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Abstract

Replication of many RNA viruses benefits from subversion of the autophagic pathway through many different mechanisms.
Rotavirus, the main etiologic agent of pediatric gastroenteritis worldwide, has been recently described to induce
accumulation of autophagosomes as a mean for targeting viral proteins to the sites of viral replication. Here we show that
the viral-induced increase of the lipidated form of LC3 does not correlate with an augmented formation of
autophagosomes, as detected by immunofluorescence and electron microscopy. The LC3-II accumulation was found to
be dependent on active rotavirus replication through the use of antigenically intact inactivated viral particles and of siRNAs
targeting viral genes that are essential for viral replication. Silencing expression of LC3 or of Atg7, a protein involved in LC3
lipidation, resulted in a significant impairment of viral titers, indicating that these elements of the autophagic pathway are
required at late stages of the viral cycle.
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Introduction

Viruses are known to induce macroautophagy (hereafter

referred to as autophagy) in several different ways, which are

either dependent on virus interaction with surface receptors or on

viral replication. Autophagy is a homeostatic process that

maintains equilibrium of cells by degrading damaged organelles

and long-lived proteins and recycling cellular components [1].

Beyond this homeostatic function, in stress conditions autophagy

represents an adaptation mechanism promoting cell survival [2].

Autophagy-mediated degradation is achieved through formation

of double or multi-membrane structures called autophagosomes,

which fuse with lysosomes creating auto(phago)lysosomes, in

which degradation takes place. The delivery of cellular material

to autophagosomes is both non-specific (‘‘bulk autophagy’’) and

selective (‘‘selective autophagy’’). This latter depends on the

activity of several adaptors (e.g. p62, NBR1, NDP52, ALFY, Nix)

that deliver specific cargos to autophagosomes [3]. Many aspects

of the molecular mechanisms of autophagy, from autophagosome

formation to maturation and fusion with lysosomes, still remain

obscure. In most cellular settings the autophagic stimulus inhibits

the mTOR complex, which is a negative regulator of autophagy

through inactivation of the ULK1/2 kinase complex. When the

mTOR complex is inhibited, the ULK1/2 kinase complex recruits

autophagy-related proteins (Atg) to the site of nucleation of the

autophagosome precursor (phagophore) [4]. The same complex

also regulates the fusion of autophagosomes with lysosomes [5].

Vesicle expansion and completion are mediated by two ubiquitin-

like conjugation systems: one involves the covalent conjugation of

Atg12 to Atg5, with the help of the E1-like enzyme Atg7 and the

E2-like enzyme Atg10; the second involves conjugation of

phosphatidylethanolamine to one of the five members of the

microtubule-associated protein 1 light chain 3 (LC3) gene family,

LC3B (hereafter referred to as LC3) [6]. LC3 is initially produced

as a precursor that is processed through the sequential action of

the protease Atg4, which cleaves the C-terminus generating LC3-

I, and of Atg7 and Atg3, which generate the lipidated form LC3-

II. This latter is the autophagic vesicle-associated form and is

generally used as a marker of autophagosomes [7]. Beyond being a

marker, LC3-II is involved in the expansion and closure of

autophagosomes and also in the delivery of cargo in the selective

autophagy [5]. Once in the autolysosome, LC3-II is partly

degraded by lysosomal proteases [8] and partly delipidated and

recycled [9].

During viral infections, autophagy may have either an antiviral

or a proviral role, with a large variety of mechanisms described.

Several viruses have evolved mechanisms either to escape or to co-

opt elements of the autophagic pathway for their own benefit (for a

review see refs. [10,11]). The knowledge of virulence factors that

interfere with autophagy may help to gain insights into the

regulation of autophagy and into its manipulation for therapeutic

purposes. In this regard, a recent study described the therapeutic
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potential against several human pathogens (HIV-1, West-Nile

virus, chikungunya virus, and the bacterium L. monocytogenes) of a

peptide derived from the region of the cellular autophagy inducer

Beclin-1 targeted by the HIV-1 anti-autophagic maturation

protein Nef. Investigation of cellular interacting partners of that

peptide led to the identification of a new negative regulator of

autophagosome formation called GAPR-1 [12].

In this report, we investigated the induction of autophagy and

its role during infection with rotavirus (RV), the main etiologic

agent of gastroenteritis in infants and children worldwide. Despite

the introduction of two attenuated oral vaccines in 2006,

gastroenteritis caused by RV is still responsible for about

453,000 infant deaths annually in developing countries [13],

where the vaccine efficacy is extremely low [14]. RV belongs to

the family Reoviridae, which includes non-enveloped viruses with a

segmented genome of double-stranded RNA (dsRNA), and with

an exclusively cytoplasmic replication cycle. During entry into the

host cell, the virion (a Triple-Layered Particle, TLP) loses the

outermost of its three concentric protein layers and becomes a

Double-Layered Particle (DLP), which is transcriptionally active.

