sensitive strain 

but not in the C57BL/6 strain that is relatively salt-resistant (191, 193, 194). Hypertension and 

kidney disease progress more slowly and less severely in this model than in more aggressive 

pharmacological hypertension models, with studies reporting several months of data in rats and 

mice (193, 194). In rats, tailcuff plethysmography may be sufficient to detect a BP rise, but given 

the variability of responses in mice, radiotelemetry is recommended for BP monitoring in mice. 

Summary and Future Considerations. In the future, subtotal nephrectomy will likely remain a 

useful model of hypertension relevant to patients with advanced and progressive CKD. The salt 

sensitivity in the remnant kidney model seen with rats or 129SVE mice enhances its relevance to 

human subpopulations, such as African Americans, who are prone to salt sensitivity. 

Abnormalities in cardiac morphology and function such as LVH and altered diastolic relaxation 

seen with subtotal nephrectomy will provide a timely model of cardiorenal syndrome (190, 192). 

The glomerulosclerosis seen particularly in the rat model mimics the secondary focal segmental 

glomerulosclerosis that develops after several years of uncontrolled hypertension. The gradual 

increase in BP in this model emulates the BP trajectory seen in human essentialprimary 

hypertension more smoothly than abrupt induction of hypertension via pharmacologic 

perturbations. Nevertheless, hybrid models of renal mass reduction are now being used to 

enhance injury and/or shorten the time required for readouts.  For example, when vigorous 
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RAAS activation is needed, unilateral nephrectomy combined with Ang II infusion yields robust 

glomerular and tubular damage after 8 weeks, or after 4 weeks when a high salt diet is 

administered (162, 170). Alternatively, Ang II infusion combined with true subtotal nephrectomy 

in salt-resistant mouse strains like C57BL/6 can overcome resistance to hypertension in these 

strains (194). Thus, at institutions with skilled surgical personnel, the remnant kidney model 

alone or in combination with other approaches will continue to yield data relevant to human 

patients with hypertension and CKD. 

Nitric oxide system  

Nitric oxide (NO) is catalysed by endothelial nitric oxide synthase (eNOS) and its local 

release occurs on a continual basis thereby modulating effects of local and systemic 

vasoconstrictors and fine-tuning of BP and organ blood flow. Based on the premise that NO 

inhibition would lead to predominance of vasoconstrictors and consequent increase in BP, 

researchers began to explore the possibility that NOS inhibition would cause hypertension in 

animal models. In 1990, Gardiner et al showed that acute treatment of Brattelboro rats with NG-

monomethyl-L-arginine (L-NMMA), a methyl derivative of arginine and NOS inhibitor, caused 

an increase in BP (195). Ribeiro followed up on these studies and showed that chronic treatment 

of Wistar rats with the NO inhibitor, Nω-nitro-L-arginine (L-NAME), a nitro derivative of L-

arginine, increased systolic BP by over 60 mmHg (196). L-NAME-treated rats also show renal 

vasoconstriction and hypoperfusion (195-197).  As the disease progresses, it is characterized by 

renal dysfunction, renal hypertensive microangiopathy, cardiac, vascular and renal fibrosis and 

features of malignant hypertension. These studies defined a new model of hypertension induced 

by chronic NO inhibition and provided the hypertension community with a robust experimental 

model of severe/malignant hypertension with evidence of target organ damage.  

The mechanisms underlying L-NAME-induced hypertension seem to involve processes 

beyond inhibition of endotheliumal-derived NO, because infusion of L-arginine, which activates 

eNOS to produce NO, does not completely reverse hypertension. Chronic inhibition of NO likely 

has impact on BP regulatory systems beyond direct effects on vasodilation and vascular tone. In 

particular, persistent inhibition of NO biosynthesis with L-NAME is associated with profound 

vasoconstriction, activation of the sympathetic nervous system and the RAAS, oxidative stress, 

kidney damage and structural alterations of the vascular wall. Since RAAS inhibitors fail to 

completely ameliorate L-NAME-induced hypertension, other humoral factors, such as 
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endothelin-1, have also been implicated (197).  

As with all experimental models of human disease there are strengths and limitations that 

need to be considered for the chronic NO inhibition model of hypertension. The strengths of this 

pharmacological model of hypertension include the relatively simple technical approach, the 

reproducibility of the model, the development of systemic hypertension, the robust nature of 

severe hypertension, evidence of target organ damage, and reversibility of hypertension with L-

arginine and various commonly used antihypertensive drugs (198). However, the mechanisms 

underlying L-NAME likely involve processes beyond NOS inhibition, and more importantly, the 

pathophysiological role of decreased NO biosynthesis in human hypertension remains unclear. 

Moreover, the BP increase in NO deficiency hypertension occurs rapidly, usually within hours of 

L-NAME or L-NMMA infusion, while the development of hypertension in humans occurs 

slowly and becomes established after many years. Hence, while the L-NAME/L-NMMA rat is an 

excellent model of hypertension-induced target organ damage mimicking many of the 

complications observed in human hypertension, it is probably not an appropriate model for 

essentialprimary hypertension, which has a slow onset that develops over the lifetime, and 

caution needs to be considered when extrapolating findings from this model to the clinic (199).  

On the other hand, superimposing the L-NAME model onto conventional diabetic mouse strains 

accelerates kidney injury, recapitulating many features of human diabetic nephropathy (200, 

201). 

Summary and future directions: What we have learned from the chronic NOS inhibition 

model is that NO is a critical factor involved in the physiological regulation of cardiovascular 

function and homeostasis and is a key regulatory molecule involved in multiple functions, 

including vascular tone, renal function, salt-volume homeostasis and renin secretion. As such, it 

is a potentially attractive therapeutic target. While organic nitrates have been used to treat angina 

since the 1800s, these compounds have a short half-life with little benefit in chronic 

hypertension. Hence, there is now growing interest in the antihypertensive effects of inorganic 

nitrates in the diet, and in the development of modulators of NO that are stable and that will 

deliver NO in a tissue-and site-specific manner. Animal models may be useful in understanding 

the therapeutic potential of NO modulation in human hypertension. 

Several additional forms of hypertension that may develop in animal models are less common 

and have not been described here. These include models of hypertension induced by infection, 
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heavy metals, stress (e.g., air jet, psychosocial, cold-induced, etc.), medications and herbal 

supplements (acetaminophen, NSAIDs, licorice, etc.), hypothyroidism, hyperparathyroidism, and 

others, which have been described elsewhere. 

OBESITY  

Overweight and obesity contributes to up to 75% of the risk for essentialprimary 

hypertension, and to most cases of treatment-resistant hypertension. While the physiological and 

molecular mechanisms of obesity-related hypertension remain unclear, sodium retention, RAAS 

activation, increased sympathetic activity, leptin resistance, and endothelial dysfunction have 

been implicated. Elucidating the mechanisms responsible for obesity-related hypertension may 

allow development of novel strategies for treating these patients. 

