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Abstract
Allergic reactions can be considered as maladaptive IgE immune responses towards envi-

ronmental antigens. Intriguingly, these mechanisms are observed to be very similar to

those implicated in the acquisition of an important degree of immunity against metazoan

parasites (helminths and arthropods) in mammalian hosts. Based on the hypothesis that

IgE-mediated immune responses evolved in mammals to provide extra protection against

metazoan parasites rather than to cause allergy, we predict that the environmental aller-

gens will share key properties with the metazoan parasite antigens that are specifically tar-

geted by IgE in infected human populations. We seek to test this prediction by examining if

significant similarity exists between molecular features of allergens and helminth proteins

that induce an IgE response in the human host. By employing various computational

approaches, 2712 unique protein molecules that are known IgE antigens were searched

against a dataset of proteins from helminths and parasitic arthropods, resulting in a compre-

hensive list of 2445 parasite proteins that show significant similarity through sequence and

structure with allergenic proteins. Nearly half of these parasite proteins from 31 species fall

within the 10 most abundant allergenic protein domain families (EF-hand, Tropomyosin,

CAP, Profilin, Lipocalin, Trypsin-like serine protease, Cupin, BetV1, Expansin and Prola-

min). We identified epitopic-like regions in 206 parasite proteins and present the first exam-

ple of a plant protein (BetV1) that is the commonest allergen in pollen in a worm, and

confirming it as the target of IgE in schistosomiasis infected humans. The identification of

significant similarity, inclusive of the epitopic regions, between allergens and helminth pro-

teins against which IgE is an observed marker of protective immunity explains the ‘off-target’

effects of the IgE-mediated immune system in allergy. All these findings can impact the dis-

covery and design of molecules used in immunotherapy of allergic conditions.
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Author Summary

Allergy is an increasingly widespread clinical problem that leads to various conditions
such as allergic asthma and susceptibility to anaphylactic shock. These conditions arise
from exposure to a range of environmental and food proteins (‘allergens’) that are recog-
nised by a form of immune system antibody called IgE. This part of the immune system is
thought to have evolved to provide mammals with additional rapid response mechanisms
to combat metazoan parasites. Here, we address the pertinent question, ‘what makes an
Allergen an Allergen’ as, although they constitute a very small percentage of known pro-
teins, they appear to be diverse and unrelated. Using computational studies, we have estab-
lished molecular similarity between parasite proteins and allergens that affect the nature of
immune response and are able to predict the regions of parasite proteins that potentially
share similarity with the IgE-binding region(s) of the allergens. Our experimental studies
support the computational predictions, and we can present the first confirmed example of
a plant pollen-like protein in a worm that is targeted by IgE. The results of this study will
enable us to predict likely allergens in food and environmental organisms and to help
design protein molecules to treat allergy in the future.

Introduction
Allergy is a hypersensitive immune reaction to environmental antigens from diverse sources
such as foods, plants and innocuous organisms. The mechanism responsible for eliciting the
allergic reaction involves components of the immune system, in particular the IgE antibody
isotype, which also mediate the immune response against helminthic infection. Several signifi-
cant studies have elucidated the mechanisms involved in the immune response to helminth
infection and to allergen exposure, and have been comprehensively reviewed in the literature
[1–3].

Extensive studies have correlated high levels of parasite-specific IgE antibody in the host
with acquired immunity against both helminth endoparasites such as Platyhelminthes (Schisto-
soma and Echinococcus) [4–8] and nematodes (hookworms, Trichuris and Ascaris) [9–11] as
well as arthropod ectoparasites (tick, mites and insects) [12–14]. Also, IgE cross reactivity has
been well established between some allergenic proteins and certain metazoan parasite proteins
[15–18]. These immunological assays further suggest that not only are similar immune system
components involved in acquiring immunity against helminths and in allergic conditions, but
that the molecular targets for these responses may also share key characteristics.

Allergenic proteins from a wide variety of sources have been collated and documented in
the Allergome database [19] and classified into protein domain families in the Allfam database
[20]. The domain families that are populated predominantly by allergenic proteins, represent
only around 2% of all protein domain families defined by Pfam [21]. Moreover just 10 protein
domain families are reported to represent nearly half of all documented allergenic proteins.
Although it has been previously proposed that allergenicity is associated with protease activity
[22] and with toxic properties [23], 9 of these 10 fall into neither category. Host IgE responses
against several S.mansoni allergen-like proteins have been previously studied including mem-
bers of the Tegumental-Allergen-Like (TAL), Tropomysosin and Venom Allergen-Like (VAL)
protein domain families [24–27]. During natural infection, antibody responses to S.mansoni
antigens, including those to members of the TAL and Tropomyosin families have been found
to depend on the expression patterns throughout the adult worm and eggs. Constant exposure
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to antigens may result in the induction of a regulated response against excessive IgE including
the decreased production of IgE and increased production of anti-inflammatory IgG4 [27–29].

Such a switch in chronic helminth infections are indicated by a modified T-helper 2 (Th2)
cell environment, which is characterized by increased T-regulatory cell levels and a predomi-
nant IgG4 antibody profile [30]. Contrary to this, unregulated inflammatory responses are
characterized by a hyper-responsive immune system, with higher levels of Th1 and reduced T-
regulatory cell numbers accompanied by significantly high IgE levels [2]. However, hypo-
responsiveness of the immune system can occur in cases of chronic helminth infections and
this has been reported to be beneficial in reducing the inflammatory response caused by further
infection of certain bacteria and eukaryotic parasites [31,32]. Indeed, infections of Schistosoma
mansoni and haematobium have been observed to alleviate the symptoms of allergy [33,34].
These studies highlight the inverse relationship between helminth infection and atopy when
tested against house dust mites and certain aeroallergens.

