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Abstract  48 

Background: Helminth parasites have been reported to have beneficial immune modulatory 49 

effects in allergic and autoimmune conditions and detrimental consequences in tuberculosis 50 

and some viral infections. Their role in co-infection with respiratory viruses is not clear.  51 

Objective: Here, we investigated the effects of strictly enteric helminth infection with 52 

Heligmosomoides polygyrus on respiratory syncytial virus (RSV) infection in a mouse model.  53 

Methods: A murine helminth/ RSV co-infection model was developed. Mice were infected by 54 

oral gavage with 200 stage 3 H. polygyrus larvae. 10 days later, mice were infected with 55 

either RSV or UV-inactivated RSV (UV-RSV) intranasally.  56 

Results: H. polygyrus infected mice showed significantly less disease and pulmonary 57 

inflammation after RSV infection, associated with reduced viral load. Adaptive immune 58 

responses including Th2 responses were not essential since protection against RSV was 59 

maintained in RAG1-/- and IL-4Rα-/- mice. Importantly, H. polygyrus infection upregulated 60 

expression of type I IFNs and IFN stimulated genes (ISG) in both the duodenum and the 61 

lung, and its protective effects were lost in both IFNAR1-/- and germ-free mice, revealing 62 

essential roles for type I IFN signalling and microbiota in H. polygyrus induced protection 63 

against RSV. 64 

Conclusion: These data demonstrate that a strictly enteric helminth infection can have remote 65 

protective antiviral effects in the lung through induction of a microbiota-dependent type I 66 

IFN response.  67 

68 
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Key Messages 69 

• Strictly enteric helminth infection induces type I IFN production and ISG expression 70 

in both the duodenum and the lung. 71 

• Helminth-induced type I IFN signalling and the presence of the microbiota are critical 72 

for protection against RSV infection. 73 

 74 

Capsule Summary 75 

Strictly enteric helminth infection protects against RSV-infection through microbiota-76 

dependent induction of type I interferon in the lung, a novel mechanism which in the future 77 

may reveal new targets for the prevention and treatment of RSV infection. 78 

 79 

Key Words 80 

RSV; helminths; Heligmosomoides polygyrus; type I interferon; microbiome.  81 

 82 

Abbreviations used 83 

cDC: Conventional DC 84 

 ES: excretory secretory 85 

 HES: H. polygyrus ES 86 

 ISG: IFN stimulated gene 87 
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LRTI: lower respiratory tract infection 88 

PVM: pneumovirus of mice 89 

PRR: pathogen recognition receptor 90 

OAS: 2’ 5’ oligoadenylate synthetase 91 

RSV: respiratory syncytial virus  92 

93 



McFarlane et al   7 

 

INTRODUCTION 94 

Respiratory syncytial virus (RSV) is a major respiratory pathogen. It infects nearly all infants 95 

by the age of 2 years (1), but does not induce lasting immunity and leads to recurrent 96 

infections throughout life. It is estimated that worldwide, 33.4 million children under the age 97 

of 5 experience RSV lower respiratory tract infection (LRTI) annually and 10% of these 98 

require hospitalisation, resulting in up to 199,000 deaths (2-4). There is also major morbidity 99 

and mortality due to RSV in the elderly (5). Currently, there is no effective vaccine available 100 

for RSV, and treatment is limited to supportive care. Severe RSV LRTI is associated with 101 

and thought to be due to severe pulmonary inflammation.  102 

In addition, severe RSV infection during infancy has also been associated with increased risk 103 

for asthma development. There is substantial evidence indicating that children hospitalized 104 

with RSV-bronchiolitis, are more likely to experience recurrent wheezing episodes for a 105 

prolonged period of time after recovery from this illness (6-9).  106 

Helminths infect approximately 3 billion people worldwide. It has long been proposed that 107 

infection with helminths could suppress the development of immune-mediated disease, as in 108 

countries where their prevalence is high the prevalence of asthma, allergy, and autoimmune 109 

conditions has been found to be correspondingly low (10). Intestinal helminths in particular 110 

have been of major interest due to their ability to modulate host immune and inflammatory 111 

responses to foreign antigens (11-16) and several clinical trials have been carried out or are 112 

underway, assessing their utility as therapeutic agents in inflammatory bowel disease, 113 

multiple sclerosis and asthma (17).  114 

Helminth infections rarely occur in isolation and co-infections are very common with varying 115 

effects such as reduced pathogen control and increased disease, as reported for HIV infection 116 
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and tuberculosis (18-21). Recent experimental models in mice report reactivation of systemic 117 

latent γ-herpesvirus and reduced control of enteric norovirus replication (22, 23) indicating 118 

that in these systems, helminth infection suppresses anti-viral immunity resulting in increased 119 

viral replication. However, the impact of helminth infection on respiratory viruses is not well 120 

understood. Clinical data is lacking, but mouse models suggest reduced influenza-induced 121 

pathology in helminth co-infection (24, 25). 122 

Here, we investigated whether infection with the strictly enteric murine helminth 123 

Heligmosomoides polygyrus would change the course of disease and inflammation during 124 

RSV infection. This study demonstrates protective effects of helminth infection on RSV 125 

infection and reveals a novel mechanism of type I IFN induction by enteric helminth 126 

infection at a site distant from the gut.  127 

128 
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METHODS 129 

 130 

Animals 131 

BALB/c, C57BL/6, IL-4Rα-/-(79), RAG1-/-(80), IL-33R-/- (BALB/c background), IFNAR1-132 

/- (81) and Camp-/- (82) (bred to congenicity on a C57BL/6J Ola Hsd background) mice were 133 

bred in-house at the University of Edinburgh. Germ-free BALB/c mice were obtained from 134 

the Clean Mouse Facility (CMF), University of Bern, Bern, Switzerland, and were compared 135 

to SPF BALB/c mice from Charles River Breeding Laboratories (l'Arbresle Cedex, France). 136 