Overall, animal models that exhibit concomitant obesity and hypertension can be divided into 

2 distinct categories: models of obesity that spontaneously develop hypertension, and models of 

hypertension with superimposed obesity. Despite their different etiologies, both types of models 

allow exploring the role of obesity in the development and progression of hypertension. While 

models of primary obesity permit evaluating the mechanisms by which obesity predisposes to 

hypertension, models of hypertension enable studying how obesity alters its course.  

Several models of experimental obesity spontaneously develop hypertension as they gain 

body weight. Genetically induced obesity models that develop hypertension include the obese 

Zucker rat (OZR), ZSF1 rat, Wistar Fatty rat (WFR), and ob/ob mouse, which result from 

mutations that interfere with leptin signaling and transduction. These models are the most 

commonly used and offer the advantage of minimizing the impact of confounding factors, 

allowing mechanistic studies to investigate the role of specific genes in obesity-induced 

hypertension. Genetically induced obesity-hypertension can be also achieved in large animal 

models. For example, DNA transposition of D374Y gain-of-function cDNA of chimp proprotein 

convertase subtilisin/kexin type-9 is associated with elevated BP (202). However, coexisting 

obesity and hypertension result from the combination of genetic and environmental epigenetic 

factors. Thus, genetically induced obesity models may not fully address this need. 

Diets rich in saturated fats and refined carbohydrates induce weight gain and changes in body 

composition and adipose tissue cellularity both in rodents (203, 204) and several large animals, 

including dogs (205), rabbits (206), and pigs (207). The rat might be the optimal small animal 
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model for diet-induced hypertension, because of its size and the propensity to develop 

hypertension faster than mice. High-carbohydrate diets, alone or in combination with high-fat 

diets, have been shown to induce obesity, hypertension, hyperlipidemia, and glucose intolerance 

in several rat strains, including SD and Wistar rats within just 3 weeks (208, 209). However, 

C57BL/6 mice fed a high-fat/high-carbohydrate diet supplemented with NaCl may need as much 

as 3 months to develop hypertension (203). Unlike rodents, development of hypertension is 

relatively similar among large animals of obesity ranging from 5 weeks in the dog (210) to 12-16 

in the pig (207). Although a mixture of chow and added fat may be sufficient to develop obesity-

hypertension, purified-ingredient diets are the preferred choice, due to their low batch-to batch 

variability and lack of plant-derived phytochemicals, which may alter disease progression (211). 

Purified diets contain high levels of carbohydrates, which are indispensable to achieve several 

features of metabolic syndrome, and particularly hypertension. Pigs fed a high-fat diet alone are 

characterized by dyslipidemia and vascular dysfunction, but do not increase BP levels (212). 

Contrarily, feeding domestic pigs with a diet containing high levels of carbohydrates, fat, and 

cholesterol over 16 weeks induces spontaneous hypertension (207). Although high-fructose diets 

seems to be more effective in inducing metabolic syndrome compared to high-sucrose diets, diet-

induced increase in BP levels is comparable (213). 

Lastly, chemical agents (e.g., monosodium glutamate) primarily used to induce obesity may 

result in spontaneous hypertension (214). Yet, the association between obesity and hypertension 

in these models is often weak.  

In addition to models of primary obesity, models of concurrent, independently achieved 

hypertension are critical to answer the fundamental question of whether obesity exacerbates 

existing hypertension. For example, fat loading in DSS rats aggravated BP and salt-induced renal 

damage, preceded by body weight gain, visceral fat accumulation, and insulin resistance (215). 

Similarly, studies in Ossabaw pigs with coexisting obesity and renal artery stenosis demonstrated 

that obesity amplifies both renal and cardiac injury, yet BP levels remained unaltered (216, 217). 

These observations suggest that the primary mechanism implicated in the development of 

hypertension is an important determinant of the effect of obesity. While obesity exacerbates salt 

sensitivity of BP, the effect of hypertension may be dissociated from obesity in surgically 

induced hypertensive models.  

Alternatively, the impact of obesity on hypertension could be studied by genetic or dietary 
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manipulations. In the spontaneously hypertensive obese (Koletsky) rat, hypertension and obesity 

are induced by independent genetic mutations (218). Interestingly, BP levels are comparable to 

rats with salt-sensitive hypertension, suggesting that obesity induced by this mutation does not 

exacerbate genetically induced hypertension. Contrarily, DOCA-salt treatment of obese Zucker 

rats increases BP as fast as with 4 days (219). Therefore, these models are suitable to explore if 

obesity increases the sensitivity of animals to experimentally induced hypertension. Presumably, 

the involvement of the RAAS, oxidative stress, or other mechanisms, may dictate the sensitivity 

of the models to coexisting obesity and hypertension.   

The choice between small or large animal models of obesity-hypertension should consider 

several elements (see section). Specifically, large animal models of diet-induced obesity may 

require a long period of time to develop spontaneous hypertension, increasing experimental 

costs. In addition, body weight, length, and fat percentage may reach significant proportions, 

limiting animal mobility and increasing the risk for infections and surgical complications.     

SEX DIFFERENCES AND AGING IN HYPERTENSIVE SMALL ANIMAL MODELS 

Profound sex differences are an important feature of hypertension and cardiovascular diseases 

in humans. Similarly, sex differences in BP have been noted in most animals, including rodents, 

dogs, chickens, and rabbits (220, 221), but the mechanisms responsible for the sex differences in 

hypertension or BP control have mainly been studied in rodents (Table B). Almost without 

exception, young adult male rats have higher BP than females regardless of whether they are 

normotensive (SD) or hypertensive (SHR, DSS), just as in humans.  In normotensive SD rats, 

mean BP is lower in females than in males (222), possibly due to lower proximal sodium 

reabsorption and greater ability to excrete sodium (223). There are also greater pressor responses 

in males with DOCA-salt hypertension (224) and DSS rats (225).  In both mice and rats, 

normotensive males also develop higher BP in response to a “slow pressor” dose of Ang II (226, 

227).  The mechanisms responsible for the elevated BP or response to Ang II vary with the strain 

and genetics of the rodents. The kidney and perhaps the sex steroid milieu might be responsible 

for the sex differences in the Ang-II mediated hypertension. However, in general, radiotelemetry 

monitoring shows that the estrus cycle of the female does not affect daily BP markedly. 

Aging in humans is associated with an increase in BP. In hypertensive rat models, BP 

increases in females as they stop estrous cycling.  In SHR, BP is lower in females prior to 

stopping estrous cycling, and then increases progressively such that by 16 months of age, BP in 
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females is similar to or higher than males (228). In DSS rats on a low salt diet, aging in both 

males and females is also associated with increases in BP (229).  In many hypertensive rat 

models hypertension is mediated by different mechanisms for males and females. Contributions 

of hormones, sympathetic and renal nervous systems, immune system, metabolic syndrome 

effects, and oxidative stress, which are different between males and females, must be taken into 

account.  Thus, sex differences in BP control in animals are as complicated as in humans. 