Based on these observations, Fitzsimmons and Dunne [21] hypothesized that similarity
between anti-metazoan parasite and allergic responses may be mirrored in the molecular simi-
larity between allergenic proteins and proteins encoded in genomes of ecto- and endo-parasitic
metazoans. Highly specialized immune system components have evolved to combat the effect
of infecting metazoan parasites and provide immunity against the infection; however, in the
absence of infection, with its attendant immunoregulation (in atopic individuals), this system
can switch to the collateral damaging mode and becomes hyper-responsive towards innocuous
environmental proteins, possibly due to similar molecular features of the two. Noteworthy, but
scarce, examples of studies establishing structure based homology between parasite and aller-
genic proteins (e.g. dust mite group II allergen, Der p 2 and Der f 2 sharing structure based
homology with carbohydrate-binding module of grass allergen expansin proteins) provide
modest support to our hypothesis [35].

In the quest to strengthen the hypothesis that the IgE-target proteins in metazoan parasites
and allergenic molecules share similar molecular features, the systematic exercise of comparing
allergenic and parasite proteins and assessing the epitopic regions of allergenic proteins and
‘epitope-like’ regions of parasite proteins becomes of primary importance.

Here we present a workflow involving computational analyses supported by experimental
verification for detecting putative IgE inducing structure/sequence motifs in proteins encoded
in genomes of parasites that share molecular similarity with epitopic regions of members of
protein families that are populated predominantly by allergenic proteins.

Materials and Methods

Generation of datasets
Two main datasets were generated:

Dataset 1 (Allergenic proteins, IgE/IgG4-binding peptides). (a) 2712 unique full-length
protein sequences from various sources that are known to cause allergy and/or bind IgE were
collated from the Allergome database [19]; (b) 2577 specific fragments from 190 proteins that
are known to bind IgE and IgG4 antibodies in immunological assays were retrieved from the
Immune Epitope Database (IEDB) database [36].

Dataset 2 (Parasite proteins). Protein sequences encoded in genomes of metazoan para-
sitic organisms were procured from the UniProt database (January, 2014 release) [37]. Various
parasitic organisms belonging to different taxonomic categories that are considered for the
analysis are (i) platyhelminthes: Echinococcus granulosus, Fasciola hepatica, Schistosoma hae-
matobium, Schistosoma japonicum, Schistosoma mansoni and Taenia sp. and (ii) nematodes:
Ascaris lumbricoides, Anisakis simplex, Brugia malayi,Mansonella perstans, Nippostrongylus
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brasiliensis, Onchocerca volvulus, Trichinella spiralis and Trichuris trichiura (iii) arthropods
(mites): Acarus siro, Aleuroglyphus ovatus, Blomia tropicalis, Dermatophagoides farinae, Der-
matophagoides microceras, Dermatophagoides pteronyssinus, Euroglyphus maynei, Glycyphagus
domesticus, Lepidoglyphus destructor, Ornithonyssus sylviarum, Psoroptes ovis, Sarcoptes scabiei
and Tyrophagus putrescentiae. A total of 70403 protein sequences encoded in genomes of
above-mentioned endo- and ecto-parasites constitute dataset 2.

Protein domain definition for allergenic proteins
Though the Allfam database provides Pfam domain definitions for allergenic proteins docu-
mented in the Allergome database, it has not been updated since 2011. To assign the latest
Pfam domain definitions and to include the most recent additions to the Allergome database,
we have derived protein domain definitions for dataset 1 and dataset 2 from the Pfam database
27.0. Of these, 10 protein domain families/superfamilies that are reported to represent nearly
45% of all documented allergenic molecules and thus are highly populated with allergenic pro-
tein members are considered for further analysis [21]. These protein domain families/
superfamilies with their brief description are shown in Table 1.

Detection of homologs of allergenic proteins in parasites
Homologs of allergenic proteins (dataset 1a) have been detected in parasite proteins (dataset 2)
by searching Hidden Markov Models (HMM) profiles of the above mentioned 10 Pfam protein
domain families/superfamilies using HMMER3 [38]. We searched parasite proteins that are
categorized in the same superfamily or same fold as allergenic proteins according to the CATH
(Class, Architecture, Topology, Homology) [39] classification scheme in Gene3D database [40]
and collated them.

Table 1. List of the protein domain families/superfamilies that are populated predominantly with allergenic molecules. Total number of allergenic
molecules (retrieved form Allergome database) in these families/superfamily and their ‘close homologs’ in eukaryotic metazoan parasites are shown.

Sr
No.

Pfam domain family/
superfamily

Pfam accession Brief description No. of
allergenic
molecules

No. of
parasitic
proteins

1 EF hand PF00036, PF01023, PF12763,
PF13202, PF13405, PF13499

and PF13833

Calcium binding proteins with helix-loop-
helix structural motif

150 362

2 Tropomyosin PF00261 and PF12718 Coiled-coil cytoskeletal protein 227 81

3 CAP PF00188 Cysteine-rich secretory protein Antigen 5,
and Pathogenesis-related 1 proteins

35 113

4 Profilin PF00235 Actin-binding proteins 117 13

5 Lipocalin PF0006, PF08212 and PF02098 Transporters for small hydrophobic
molecules such as lipids and steroid

hormones

83 42

6 Trypsin-like serine
protease

PF00089, PF00431 PF02983,
PF09396 and PF12032

Serine protease 46 260

7 Cupin PF00190 and PF04702 Family comprising of proteins with
conserved barrel domain including plant

seed storage proteins.