6-12 week old female mice were infected by oral gavage with 200 stage 3 H. polygyrus 137 

larvae. Ten days later, mice were intranasally infected with RSV or mock infected with UV-138 

inactivated RSV (UV-RSV) (standard coinfection protocol). 139 

 140 

Parasites, parasite products and virus stocks 141 

Parasites were maintained as previously described (83). Stage 3 H. polygyrus larvae were 142 

irradiated with 100, 200 or 300 Gy using a GSR-C1 irradiator at a rate of 6.2 Gy/min prior to 143 

administration by oral gavage. Axenic H. polygyrus larvae were produced as previously 144 

described (84). Plaque purified human RSV (Strain A2, ATCC, United States) was grown in 145 

Hep-2 cells as previously described (40).    146 

 147 

Whole body plethysmography 148 
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Baseline respiratory effort was assessed in individual mice, using whole body 149 

plethysmography (Buxco Europe, UK). Mice were placed into individual chambers, and 150 

baseline measurements were recorded for 5 minutes. Enhanced pause (Penh) values were 151 

recorded, averaged, and expressed as absolute values as previously described (85).  152 

 153 

RSV immunoplaque assay 154 

RSV titres were assessed as previously described (27), in lung homogenate by titration on 155 

HEp-2 cell monolayers in 96-well, flat-bottom plates. Twenty-four hours after infection, 156 

monolayers were washed, fixed with methanol, and incubated with peroxidase-conjugated 157 

goat anti-RSV antibody (Biogenesis, United Kingdom). Infected cells were detected using 3-158 

amino-9-ethylcarbazole and infectious units enumerated by light microscopy.  159 

 160 

Lung cell isolation and flow cytometry 161 

Right lung lobes were excised, cut into small pieces, incubated on a shaker with collagenase 162 

A (Sigma; 0.23 mg/ml PBS) at 37 °C for 45 minutes and sheared through a 19 gauge needle. 163 

After red blood cell lysis (Sigma), the single cell suspension was passed through a 40 μm cell 164 

strainer and stained using viability dye eFluor 780 (eBioscience, Hatfield, UK). The 165 

following anti-mouse antibodies were used to phenotype lung immune cells: PDCA-1 (EBIO-166 

927), Ly6G (RB6-C5), NKp46 (29A1.4), B220 (RA3-6B2) eFluor 450 conjugated 167 

(eBioscience), Ly6C (AL-21), CD8 (Ly-2) Fluorescein isothiocyanate (FITC) conjugated 168 

(BD Bioscience), CD11b (M1/70), CD4 (RM4-5) Phycoerythrin (PE) conjugated 169 

(eBioscience), CD45 (30-F11) eFluor605 Nanocrystal (NC605) conjugated (eBioscience), 170 

CD49B (DX5), CD19 (6D5) (Biolegend), F480 (Cl:A3-1) AlexaFluor 647 conjugated (AbD 171 
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Serotech) , MHCII (M5/114.15.2), CD3 (145-2C11) PercpCy5.5 conjugated (Biolegend), 172 

CD19 (EBIO1D3), CD3 (17A2) (eBioscience), Ly6G (1AB) AlexaFluor 700 conjugated (BD 173 

Bioscience) CD11c (N418) PE-Cy7 conjugated (eBioscience). Isotype control antibodies 174 

were used on pooled samples. Cells were gated as viable and CD45+ and subsequently 175 

phenotyped based on their markers as follows: Ly6G- CD19- CD3- CD49B+ NKp46+ NK 176 

cells, Ly6G- CD19- CD3- MHCII+ CD11B+ CD11C+ conventional dendritic cells, Ly6G- 177 

CD19- CD3+ CD4+ or CD8+ T cells, Ly6G- CD3- CD19+ CD19+ B220+ B cells. Samples 178 

were collected using LSR Fortessa II. Post-acquisition analysis performed using FlowJo 179 

version 7.6.5 software (treestar.inc, Oregon, USA).   180 

 181 

Real Time PCR 182 

Lung and duodenum was harvested and homogenised in 1 ml of TRIzol (Invitrogen) using a 183 

TissueLyser. Complementary DNA (cDNA) was made from the extracted RNA using the 184 

Qiagen QuantiTect Reverse Transcription Kit (Qiagen) following the manufacturer’s 185 

instructions. 1 μg RNA was used for the reverse transcription. Primers were diluted in TE 186 

buffer to a final concentration of 0.025 nM/μl and probes to 0.005 nM/μl. Custom primers 187 

and probes were purchased from Jena Bioscience or Applied Biosystems. PCR amplification 188 

was carried out in a 25 µl volume made up of custom 7 μl primer probe mix (300nM primers 189 

and 200nM probe), 12.5 μl TaqMan mastermix (Applied Biosystems); 1.75 μl H20; 1.25 μl 190 

18S (Applied Biosystems); 2.5 μl DNA template. 1.25 μl of pre-made primer probe mix was 191 

used in the following mixture: 12.5 μl mastermix; 5 μl H20; 1.25 μl 18S; 2.5 μl DNA 192 

template. IFN-β (Mm00439552_s1) and Camp (Mm00438285) primers and probes were 193 

bought premade from Life Technologies. Custom primers used are shown in Table I.  194 
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ELISA 195 

IFN-α and IFN-β was measured using an ELISA kit (PBL, Interferon Source) according to 196 

the manufacturer’s instructions. 197 

 198 

Statistical Analysis 199 

All data were analysed using Prism 6 (Graphpad, La Jolla, CA, USA). Analysis of 2 groups 200 

used an unpaired t-test. Analysis of 3 or more groups was either using One-way ANOVA 201 

with Tukey’s or Bonferroni’s post test or Two-way ANOVA with Bonferonni’s post test. 202 

Unless otherwise stated, the differences are non-significant. *** p <0.001; ** p  <0.01; * p 203 