Role of Sex steroids: The presence or absence of sex steroids is an important mediator of 

hypertension in many of the spontaneously hypertensive rodent models.  Castration of male 

SHR, DSS, and mREN2 models causes a reduction in BP, and ovariectomy increases BP in DS 

rats, on a high or low salt diet (229), and in mREN2 females (224).  In contrast, ovariectomy of 

SHR has no effect on their BP (225).  Exogenous androgens given chronically increase BP in 

female SD rats, a model of polycystic ovary syndrome (230). The mechanisms by which sex 

steroids can impact BP include stimulation of renal angiotensinogen synthesis by androgens, and 

estrogen-mediated stimulation of the vasodilator arm of the RAAS or decreased AT1 receptor 

synthesis.  Estradiol also increases expression of endothelial nitric oxide synthase. 

Sex and aging-related differences in mechanisms responsible for hypertension in young 

SHR  

In young male and female SHRs the mechanisms responsible for hypertension are different.  

For example, in young adult male SHR, the hypertension is mediated by androgens since 

castration reduces BP to similar levels as in females, and androgen supplementation restores the 

hypertension (231), whereas ovariectomy has no effect in females, suggesting that estrogens 

have no effect on BP in females. Removal of the renal nerves or adrenergic blockade normalizes 

BP in both male and female SHR (232).  Central melanocortin-4 receptor (MC4R) antagonism 

also reduces BP in young male SHR (233), but not young females (234), suggesting that 

sympathetic activation in males may be due to MC4R activation. Blockade of the RAAS with 

ACEI (231, 235) normalizes BP in both young male and female SHR. 

In young adult male and female SHR, removal of the renal nerves or adrenergic blockade 

normalizes BP (222), but the mechanism responsible is different for the sexes. Central blockade 

of the melanocortin-4 receptor (MC4R) reduces BP in males, (223), but not females. However, 

with aging, BP falls with renal denervation or adrenergic blockade, but both male and female 

remain hypertensive (223), implicating multiple mechanisms in the hypertension in aging SHR. 



 Lerman LO, et al,      

 

Page 35 

The role of oxidative stress in mediating hypertension in SHR is also sex-dependent, although 

females have similar or higher levels of oxidative stress markers.  Overall, antioxidants prevent 

development of hypertension in both sexes of SHR (236, 237), but once established, maintenance 

of hypertension is independent of oxidative stress in females, but not males. The NO system may 

also be more activated in young females than males SHR (238). Interestingly, 

tetrahydrobiopterin supplementation reduces BP in male SHR, but this is due to a concomitant 

reduction in androgen levels rather than protecting against eNOS uncoupling (239). Inhibition of 

20-HETE synthesis, either by non-specific arachidonic acid metabolism inhibitor or a specific -

hydroxylase inhibitor, reduces BP in male SHR (240), but not young females (230). Blockade of 

the RAAS reduces BP to similar levels in both male and female SHR when they are young (231), 

but becomes less efficacious with aging in females (235).  In addition, the endothelin and the 20-

HETE eicosanoid systems may contribute to hypertension in aging females.  

Sex differences in inflammation and the immune system also contribute to the hypertension 

(Table B).  Both male and female SHR have a depressor response to the lymphocyte inhibitor, 

mycophenolate mofetil, but the greater response was in females (241).  Females have more 

circulating CD3+, CD4+, and pro-inflammatory CD3+CD4+RORγ+ Th17 cells, whereas males 

have more immune-suppressive CD3+CD4+Foxp3+ T regulatory cells.  In the kidney, females 

had greater numbers of CD8+ and regulatory T cells infiltration, whereas males had greater 

CD4+ and Th17 cell infiltration. The role of T cells in mediating hypertension is emerging. For 

example, females show greater pressor response to Ang II after male-to-female T cell transfer, 

and males become less responsive after female to male T cell transfer. Future studies will be 

necessary to determine the role that T cells play in mediating essentialprimary hypertension in 

humans, in order to refine studies in animal models. 

Aging and sex differences in mechanisms responsible for hypertension   

As noted above, with aging and cessation of estrous cycling, BP increases in female SHR to 

levels similar to or higher than in males (228), despite the lack of effect of ovariectomy on BP in 

young females (231).  The mechanisms responsible for hypertension are also different by sex in 

aging SHR.  For example, while BP falls with renal denervation or adrenergic blockade, both 

aging males and females remain hypertensive (234), which does not occur in young animals, 

suggesting that other components contribute to the hypertension in aging SHR. Similarly, 

blockade of the RAAS reduces BP but becomes less efficacious with aging in females (235), but 
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normalizes BP in aging males as in young males.  While the endothelin system plays no role in 

mediating hypertension in young male or female SHR, with aging ETA receptor antagonism 

modestly reduces BP in females, but not males (230).  Blockade of 20-HETE synthesis fails to 

reduce BP in young female SHR, whereas 20-HETE synthesis inhibition reduces BP in old 

females (242), suggesting that unlike in young females, 20-HETE contributes to regulation of BP 

in old female SHR.    

In DSS rats, BP in females does increase with ovariectomy and decreases with estradiol 

supplements (229).  Interestingly, by 12 months of age, estradiol-supplemented ovariectomized 

DSS rats, ovariectomized DSS rats, and intact DSS rats have similar BP (229), suggesting that 

with aging changes occur in the estrogen receptors or intracellular signaling pathways that make 

the estradiol no longer able to attenuate the BP. 

Other comparisons for BP regulation in male and female DSS rats are not as comprehensive 

as in SHR and are thus not discussed further. 

Other mechanisms underlying sex differences in hypertension 

Sex differences in BP have been reported in most models of diet-induced obesity. Male 

C57Bl/6 mice on a 16-week high fat diet gained less weight than females, but developed 

hypertension (243). Male Obese Zucker rats have higher BP than females (244).  The 

mechanisms responsible for the sex differences in BP in these rodent models remain unclear.   

In large animal models, many studies have been performed in dogs, although the sex has not 

been often considered. Ang II given intra-cerebroventricularly to dogs caused a pressor and 

dipsogenic effect in male dogs but not females (245).  Male rabbits have higher BPs than 

females, but neither are salt sensitive (221).   

In summary, many rodent models show sex differences in the BP levels, and hypertensive 

mechanisms responsible for these are different. As shown in Table B, in general, in female 

animal models, the mechanisms responsible for hypertension are more multifaceted than in 

males, and these mechanisms tend to increase in number and significance with aging.  Therefore, 

investigators should be cognizant of and look for sex differences in BP, recognize that there may 

be sex differences in the mechanisms responsible for BP control, and recognize that there may be 

age-related differences in the mechanisms responsible for BP control as well. 

END-ORGAN DAMAGE  
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The impact of hypertension on human health occurs through damage to critical target organ 

systems including the brain, heart, kidneys and vasculature.  Investigations on target organ 

damage in many established rodent models of hypertension have revealed insights into 

mechanisms of BP-induced tissue injury. However, with the growing importance of co-

morbidities and aging in hypertension and its complications, studying aged animals and animals 

with induced co-morbidities, such as hyperglycemia, hyperlipidemia and obesity, would further 

increase the translational relevance of animal models of human hypertension. 

Vasculature: Vascular dysfunction and remodelling  

In hypertension, endothelial dysfunction is associated with may precede overt evidence of 

target organ damage, and has been demonstrated in peripheral, coronary, cerebral, renal and 

conduit vessels in experimental and clinical hypertension.  Molecular processes causing 

endothelial dysfunction include decreased endothelial NO production, increased bioavailability 

of reactive oxygen species, increased ET-1 and Ang II production, and immune mechanisms. 