72 130

8 Bet v 1 PF00407 Family of plant allergens 145 58

9 Expansin (Pollen_allerg_1
and DPBB_1)

PF01357 and PF03330 Pollen allergen and Rare lipoprotein A
family

57 -

10 Prolamin
(Tryp_alpha_amyl)

PF00234 Plant storage proteins 132 -

doi:10.1371/journal.pcbi.1004546.t001
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Gene3D assigns domains to regions of protein sequences with no known 3D structure based
on the CATH classification scheme using more sensitive structure-based HMMs derived from
a superfamily. Parasite proteins that did not show an association with any CATH homologous
superfamily were searched in the Gene3D database to ascertain if they shared the same topol-
ogy/fold as an allergenic protein to establish similarity/homologous relationships.

Parasite proteins are considered to be a close homolog of the allergenic proteins if both the
proteins belong to same family (defined by Pfam) or same homologous superfamily (defined
by CATH/Gene3D). However, parasite proteins are regarded as distant homologs if they do
not share the same family/superfamily but share a common structure fold with an allergen
protein.

To establish the relationship of parasite proteins with allergenic proteins, we culled 3D coor-
dinates of experimentally known structures (if existing in the Protein Data Bank (PDB)) or
from homology based models of both proteins (fromModbase [41]) and superimposed corre-
sponding structures using least square superimposition program LSQMAN (http://xray.bmc.
uu.se/usf/lsqman_man.html). Homology-based structural models that share more than 30%
sequence identity with the template sequence (from any source) are considered for the analysis.
The global structural similarity between two proteins was measured using TM (template-
modeling) score. A TM score of�0.5 associated with structure alignment of a pair of proteins
is considered to be statistically significant and the two proteins in the alignment are likely to
share the same fold [42].

Detection of epitope-like fragments in parasite proteins

1. Sequence-based approach: We searched epitopic fragments from allergenic proteins (dataset
1b) in parasitic ‘close homologous’ protein sequences to identify putative IgE/IgG4-binding
epitopic-like-regions by employing the FASTA program [43] using default parameters.

2. Structure-based approach: We culled structure motifs, using 3D coordinates for the known
structures and homology-based models from PDB and Modbase databases respectively, of
epitopic region of allergenic proteins and searched against the structure dataset of parasite
proteins using a novel algorithm implemented in the BC Search (Binet-Cauchy) program
[44]. The BC search algorithm was developed to provide a structure similarity scoring func-
tion for small protein fragments when searched in a large protein structure database, and is
therefore suitable for the comparison of small protein fragments such as epitopes.

To observe whether these significantly similar epitopic and epitopic-like regions occur on
equivalent positions on respective homologous proteins, a comprehensive analysis was per-
formed by manual inspection/visualization comparing their topology on known 3D structure/
models of allergenic and parasite proteins, respectively.

A summary of the various steps described in the material and methods section is presented
in Fig 1.

Cloning, expression and purification of Bet v 1-like protein from S.
mansoni (SmBv1L)
A Puerto Rican strain of S.mansoni was used in this study. Total RNA was isolated from adult
worms and its integrity was verified using a Bioanalyser (Agilent Technologies, Bracknell, UK)
as previously described [45]. cDNA was prepared from 1μg total RNA using random hexamers
(Sigma-Aldrich, Gillingham, UK) and Superscript II reverse transcriptase according to the
manufacturer’s instructions (Life Technologies, Paisley, UK).
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Fig 1. Flowchart depicting the workflow involved in the present analysis.

doi:10.1371/journal.pcbi.1004546.g001
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SmBv1L was cloned into the pET15b vector (Merck, UK). PCR to generate a gene-specific
coding sequence was performed using Phusion High Fidelity DNA polymerase (Thermo Fisher
Scientific, Reading, UK) using the following primers, 5’- TAGGATCCTATGAATGCATA
TATTATTCG and 5’-ATGGATCCTTATCTAGAGTCGGA at an annealing temperature of
62°C. The PCR product and plasmid were digested with FastDigest BamHI (Thermo Fisher
Scientific) and plasmids were treated with FastAP (Thermo Fisher Scientific). Ligation was per-
formed using T4 DNA ligase (Thermo Fisher Scientific) and plasmids transformed into chemi-
cally competent DH5alpha E. coli cells by heat shock. Sanger Sequencing was used to confirm
the CDS sequence that was uploaded to GenBank (Accession No: KM281668).

Recombinant SmBv1L was produced by isolation from inclusion bodies and on-column
refolding using an AKTAPrime+ according to the manufacturer’s instructions (GE Health-
care). Briefly, overnight cultures of TG2 E. coli were diluted 1:10, expanded to OD 0.4–0.8 and
induced for 3 hours with 1mM IPTG. Pelleted cells were lysed using a French Pressure Cell at
�10,000 psi and the pellet containing inclusion bodies were isolated by centrifugation at
15,000 x g for 1 hour. Pellets were washed 3 times in cold isolation buffer (2 M urea, 20 mM
Tris-HCl, 0.5 M NaCl, 2% Triton-X 100, pH 8.0) and then were incubated in binding buffer (6
M guanidine hydrochloride, 20 mM Tris-HCl, 0.5 M NaCl, 5 mM imidazole, 20 mM β-mer-
captoethanol, pH 8.0) overnight at 4°C. Purification was performed by on-column refolding on
a HisTrap FF 1 ml column (GE Healthcare), after equilibration of the column and sample bind-
ing, the column was washed with solubilisation buffer (6 M urea, 20 mM Tris-HCl, 0.5 M
NaCl, 5 mM imidazole, 1 mM β-mercaptoethanol, pH 8.0) and the bound protein refolded in a
gradient of refolding buffer (20 mM Tris-HCl, 0.5 M NaCl, 5 mM imidazole, 20 mM β-
mercaptoethanol, pH 8.0) and solubilisation buffer. Protein was eluted from the column in a
gradient of elution buffer (20 mM Tris-HCl, 0.5 M NaCl, 0.5 M imidazole, 20 mM β-
mercaptoethanol, pH 8.0) and collected in fractions 7–20. Refolded SmBv1L was concentrated
and buffer exchanged to resuspension buffer (20 mM Tris-HCl, pH 8.0), attached to 1 mL
washed HisTrap FF and protein eluted by incubation with 150 U/mg protein Thrombin (GE
Healthcare). Thrombin was removed by incubation with benzamadine-agarose beads (Sigma-
Aldrich) and the protein buffer exchanged to PBS. Proteins were tested for bacterial contami-
nation by in-house ELISA assay as previously described [24].