Viral transcripts act both as messengers for the synthesis of viral

proteins and as templates for the synthesis of new dsRNA genome

segments. Genome replication and assembly of progeny DLPs

occur in cytoplasmic inclusion bodies called viroplasms, from

which DLPs bud into the endoplasmic reticulum, where viral

particle maturation occurs leading to mature TLPs [15]. The viral

non-structural protein NSP5 is essential for viroplasm formation

and thus for viral replication [16–18]. Budding of newly assembled

DLPs into the ER is instead mediated by the viral non-structural

protein NSP4, which is inserted into the ER membrane and acts as

a receptor for DLPs [19]. Virus release has been described to

occur either by cell lysis or by exocytosis [20,21].

Recently, it has been reported that NSP4 induces autophagy

through its well-known capacity of releasing calcium from the ER,

which stimulates a CaMKK-b/AMPK (calcium/calmodulin-

dependent kinase kinase-b/59-adenosine monophosphate-activat-

ed protein kinase) dependent signaling pathway responsible for

induction of autophagy [22,23]. Here we show that accumulation

of lipidated LC3 induced by actively replicating RV does not

correlate with increased autophagosome formation while exerting

a pro-viral role favouring accumulation of infectious progeny

virus.

Results

Rotavirus induces accumulation of lipidated LC3 but not
of autophagosomes

Infection of MA104 cells with RV resulted in an increase of

lipidated LC3 but not in autophagosome accumulation, as

revealed by different criteria: i) quantitation of LC3-II levels by

Western blot (WB), ii) visualization of LC3 by confocal microscopy

and iii) visualization of autophagosomes by electron microscopy

(EM). As shown in Figure 1, for two different RV strains, porcine

OSU and simian SA11, LC3-II levels were highly increased upon

infection initiating from 6 to 8 hours post-infection (hpi) and

reaching maximum values at a late time post-infection (12 hpi).

This effect was observed with both crude viral preparations

(Fig. 1A) and CsCl gradient purified TLPs (Fig. 1B). The

concomitant diminished level of LC3-I is indicative of an increased

conversion of LC3-I into LC3-II. However, a dramatic increase in

LC3-II levels may also reflect inhibition of LC3-II degradation. To

investigate this aspect further, three autophagy inhibitors acting at

post-sequestration steps, chloroquine (CQ), bafilomycin A1 (BAF)

and N2,N4-dibenzylquinazoline-2,4-diamine (DBeQ), were added

at 1 hpi (or at 9 hpi in experiments not shown) and the level of

LC3-II monitored at 13 hpi by WB. As expected, in non-infected

cells all three inhibitors increased LC3-II levels (Fig. 1C, lanes 2, 3,

and 9); in RV-infected cells a further increase was apparent with

DBeQ and CQ, but not with BAF (Fig. 1C, lanes 5 and 6

compared to lane 4 and lane 10 compared to lane 8), indicating

that a substantial amount of LC3-II is still degraded during RV

infection.

Activation of autophagy was further investigated by confocal

microscopy with an anti-LC3 antibody that recognizes both LC3-I

and LC3-II. Viroplasms were visualized either using the MA104

cell line stably expressing NSP5-EGFP (MA104/NSP5-EGFP),

which upon RV infection re-localizes to viroplasms [24], or with

anti-NSP5 antibodies in wild-type MA104 cells. A very low

number of LC3 puncta was observed in virus-infected cells (Fig. 2),

which was similar to that of untreated cells and also to cells treated

with the autophagy inducer rapamycin (RAP) (Fig. 2A). This drug

induced only a modest increase of LC3-II levels in MA104 cells, in

both non-infected and infected cells (Fig. 1D, lanes 3 and 4).

Stronger autophagy induction was obtained either through

starvation of both serum and amino acids or through treatment

with torin 1, a potent and selective inhibitor of mTOR (Fig. 1D).

As expected, both treatments induced the formation of a number

of LC3 puncta that was higher than that observed in untreated

cells and much lower than that in CQ-treated cells (Fig. 2B–C).

Importantly, the number of LC3 puncta in RV-infected cells was

closer to that of untreated cells (Fig. 2B–C) and clearly much lower

than that in cells treated with CQ (Fig. 2A–C), BAF or DBeQ

(Fig. 2D). Quantification of LC3 puncta was carried out in three

independent experiments and confirmed that RV infection does

not significantly increase the number of autophagosomes in

MA104 cells (Fig. 2E).

Autophagosome formation was also analyzed by transient over-

expression of two different versions of N-terminally tagged LC3,

GFP-LC3 [7] and SV5-LC3. This latter construct was validated

through Western blot analysis and co-localization with endoge-

nous LC3 in immunofluorescence of CQ-treated MA104 cells (Fig.

S1). In RV-infected cells the number and size of LC3 puncta

resembled that of untreated or RAP- or torin 1-treated cells and

not of CQ-treated cells (Fig. 3). Altogether, these data indicate that

RV behaves neither as an inducer of autophagosome formation

nor as a CQ-like inhibitor of autophagy and that, surprisingly, the

increased levels of LC3-II do not correlate with an increased

number of autophagosomes.

To further investigate whether RV infection modifies the

number of autophagosomes or autolysosomes, we carried out EM

studies of RV-infected cells at late times post-infection (14 hpi).

Neither an increase in terminal autolysosomes nor an accumula-

tion of double-membrane vacuoles was observed (Fig. 4), thus

confirming that the increased LC3-II levels in RV-infected cells do

not lead to an increased number of autophagosomes.