Hypercontractility also contributes to high vascular tone in hypertension. Processes underlying 

this involve increased vascular smooth muscle cell contraction and reduced relaxation, mediated 

in large part through changes in intracellular calcium concentration and activation of RhoA-Rho 

kinase pathways.  

In addition to functional alterations, small and large arteries exhibit structural changes in 

hypertension, characterized by remodeling, fibrosis, and inflammation, processes that are 

amplified with aging in SHR (246). Resistance artery narrowing and large artery stiffening are 

not only target organ effects of high blood pressure, but these vascular changes contribute to the 

development of hypertension by increasing peripheral resistance and compromising arterial 

compliance.  

Structural remodeling of the vascular wall leads to reduced lumen diameter and thickening of 

the vascular media. Remodeling of small arteries may be the first manifestation of target organ 

damage in hypertension. In clinical studies, 100% of patients with stage 1 hypertension have small 

vessel remodeling whereas only 60% have endothelial dysfunction and 45% have left ventricular 

hypertrophy (247).  The concept of ‘vascular remodeling’ was first suggested in 1989 when pial 

arterioles from SHRSP were found to have significant structural alterations (248). Arterial 

remodeling is characteristically associated with increased wall thickness, of which two types are 

described: inward or outward, depending on whether the lumen diameter is reduced or increased 
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respectively. Remodeling is further classified into eutrophic, hypotrophic or hypertrophic 

depending on whether there is no change, reduced or increased vascular material (vascular smooth 

muscle cells, extracellular matrix) respectively (249, 250). Eutrophic inward remodeling is usually 

found in SHR and Ang II-induced hypertension, whereas hypertrophic remodeling is found in 

renovascular hypertension, salt-sensitive hypertension, aldosterone-induced hypertension and 

other forms of secondary hypertension (Table D). Different types of remodeling may occur in 

different vascular beds, for example in SHR, small resistance arteries exhibit eutrophic inward 

remodeling whereas conduit arteries undergo hypertrophic remodeling. Associated with structural 

alterations are mechanical changes that promote arterial stiffness, decreased elasticity and reduced 

distensibility, which further contribute to vascular target organ damage. 

In addition to functional alterations, vessels exhibit structural changes in hypertension, 

characterized by remodelling, fibrosis, and inflammation, processes that are amplified with aging 

in SHR (246). Structural alterations of the vascular wall lead to reduced lumen diameter and 

thickening of the vascular media. Associated with structural remodelling are mechanical changes 

that promote arterial stiffness and reduced distensibility.  

The most commonly used approaches to directly assess in experimental models of 

hypertension vascular function (endothelial function, vasoconstrictor and vasodilator properties), 

along with structure and mechanical properties, are is by myography (wire and pressure) 

myography. Wire myography allows ex vivo measurement of transverse isometric tension in an 

arterial segment in response to different factors, and assessing biochemical and molecular 

pathways and passive properties of the vessel (251). Pressure myography is used to assess small 

vessel function and structure under near physiological conditions of pressure and flow by 

digitally tracking diameter and flow in real time (252). Parameters studied assessed by pressure 

myography include media structure, wall stress, strain and myogenic tone, and allows evaluation 

of responses to increases in pressure, flow and pharmacological stimuli. The system can be 

linked to imaging equipmentsystems, for example to assess calcium transients. These approaches 

have been used extensively in various rodent models of hypertension, including L-NAME-rats, 

SHR, SHRSP, salt-sensitive rats, renovascular models, Ang II-induced hypertension and 

transgenic mice, and have contributed enormously to elucidating the vascular phenotype as a 

cause and target of hypertension.  

In addition to impaired endothelial function, hyper-reactivity and structural remodeling, 
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hypertension-induced vascular damage may involve rarefaction, which is characterized by a 

decrease in microvascular density. Rarefaction may be functional (vasoconstriction) or structural, 

and may contribute to 25% of peripheral resistance in experimental hypertension (249). 

Heart: Cardiac Fibrosis, Hypertrophy, and Hypertensive Heart disease.  

Cardiac injury is a major consequence of persistent, uncontrolled hypertension. Elevated BP 

culminates in myocardial strain resulting in LVH, an independent risk factor for cardiovascular 

mortality. Disruption in cardiac architecture with LVH is associated with aberrant electrical 

conduction leading to atrial or ventricular arrhythmias and sudden death. When the heart can no 

longer sustain normal function in the face of elevated afterload, persistent hypertension leads to 

diastolic and ultimately systolic heart failure. Accordingly, hypertension is a leading cause of 

congestive heart failure in humans.   

In many rodent models of hypertension, approximating human Stage 2 hypertension leads to 

LVH within 2-4 weeksBP elevation leads to LVH, measured by augmented heart-to-body-weight 

or heart-to-tibia-length ratios. Indeed, tThe level of BP measured by radiotelemetry correlates 

with the extent of cardiac hypertrophy (160), making heart weight a possible surrogate for 

hypertension where direct measurements are unavailable. Rodent echocardiography allows direct 

assessment of changes in cardiac filling patterns and left ventricular wall thickness. These 

detailed measurements allow discrimination between signaling pathways that favor physiological 

versus pathogenic cardiac hypertrophy.  

After one month, hypertensive cardiac injury in rodents is marked at the histologic level At 

the histologic level, hypertensive cardiac injury in rodents is marked by myocyte damage, mild 

perivascular fibrosis, and sparse mononuclear cell infiltrates (160), which nonetheless modulate 

cardiac injury during hypertension. At the molecular level, cardiac hypertrophy is characterized 

by recapitulation of fetal gene expression in experimental hypertension (253). Severe 

hypertension provides a model of cardiac fibrosis, which can be quantitated by 

immunohistochemistry and molecular signatures of cardiac scar formation. Scarring disrupts 

electrical conduction in the heart with consequent discrete dysrhythmias that can be captured and 

quantified with current radiotelemetry monitoring systems (254).  

Kidney: Renal Fibrosis and Hypertensive Kidney Failure 

Hypertension-induced renal damage (HIRD) comprises at least three patterns: benign 
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nephrosclerosis, malignant nephrosclerosis, and hypertension-accelerated kidney disease (255). 

Benign nephrosclerosis is characterized by arteriosclerosis, interstitial fibrosis, and global 

glomerulosclerosis.  The individual risk of end-stage kidney disease from benign nephrosclerosis 

is surprisingly small, but the net effect of benign hypertension is significant, because 

hypertension itself is so common.  In contrast, malignant hypertension, which itself is 

uncommon, typically leads to kidney damage, often associated with fibrinoid necrosis and 

thrombosis of small vessels and glomeruli. HIRD most commonly occurs in the setting of 

underlying kidney disease, in which hypertension accelerates progression, for instance of 

diabetic kidney disease.  