<0.05. Outliers were tested for using Grubb’s test, and removed if determined to be an 204 

outlier. 205 

  206 

Study Approval  207 

All procedures were carried out with institutional ethical approval and under Home Office 208 

licences. Germ-free animal experiments were performed according to institutional guidelines 209 

and to Swiss Federal and Cantonal laws on animal protection. 210 

 211 

 212 

 213 

 214 

215 
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RESULTS 216 

H. polygyrus protects against RSV disease and inflammation and reduces viral load. 217 

Mice were infected with H. polygyrus, and 10 days later, when adult worms emerge into the 218 

lumen of the gut, mice were infected with RSV. H. polygyrus co-infection protected against 219 

RSV-induced weight loss (see Figure 1A) and reduced RSV-induced increases in enhanced 220 

pause, which are indicative of deterioration in baseline respiratory effort (see Figure 1B). 221 

RSV infection in the mouse model induces pulmonary inflammation with cellular infiltration, 222 

specifically of NK cells, CD8+ T cells and conventional DCs (cDC) (26, 27). In mice co-223 

infected with H. polygyrus, RSV-induced increases in NK cell, B cell (see Figure E1A and 224 

E1B in the Online Repository) and CD8+ T cell numbers were absent (see Figure 1C) while 225 

the increase in cDC numbers was significantly reduced (see Figure 1D). Early pro-226 

inflammatory cytokine production of IL-6 and TNF-α on day 2 was induced to a significantly 227 

lower level in H. polygyrus infected mice compared to those infected with RSV alone (see 228 

Figure E1C and E1D in the Online Repository). IFN-γ increased with RSV infection, but was 229 

not significantly suppressed in co-infected mice, indicating selective inhibition of a pathway 230 

independent of IFN-γ (see Figure E1E in the Online Repository).  231 

Given these changes in RSV-induced signs of disease, we asked whether H. polygyrus 232 

suppresses the immune response or directly alters magnitude of RSV infection. Lung RSV 233 

titres, assessed by plaque assay, were reduced following H. polygyrus infection, without 234 

changes in the kinetics of replication (see Figure 1E). In C57BL/6 mice ex-vivo plaque assays 235 

for RSV are unreliable due to low viral load (28), therefore we tested the effects of co-236 

infection in C57BL/6 mice by measuring expression of the RSV L gene in the lung by 237 
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RTPCR, as an indicator of viral load. L gene expression was, again, significantly reduced in 238 

H. polygyrus infected mice in this strain (see Figure E1F in the Online Repository). 239 

These findings demonstrate a potent inhibition of RSV-induced disease, early pro-240 

inflammatory cytokine production and recruitment of a broad range of immune cells to the 241 

lung in H. polygyrus co-infection presumably due to an early reduction in viral infection.  242 

Adaptive immune responses, including Th2 responses, are not required for H. 243 

polygyrus-induced protection against RSV infection.  244 

Type 2 immune responses are crucial during most helminth infections, aiding in wound 245 

healing and immunity to helminths (29-32). IL-4Rα-deficient mice cannot respond to IL-4 or 246 

IL-13 signals, and present strongly diminished type 2 immune responses (33). Consistent 247 

reductions in RSV titres were observed in H. polygyrus co-infected IL-4Rα-/- mice, similar to 248 

those seen in wild type BALB/c mice (see Figure 2A). We further assessed innate type 2 249 

immune responses, and found that following H. polygyrus infection, a non-significant trend 250 

for increased IL-13 producing ILC2s and IL-33 levels were observed in the lung tissue, 251 

compared to RSV and UV-RSV infected controls (see Figure E2A and E2B in the Online 252 

Repository). To investigate any protective role of IL-33 in response to RSV infection, we 253 

used IL-33R-/- mice. The RSV load was similar between IL-33R-/- and wild type control mice 254 

(see Figure E2C in the Online Repository), and was reduced to similar levels in both groups 255 

by H. polygyrus co-infection, indicating that there is no essential role for IL-33 in protection 256 

against RSV infection. 257 

To determine if any adaptive immune responses are required for H. polygyrus-mediated 258 

protection against RSV infection we used RAG1-deficient mice, which lack all T and B cells. 259 

Once again, RSV titres were significantly suppressed in both RAG1-/- mice and wild type 260 
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controls following co-infection with H. polygyrus (see Figure 2B). Together, these 261 

observations show that adaptive immune responses and IL-4Rα-dependent or IL-33R-262 

dependent type 2 cytokine responses are not required for the protective effect of H. polygyrus 263 

on RSV infection. 264 

H. polygyrus infection induces expression of type I IFN and IFN stimulated genes in 265 

both the duodenum and the lung. 266 

Type I IFNs are major players in the initial response to viral entry into the mucosa (34). Since 267 

adaptive and innate type 2 immune responses were not essential for the protection against 268 

RSV infection, we hypothesised that H. polygyrus enhances the mucosal innate IFN response 269 

conferring an antiviral state. 2’5’ oligoadenylate synthetase (Oas) and viperin are two of 270 

many IFN stimulated genes (ISG) which have been found to play a protective role in RSV 271 

infection and can be driven by type I IFN signalling (35-38). Gene expression of IFN-β, 272 

viperin, and OAS1a tended to increase in the duodenum from day 3 post-H. polygyrus 273 

infection (see Figure E3 in the Online Repository). Importantly, expression of these genes 274 

was also subsequently increased in the lung (see Figure 3A-C), despite the strictly enteric 275 

nature of H. polygyrus, and remained increased 1 hr after RSV infection (see Figure 3D-F), if 276 

this was preceded by H. polygyrus. By 6-12 hours after RSV infection, IFN-β transcripts 277 

reached the same levels in RSV mono- and co-infected mice (see Figure 3G and 3H). IFN-β 278 

protein levels measured by ELISA were below the detection limit at 1 hour after RSV 279 

infection and were found at similar levels between groups by 6 hours post-infection reflecting 280 

the RTPCR data. However, IFN-α protein was significantly increased at 6 hours after RSV 281 

infection (see Figure 3I). This data suggests that pre-existing upregulation of pulmonary type 282 