Study population
Venous plasma samples were collected in the fishing village of Namoni on the shores of Lake
Victoria, Mayuge District, Uganda, an area of high year-round schistosomiasis (S.mansoni)
transmission occurred. The 372 plasma donors (6–40 years, 57% female, mean age 18) were
randomly selected from community members who had detectable S.mansoni eggs in a single
stool sample (microscopically examined in two Kato-Katz thick smears). Blood was collected
in heparinized tubes at two time-points, immediately before anti-schistosomiasis treatment
with praziquantel (PZQ, 40mg/kg body mass) and 5 weeks post-treatment. Plasma separated
by centrifugation (2000 x g for 5 min) was stored at -80°C until use. This analysis focuses on
222 individuals with full parasitological and serological information available both pre- and
post-treatment (age 6–40 years, mean age 16 years, 59% female).

Enzyme-linked immunosorbent assay (ELISA)
Antigen-specific IgG1, IgG4 and IgE levels were measured in the plasma from infected individ-
uals in duplicate by ELISA as detailed previously [24] with the following modifications.
SmBv1L was applied to plates in sodium bicarbonate coating buffer at 4°C overnight at a
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concentration of 0.875 μg/ml. Human plasma was diluted 1:40 for IgE assays and 1:100 for IgG
isotypes.

Data handling and statistics
Data handling and statistical analysis was performed using STATA for Mac version 12.1. Area
proportional Venn diagrams were drawn using eulerAPE version 1.0 [46].

Results

Distribution of known allergens across taxa
The distribution across different taxonomic groups of the 2712 allergenic molecules listed in
the Allergome database for which IgE-binding antigen is reported suggests that allergenic/IgE-
binding protein molecules are moderately represented in fungal (17.5% of all Allergome
entries) genomes and poorly represented in bacterial genomes (~1%) (Fig 2) and are consistent
with the previously published studies [47,48]. A large proportion of these molecules are repre-
sented in plant (~38%) and metazoan genomes (44%). Interestingly, these large proportions of
allergens in metazoa and plants (1018 plant and 1188 metazoan allergens) are encoded in
genomes of a restricted number of species (201 plant and 373 metazoan species, respectively).

Representation of allergens/IgE-antigens in Pfam
The 2712 unique UniProt protein sequence entries corresponding to protein molecules listed
in the Allergome database are distributed in 331 Pfam protein domain families. Protein domain
families with allergenic entries are relatively few and account for merely 2.2% of total 14831
protein domain families specified in Pfam database (Fig 3). There are 128 protein families that
are comprised of only one allergenic protein member. A total of 1389 out of 2712 allergenic
molecules (~51%) are members of just 20 protein domain families (Fig 4). Among these fami-
lies, Tropomyosin (Pfam accession: PF00261) constitutes 217 allergenic molecules (~8% of all
allergens).

Average length of a linear epitope
A large proportion of known epitopic regions in proteins have been determined by employing
a 'peptide fragment approach'. The IEDB database provides a curated list of these epitopic
regions along with a limited set of epitopes that are determined by analysing structures of anti-
gen-antibody complexes. The majority (58%) of linear epitopic regions in the IEDB database
demonstrated to bind to IgE/IgG4 are within peptides of 10 and 15 amino acid residues length.
This is consistent with the average length of an epitope determined based on analysing struc-
tures of antigen and antibody complexes [49].

Categorization of allergenic protein domain families/superfamilies
We have chosen 10 protein domain families/superfamilies that have been referred to in the ‘Opin-
ion article’ co-authored by Fitzsimmons and Dunne [21] for our analysis. These families/
superfamilies, encompassing nearly 40% of all allergenic proteins, differ in terms of their distribu-
tion across different taxonomic groups as well as experimental details available, and can be catego-
rized into three groups (A, B, C) depending on: (i) whether protein families/superfamilies include
parasite protein representatives as well as known allergens; and (ii) whether IgE-binding immuno-
assays have/have not been performed on parasite proteins (Table 2).

Group A. Protein families categorized in this group are populated with members of aller-
genic and parasite proteins and hence homologies have already been established. In this group,
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Fig 2. The distribution of protein molecule entries (dark gray bars) listed in the Allergome database across different species (light gray bars) by
taxonomic grouping (Bacteria, Fungi, Plants and Metazoan).

doi:10.1371/journal.pcbi.1004546.g002

Fig 3. Distribution of allergenic molecules retrieved from Allergome database across Pfam domain families. Number of Pfam domain families with no
allergenic members have also been represented. The Y-axis is scaled logarithmically (base 10), however true values are represented.

doi:10.1371/journal.pcbi.1004546.g003

Comparisons of Allergens and Parasite Proteins: Allergy vs. Immunity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004546 October 29, 2015 9 / 24



positive IgE-binding activity has been demonstrated for the parasite proteins, indicating clear-
cut evidence for the allergenic potential of proteins. It includes Tropomyosin, EF Hand and
CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins) protein
domain families.