The three subtypes of HIRD have been replicated in animal models.  Rodent models like SHR 

develop kidney damage very slowly.  This appears to reflect preserved renal vascular 

autoregulation, with normal pressure-induced afferent vasoconstriction, preventing high arterial 

pressure from being transmitted to the glomerular capillaries (256). This model resembles benign 

hypertension in humans, in which the risk for hypertensive nephrosclerosis is low, and damage is 

restricted primarily to pre-capillary blood vessels and interstitium.  In contrast, when arterial 

pressure rises above a critical threshold, for example in stroke-prone SHR rats exposed to high 

salt intake, renal damage develops rapidly, with lesions characteristic of malignant hypertension 

(257). In this case, the pressure is above the autoregulatory range, and is therefore transmitted 

directly to the glomerulus.  This causes proteinuria and rapidly progressive renal dysfunction, 

resulting from glomerular damage.  These characteristic features of human malignant 

hypertension can also be observed in Ren2-transgenic rats. 

In the setting of underlying renal disease, the relationship between arterial pressure and 

kidney damage shifts, and BPs that do not normally lead to progressive damage do so. 

Mechanisms involved are controversial and depend on the models employed.  Many studies use 

5/6th nephrectomy (See under “Renoprival Hypertension”).  Kidney damage has been suggested 

to result from resulting dilation of the afferent arteriole, with efferent vasoconstriction, which 

together increase glomerular capillary pressure, independent of changes in arterial pressure.  In 

contrast, a surgical approach to reduce renal mass without generating hypertension showed that 

systemic hypertension is required for renal damage (258). Mouse strains vary in their 

susceptibility to kidney damage.  Rodent models of diabetic kidney disease, for example that 

induced by streptozotocin on a 129SvE background, have been used to demonstrate the impact of 
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superimposed hypertension on baseline kidney damage (259).  

Brain: Hypertensive Cerebral Damage 

Hypertension is a major risk factor for cerebrovascular diseases, such as stroke (ischemic and 

hemorrhagic) and vascular dementia, but also for neurodegenerative diseases, including 

Alzheimer’s disease (260). Hypertension has damaging effects on cerebral blood vessels, which 

have been implicated in its harmful effects on the brain. Lacking energy reserves, the brain is 

highly susceptible to alterations in blood supply, and hypertension can promote both acute and 

chronic ischemic brain injury (261). As in systemic arteries, hypertension accelerates 

atherosclerosis and induces stiffening, remodeling and hypertrophy in cerebral arteries. 

Distinctive alterations, similar to those observed in the kidney (lipohyalinosis), are observed in 

penetrating arterioles of the brainstem and basal ganglia. Functionally, hypertension alters 

myogenic tone and cerebrovascular autoregulation, induces endothelial dysfunction, impairs the 

ability of neural activity to increase cerebral blood flow (neurovascular coupling), and damages 

the blood-brain barrier. These structural and functional alterations promote vascular occlusions, 

leading to acute ischemic brain injury, and chronic vascular insufficiency causing white matter 

damage.  A major consequence of the hypertensive white matter damage is cognitive 

impairment. Indeed, hypertension is the major cause of cognitive impairment on vascular bases, 

the most common cause of dementia after Alzheimer’s disease (260). Executive dysfunction and 

psychomotor slowing are the typical cognitive deficits, but memory impairment, more 

characteristic of Alzheimer’s disease, can also occur in more advanced cases (260). In addition, 

hypertension induces rupture of cerebral microvessels causing intracerebral hemorrhage, 

typically in the basal ganglia, or bursting of aneurysmal dilatation in arteries at the base of the 

brain resulting in subarachnoid hemorrhage.  

Several animal models of hypertension have been used to investigate the effects of 

hypertension on the brain (Table C).  Although these models do not fully recapitulate the harmful 

effects of hypertension, they have provided valuable knowledge on the potential mechanisms 

underlying the susceptibility of the brain to hypertension.  Most of the models used for 

cerebrovascular research have been in rodents, although there have been studies in larger 

animals, mainly pigs and monkeys. As noted earlier, models based on administration of 

pharmacological agents have the advantage that the cause hypertension is known, and can be 

induced in a defined time frame and in transgenic animals, allowing studying early mechanisms 
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of disease at the molecular level, as well as cognitive dysfunction. A disadvantage is that that the 

hypertension is limited in time (usually weeks) and does not mimic the long-lasting impact on 

the brain of the human disease. Nevertheless, these models have been some of the most 

commonly used.  

Genetic models based on intercrossing and selecting for the hypertensive phenotype, e.g., 

SHR-SP, BPH2 mice, exhibit life-long hypertension and provide insight on the effects of 

hypertension on the brain, including cognitive dysfunction, over the life course. However, the 

precise cause of the hypertension remains unknown, raising the possibility that the 

cerebrovascular alterations are not attributable to hypertension, but to unrelated genetic factors. 

For example, the increased susceptibility to ischemic brain injury in SHR and SP-SHR could be 

related, in part, to an inherited vulnerability of neurons to excitotoxicity (262, 263). Some 

transgenic models have life-long hypertension with a known cause, e.g., mice overexpressing 

human angiotensinogen and renin (R+/A+) or lacking eNOS, and have been very useful to 

investigate the role of specific pathways and mediators in the effects of life-long hypertension on 

the brain.  

Some hypertension models that produce brain lesions (infarcts, hemorrhages, or white matter 

lesions) usually require the combination of pharmacological, dietary, genetic and/or surgical 

manipulations to enhance the effects of hypertension on the brain (Table C). While mimicking 

the neuropathological impact of hypertension, the time when lesions develop cannot be predicted 

and the location of the lesions is highly variable.  

Of particular interest are models in larger animals, such as pig and monkeys, in which brain 

size, gray-white matter ratio, vascular topology, cognitive testing, and cardiovascular function 

have greater translational relevance (264). Monkeys made hypertensive by aortic coarctation 

exhibit white matter lesions and microinfarcts and, like the pig model, lend themselves to more 

detailed assessment of cognitive endpoints (Table C). However, these models are expensive, not 

well suited to high throughput investigations, and less amenable to genetic manipulations.  

In summary, while investigations on target organ damage in animal models of human 

hypertension have focused mainly on vessels, the heart, and the kidney, there is a paucity of 

information on the brain effects in these models. This is particularly evident in renovascular 

hypertension and low-renin hypertension. Considering the devastating impact of hypertension on 

the brain and its vessels, and its pathogenic role in wide variety of brain diseases, there is a 
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strong rationale for expanding application of state-of-the-art cerebrovascular and neurovascular 

investigative tools to delve deeper into the mechanisms through which hypertension promotes 

neurovascular and neurodegenerative diseases.  

APPLICATIONS OF GENETICS AND SYSTEMS BIOLOGY TO ANIMAL MODELS 

Great insight has been gained from the genetic study of human hypertension. Studies of 

monogenic forms of hypertension have revealed the molecular basis of several related 

syndromes.  More recently, GWAS analyses uncovered common variants of modest effect as 

well as low-frequency variants that contribute to BP variation in patients. These studies provide 

important insight into human disease, which can be complemented by animal studies, often in 

models exhibiting phenotypic characteristics observed in human hypertension, which can 

provide mechanistic biological insight into gene function and underlying cardiovascular risk.  