I IFN, viperin and OAS1a, prior to RSV infection, could underpin H. polygyrus-induced 283 

protection against RSV infection in the lung.  284 

285 
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H. polygyrus-induced protection against RSV infection requires type I IFN receptor 286 

signalling.  287 

Since ISG, including viperin and OAS1a, are expressed upon type I IFN receptor signalling, 288 

we used IFNAR1-deficient mice which fail to signal in response to IFN-α and IFN-β. In 289 

IFNAR1-/- mice the reduction of RSV load in H. polygyrus co-infection was lost, implying an 290 

essential role for this pathway in H. polygyrus induced protection against RSV infection (see 291 

Figure 4A). Furthermore, the ISG induction seen in wild-type mice is also lost in IFNAR-/- 292 

mice upon H. polygyrus infection (see Figure 4B and 4C).  293 

The cathelicidin CRAMP is upregulated during H. polygyrus infection but is not 294 

required for expression of type I IFN and ISGs. 295 

Cathelicidins are a family of small, cationic peptides with microbicidal and 296 

immunomodulatory properties (39). Humans and mice have only one cathelicidin, LL-37 and 297 

mCRAMP respectively, both of which have direct antiviral activity against RSV (40, 41). 298 

Cathelicidins have also been shown to promote type I IFN production by DCs (42, 43) and to 299 

enhance responses to viral RNA (44). Interestingly, expression of Camp (encoding 300 

mCRAMP) was also found to be upregulated in both the duodenum and the lung (see Figure 301 

E4A and 4B in the Online Repository) during H. polygyrus infection, with expression 302 

peaking prior to peak type I IFN and ISG expression, and remaining elevated 1 hour after 303 

RSV infection (see Figure E4C in the Online Repository). These data suggested that Camp 304 

expression might be upstream of these responses. Thus, H. polygyrus induced type I IFN and 305 

ISG expression was investigated in cathelicidin-deficient (Camp-/-) mice and was found to be 306 

intact (see Figure E4D-F in the Online Repository). This indicates that, while potentially 307 

contributing to the innate defence against RSV infection, mCRAMP is not the initiator of and 308 
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is not required for the protective antiviral immune response induced by H. polygyrus 309 

infection.  310 

H. polygyrus adult excretory secretory products are not responsible for the effects on 311 

RSV infection, while larval stages alone confer protection.  312 

Much interest has been building around the prospect of helminth excretory secretory (ES) 313 

products as potential therapeutics (45). H. polygyrus ES (HES), secreted by adult worms 314 

collected from the intestinal lumen, has been shown to have systemic effects in models of 315 

disease, and to mimic the effects of live infection (46). HES was administered in various 316 

regimes, by the intranasal and intraperitoneal routes, the day before RSV infection, for a 317 

week prior to infection, prior and post-infection and also by continuous HES treatment via an 318 

intraperitoneal osmotic mini-pump. None of these protocols resulted in significant reduction 319 

in viral titres when compared to RSV infected controls without HES treatment (see Figure E5 320 

in the Online Repository).  321 

The lack of protection afforded by adult worm products, together with the lack of 322 

requirement for an adaptive immune response caused us to question whether adult worms 323 

play any role in the interaction with RSV, or if larval stages of H. polygyrus and the damage 324 

associated with their initial invasion of submucosal tissue is key. Therefore, we irradiated 325 

stage 3 H. polygyrus larvae, as a non-lethal means of preventing their maturation to adulthood 326 

(47). The larvae are consequently able to penetrate the duodenal wall and enter into the 327 

submucosa, causing the initial trauma associated with infection, but do not re-emerge into the 328 

lumen as adults. Irradiated larvae also reduced RSV titres and induced IFN-β, Oas1a and 329 

viperin expression (see Figure 5A-D). No adults were found in the lumen in the 300Gy 330 

treated group, and numbers were severely reduced following 100Gy irradiation of larvae, but 331 
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granulomas were observed in all groups on the duodenal serosa (data not shown), confirming 332 

that the irradiated larvae were still able to invade the intestinal mucosal epithelium (48).  333 

The presence of the gut microbiota is essential for H. polygyrus induced protection 334 

against RSV infection. 335 

Larval stages of H. polygyrus protected against RSV infection, and this effect could be 336 

attributed to either the direct damage caused upon larval penetration of the submucosa, and/or 337 

the consequent translocation of intestinal bacteria into the mucosal tissues. To ascertain 338 

whether the microbiota play an important role in protection, we studied RSV infection in 339 

germ-free mice in the presence or absence of H. polygyrus infection.  340 

In contrast to fully-colonised SPF mice, in germ free mice RSV titres and RSV L gene 341 

expression were not supressed by H. polygyrus co-infection (see Figure 6A and 6B). 342 

Furthermore, the upregulation of type I IFN expression seen in the lung and duodenum of H. 343 

polygyrus infected SPF mice was absent in H. polygyrus infected germ free mice (see Figure 344 

6C and 6D). These data support a model in which the microbiota play a critical role in the 345 

induction of type I IFNs and ISGs during H. polygyrus infection, which in turn leads to 346 

functional antiviral protection in the lung.  347 

348 
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DISCUSSION 349 

Here we demonstrate that a strictly enteric helminth can have protective effects against RSV 350 

infection in the lung, through a mechanism mediated by microbiota-dependent type I IFN 351 

production. Firstly, we established that co-infection with H. polygyrus ameliorated RSV-352 

induced disease (manifesting as weight loss and increased respiratory effort) as well as 353 

reducing the production of pro-inflammatory cytokines and infiltration of immune cells (NK 354 

cells, cDCs, CD8+ T cells and B cells) into the lungs. Unexpectedly, this was associated with, 355 

and presumably a consequence of, a reduction in RSV load following H. polygyrus co-356 

infection. These protective effects were found to be independent of adaptive immune 357 

responses, including Th2 responses, as demonstrated in RAG-/- and IL-4Rα-/- mice 358 

respectively. In addition, these protective effects could not be replicated with HES treatment 359 

instead of live infection. Finally, enteric helminth infection upregulated antiviral type I IFN, 360 