Group B. Protein families belonging to this group represent protein members from aller-
genic and parasitic sources; however, none of the parasite proteins have yet been tested for anti-
body binding activity. We have employed protein sequence and structure based computational
methods to identify putative epitopic-like regions for the families categorized in this group,
arriving at a comprehensive list of putative allergenic proteins encoded in genomes of parasites

Fig 4. Pfam domain families that are highly populated with allergenic protein sequences. Protein domain families considered for this analysis are
highlighted in the box based on the families presented in the article co-authored by Fitzsimmons and Dunne [21].

doi:10.1371/journal.pcbi.1004546.g004

Table 2. Categorization of 10 protein domain families into groups.

Homologs in metazoan parasite IgE activity tested Protein domain families

Group A ✓ ✓ Tropomyosin, EF Hand and CAP

Group B ✓ ✗ Profilin, Lipocalin, Trypsin-like serine protease, Cupin, Bet v 1 and Expansin

Group C ✗ ✗ Prolamin

doi:10.1371/journal.pcbi.1004546.t002
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that can be prioritized for carrying out IgE-binding immunoassays. Group B includes Profilin,
Lipocalin and Trypsin-like serine protease, Cupin, Bet v 1 and Expansin protein families.

Group C. This group contains only the prolamin protein domain family, which has no
representation as yet in metazoan parasitic organisms and hence no IgE-binding activity has
been tested so far. This group may represent those parasite proteins where only a small frag-
ment potentially shares similarity to the known allergen.

Homologs of allergenic proteins in parasite protein sequence dataset
Groups A and B. 871 unique UniProt protein sequence entries corresponding to worm

(Platyhelminth and nematode) and mite sources are associated with the same Pfam domain
families as all allergenic proteins in group A (EF hand, CAP and Tropomyosin) and three of
those in group B (Profilin, Lipocalin and Trypsin-like serine protease). These constitute close
homologs of the allergenic proteins. Protein members in families categorised in group A and
trypsin-like serine proteases in group B are distributed across prokaryotic and eukaryotic
organisms. However, Profilin and Lipocalin families categorised in Group B show representa-
tion only from eukaryotic and eukaryotic metazoan organisms, respectively.

For detecting homologs of allergenic proteins in the 3 remaining group B families (Bet v 1,
Cupin and Expansin), we used parasite protein annotations specified by Gene3D. Allergenic
proteins with known PDB structures belonging to families in group B are categorised in the fol-
lowing CATH homologous superfamilies: a) Bet v 1: 3.30.530.20 b) Cupin: 2.60.120.10 c)
Expansin proteins (DPBB_1, Pollen_allerg_1): 2.40.40.10 and 2.60.40.760, respectively. For Bet
v 1 and Cupin domain families, we detected 58 and 130 parasite proteins that are indexed with
CATH accession numbers 3.30.530.20 and 2.60.120.10 respectively and hence are in same
homologous superfamily as allergenic proteins. These parasite proteins are considered as close
homologs of allergenic proteins. One of the Bet v 1 -like proteins from S.mansoni was chosen
for expression and testing in human IgE binding studies (see below).

Prior to this study, databases for the expansin domain family contained no parasite proteins,
indicating that no member from a parasite had previously been found.

No parasite proteins with CATH accession number 2.40.40.10 and 2.60.40.760 were
detected, which indicates that no parasite protein member has previously been found to corre-
spond to expansin proteins from allergenic sources and thus we could not find ‘close homologs’
of allergens in expansin domain family (with same CATH accession number). However, we
could find distant homologs’ in metazoan parasites proteome for the same domain family (at
protein fold level).

Therefore, for establishing distant homology, 1387 parasite proteins that share the same
topology/fold as the allergenic expansin proteins were collected. Homologs of allergenic pro-
teins in parasites (belonging to Group A and B) have been listed in S1 Table.

Known 3D structures/reliable 3D models of parasite proteins and corresponding allergenic
proteins in group B were compared using structure superposition. For further analysis, we
restricted the list of parasite proteins that share structural similarity with allergenic proteins
with a TM score of�0.5. This list constitutes 9 Bet v 1 and 2 Cupin parasite proteins that share
homology with allergenic proteins. We also find 15 parasite proteins that are expected to share
the same topology as expansin proteins, thereby representing distant homologs. A list of these
parasite proteins is provided in S2 Table.

Group C. No ‘true’ parasite protein sharing homology or even overall topology/fold with
Prolamin could be detected. However, Gene3D does categorize a protein from S.mansoni
(Uniprot accession: G4VGF5) with the prolamin protein (Uniprot accession: P01085, PDB
accession 1HSS) from Triticum aestivum (Wheat) in CATH superfamily 1.10.110.10. The
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algorithm employed by Gene3D aligns only a small fragment of the worm protein (from resi-
due 406–436) with the wheat protein and is not considered statistically significant.

We also detected a protein (UniProt accession: Q1M2M1) encoded in genome of Glycypha-
gus domesticus (House itch mite), which shares significant homology with prolamin protein
Mal d 3 (UniProt accession: Q9M5X7) fromMalus domestica (Apple). However, with careful
inspection, we learnt that the mite protein shares a sequence identity of 100% with lipid trans-
fer protein (UniProt accession: M8BYH8) from Aegilops tauschii (Tausch's goatgrass). This
finding suggests a possible sequence artifact with regard to the mite protein and hence, is not
considered as a true prolamin protein from the mite. At this stage, the absence of parasitic
homologs for prolamin can partly be attributed to paucity of data.