Identification of Quantitative Trait Loci Influencing BP Traits:  

Of the different inbred species used for genetic studies of hypertension, the rat has been 

widely utilized for the identification of QTL using linkage analysis approaches. This has been 

driven by the large number of rat genetic models of hypertension, the relatively low cost of rat 

experimentation, and ease and accessibility of techniques for assessing cardiovascular 

phenotypes in rats. The functional validation of QTL has been enabled by generation of congenic 

or consomic strains, in which defined segments of DNA from one strain are introgressed onto the 

genetic background of a second strain using a genetic marker-assisted breeding strategy. With 

this approach, phenotypic differences detected between the parental and congenic strains can 

indicate that a gene or genes within a particular substituted region of genomic DNA have an 

influence on the functional trait of interest.  The subsequent identification of genes within these 

QTL has been difficult and depends upon complementary approaches including transcriptomic 

analyses, gene sequencing, and gene editing (45, 63).  Development of modern sequencing 

techniques and sequencing of the full rat genome provided further opportunities to fully define 

and design experiments to elucidate key sequence differences of candidate genes within a QTL.   

Epigenetics 

Rodent models have served as excellent platforms to validate the impact of deletion or 

overexpression of individual genes associated with hypertensive traits in GWAS or other linkage 

studies. In addition to their value for genetic and genomic studies, these models have also 
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contributed to recognition of the influence of environmental factors on disease phenotypes, 

including hypertension, fueling the study of epigenetics. Epigenetics refers to effects of 

environmental factors that induce changes in an organism due to modifications in gene 

expression rather than a direct alteration of DNA sequence.  These modifications commonly 

occur through DNA methylation, post-translational histone modifications, and noncoding RNAs.  

Of these factors, DNA methylation has been most studied.  For example, elevated methylation of 

the promoter region of 11-beta HSD2 has been correlated with reduced activity of the enzyme 

and hypertension in patients (265).  Similarly, the promoter of the NKCC-1 is hypomethylated in 

the aorta and heart of SHR compared to the WKY rat, correlating with increased NKCC-1 

activity in those tissues and more severe hypertension (266).  The use of animal models to assess 

epigenetic regulation of gene expression in hypertension promises to be a productive area of 

focus in the future. 

Non-coding RNAs 

RNAs that do not code for proteins can influence disease pathogenesis by regulating the 

effectiveness of gene expression through modulation of messenger RNA (mRNA) levels and 

repression of mRNA translation. Various forms of non-coding RNAs, such as microRNAs, long 

non-coding RNAs, and circular RNAs, have been proposed to play a role in regulation of BP and 

risk for hypertension, and the risk for target organ damage associated with hypertension (88, 267, 

268). While controversy surrounds the appropriate criteria for identifying non-coding RNAs of 

functional significance, there is growing interest in studying them in animal models of 

hypertension, and of hypertension related cardiovascular disorders, from both a mechanistic and 

therapeutic perspective (88, 267-269). Furthermore, non-coding RNAs may be involved in the 

mechanisms of kidney injury in some forms of hypertension (270)     

Microbiome 

Recent studies in humans and animal models have highlighted the powerful impact of the 

microbiome on a range of disorders.  Likewise, the gut microbiota can have a profound influence 

on BP regulation.  In animal models of hypertension, recent observations suggest that there are 

differences in the microbiota between DSS and Dahl R rats (271) and between SHR and WKY 

(272). The mechanisms of action whereby the gut microbiota influence BP are not fully 

elucidated, but the release or stimulation of trimethylamine N-oxide, short chain fatty acids, or 

other factors can influence cardiovascular phenotypes (273, 274). In addition, recent studies have 
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identified specific changes in the gut microbiome influencing blood pressure effects of high salt 

diet (275). As this field matures, it is likely that the influence of the microbiome on complex 

phenotypes such as hypertension will receive wider recognition.  Animal modeling will likely be 

very useful in unraveling these actions. 

Systems Biology:  

The integrated scientific approach to interrogate and understand the contribution of 

individual biological components including genes, transcripts, proteins, metabolites, epigenetic 

modifications, the microbiome, and environmental modifiers, along with the integrated function 

of these components to a cell, tissue, organ, organ system, or organism is termed Systems 

Biology.  Systems Biology approaches utilize high throughput analytical and bioinformatic tools 

to understand the entire system rather than any single individual aspect.  There is no individual 

‘Systems Biology’ approach, nor is there agreement on the precise definition of this approach 

(276, 277), but Systems Biology approaches, integrating quantitative measurement of biological 

variables obtained in animal models, mathematical modeling, reconstruction, and theory (277)  

show great promise for understanding complex multifactorial human diseases like hypertension.  

In summary, studies at the level of genetics, epigenetics, the microbiome, and systems 

biology show great promise for hypertension research. At present, hHowever, due to substantial 

gaps in understanding pathogenesis and genetic determinants of human hypertension, 

opportunities to incorporate relevant causal pathways or genetic variants into animal modeling 

efforts have been limited.  For the same reasons, it has not been possible to utilize molecular 

profiling to verify authenticity of existing animal models. Yet, data emerging from agnostic 

systems biology studies using genetics, genomics, proteomics and analysis of the microbiome 

show promise for advancing basic understanding of human hypertension.  These approaches 

should also allow better validation of animal models based upon identification and recapitulation 

of specific ”omic” signatures derived from human hypertension. 

 

SUMMARY: RELEVANCE OF MODELS TO HUMAN HYPERTENSION: 

CONCORDANCES AND GAPS.  

Animal models of human disorders have proved to be immensely useful in translational 

research in a number of fields, including hypertension.  These models allow incisive approaches 
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not possible in clinical studies for understanding pathophysiology, genetic mechanisms, 

identification of new disease markers and potential therapeutic targets.  As we have highlighted 

in this paper, insights derived from animal models of hypertension have contributed significantly 

to understanding this highly prevalent human disorder.  Here we summarize a few key points that 

are especially relevant for those working in the field. 

Recent high profile publications have decried the poor reproducibility of published studies 

using animal models for pre-clinical assessment of therapeutic agents in human disorders from 

cancer (278) to neurological disease (279). Various factors have been implicated to explain these 

inconsistencies, including: deploying insufficient numbers of experimental animals, inadequate 

power calculations and statistical analyses, assessment of outcomes by individuals who are not 

blinded to experimental groups, and failure to pursue independent replication of critical 

experiments.  Accordingly, these remediable methodological problems must be taken into 

account in designing any study using animal models of hypertension (4-8).   

Another key issue is consideration of how closely the experimental model truly captures what 

is observed in humans (see “construct validity” above).  In this regard, one limitation to 

developing animal models of human hypertension is that the pathogenesis of the human disease 

is not well understood, and the primary cause of elevated BP is not apparent in the vast majority 

of affected individuals.  On the other hand, the cardinal feature of human hypertension, elevated 

BP, can be modeled relatively easily in animals by activating systems known to be involved in 

human hypertension, including the renin-angiotensin system and sympathetic nervous system, or 

inhibition of protective factors, such as nitric oxide. Yet, these models all suffer from their 

limited duration of hypertension compared to humans.  The obscure pathogenesis of human 

hypertension also complicates interpretation and relevance of existing animal models with 

spontaneous hypertension.  Nonetheless, most of these models respond to anti-hypertensive 

therapies used in humans and develop similar long-term complications, suggesting overlaps in 

pathogenesis.  Recent progress in understanding genetic mechanisms of primary hypertension in 

humans should provide opportunities for generating more reliable models, and for analyzing the 

veracity of existing models using systems biology approaches.  