ISG, and Camp gene expression in both the duodenum and the lung, and the protective 361 

effects of H. polygyrus on RSV infection were dependent on type I IFN receptor signalling 362 

and the presence of microbiota, as demonstrated in IFNAR1-/- and germ-free mice, which 363 

were not protected against RSV infection by H. polygyrus.  364 

The role of helminths in co-infections is not well understood (21). In particular, respiratory 365 

viral infection in the context of co-infection with helminths has not been investigated in 366 

epidemiological studies, nor in any great detail in animal models. H. polygyrus co-infection 367 

has previously been shown to reduce influenza virus titres and antibodies against the virus 368 

regardless of the lifecycle stage of helminth used (24). In addition, Trichinella spiralis was 369 

found to have protective effects against influenza infection that were dependent on the 370 

intestinal phase of infection, enhancing weight gain following influenza-induced weight loss 371 

and reducing cellular infiltration into the lung (25). These observations are similar to the 372 
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reduced weight loss observed in the H. polygyrus and RSV co-infection model reported here, 373 

and the reduced cellular infiltrate into the lung. However, the mechanisms involved in this 374 

protection were not elucidated in previous studies. More recently, chronic infection with 375 

Schistosoma mansoni provided significant protection against lethal influenza infection and 376 

infection with pneumovirus of mice (PVM) (49). This was found to be dependent upon the 377 

presence of eggs, which are known to cause significant damage to the gut wall. S. mansoni 378 

induced TNF-α dependent induction of Muc5ac and led to goblet cell hyperplasia in the lung, 379 

indicating increased epithelial barrier function. However, this was independent of type I IFN 380 

production, without any increase in type I IFN in the lung of S. mansoni infected mice over 381 

controls.  382 

Helminths induce a strong Th2 immune response, which is characterised by high levels of IL-383 

4, IL-5 and IL-13, infiltration of eosinophils, basophils and alternatively activated 384 

macrophages, as well as high production of IgE (30-32). In recently reported murine models, 385 

helminth induced type 2 immune responses and associated alternative macrophage activation 386 

aggravated γ-herpesvirus and norovirus infection (22, 23). However, our data show clearly 387 

that the Th2 response is not involved in protection against RSV which was maintained in IL-388 

4Rα-/- mice. In fact the helminth-induced adaptive immune response was all together 389 

dispensable for protection, indicating an important role for the innate antiviral immune 390 

response.  391 

Type I IFNs are an important part of the innate antiviral immune response that can be 392 

triggered through activation of pathogen recognition receptors (PRR) by viral components. 393 

They not only have direct antiviral activity, but they also have the ability to upregulate the 394 

expression of ISGs which have further antiviral potential, thus limiting viral infection and 395 

spread. Type I IFNs and ISGs are rapidly upregulated following RSV infection and decline 396 
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by 24 hours post infection (50, 51). The ISGs viperin and OAS, have previously been found 397 

to play a role in inhibiting RSV infection and have potent antiviral activity (36, 38). In 398 

murine models of RSV infection, prior administration of type I IFNs results in a decrease in 399 

replication and pathology upon RSV infection (52, 53). In addition, IFN-β treatment has also 400 

been shown to have antiviral effects against RSV, through the induction of proteases (54). 401 

Administration of recombinant type I IFN in humans has been limited thus far to IFN-α in the 402 

context of RSV infection (55-57) and nasal, but not intramuscular, administration prior to 403 

RSV challenge reduced signs and symptoms of upper respiratory tract infection (URTI) (56). 404 

Administration of recombinant ISGs has not been widely explored, however, RSV infection 405 

in chinchillas was reduced after transduction of the airways with vectors encoding viperin 406 

(36). However, there is very little evidence linking helminths and type I IFNs in the literature. 407 

Aksoy et al, found that double stranded structures found in S. mansoni egg RNA triggered 408 

TLR3 activation which in turn lead to the activation of the type I IFN response (58). In H. 409 

polygyrus infection, the type I IFN response has previously been reported to inhibit 410 

granuloma formation around larval parasites, but expression of the cytokines in direct 411 

response to infection was not measured (59).  412 

H. polygyrus infection induced upregulation of IFN-β transcript, and IFN-α protein levels in 413 

the lung at very early (< 6 hour post-infection) time points. This result, combined with the 414 

observation that the protective effect of H. polygyrus co-infection was lost in IFNAR 415 

deficient mice, indicates that upregulation of type I IFN expression by H. polygyrus is critical 416 

to its antiviral effects. While we were unable to detect IFN-β protein following H. polygyrus 417 

mono-infection or very early after RSV infection, the extensive gene expression data and in 418 

particular the induction of ISGs suggests that H. polygyrus induces type I IFN production, at 419 

levels too low to be detected by ELISA. We hypothesise that helminth infection and/or 420 
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associated bacterial exposure act as a weak signal for cells to produce low levels of type I 421 

IFN which through feedback via the IFNAR receptor, induce ISG transcription. This may 422 

prime cells to elicit rapid and strong type I IFN and ISG responses upon encounter of a strong 423 

stimulus, such as RSV (60). Such priming would benefit the host by enabling the fine balance 424 

between necessary rapid efficient anti-viral responses triggered by type I IFNs and 425 

detrimental inflammation and autoimmunity associated with chronic type I IFN responses 426 

(61). We observed a significant increase in IFN-α protein levels in the lungs of co-infected 427 

mice 6 hours post RSV infection. Previous reports indicate that IFN-β is effective in inducing 428 