Notably, from the images in Figure 2 it was already apparent

that LC3 puncta in virus-infected cells were not co-localizing with

NSP4 and viroplasms. This is in sharp contrast with the data

previously published by Berkova et al. (2006) and Crawford et al.

(2012). We thus performed immunofluorescence studies in both

MA104/NSP5-EGFP and wild-type MA104 cells as shown in

Figure 5. Viroplasms were visualized through NSP5-EGFP

(Fig. 5A) or with an anti-NSP5 antibody (Fig. 5B), while LC3

was detected with a specific antibody (Fig. 5A and 5B, upper and

middle panels) or following over-expression of SV5-LC3 (Fig. 5B,

bottom panel). The results in both types of cells confirmed lack of

co-localization of LC3 with NSP4 and viroplasms. In addition, we

found that LC3 does not co-localize with two structural viral
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proteins: VP4, a protein only present in the outer layer of mature

particles (TLPs), and the middle layer protein VP6, which is a

marker of DLPs (particularly at late time points post-infection) as it

is not accessible to antibodies in mature particles (Fig. 5C).

Therefore, our data suggest that LC3-II interacts directly neither

with TLPs (VP4) nor with DLPs (VP6).

Collectively, our data demonstrate that RV strongly induces

accumulation of lipidated LC3, which nevertheless does not lead

to increased autophagy or to accumulation of autophagosomes.

The further increase of LC3-II upon CQ or DBeQ treatment

together with a number of autolysosomes comparable to that of

non-infected cells suggest that partial degradation of LC3-II, and

therefore autophagy, still takes place during RV replication.

Active rotavirus replication is required for accumulation
of lipidated LC3

In order to establish whether the increase of lipidated LC3

requires viral replication, we performed experiments with inacti-

vated viral particles and with a siRNA specific for the non-

structural protein NSP5, which is essential for virus replication. In

both assays, LC3-II levels were determined by WB. As shown in

Figure 6A, antigenically intact inactivated RV particles (i-OSU

and i-SA11) did not increase LC3-II levels. This may reflect either

the lack of LC3 lipidation or an increased LC3-II degradation

following lipidation. The fact that treatment with CQ did not show

an increase of LC3-II in inactivated SA11-infected cells as

compared to the i-mock control (Fig. 6B, compare lanes 6 and

8) indicates that the autophagic flux (increased LC3-II degrada-

tion) is not enhanced upon RV binding (and possibly entry) to the

host cell. On the other hand, treatment with CQ led to

comparable levels of LC3-II in SA11- and i-SA11-infected cells

(Fig. 6B, compare lanes 4 and 8), indicating that LC3-II rescue is

lower when the virus is actively replicating. This suggests that RV

replication subtracts part of LC3-II to degradation. Since a

reduction of p62 levels is frequently used as an additional criterion

to establish completion of the autophagic flux, we determined its

level in cells infected with both actively replicating and inactivated

RV. Surprisingly, while replicating RV induces both increase of

LC3-II and decrease of p62 (Fig. 6A, lanes 1,2, and 5,9),

inactivated-RV (i-OSU and i-SA11) did cause only significant

reduction of p62 (Fig. 6A, lanes 3,4 and 7,11). However, in mock-

infected or virus-infected MA104 cells both CQ and the

proteasome inhibitor MG132 partially rescued p62, while

MG132 essentially did not affect LC3-II levels (Fig. 6A, B). Thus,

because of the extensive degradation by the proteasome, p62 levels

cannot be used in our model to reliably detect autophagic activity.

Interestingly, inactivated RV as well as replicating virus was

able to activate proteasomal degradation, as shown by the

decrease of p53, a common marker of proteasomal activity, and

also by the rescue of p62 and p53 upon MG132 treatment

(Fig. 6A).

The results with the inactivated viruses indicate that active

replication is needed for accumulation of LC3-II. This was further

confirmed by NSP5 knock down experiments, in which concom-

itantly with compromised viral replication LC3-II was almost

undetectable (Fig. 6C).

Altogether, the data shown above indicate that accumulation of

LC3 into its lipidated form in RV-infected cells requires active

virus replication.

Figure 1. LC3 lipidation induced by RV infection. A) Western blot of extracts from non-infected (NI) and OSU- or SA11-infected MA104 cells at
different times post-infection. Crude viral preparations were used for infection. B) As in A, using SA11 purified triple-layered particles (TLPs) (13 hpi).
C–D) Western blots of extracts from NI and OSU-infected cells at 13 hpi, treated or not with BAF (0.1 mM), DBeQ (15 mM), CQ (50 mM), RAP (0.1 mM) or
torin 1 (0.25 mM), or maintained under starvation conditions, as indicated.
doi:10.1371/journal.pone.0095197.g001
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Lipidated LC3 supports production of infectious RV
particles