Prediction of putative IgE binding regions in homologs of allergenic
proteins in parasite proteins

Sequence based approach. We next predicted putative IgE/IgG4-binding regions for vari-
ous family members in parasite proteins. The Allergome database details those proteins
encoded in genomes from various sources for which IgE binding activity has already been stud-
ied. We have predicted putative IgE binding regions for parasite proteins (EF hand, 4 and
tropomyosin, 151) by comparing them with fragments of allergens for which IgE binding activ-
ity has been ascertained experimentally (S3 Table).

Using this approach, we are able to identify parasite proteins belonging to group A and B
that share significant sequence similarity with known IgE binding fragments, comprising a
total of 177 metazoan parasite proteins (EF hand: 48, Tropomyosin: 48, Profilin: 12, Lipocalin:
23 and CAP: 46). Results corresponding to the predicted IgE binding regions are presented in
S4 Table. However, this sequence based approach did not yield any significant results for Bet v
1, Cupin and Expansin protein members (Group B).

Structure based approach. A total of 344 3D structural motifs that are known to bind
IgE/IgG4 were searched in a dataset (3D known structures/3D homology models) of 26 para-
site proteins belonging to Bet v1, Cupin and Expansin families (sharing TM score�0.5 with
allergenic proteins) using the BC-search program (S2 Table). BC-search is a novel program,
which employs a Binet-Cauchy kernel to decipher protein fragment structural similarities at a
local level. The extent of shape similarity is measured on the basis of statistically significant BC
scores, which are length independent even for shorter fragments, where measure of RMSD
could be misleading. BC-search performed 211,852 structural fragment comparisons along all
the parasite proteins and reported a score for each comparison. Specific regions in all 26 para-
site proteins displayed significant shape similarity (BC score�0.8) to the structural motifs of
known antibody binding fragments.

Information on 3D structural motifs that are known to bind IgE/IgG4 with their structural
equivalents on 26 parasite proteins and their corresponding topological positions has been pro-
vided in S5 Table.

Epitope regions for Class B allergens showing significant matches (calculated by BC search
program) with parasite proteins has been provided in S6 Table.

Examples of putative IgE targets in metazoan parasites
Illustrative examples of newly detected metazoan parasite protein which are potential IgE tar-
get are discussed in the following section.

Group A (EF-hand). EF-hand domain regions from a putative calcium ion binding pro-
tein from Schistosoma japonicum (UniProt accession: Q5C262) exhibit similarity with aller-
genic Parvalbumin protein sequence ‘Sal s 1’ from Atlantic salmon (UniProt accession:
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B5DH17). Epitopes on the allergenic protein have been mapped using peptide microarray
immunoassays [50]. While parasitic and allergenic proteins share only 13% sequence identity,
epitopic regions (from residues 52–66 and 56–69) from the allergenic protein share sequence
identity of 71% and 76% respectively with the predicted epitopic like regions from the worm
protein (from residues 139–152 and 143–155) (Fig 5A). Reliable 3D structural models for the
allergenic protein and EF hand domain region from the worm protein were modelled using

Fig 5. A. Sequence alignment of the epitopic region from Atlantic salmon (Salmo salar) allergenic
parvalbumin-like 1 protein (UniProt accession: B5DH17) and predicted epitopic-like region fromworm
Schistosoma japonicum (UniProt accession: Q5C262). B. Superposition of the 3D structural model of
salmon parvalbumin-like 1 protein (colored in green) and EF hand domain of the Schistosoma japonicum
protein (in cyan). Epitope (allergen) and predicted epitopic-like regions (parasite protein) are depicted in the
box.

doi:10.1371/journal.pcbi.1004546.g005
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parvalbumin from Gallus gallus (PDB accession: 3FS7) as a template. Root mean square devia-
tion values for the generated models (allergen and worm EF hand domain) with respect to the
template proteins are 0.13Å and 0.21Å respectively. Superposition of 3D models of both the
proteins is depicted in Fig 5B.

Group B (Profilin). We predict a potential IgE target protein from the nematode worm
Ascaris lumbricoides (UniProt accession: F1LGV9) belonging to Profilin domain family. The
worm protein shares homology with pollen allergen from plant Betula pendula (European
white birch). The allergen also has been annotated as a Profilin protein according to the
domain definition provided by Pfam. The two proteins share 27% sequence identity. However,
the predicted epitopic-like regions of the Ascaris protein (residues 24–42) show significant
sequence identity of 61% (similarity of 76%) with known epitopic regions of plant allergen
(from residue 28 to 45) [51] (e-value 6e-05), as shown by the sequence alignment of these
regions in Fig 6A. A 3D model of the worm protein and known 3D structure of the allergenic
protein (PDB accession: 1CQA) share gross structural similarity with Cα RMSD of 0.65Å (Fig
6B).

Performing a similar analysis, we have also predicted potential IgE targets from S.mansoni
(UniProt accession: G4VTE3) and Brugia malayi (UniProt accession: A8Q2M4, corresponding
to Lipocalin family) for which IgE activity has been tested in the laboratory. We have con-
firmed prevalent IgE activity for a Profilin protein from S.mansoni (using human sera) and a
lipocalin protein from B.malayi (in vivo studies) when compared with a control protein.