IFN-α production (but not vice versa) (62), therefore we speculate that the early increase in 429 

IFN-β production could lead to the observed increase in IFN-α. Based on the recently 430 

described central role of alveolar macrophages in the production of type I IFN during RSV 431 

infection (63), we speculate that these cell are also the likely source of helminth induced type 432 

I IFN in the lung.  433 

Irradiation of stage 3 H. polygyrus larvae has been previously shown to inhibit their 434 

maturation, but allows larval migration into the intestinal submucosa, after which point the 435 

larvae do not develop further into adults (47). By taking this approach, we demonstrated that 436 

larval stages are sufficient to induce IFN-β and ISG gene expression and to confer protection 437 

against RSV infection. Further investigation in germ free mice revealed a requirement for 438 

microbiota in helminth-induced IFN-β upregulation and resistance to viral replication. It is 439 

therefore plausible to speculate that the damage caused by initial penetration of larvae into 440 

the submucosa may result in bacterial translocation from the gut and activation or priming of 441 

the innate immune response. Indeed, upregulation of type I IFNs at epithelial barrier surfaces 442 

can reduce bacterial translocation by upregulating tight junctions (64). Thus bacterial 443 

translocation in the intestine during H. polygyrus infection may induce upregulation of type I 444 
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IFNs systemically to limit such translocation. In addition, commensal, but not pathogenic, 445 

bacteria have been shown to induce type I IFN production and can also provide protection 446 

against influenza infection (65-67). Furthermore, helminth infection has been shown to alter 447 

the microbiome in the intestine of both humans and mice. A study conducted in Malaysia 448 

indicated that helminth infected people had a greater bacterial number and richer diversity, 449 

with increases in specific bacterial taxa, than uninfected controls (68). Likewise in mice, 450 

parasites including Trichuris muris and H. polygyrus have been found to alter the balance of 451 

commensals in the intestine (69, 70). A specific increase in Lactobacillus species has been 452 

noted during H. polygyrus infection (70). Interestingly, the administration of Lactobacillus 453 

species prior to RSV infection, either by intranasal or oral routes, can increase antiviral 454 

immunity, including an increase in IFN-β in the bronchoalveolar lavage and therefore 455 

resistance to RSV infection (71, 72). 456 

Viral LRTI with RSV and rhinoviruses in the first years of life has been linked to the 457 

development of asthma (73-75), which helminth infections have been shown to protect 458 

against in mouse model systems (76, 77). In parallel, intestinal helminth infections in humans 459 

have been reported to increase bacterial translocation (78). Thus, we speculate that helminth 460 

infection may protect against severe respiratory viral infections in early life, and that this 461 

effect in turn may contribute to a reduced potential for asthma development.   462 

In conclusion, we show that intestinal helminth infection can be beneficial in respiratory viral 463 

infection. Based on our findings we hypothesise that helminth infection in the gut triggers 464 

type I IFN production through bacterial interactions, which leads to systemic type I IFN 465 

induction thus raising preparedness of remote sites such as the lung to mount an effective 466 

innate response against incoming unrelated viral pathogens. In addition to these findings, 467 

further work will be required to elucidate the exact mechanisms of H. polygyrus induced 468 
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antiviral effects, and thus inform potential translation towards new helminth-based 469 

approaches to prevention and treatment of respiratory viral disease.  470 
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Table-I: Primers used for Real-time PCR  682 

  683 

684 

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’) Probe (FAM-TAMRA 5’-3’) 

OAS-1a TCCTGGGTCATGTT

AATACTTCCA 

GAGAGGGCTGTGG

TGGAGAA 

CAAGCCTGATCCCAGAA

TCTATGCC 

Viperin CGAAGACATGAAT

GAACACATCAA 

AATTAGGAGGCAC

TGGAAAACCT 

CCAGCGCACAGGGCTC

AGGG 

RSV-L GAACTCAGTGTAG

GTAGAATGTTTGC

A 

TTTCAGCTATCATT

TTCTCTGCCAAT 

TTTGAACCTGTCTGAAC

ATTCCCGGTT 
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Figure legends 685 

Figure 1. H. polygyrus infection attenuates RSV disease and inflammation and reduces 686 

RSV viral load.  687 

The standard co-infection protocol was used as follows: female BALB/c mice were given 200 688 

H. polygyrus L3 larvae by oral gavage at day -10 or left naive. At day 0, 6x10
5 

PFU (A, B) or 689 

4x10
5
 PFU (C, D, E) RSV or UV-inactivated RSV was administered intranasally, (A) Mice 690 

were weighed daily and percentage of original weight is shown; (B) Enhanced pause (penH) 691 

was assessed by whole body plethysmography (WBP); (C, D) Samples were taken at the 692 

indicated time points after RSV infection for flow cytometric analysis. Numbers of CD3
+
 693 

CD8
+
 T cells (C) and of MHCII

+
CD11b

+
CD11c

+ 
conventional dendritic cells (D) per right 694 

lung lobe are shown; (E) Lungs were harvested on days 3, 4 and 6 post RSV infection and 695 

plaque assays performed. All data are depicted as mean ± SEM. Data in A & B pooled from 2 696 

independent experiments, total n=8 per group, in C, D & E from 2 independent experiments, 697 

total n=6 per group per time point. Statistical significance of differences between RSV 698 

infected groups was determined by two-way ANOVA with Bonferroni’s post hoc 699 

test.*P<0.05, **P<0.01, ***P<0.001. 700 

 701 

Figure 2. Adaptive immune responses, including Th2 responses, are not required for the 702 

H. polygyrus-mediated attenuation of RSV viral titres.  703 

The standard co-infection protocol was followed (A) in BALB/c IL-4Rα deficient mice and 704 