While elevated BP is the key diagnostic feature of human hypertension, its morbidity and 

mortality result from complications in the brain, heart, kidney and vasculature.  The contribution 

of elevated BP to these complications has been well established in clinical trials showing that BP 
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lowering reduces complications.  However, understanding the molecular mechanisms of these 

complications is an unmet need, where animal models should continue to add value through 

identifying pathways and/or markers associated with increased risk for complications, 

understanding mechanisms for known risk factors such as APOl1, and for potentially identifying 

therapies that can protect against complications, above and beyond blood pressure control. 

Another key feature of human hypertension is its frequent association with chronic co-

morbidities such as obesity, diabetes, heart and kidney disease, which can influence the disease 

characteristics and outcomes. Likewise, sex and ethnicity also have major impact in human 

hypertension.  These factors are not typically incorporated into most animal models of 

hypertension, but should be to improve concordance with the human condition. 

The choice of a suitable model, such as small versus large animal, spontaneous versus 

induced hypertension, etc., will depend on a number of factors including the specific 

experimental question and an investigator’s available resources and expertise.  No individual 

model will recapitulate all features of human hypertension, and all have advantages and 

shortcomings, which we have highlighted in this manuscript and its accompanying tables.  These 

factors obviously must be taken into account in the design and interpretation of experiments, and 

the most powerful insights will often be derived from studies carried out in multiple, 

complementary models. 

CONCLUSIONS  

Hypertension is the most common chronic disease in the world, and increased understanding 

of the pathogenesis, prevention, and treatment of hypertension and its comorbidities is 

imperative. Animal models of hypertension have been, and will likely remain, very useful in 

provide insights into the pathogenesis and novel treatment options of hypertension. Clearly, 

investigators need to make informed choices as to the appropriate animal model for specific 

application, and the experiments need to be carefully designed, executed, and interpreted. In this 

Statement we summarize a few key points that are especially relevant for those working in the 

field, and may aid in propelling it forward. 
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Table A. Examples of transgenic techniques related to hypertensive models 

 Small animal models Large animal models 

Transgenic technique Species Examples 

Gene over-expression M 

M/R 

Mendelian models of hypertension 

Salt-sensitive hypertension (120, 130) 

Inducible expression R Inducible hypertension & end organ damage (118) 

BAC incorporation M Reduced risk of hypertension (76, 77) 

Global gene knockout/  M 

M/R 

M 

Mendelian models of hypertension (105-109) 

Salt-sensitive hypertension (110-112, 128-130) 

Pulmonary hypertension (280) 

Renin hypotension (113-115) 

Gene knock-in M/R Renin  (119); RAS humanization (122, 123) 

Targeted gene knockout M Kidney specific Hsd11b2 knockout (111) 

Safe haven targeting R ROSA 26 (93, 94) 

Conditional knockout M Pulmonary hypertension (124, 125) 

Rat / rabbit ES cells R 

Rb 

TALEN targeting (281) 

ApoE knockout (82) 

Zinc finger nucleases R Salt-sensitive hypertension (86) 

TALENs M/R Pde1a(87) 

CRISPR-Cas9 R (88); Humanisation & ROSA-26 (93, 94) 

Gene knock-down/ 

Anti-miRs / siRNA 

M/R AT1A receptor (126); Reduced hypertension in 

aldosterone/salt treated mice (127); Reduced 

hypertension in SHR (95). 
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Anatomical, physiological, 

hemodynamic properties 

Distant from humans  Closer to humans 

Developmental pathophysiology Distant from humans  Closer to humans 

Tissue availability Low High 

Costs Low High 

Genetic modification Readily available Possible 

Reproductive cycle Short Long 

Characterization Extensive Adequate 

Availability of specific antibodies High Low 
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Table B. Sex Differences in Blood Pressure and Response to Treatment in Animal models 

 Males Females 

Strain/model Young adult Aging Young adult Aging (post 

cycling) 

SHR     

No treatment M > F M ≤ F F < M F ≥ M 

ETAR 

antagonism 

No effect No effect  No effect Modest fall 

 Enalapril/losartan Normalize  Normalize  Normalize  Decrease 

20-HETE  Yes  No effect Decrease F > 

M 

Gonadectomy Castrated < M Castrated < M No effect. OVX = 

F 

No effect. 

OVX= F 

Adrenergic block/ 

renal denervation 

Decrease M>F Decrease Decrease Decrease 

MC4R antagonist Decrease Decrease No effect No effect 

Nitric oxide NOx/NOS1/NOS

3 activities M < F 

E2 increase eNOS 

synthesis 

  

Antioxidants  Decrease Decrease If start pre-puberty No effect 

T cells   Tregs F > M  

Pregnancy   Falls last trimester  

Dahl S     

  Low NaCl M > F Rise with aging F < M Rise with 

aging 

+ High NaCl diet M > F    

    

Gonadectomy 

Castrated < M  Castrated < M OVX > F Ovx=F rise 

with age 

      Pregnancy   No fall last 

trimester 

 

mREN2     

    No 

treatment 

M > F  F < M  

    

Gonadectomy 

Castrated < M  OVX > F OVX = F 

Normotensive 

strains 

    

No treatment 

(rats) 

M > F M < F F < M F ≥ M by 18 

mos 

    + DOCA-

salt 

M > F    

    + Ang II      

            + ACEI M > F (mice)  F > M (rats)  

           - ACEI M > F (mice/rats)    

+ACEI + high 

NaCl  

M = salt sensitive  F =not salt 

sensitive 
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T cells M > F  F < M  

     Pregnancy   Decrease late   

           + RUPP   Increase late   

         + L-

NAME 

  Increase  

Offspring effect 

 RUPP dams 

M > F Normalizes F < M Increase F 

> M 

Obesity (mice) M > F  No effect   

Rabbits M > F   F < M  

Dogs + Ang II Increase M > F  Increase F < M  

Chickens M > F  F < M  

SHR, Spontaneously hypertensive rats; M, male; F, female; OVX, ovariectomized female; 

ETAR, endothelin-A receptor; MC4R, melanocortin 4 receptor; DOCA, deoxycorticosterone 

acetate; Ang II, angiotensin II; ACEI, angiotensin I converting enzyme; NOS, nitric oxide 

synthase; RUPP, reduced uterine perfusion pressure; L-NAME, nitro-L-arginine methyl ester.  
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Table C. Cerebrovascular pathologies in selected animal models of hypertension 

Hypertension model Species Neurovascular pathology References 

AngII infusion 

(2-4 weeks) 

Mouse 

Rat 
• Hypertrophy and remodeling 

• Neurovascular dysfunction 

• Increased BBB permeability 

• Inflammation 

• Oxidative stress 

• Cognitive deficits 

• Brain amyloid eta accumulation 

(282-286) 