Next, we investigated the role of LC3 lipidation in the RV

replication cycle. To this aim, the effect of silencing either of the

two essential autophagy effectors Atg7 and LC3 was studied in

RV-infected cells. Atg7 silencing was indirectly assessed through

the reduced levels of LC3-II in both RV-infected cells (Fig. 7A)

and in non-infected RAP-treated cells (Fig. S2). In these

experiments we also included a siRNA specific for LC3A, another

member of the LC3 gene family with a not well-defined role in

autophagy. Three different parameters were determined: i)

accumulation of viral proteins at late times post-infection, ii)

number of viroplasms per cell and iii) yield of infectious viral

particles. As shown in Figure 7A, the amount of viral proteins VP2

and NSP5 accumulated upon depletion of Atg7, LC3B or LC3A

was not significantly altered. Interestingly, LC3A depletion had no

effect on LC3B lipidation. The number of viroplasms per cell

determined at 13 hpi was found essentially unchanged in the

absence of LC3B or Atg7 and reduced upon depletion of LC3A

(Fig. 7B). Viroplasms were monitored using the MA104/NSP5-

EGFP cell line [24]. The same cellular system was used to measure

virus yields in terms of fluorescence forming units (FFU)/ml of

viral preparations obtained from cells transfected with siRNAs

directed to Atg7, LC3B or LC3A and infected with RV for

24 hours. As shown in Figure 7C, viral titers were significantly

lower when RV was grown in cells lacking LC3B or Atg7, and

with a less pronounced effect in cells lacking LC3A. In conclusion,

the data shown for LC3B and Atg7 clearly indicate that RV

benefits from LC3 lipidation with an effect at later stages of the

virus cycle favouring accumulation of infectious progeny virus.

Discussion

The involvement of autophagy in viral infections has been

recently uncovered for a variety of RNA and DNA viruses.

Depending on the virus and the host cell, autophagy may exert

antiviral roles by clearing cells from viral particles or by

stimulating the innate immune system or, alternatively, be

exploited by viruses to facilitate their own replication through

different mechanisms. For instance, many picornaviruses take

advantage of autophagosomes as platforms for genome replication

[25–28]. Instead, coronaviruses use the sole non-lipidated form of

LC3 (LC3-I) for the genesis of replication vesicles [29], while HCV

initiates and blocks the last steps of autophagy in order to exploit

some autophagy genes (such as Atg5, Atg7 and Beclin-1) for

efficient replication [30,31]. Other viruses require autophagy

elements for virion assembly (e.g. HIV, HBV) or induce autophagy

Figure 2. Autophagosomes in RV-infected cells. A–D) Confocal immunofluorescence of non-infected (NI) and RV-infected (OSU strain, 13 hpi;
MOI: 0,5 in A–C; 5 in D) MA104/NSP5-EGFP cells (A, D) and MA104 cells (B, C). Cells were treated or not with BAF (0.1 mM), DBeQ (15 mM), CQ (50 mM),
RAP (0.1 mM), or torin 1 (0.25 mM), or maintained under starvation conditions (starv), as indicated. Autophagosomes were visualized with an anti-LC3
antibody (red). In A and D viroplasms were visualized using NSP5-EGFP (green). In B and C NSP4 was visualized using an anti-NSP4 antibody (blue).
Single optical sections are shown. Scale bar is 5 mm. Images are representative of three independent experiments in which at least 150 cells per each
experimental condition were analyzed. E) Quantification of LC3 puncta: the results are expressed as mean 6SEM from at least three independent
samples for each experimental condition.
doi:10.1371/journal.pone.0095197.g002
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Figure 3. GFP-LC3 and SV5-LC3 fusion constructs in RV-infected cells. Confocal immunofluorescence of MA104 cells transiently over-
expressing the fusion construct GFP-LC3 (A) or SV5-LC3 (B). Cells were untreated, RV-infected (OSU strain; MOI, 5; 13 hpi) or treated from 1 hpi to
13 hpi with RAP (0.1 mM), CQ (50 mM), or torin 1 (0.25 mM), as indicated. Viroplasms were visualized with an anti-NSP5 antibody (red) and the fusion
constructs with the GFP fluorescence in A and with an anti-SV5 antibody in B (green). Single optical sections are shown. Scale bar, 10 mm. Images are
representative of three independent experiments in which at least 150 cells per each experimental condition were analyzed.
doi:10.1371/journal.pone.0095197.g003

Figure 4. Electron microscopy of autophagosomes in RV-infected cells. High-definition electron microscopy of non-infected (A) and RV-
infected (SA11 strain; MOI, 250 VFU/ml) (B and C) MA104 cells at 14 hpi. V, viroplasms; Nu, nucleus; black arrows, AVi (early/initial autophagic
vacuoles corresponding to autophagosomes); stars, AVd (late/degradative autophagic vacuoles including amphisomes and autolysosomes). Scale
bars are 1 mm. D) Quantification of autophagosomes in non-infected (NI) and RV-infected MA104 cells (14 hpi). The data correspond to the mean of
three-independent experiments with 25 cells per experimental point. Student’s t-test, ns, p.0.05.
doi:10.1371/journal.pone.0095197.g004

LC3 Lipidation in RV Infection

PLOS ONE | www.plosone.org 5 April 2014 | Volume 9 | Issue 4 | e95197



to modulate cellular survival (human parvovirus B19) or metab-

olism (Dengue virus) (for a review see ref. [10]).