(B) in BALB/c RAG1 deficient mice. Lungs were harvested on day 4 of RSV infection and 705 

plaque assays performed to determine RSV titres. All data are depicted as mean ± SEM. Data 706 

in A are pooled from 2 individual experiments, total n=4-8 per group. Data in B are 707 

representative of 2 independent experiments, n=3-4 per group. Statistical significance 708 
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between groups was determined by one-way ANOVA with Tukey’s post hoc test. *P<0.05, 709 

**P<0.01.  710 

 711 

Figure 3. H. polygyrus induces type I IFN and associated gene expression in the lung.  712 

BALB/c (A-C) were given 200 L3 H. polygyrus larvae or left naïve. At indicated time-points 713 

post-H. polygyrus infection half of the large left lung lobe was placed in Trizol and RTPCR 714 

was performed for expression levels of (A) IFN-β, (B) OAS1a or (C) viperin in lung 715 

comparing H. polygyrus infected to naïve mice. The standard co-infection protocol was 716 

followed in BALB/c mice (D-I). 1 hour after RSV infection half of the large left lung lobe 717 

was placed in Trizol and RTPCR was performed for expression levels of (D) IFN-β (E) 718 

OAS1a (F) viperin. (G-I) 1 (data from Fig. 3A), 6 and 12 hours post-RSV infection half of 719 

the large left lung lobe was placed in (G) Trizol and RTPCR was performed for expression 720 

levels of IFN-β; (H&I) was homogenized and (H) IFN-β and (I) IFN-α protein levels were 721 

analysed by ELISA. (A-G) results were normalised to 18S expression and represented as fold 722 

change in expression over naïve controls (A-C), UV-RSV controls (D-G). Data are depicted 723 

as mean ± SEM. Data are pooled in A-I from 2 independent experiments, total n=6-8 per 724 

group and in I from 2 individual experiments, total n=10 per group. Statistical significance of 725 

differences between groups was determined, A-C by one-way ANOVA with Bonferroni’s 726 

post hoc test and in D-I by two-way ANOVA with Bonferroni’s post hoc test. *P<0.05, 727 

**P<0.01, ***P<0.001, NS = non-significant. 728 

 729 

Figure 4. Type I IFN signalling is essential for H. polygyrus-induced protection against 730 

RSV.  731 

(A) The standard co-infection protocol was followed in C57BL/6 or IFNAR1 deficient mice 732 

or were given 200 L3 H. polygyrus larvae or left naïve. 3 days post-RSV infection half of the 733 
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large left lung lobe was placed in Trizol and RTPCR was performed for expression of RSV L 734 

gene. (B&C) 10 post-H. polygyrus infection half of the large left lung lobe was placed in 735 

Trizol and RTPCR was performed for expression levels of (B) OAS1a or (C) viperin in lung 736 

comparing H. polygyrus infected to naïve mice. All results were normalised to 18S 737 

expression and represented as fold change in expression over naïve/RSV controls. Data are 738 

depicted as mean ± SEM. Data are pooled from 2 independent experiments, total n=6-10 per 739 

group. Statistical significance of differences between groups was determined by two-way 740 

ANOVA with Bonferroni’s post hoc test. *P<0.05, **P<0.01, ***P<0.001, NS = non-741 

significant. 742 

 743 

Figure 5. H. polygyrus larval stages are sufficient to protect against RSV infection.  744 

200 L3 H. polygyrus larvae were irradiated at 300 Gy and compared to non-irradiated larvae 745 

in (A) standard co-infection protocol; or (B-D) to naïve controls following H. polygyrus 746 

infection alone. (A) Lungs were harvested on day 4 of RSV infection and plaque assays 747 

performed. (B-D) On day 10 of H. polygyrus infection the right lung lobes were removed and 748 

placed in Trizol for RTPCR for IFN-β, OAS1a and viperin. All results were normalised to 749 

18S expression and represented as fold change in expression over controls. All data are 750 

depicted as mean ± SEM. A-D is representative of two individual experiments, total n=3-4 751 

per group. Statistical significance of differences between groups was determined in (A) by 752 

one-way ANOVA with Tukey’s post hoc test and (B) by unpaired t-test. *P<0.05, **P<0.01, 753 

***P<0.001, NS= non-significant. 754 

 755 

Figure 6. Microbiota are required to protect against RSV infection.  756 

The standard co-infection protocol was followed in BALB/c germ-free and SPF mice, using 757 

400L3 germ free H. polygyrus larvae and 3x107 sterile RSV in 100µl. On day 4 after RSV 758 
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infection, (A) the left lung lobe was removed and plaque assays performed; (B) the right lung 759 

lobes were removed and placed in Trizol for RTPCR for RSV L gene or (C) IFN-β 760 

expression; (D) the first centimetre of the duodenum was removed and placed in Trizol and 761 

RTPCR was performed for expression of IFN-β. Results in B-D are normalised to 18S and 762 

represented as fold change in expression over SPF RSV infected controls. All data are 763 

depicted as mean ± SEM. All data are representative of two individual experiments, total 764 

n=3-4 per group. Statistical significance of differences between groups was determined by 765 

unpaired t-test. *P<0.05, **P<0.01, ***P<0.001, NS= non-significant. 766 

 767 
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 845 

METHODS 846 

Cytometric Bead Array 847 

Half of the left lung lobe was homogenised using a TissueLyser (Qiagen) in 0.5ml of 1x cell 848 

lysis buffer (Cell Signalling, Danvers, MA, USA) containing 1µg PMSF (Sigma). Cytokines 849 

present in the lung homogenate were detected through the use of a Cytokine Bead Array flex 850 

set (BD Biosciences), following the manufacturer’s protocol was followed. Samples were 851 

collected on the FACS Array (BD) and analyzed using Flowjo software (version 7.6.5). 852 