Group B (Expansin). A further example from group B is the Mite group 2 allergen ‘Pso o
2’ protein (UniProt accession: Q965E2) [52] from Psoroptes ovis (Sheep scab mite), which
shares the same topology as an allergenic protein from the expansin family and thus shares dis-
tant homology. Overall, this mite protein has only 11.4% sequence identity with ‘Phl p 1’, a
major timothy grass pollen (UniProt accession: P43213; PDB accession: 1N10). However, epi-
topes from the plant allergen protein are known and have been identified using IgE binding
immunoassays [53]. Superposition of a 3D model of the mite and known 3D structure of the
allergen is shown in Fig 7A (TM score ~0.6).

This analysis establishes a clear similarity between epitope and predicted epitopic-like
regions from allergen and mite protein. These regions share sequence identity of 40% and simi-
larity of 63% (Fig 7B), thus establishing structural similarity between epitopes of a plant aller-
gen and an expansin-like protein encoded in the genome of metazoan parasite. These regions
show BC score (measure of structure similarity) of 0.996 with RMSD and p-value of 0.36Å and
2.06658e-08 respectively.

Confirmation of predicted IgE/IgG4 binding by a S.mansoni Bet v 1-like
protein
The plant-specific Bet v1 domain family represents the second large family which is highly
populated with allergens (see Fig 4). However, no Bet v1-like IgE target proteins have been
reported in metazoan parasites so far.

We tested the potential of Bet v 1-like protein (SmBv1L) from S.mansoni predicted by our
computational analysis to bind IgE and IgG4 in plasma from individuals infected with this par-
asite. The Bet v 1-like protein from S.mansoni (Uniprot accession: G4VE06) and the plant
birch pollen allergen (Uniprot accession: P15494, PDB accession: 1BV1) are categorised in the
same homologous superfamily (CATH accession: 3.30.530.20) as described by the CATH data-
base. SmBv1L was cloned and expressed as a recombinant protein in E.coli. Insoluble recombi-
nant protein was extracted from inclusion bodies, purified and refolded on column to give
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soluble antigen. The presence of a single protein species of approximately 18 kDa, as predicted
in silico, was confirmed by a Coomassie blue-stained SDS-PAGE gel.

Antibody responses against SmBv1L were measured in a population of 222 S.mansoni-
infected individuals from a parasite endemic area in Uganda. Levels of antigen specific
responses were measured against IgG1, IgE and IgG4 (Fig 8). SmBv1L was found to be anti-
genic with 38.7% of the population responding with IgG1, IgG4 or IgE. Antibody responses
against SmBv1L with IgG1, IgG4 and IgE were found in 23.9% (53), 19.8% (44) and 16.7% (37)
of the population respectively. The geometric mean magnitudes of responder antibody levels
were as follows IgG1; 70.2 μg/ml (95% CI 57.9, 85.1 μg/ml), IgG4; 0.7 μg/ml (95% CI 0.5,

Fig 6. A. Sequence alignment of the epitopic region from profilin protein (allergenic) fromBetula
pendula (European white birch) (UniProt accession: P25816) and predicted epitopic-like region from
the worm Ascaris lumbricoides (UniProt accession: F1LGV9). B. Superposition of the 3D structure of
plant allergenic protein (PDB accession: 1CQA) (colored in green) and the 3D structural model of profilin
protein from the worm Ascaris lumbricoides (in cyan). Epitope (allergen) and predicted epitopic-like regions
(parasite protein) are depicted in the box.

doi:10.1371/journal.pcbi.1004546.g006
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0.9 μg/ml) and IgE; 56.6 ng/ml (95% CI 40.4, 79.5 ng/ml). As shown by Fig 9, individuals were
capable of producing responses against IgG1, IgG4 or IgE alone or any combination of the
three. There were no significant differences between the overlaps of any combination of the
three antibody isotypes.

Discussion
The IgE-mediated immunological effector mechanisms that cause allergy are similar to those
associated with immunity to metazoan parasites. IgE responses elicited in cases of helminth
infections can be considered to be a mammalian adaptation evolved to provide protection
against helminth and arthropod parasites. It is hypothesised that in the absence of helminth
infection, allergenic proteins can be mistakenly targeted by the same arm of the immune sys-
tem which originally evolved to combat parasitic infection, resulting in an unregulated (some-
times lethal) allergic response.

Fig 7. A. Superposition of the 3D structure of timothy grass Phl p 1 (PDB accession: 1N10) (in green)
and the 3D structural model of mite protein (in cyan). Epitope (allergen) and predicted epitopic-like
regions (parasite protein) are depicted in the box. B. Sequence alignment of the epitopic region from
Phleum pratense ‘Phl p 1’, a major timothy grass pollen allergen (UniProt accession: P43213) and predicted
epitopic-like region fromMite group 2 allergen ‘Pso o 2’ protein (UniProt accession: Q965E2) from Psoroptes
ovis.

doi:10.1371/journal.pcbi.1004546.g007
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Metazoan parasites are more closely related to their mammalian host than lower taxonomic
groups such as bacteria, and viruses. It is remarkable that IgE responses are more strongly tar-
geted to eukaryotic and not prokaryotic proteins. However, based on analyses of three animal
allergen protein domain families (EF hand, tropomyosin and casein), Jenkins and co-workers
have inferred that allergenic proteins are sufficiently diverged (<62% sequence identity) from
the corresponding homologous proteins from the human host [54]. Interestingly, the number
of protein domain families that include the allergenic molecule is also limited and a large pro-
portion of these allergenic molecules are encoded in the genomes of a limited set of plant and
metazoan species. Also, a limited set of proteins from parasitic organisms will be in contact
with host machinery to evoke any immune response, which would also depend on the protein
expression profile of parasite at different life stages [55]. These observations indicate that a nar-
row range of molecules from metazoan parasites and environmental allergens are responsible
for eliciting immune/antigenic response [21].