In the case of RV it has been recently reported that the viral

non-structural protein NSP4 initiates autophagy to guarantee

correct localization of the viral ER-associated proteins VP7 and

NSP4 around viroplasms [23]. Here we report novel findings that

in part diverge from the proposed scenario of autophagy during

RV infection.

We observed increased levels of lipidated LC3 with two different

RV strains (OSU and SA11), which did not result in an increased

autophagy (no increase in autophagosomes or autolysosomes). The

accumulation of LC3-II and the concomitant reduction of LC3-I

started at about 6 hpi and became particularly pronounced at

12 hpi.

The increase of LC3-II was most likely the consequence of a

higher conversion of LC3-I into LC3-II. In fact, we observed (i) a

concomitant decrease of LC3-I and (ii) a further LC3-II increase

when using two different inhibitors of autophagy, namely CQ and

DBeQ. Since CQ inhibits autophagy by increasing the lysosomal

pH, which leads to inhibition of both fusion of autophagosomes

with lysosomes and lysosomal protein degradation, and DBeQ

inhibits the ATPase activity of p97 [32], which plays an important

role in autophagosome maturation [33,34], their effects in infected

cells suggest that a basal level of the autophagic flux is maintained.

Bafilomycin A1, however, which inhibits acidification of lysosomes

by acting on the vacuolar type H+-ATPase (V-ATPase), did not

cause any LC3-II increase in infected cells. One possibility is that

virus infection moderately impairs LC3-II degradation to an

extent similar to BAF. Indeed, BAF showed a lower increase of

LC3-II in non-infected cells as compared to CQ and DBeQ and a

lower number of accumulated autophagosomes than that observed

in CQ- and DBeQ-treated cells (see Fig. 2D). This infection-

dependent activity is also suggested by the lower LC3-II rescue

obtained with CQ in cells infected with actively replicating SA11

Figure 5. Cellular localization of LC3 in RV-infected cells. Confocal immunofluorescence of RV-infected (OSU strain, 13 hpi; MOI, 5) MA104/
NSP5-EGFP cells (A) and MA104 cells (B–C). In B, bottom row, cells were transiently transfected with the pSV5-LC3 construct. Where indicated,
autophagy inhibitors (BAF, DBeQ, CQ) were used. Autophagosomes were visualized with an anti-LC3 antibody (red) in A, in the upper and middle
rows of B and in C, and with an anti-SV5 antibody (red) in the bottom row of B. Viroplasms were visualized using the fluorescence of NSP5-EGFP in A
and with an anti-NSP5 antibody (green) in B. NSP4, VP4 and VP6 were visualized using anti-NSP4 (blue), anti-VP6 (green) and anti-VP4 (green)
antibodies, respectively. In A, bottom row shows magnification of insets indicated by dotted squares. Single optical sections are shown. Scale bar,
5 mm. Images are representative of three independent experiments in which at least 150 cells per each experimental condition were analyzed.
doi:10.1371/journal.pone.0095197.g005
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as compared to inactivated SA11. Therefore, it remains still

unclear whether the robust increase in the LC3-II levels observed

upon RV infection is the consequence of enhanced LC3-I

lipidation or partial inhibition of LC3-II degradation, or a

combination of both. What is clearly indicated by our data is

that neither autophagosomes nor autolysosomes accumulated in

infected cells, as shown by immunofluorescence experiments and

by EM studies. Crawford et al. (2012), over-expressing the tandem

construct RFP-GFP-LC3 in RV-infected cells (where only the RFP

fluorescence persists at the autolysosomal pH), proposed a block of

the autophagic flux at the level of fusion between autophagosomes

and lysosomes. However, over-expression of LC3 fusion constructs

may be troublesome, as we verified by detecting many puncta

containing GFP-LC3 in both non-infected and infected cells

(Fig. 3A). These puncta most likely represent an artefact due to

GFP-LC3 over-expression, as no such situation corresponds to

what is observed with endogenous LC3. In this regard, there is

evidence indicating that they may in part represent aggregates as a

consequence of overexpression [35,36]. In addition to the

troublesome over-expression of LC3 fusion constructs, also the

use of p62 as an autophagy marker needs to be evaluated with

extreme caution. Specifically, in RV-infected MA104 cells p62 was

significantly degraded via proteasome, as demonstrated using the

proteasome inhibitor MG132. It is therefore mandatory to use

reliable methods to monitor autophagy in order to avoid

misinterpretations. Here, we used an N-terminal SV5 tag [37] as

an alternative to the GFP fusion. Possibly because of the small size

of the SV5 tag (11 aa), over-expression of SV5-LC3 did not cause

formation of artefactual puncta in untreated cells. This construct

provided further evidence of both lack of autophagosome

accumulation in RV-infected cells and association of LC3-II to

viroplasms.

We showed that accumulation of LC3-II in RV-infected cells

was totally dependent on viral replication. In fact, infecting cells

with inactivated viral particles or silencing NSP5, a viral protein

that is essentially required for viral replication [17], did not

increase LC3-II levels. In addition, we found that lipidated LC3

plays a positive role exclusively at late stages of the viral cycle.