ELISA 853 

IL-33 was measured using the R&D Systems ELISA kit according to the manufacturer’s 854 

instructions. 855 

Osmotic Minipump Surgery 856 

Minipumps (Alzet, Cupertino, CA) were filled with the appropriate volume and concentration 857 

of HES prior to implantation, and primed in saline at 37°C overnight. Mice were placed 858 

under general anaesthesia using inhalable isoflurane and were given 0.1mg/kg subcutaneous 859 

buprenorphine. The peritoneal cavity area was shaved and the area was swabbed with alcohol 860 

to provide a sterile environment. A midline incision was made just below the ribcage, about 861 

1cm in length. The musculoperitoneal layer was lifted using forceps to avoid internal 862 

damage, and an incision was made in the peritoneal wall beneath. The primed minipump was 863 

then inserted into the cavity, with the delivery port entering first, and the wound was then 864 

closed using interrupted sutures. Mice were monitored upon recovery from anaesthetic, and 865 

were given a further 0.1mg/kg subcutaneous buprenorphine post-op 866 

867 
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 868 

Figure legends 869 

Figure E1: H. polygyrus infection attenuates RSV inflammation and reduces viral load. 870 

The standard co-infection protocol was followed. Samples were taken at the indicated time 871 

points after RSV infection for flow cytometric analysis. (A) Total number of 872 

CD49B+NKP46+ NK cells per right lung lobe; (B) Total number MHCII+CD19+B220+ B 873 

cells per right lung lobe;  (C, D) Half of the left lung lobe was homogenized and cytokine 874 

levels were analysed by Cytometric Bead Array (CBA) levels of (C) IL-6 and (D) TNF-α (E) 875 

IFN-γ levels were determined. (F) The standard co-infection protocol was followed in female 876 

C57BL/6 mice. 3 days post-RSV infection half of the large left lung lobe was placed in Trizol 877 

and RT-PCR was performed for expression of the RSV L gene. All data are depicted as mean 878 

± SEM and are pooled from 2 independent experiments, total n=6 per group per time point. 879 

Statistical significance of differences between RSV infected groups were determined, in A-E 880 

by two-way ANOVA with Bonferroni’s post hoc test and in F by unpaired t-test.  *P<0.05, 881 

***P<0.001. 882 

 883 

Figure E2: IL-33 is not essential for protection against RSV. 884 

The standard co-infection protocol was followed in (A & B) BALB/c or in (C) BALB/c IL-885 

33R-/- mice. Samples were taken 1 hour after RSV infection (A) for flow cytometric analysis 886 

of numbers of ICOS+ IL-13+ ILCs per right lung lobe; (B) half of the left lung lobe was 887 

homogenized and cytokine levels were analysed by ELISA; (C) The standard co-infection 888 

protocol was followed in BALB/c IL-33R-/- mice. Lungs were harvested on day 4 of RSV 889 

infection and plaque assays performed to determine titres. All data are depicted as mean ± 890 
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SEM. Data are pooled from 2 independent experiments, total n=6-8 per group. Statistical 891 

significance of differences between groups was determined by two-way ANOVA with 892 

Bonferroni’s post hoc test. *P<0.05, **P<0.01, ***P<0.001. 893 

 894 

Figure E3: H. polygyrus induces type I IFN and associated gene expression in the 895 

intestine.  896 

BALB/c mice were given 200 L3 H. polygyrus larvae or left naïve. The 1st cm of the 897 

duodenum was placed in Trizol and RT-PCR was performed for expression levels of IFN-β, 898 

OAS1a, Viperin (A-C) comparing H. polygyrus infected to naïve mice. Results were 899 

normalised to 18S expression and represented as fold change in expression over naïve 900 

controls. Data are depicted as mean ± SEM. Data are pooled from 2 independent 901 

experiments, total n=6-8 per group. Statistical significance of differences between groups was 902 

determined by one-way ANOVA with Bonferroni’s post hoc test. **P<0.01 903 

 904 

Figure E4: Camp does not drive type I IFN and ISG expression in the lung.  905 

BALB/c mice were given 200 L3 H. polygyrus larvae or left naïve. (A) The 1st cm of the 906 

duodenum and (B) half of the large left lung lobe was placed in Trizol and RT-PCR was 907 

performed for expression levels of Camp comparing H. polygyrus infected to naïve mice. (C) 908 

The standard co-infection protocol was followed in BALB/c mice and 1 hour after RSV 909 

infection half of the large left lung lobe was placed in Trizol and RT-PCR was performed for 910 

expression levels of Camp. (D-F) C57BL/6 or Camp-/- mice were given 200L3 H. polygyrus 911 

by oral gavage or left naïve. Half of the large left lung lobe was placed in Trizol and RT-PCR 912 

was performed for expression levels of (D) IFN-β, (E) OAS1a, and (F) Viperin. All results 913 
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were normalised to 18S expression and represented as fold change in expression over naïve 914 

controls (A & B), UV-RSV controls (C), or C57BL/6 naive controls (D-F). Data are depicted 915 

as mean ± SEM. Data are pooled from 2 independent experiments, total n=6-8 per group. 916 

Statistical significance of differences between groups was determined in A & B by one-way 917 

ANOVA with Bonferonni’s post-hoc test and in C-F by two-way ANOVA with Bonferroni’s 918 

post hoc test. *P<0.05, **P<0.01, ***P<0.001. 919 

 920 

Figure E5: RSV titres are not inhibited by HES administration.  921 

5μg HES was given to mice (A) intranasally on day -1 & 0, (B) intranasally on day -7, -4, -1 922 

& 0, (C) intraperitoneally on day -7, -4, & -1. Osmotic minipumps containing HES were 923 

surgically implanted on (D) day -7, (E) day -10, releasing 0.25 µl HES per hour for 10 or 14 924 

days respectively. On day 0 4x105 PFU RSV was administered intranasally. Lungs were 925 

harvested on day 4 of RSV infection and plaque assays performed. All data are depicted as 926 

mean ± SEM, total n=4 per group. Statistical significance of differences between groups was 927 

determined by unpaired t-test. NS= non-significant. 928 
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