Previously, IgE binding activity has been studied for certain metazoan parasite proteins cor-
responding to domain families (such as EF hand, Tropomyosin and CAP) that also represent a
major proportion of protein sequences from allergenic sources giving an indication about pos-
sible sequence and structure similarity with the allergenic proteins [21]. However, even for

Fig 8. Magnitudes of specific IgE, IgG4 and IgG1 responses to S.mansoniBet v 1-like protein, SmBv1L, in a population of 222 individuals infected
with S.mansoni, dotted lines indicate threshold of magnitude for a response.Data were normalized for expression on a log scale by the addition of
constants so as to include zero values.

doi:10.1371/journal.pcbi.1004546.g008
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these families, consolidated information regarding sequence and structure similarity with para-
site proteins has not been demonstrated. To validate and reinforce our underlying hypothesis,
it becomes crucial to have a systematic and comprehensive catalogue of closely related parasite
proteins and allergens that can be tested as targets for IgE.

A novel systematic approach involving sensitive remote homology detection methods has
been applied to identify and document proteins encoded in genomes of various metazoan para-
sites, which share homology (sequence and structure based) with the IgE/IgG4 binding aller-
genic molecules. Structure-based methods proved to be helpful in establishing remote
homology as well as inferring topological similarity of epitopic regions between allergenic and
parasite proteins where sequence based methods were not effective. We categorised predicted
target parasite proteins into three groups based on (a) if they share homology with allergenic
protein (b) if immunoassays have been performed to test IgE/IgG4 activity. Using various
computational approaches, we also identified putative epitopic-like regions in parasite proteins
that might have potential for IgE binding.

Tropomyosin is the largest family that represents the maximum number of known allergens
from worms and arthropods (Fig 4). However, the second most prevalent domain family is the
Bet v1 family, of which no potential IgE targets have been identified in metazoan parasites. We
tested the predictions made for a Bet v 1-like protein (SmBv1L) from S.mansoni using in vitro
IgE/IgG4 binding studies. SmBv1L was the target for IgE responses in the inhabitants of a
Ugandan schistosomiasis mansoni endemic area, confirming the prediction of the bioinformat-
ics pipeline. The geometric mean IgE level of 56.6 ng/ml (23.6 IU/ml), was comparable to spe-
cific IgE responses to common known allergens [56]. Additionally, IgG4 responses against
SmBv1L were observed, indicating that IgG4 mediated regulatory responses, as seen against
other S.mansoni allergen-like proteins and in allergy, were induced by SmBv1L [27–29]. To
our knowledge, SmBv1L represents the first confirmed example of a Bet v 1-like protein in
metazoan parasites that is targeted by IgE, and indeed one of the few known examples of a Bet
v 1-like antigen from a non-plant organism. The identification of a Bet v 1-like molecule in S.
mansoni that is phylogenetically disparate from other known allergens of the same family

Fig 9. Venn diagram showing the distribution of Ab isotype responses to SmBv1L within IgG1, IgG4
and IgE responders in a population of 222 individuals endemically infected with S.mansoni.

doi:10.1371/journal.pcbi.1004546.g009
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highlights the relevance of the proposed hypothesis and sensitivity of the methodology applied
to detect and establish such distant relationships that could be supported by immunological
assays performed in vitro.

In our recent work, as a control, we also tested Adenylate kinase (AK), protein 14-3-3 and
Ubiquitin, antigens that were shown to be prevalent in the human life cycle stages of S.man-
soni, in our pipeline for IgE binding structural features and epitopes. These antigens were not
predicted to bind IgE by our pipeline, a finding supported by our previously published data
[57]. This demonstrated that whilst AK, 14-3-3 and Ubiquitin were antigenic, generating prev-
alent IgG1 responses in the infected cohort, there was no strong evidence for IgE binding by
these antigens with IgE responses being of both low magnitude and prevalence.

By using our methodology, we have established such relationships for 9 out of 10 protein
domain families that contain highest numbers of known allergens. Homology for allergenic
prolamin protein members was not established with parasite proteins. Gene3D did detect some
similarity between the CATH prolamin superfamily and a domain in a Schistosoma mansoni
protein, but the region detected was too small to be statistically significant. This small region
does however map to known epitope regions in prolamin found in wheat. It is tempting to
speculate that the region being detected corresponds to the fragment that, by happenchance,
shares the IgE interaction motif. Additionally, the lack of detection could be attributed to many
factors such as scarcity of information regarding IgE–binding epitopes, incomplete genomes of
parasitic organisms and unavailability of 3D structural information regarding allergens and
parasite proteins. However, the possibility that this ‘plant storage family’ is indeed absent from
metazoan parasites cannot be ruled out completely. Nonetheless, our analyses lend support to
our hypothesis by drawing clear comparisons between allergenic and metazoan parasite pro-
teins in rest of the 9 protein domain families.

The lack of details for the molecular mechanisms involved in immunity and allergic states
and lack of exclusive descriptions of allergenic molecules such as, for example, the presence of
conserved motif(s) limit our understanding of immune dysfunction in allergic disease. It is still
unclear what molecular mechanisms lead these small epitopes to elicit an IgE-dominated aller-
gic response. By demonstrating that we can detect similarities between epitopes of multicellular
parasite proteins and those from allergy-inducing environmental and food proteins, we lay the
foundation for studying predicted IgE binding targets, to aid our understanding of the underly-
ing mechanisms involved in both immunity against parasites and in an allergenic response.
This understanding is of paramount importance since the IgE response would not have evolved
to cause allergy. Defining allergen-like molecules in parasites and understanding their link to
the unregulated IgE response will therefore facilitate the discovery and design of molecules for
future immunotherapy in allergic conditions.
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