More in detail, LC3 and Atg7 are required for optimal viral yields

while their role at early stages (accumulation of viral proteins and

viroplasms) seems to be marginal. These data are consistent with

the reported observation that inhibition of LC3 lipidation (upon

treatment with STO-609, a CaMKK-b inhibitor) impairs recruit-

ment around viroplasms of two viral proteins, NSP4 and VP7,

both involved in the final stages of the viral replication cycle [23].

Interestingly, silencing of LC3A partially impaired viroplasm

Figure 6. Requirement of virus replication for accumulation of lipidated LC3. A–B) Western blots of extracts from MA104 cells infected or
not with antigenically intact inactivated RV particles (i-OSU or i-SA11, 13 hpi) and untreated or treated with MG132 (5 mM, added at 1 h before
infection) in A and with CQ (50 mM, added at 1 h after infection) in B. Since virus inactivation was performed on crude preparations, equal amounts of
lysates derived from non-infected cells were psoralen-treated and UV-exposed and used as mock-infection controls (i-mock). C) Western blot of
extracts from MA104 cells transfected with the indicated siRNAs and infected with RV (OSU strain; MOI, 5; 13 hpi) at 48 h after transfection.
doi:10.1371/journal.pone.0095197.g006

Figure 7. Proviral effect of LC3 lipidation. MA104 cells were transfected with the indicated siRNAs and at 48 h after transfection infected with
RV (OSU strain; MOI, 5) for 13 h (A, B) or 24 h (C). A) Western blot of cellular extracts. B) Quantification of the accumulation of viroplasms per cell. C)
Viral titers obtained from each condition. The results are expressed as mean 6SEM from at least three independent samples for each experimental
condition, and in B data were normalized as percentage from the control. In all figures: siNT, control non-targeting siRNA. t-test, **, p,0.01.
doi:10.1371/journal.pone.0095197.g007
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formation without affecting LC3B lipidation, but did not have a

strong effect on viral yields, suggesting that LC3A does not have

an overlapping function with LC3B. In contrast to other RNA

viruses such as coronaviruses and equine arteritis virus that require

non-lipidated LC3 to anchor replication complexes to ER

membranes [29,38], RV, which does not need ER-derived

membranes for genome replication, requires Atg7 indicating a

role for the lipidated form of LC3 in virus morphogenesis.

Interestingly, an autophagy-independent role for lipidated LC3

has been recently described in microtubule dynamics [39]. It is

therefore possible that the microtubule network might be involved

in an LC3-dependent localization of viral proteins participating in

the final stages of virus morphogenesis (such as NSP4 and VP7),

also considering that such network has been already shown to

participate in the dynamics of RV viroplasms [40].

Collectively our data suggest a scenario that somehow differs

from what has been previously proposed, in which RV replication:

i) induces accumulation of LC3-II; ii) does not lead to accumu-

lation of autophagosomes in spite of large accumulation of

lipidated LC3; iii) takes advantage of LC3-II for improved

production of infectious progeny virus.

Understanding where LC3-II is targeted, as it is not loaded into

autophagosomes, deserves to be explored. In contrast to what

Berkova et al. (2006) reported [22], we did not find co-localization

of LC3 with NSP4 at all, nor any association of LC3 with

viroplasms, regardless of whether LC3 was over-expressed or not.

In addition, we did not find co-localization of LC3 with two

structural proteins, VP4 and VP6, which can be considered as

markers of TLPs and DLPs, respectively. These data suggest that

there is no direct interaction of LC3-II with TLPs or DLPs.

Notably, the immunofluorescence with anti-VP6 is consistent with

the lack of co-localization of LC3 with viroplasms. In fact VP6, like

NSP5, is a viroplasm resident protein at early times post-infection

while at late times post-infection it is present also outside

viroplasms in newly made DLPs, including those already

translocated to the ER lumen.

In conclusion, accumulation of lipidated LC3 represents a

cellular outcome of viral replication, which does not seem to imply

a direct interaction of LC3 with viral proteins or viral particles.

Investigating cellular proteins interacting with LC3, and in

particular with its lipidated form, in RV-infected cells could help

in identifying the targeting site of LC3-II during infection. This

would also contribute to elucidate the still poorly understood

mechanisms that regulate participation of LC3 in autophagy.

We have recently shown that the ubiquitin-proteasome system

(UPS), the second major intracellular protein degradation system,

is essential at the early stages of RV replication, in particular for

the correct assembly of viroplasms [41]. Interestingly, in this study

we report activation of the UPS upon RV infection, which,

differently from LC3 lipidation, was independent of viral

replication, as it was also induced by inactivated viral particles.

Like many other viruses, RV developed mechanisms to exploit

components of the cell host degradative systems to favor its

replication at different stages of the viral cycle. Understanding the

molecular mechanisms of these virus-host interactions represents

an intriguing challenge and may suggest cellular targets for novel

antiviral therapies.

Materials and Methods

Cells and Viruses
MA104 cells (embryonic African green monkey kidney cells,

purchased from the original deposit CRL-2378 of the American

Type Culture Collection) were grown in Dulbecco’s Modified

Eagle’s Medium (DMEM) (Life Technologies) containing 10%

Fetal Bovine Serum (FBS) (Life Technologies), and 50 mg/ml

gentamycin (Biochrom AG).