Chronic AngII+Acute 

AngII+LNAME 

Mouse • Micro-hemorrhages 

• Increased BBB permeability 

• Inflammation 

• Cognitive deficits 

(287, 288) 

Ren and/or Agt 

overexpression 

Mouse 

Rat 
• Hypertrophy and remodeling 

(R+/A+ mouse) 

• Increased stiffness (Renin rat) 

• Endothelial dysfunction 

• Cognitive deficits (R+/A+ mouse) 

• Larger infarcts (after MCAO) 

(289-293) 

Ren/Agt 

overexpression 

+LNAME +High salt  

Mouse • Micro-hemorrhages 

• Inflammation  

• Oxidative stress 

(294) 

ET1 overexpression in 

endothelial 

cells+MCAO 

Mouse • Larger infarcts 

• Increased BBB permeability 

• Cognitive deficits 

(295, 296) 

eNOS deficiency 

LNAME hypertension 

Mouse 

Rat 
• Hypertrophy 

• Endothelial dysfunction 

• Larger infarcts (after MCAO) 

(297-300) 

Chronic intermittent 

hypoxia/obstructive 

sleep apnea 

Mouse 

Rat 
• Neurovascular dysfunction 

• Oxidative stress 

• Larger infarcts (after MCAO) only 

with more severe cyclic hypoxia 

(6%O2) 

(301-305) 

BPH2 Mouse • Hypertrophy 

• Neurovascular dysfunction 

• Increased BBB permeability 

• Cognitive deficits 

(283, 290, 
306) 

SHR-SP+Western diet Rat • Infarcts and hemorrhages 

• Neurovascular dysfunction 

• Increased BBB permeability 

• Retinopathy 

(307-309) 

SHR+MCAO Rat • Larger infarcts (310, 311) 
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SHR-SP+Carotid 

occlusion 

Rat • White matter lesions 

• Increased BBB permeability 

• Inflammation 

• Cognitive deficits 

(312) 

Dahl Rat+High salt Rat • Oxidative stress 

• Reduced BBB marker proteins 

• Increased BBB permeability 

• Loss of myogenic tone 

• Infarcts and hemorrhages 

(15, 313, 
314) 

DOCA salt Mouse 

Rat 
• Hypertrophy  

• Neurovascular dysfunction 

• Inflammation 

• Oxidative stress 

• Cognitive deficits 

• No change in infarct size or larger 

infarcts (after MCAO) 

(286, 315-
318) 

• DOCA salt+elastase 

• AngII (2 weeks)+ 

elastase 

• Carotid & renal 

artery 

ligation+AngII (2 

weeks) +elastase 

Mouse • Cerebral aneurysms formation and 

subarachnoid hemorrhage 

 

(316, 319, 
320) 

Renovascular 

hypertension  

Rat • Infarcts and hemorrhages  

• Larger lesions (after MCAO) 

(321, 322) 

Aortic coarctation 

 

Mouse 

 
• Hypertrophy 

• Endothelial dysfunction 

• Oxidative stress 

• Brain amyloid eta accumulation 

• Cognitive impairment 

(323, 324) 

 

Yucatan 

pig 

 

• Vascular stiffening 

• Cognitive deficits 

(325, 326) 

 

Cynomol

gus or 

Rhesus 

monkey 

• White and gray matter microinfarcts 

(<1mm) 

• Cognitive deficits 

(327) 

Aortic coarctation+ 

High fat diet±aging 

Cynomol

gus or 

Rhesus 

monkey 

• Worse cognitive deficits (328, 329) 

AngII: angiotensin-II; BBB: blood-brain barrier; BPH2: blood pressure high-2; DOCA: 

deoxycorticosterone acetate; LNAME: Nitro-L-arginine-metylester; MCAO: middle cerebral 

artery occlusion; Ren/Agt: renin angiotensinogen; SHR-SP: stroke-prone spontaneously 

hypertensive rats; elastase injected in the basal cistern
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Table D. Vascular target organ damage in different experimental models of hypertension 

Hypertension model 
Vascular target organ damage  Reference 

Genetic rat models   

SHR Inward eutrophic remodeling (resistance artery) 

Hypertrophic remodeling (conduit artery) 

Rarefaction  

Endothelium-dependent dysfunction 

Impaired endothelium-independent vasorelaxation 

(conduit arteries) 

(330-335) 

 

SHRSP 

 

Hypertrophic remodeling   

Fibrosis 

Vascular hypercontractility 

Endothelial dysfunction 

Increased myogenic tone 

 

(336, 337) 

GHR Hypotrophic outward remodeling (basilar artery) (338) 
   
Salt-sensitive hypertension   
   
DSS Hypertrophic remodeling   

Endothelial dysfunction 

Impaired myogenic response (cerebral artery) 

(51, 339-

341) 

DOCA-salt Hypertrophic remodeling   

Endothelial dysfunction 

Vascular inflammation 

 

(333, 342) 

   
Renovascular   
   
One-clip Goldblatt Inward eutrophic remodeling (resistance artery)  

Hypertrophic remodeling (conductance artery) 

(343) 

2K-1C    

Hypertrophic remodeling (aorta but not mesenteric 

artery) 

 

(344) 

   
NO-dependent models   
   
L-NAME Outward hypotrophic remodeling   

Aortic stiffness  

Increased pulse wave velocity  

Impaired endothelium-independent vasorelaxation  

Cerebral artery remodeling 

(345-348) 

SHR/L-NAME Aortic stiffness    

Reduced distensibility 

Excessive fibrosis 

(349) 

   
Ang II-dependent models   
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Ren-2-transgenic rats Aortic endothelial dysfunction   

Decreased aortic contraction  

Fibrosis 

Endothelial dysfunction 

(350) 

dTGR Medial hypertrophy  

Intimal thickening 

Fibrinoid necrosis 

(351) 

Ang II-infused (400 

ng/kg/min; Slow pressor) 

Inward eutrophic remodeling  

Endothelial dysfunction 

Vascular hypercontractility 

Low-grade vascular inflammation 

(160-163) 

(352-354) 

Ang II-infused   

(>1000 ng/kg/min) 

Aortic medial thickening    

Outward aortic remodeling  

Vascular inflammation 

Vascular hyper-reactivity 

Increased vascular tone  

Increased aortic stiffness 

Endothelial dysfunction 

(355-358) 

   
Large mammals      
AGM  Renal vascular remodeling  

Vascular hypertrophy 

(141, 359) 

Hypertensive obese pig Cardiac microvascular remodeling (360) 

Fat-fed mini-pig Endothelial dysfunction   

Vascular inflammation 

Hypertrophic remodeling 

(361) 

 

     

SHR, spontaneously hypertensive rat; DSS, Dahl salt-sensitive; SHRSP, stroke-prone SHR; 

GHR, genetically hypertensive rat; DOCA, deoxycorticosterone; NO, nitric oxide; L-NAME, 

Nω-nitro- L-arginine methyl ester; Ang II, angiotensin II; Ren, renin; agm, African green 

monkey; 2K-1C, two-kidney, one-clip; dTGR, human renin-angiotensinogen 

double transgenic rat. 
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