NSP5-EGFP/MA104 cell line was obtained as described

previously [24,42] and cultured in DMEM containing 10% FBS

and 800 mg/ml geneticin (Life Technologies). The simian SA11

(G3, P6[1]) and porcine OSU (G5, P9[7]) strains of rotavirus (RV)

were propagated in MA104 cells as described previously [43,44].

Virus was titered by immunofluorescence of infected NSP5-

EGFP/MA104 cells and titers were expressed as ‘‘fluorescence

forming units’’ (FFU/ml), as already described [41]. For virus

purification, crude extracts of infected MA104 cells were

ultracentrifuged, the pellets extracted with Freon (trichlorotri-

fluoroethane; Sigma) and banded by equilibrium ultracentrifuga-

tion in CsCl gradient, essentially as described by Patton et al.,

2000 [45].

Inactivation of viral particles was obtained by treatment of viral

crude extracts with 40 mg/ml psoralen (Sigma) and long-wave UV

exposure for 15 minutes, as previously described [46].

Plasmids and Chemicals
Cells were treated with the autophagy inhibitors chloroquine

(50 mM, Sigma), bafilomycin A1 (0.1 mM, Sigma), N2,N4-diben-

zylquinazoline-2,4-diamine [32] (15 mM, Sigma), and with the

autophagy inducers rapamycin (0.1 mM, LC Laboratories) and

torin 1 (0.25 mM, Merck Millipore). Drugs were added at 1 hpi or

at 9 hpi in DMEM containing 10% FBS. The proteasome

inhibitor MG132 (5 mM, Calbiochem) was added 1 h before

infection.

The plasmid encoding the fusion protein GFP-LC3 was kindly

provided by Dr. R. Bernasconi (IRB, Bellinzona, Switzerland).

pSV5-LC3 was obtained by substituting the GFP coding sequence

for a synthetic oligonucleotide encoding the SV5 tag (using the

restriction enzymes NheI and BspEI).

Infections and Transient Transfections
Infection experiments were carried out at an MOI of 5 FFU/

cell. For experiments of combined plasmid transfection and RV

infection, about 7.56105 MA104 cells were electroporated with

2 mg DNA plasmid using the Amaxa/Lonza Nucleofector

Technology (K-029 program; T solution); at 48 h post-transfection

cells were OSU-infected, at 1 hpi provided with serum and at

13 hpi harvested.

For serum and amino acid starvation, cells were deprived of

serum overnight and then incubated for 4 h in PBS containing

calcium 100 mg/l, magnesium 100 mg/l, and glucose 1 g/l.

For siRNA experiments, 56104 MA104 cells/well were seeded

into 12-multiwell plates and the next day were transfected with

0.1 nmol of annealed duplex siRNA (Sigma) using 5 ml of

RNAiMAX Lipofectamine 2000 (Life Technologies) following

the manufacturer’s instructions. The following siRNAs were

transfected: siLC3A 59-CGGUGAUCAUCGAGCGCUA-39,

siLC3B 59-CGAACAAAGAGUAGAAGAU-39, siATG7 59-

GGUCAAAGGAUGAAGAUAA-39. Control siRNAs were si/

SA11 (here referred to as siNT) and si/OSU (here referred to as

siNSP5) as described by Campagna et al., 2005 [17]. At 48 h post-

transfection cells were infected at the same MOI and collected at

either 13 hpi (for viroplasm counting by immunofluorescence or

for Western blot analyses) or 24 hpi (for viral titers determination).

Cellular extracts (about 36105 cells) were prepared with 50 ml

of reducing SDS buffer (125 mM Tris-HCl pH 6.8, 6% SDS, 40%

glycerol, 5% b-mercaptoethanol, 0.04% bromo phenol blue) and

subsequently sonicated with a VialTweeter (Hielscher Ultrasonics

GmbH) for 1 min (10 W, pulse 0.5 sec) to disrupt DNA.
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Typically, 15 ml of supernatant was loaded into SDS-PAGE for

Western blot analyses.

Page and Western Blot Analysis
Cellular extracts were resolved by 14% SDS-PAGE and

proteins were transferred to polyvinylidene difluoride membranes

(Millipore, IPVH00010). The membranes were incubated with the

following antibodies: anti-NSP5 guinea pig serum (1:10,000), anti-

VP2 guinea pig serum (1:5,000), anti-LC3B mouse monoclonal

antibody (1:2,000, NanoTools), anti-p62 guinea pig serum

(1:1,000, ProgenBiotechnik), anti-p53 mouse monoclonal antibody

(1:5,000, Santa Cruz Biotechnology), anti-SV5 mouse monoclonal

antibody, 1:10,000, anti-a-tubulin mouse monoclonal antibody

(1:3,000, Calbiochem), anti-actin rabbit polyclonal antibody

(1:1,000, Sigma), and HRP-conjugated goat anti-guinea pig

(1:10,000, Jackson ImmunoResearch), goat anti-mouse (1:5,000,

Jackson ImmunoResearch), goat anti-rabbit (1:5,000, Thermo

Scientific Pierce) secondary antibodies. Sera were produced by

immunization of guinea pigs as described previously [47–49].

Signals were detected by using the enhanced chemiluminescence

system (Pierce ECL Western Blotting Substrate, Thermo Scien-

tific).

Immunofluorescence Microscopy
Immunofluorescence experiments were performed as described

previously [50] using the following antibody dilutions: anti-NSP5

guinea pig serum 1:1,000; anti-NSP4 mouse monoclonal antibody

1:500 (clone B4-2, gently provided by H. B. Greenberg, School of

Medicine, Stanford University, Palo Alto, CA, USA); anti-VP4

guinea pig serum 1:200 (produced as described previously [51]);

anti-VP6 mouse monoclonal antibody 1:1,000 (clone 4B2D2,

gently provided by J. L. Zambrano and F. Liprandi, Instituto

Venezolano de Investigaciones Cientı́ficas, Caracas, Venezuela);

anti-LC3B rabbit antibody (1:200, Sigma); anti-SV5 mouse

monoclonal antibody, 1:500; Alexa Fluor 488-conjugated anti-

mouse (1:500, Life Technologies), Alexa Fluor 647-conjugated

anti-guinea pig (1:1,000, Life Technologies), Alexa Fluor 546-

conjugated anti-rabbit (1:500, Life Technologies) secondary

antibodies. To avoid cross-reactivity of the anti-rabbit antibody

with the anti-NSP5 serum, antibody reactions of the experiment

shown in Figure 5B were performed sequentially, using first the

anti-LC3 and the relative secondary antibody and afterwards the

anti-NSP5 and the relative secondary antibody. Cell nuclei were

stained with 2 mg/ml Hoechst 33342 (Molecular Probes, Life

Technologies). Samples were analyzed by confocal microscopy

(Zeiss LSM510 equipped with a 1006 NA 1.3 objective or Zeiss

LSM510 Meta equipped with a 636NA 1.4 objective).

For the quantification of viroplasms, images were acquired

using an ImageXpress Micro automated high-content screening

microscope (Molecular Devices) equipped with a 206objective; a

total of 9 fields were acquired, corresponding to about 1,000 cells

analyzed per experimental condition and replicate. Automated

image analysis of viroplasm formation was performed by

MetaXpress software (Molecular Devices) using the Transfluor

application module, which identifies cell nuclei (blue channel) and

quantifies the number of fluorescent spots in each cell (green

channel).

Transmission Electron Microscopy
MA104 cells were seeded at 86104 cells in a 2 cm2 well onto

sapphire discs and infected with simian rotavirus SA11 (MOI,

250 VFU/cell, according to virus titration described in [40]). Cells

were fixed with 2.5% glutaraldehyde in 100 mM Na/K-phosphate

buffer, pH 7.4 for 1 h at 4uC and kept into 100 mM Na/K-

phosphate buffer overnight at 4uC. Afterwards, samples were post-

fixed with 1% osmium tetroxide in 100 mM Na/K-phosphate

buffer for 1 h at 4uC, dehydrated in a graded ethanol series

starting at 70% followed by two changes in acetone and embedded

in epon. Ultrathin sections (60–80 nm) were cut and stained with

uranyl-acetate and lead citrate before analysis in a transmission

electron microscope (CM12, Philips) equipped with a CCD

camera (Ultrascan 1000, Gatan) at an acceleration of 100 kV.

For the quantification of autophagosomes, pictures from perinu-

clear and from cell periphery area were acquired for 25 cells in

each experimental point by transmitted electron microscopy. The

mean of autophagosomes were quantified per cytosolic area

through a multipurpose test system [52] with the following

formula:

~
1

25

X25

i~1

Nn|(180{a)|d2
� �

z Np|(180{a)|d2
� �� �

=2

Nn correspond to the number of autophagosomes in the

perinuclear area, Np correspond to number of autophagosomes in

the cell periphery; a correspond to the number of test lines outside

cytosolic region and d is the test line length (mm). The experiment

was repeated three times, the mean significances were analyzed by

two-tailed paired t-test and plotted using Graph Pad Prism (Graph

Pad Software, Inc.).

Supporting Information

Figure S1 SV5-LC3 validation as a marker of autopha-
gosomes. A) Confocal immunofluorescence of CQ-treated

MA104 cells transiently over-expressing the pSV5-LC3 construct.

Autophagosomes were visualized with an anti-LC3 antibody (red)

and with an anti-SV5 antibody (green). CQ was used to increase

the number of autophagosomes. Single optical sections are shown.

Scale bar is 5 mm. Images are representative of three independent

experiments in which at least 150 cells per each experimental

condition were analyzed. B) Western blot of extracts from MA104

cells upon different treatments: infection with OSU (13 hpi),

incubation with CQ (50 mM), or starvation.

(TIF)

Figure S2 Impairment of LC3 lipidation upon depletion
of Atg7. Western blot of extracts from non-infected MA104 cells

transfected with the indicated siRNAs. At 48 h after transfection,

cells were treated or not with RAP (0.1 mM) for 12 h. NT: control

non-targeting siRNA.

(TIF)
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