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Abstract 
Many plant species respond to unfavourable high ambient temperatures by adjusting their vegetative body plan to 

facilitate cooling. This process is known as thermomorphogenesis and is induced by the phytohormone auxin. Here, we 

demonstrate that the chromatin modifying enzyme HISTONE DEACETYLASE 9 mediates thermomorphogenesis but does 

not interfere with hypocotyl elongation during shade avoidance. HDA9 is stabilized in response to high temperature and 

mediates histone deacetylation at the YUCCA8 locus, a rate-limiting enzyme in auxin biosynthesis, at warm 

temperatures. We show that HISTONE DEACETYLASE 9 permits net eviction of the H2A.Z histone variant from 

nucleosomes associated with YUCCA8, allowing binding and transcriptional activation by PHYTOCHROME INTERACTING 

FACTOR 4, followed by auxin accumulation and thermomorphogenesis. 

 

 

Significance statement 
Knowledge-based development of global warming-resilient crop varieties is hindered by limited understanding of warm 

temperature signaling mechanisms. Using the Arabidopsis model, we show that the chromatin modifying enzyme 

HISTONE DEACETYLASE 9 (HDA9) is essential for promoting an open plant architecture that allows for efficient 

mitigation of the impact of warm temperature. HDA9 does not affect hypocotyl elongation in response to different light 

conditions, setting it apart from the shade avoidance response that phenotypically resembles acclimation to warmth.  

We demonstrate that HDA9 is required for transcriptional activation of YUCCA8, the rate-limiting enzyme in the 

biosynthesis of the phytohormone auxin, by facilitating net eviction of the H2A.Z histone variant from YUCCA8 

nucleosomes at warm temperature.  

 

 

Introduction 
Plants are immobile and lack homeostatic mechanisms to maintain body temperature. Therefore, projected global 

warming poses a serious threat to agricultural productivity, as each degree Celsius increase can lead up to 10% decrease 

in crop yields (1, 2). Several species, including the model plant Arabidopsis thaliana, can however mitigate warmth 

through adjustments of the vegetative body plan by a phytohormone dependent process called thermomorphogenesis 

(3–5). The resulting ‘open’ rosette architecture that is caused by traits such as upward leaf movement and hypocotyl 

and petiole elongation allows for more efficient cooling through improved evaporation and heat flux avoidance. As a 

result, thermomorphogenesis is essential for conferring optimized fitness under unfavourable high temperature 

conditions (3–5). 

PHYTOCHROME INTERACTING FACTOR4 (PIF4) is an indispensable transcription factor for mediating 

thermomorphogenesis (6–8). PIF4 is transcriptionally induced by warm temperatures (6–8) and is tightly controlled by 

the evening complex component EARLY FLOWERING3 (ELF3) (9, 10). PIF4 directly binds and activates the expression of 

genes involved in biosynthesis of auxin, including the rate-limiting enzyme flavin monooxygenase YUCCA8 (YUC8) (7, 

11). 

Thermomorphogenesis phenotypically resembles the shade avoidance response, which is a strategy exhibited by plants 

to outcompete neighbours under dense canopies (12). Accordingly, many of the proteins responsible for regulating 

thermomorphogenesis also play a role in light signaling and/or shade avoidance (4, 5). This includes PIF4 (6–8, 11) and 

the red light photoreceptor phytochrome B (phyB), that was shown to also act as a thermosensor (13, 14). 

Thermomorphogenesis is controlled by epigenetic mechanisms that regulate gene expression (11, 15–22). The 

histone variant H2A.Z is evicted from nucleosomes at thermoresponsive genes, in a Heat Shock Factor A1 (HSFA1a) 

family-dependent manner (16, 20). The ACTIN-RELATED PROTEIN6 (ARP6)-containing SWR1 histone replacement 

complex is involved in the deposition of H2A.Z (16, 23, 24). In the context of high temperature signaling, H2A.Z eviction 

is associated with greater chromatin accessibility and enhanced potential for transcriptional modulation by permitting 

the binding of transcriptional regulators such as PIF4 (16, 20, 23). Furthermore, histone methylation contributes to 

regulation of temperature-responsive loci (15). More specifically, PICKLE (18) and SEUSS (19) stimulate 

thermomorphogenesis, whereas FLOWERING TIME CONTROL PROTEIN A (FCA)-mediated H3K4me2 removal from YUC8 

attenuates thermomorphogenesis, preventing plant lodging (11). We (21) and others recently demonstrated that 

histone deacetylation mediated by the SANT domain-containing protein POWERDRESS (PWR) and the interacting 
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REDUCED POTASSIUM DEPENDENCY 3 (RPD3)-like Class I HISTONE DEACETYLASE 9 (HDA9) (25, 26) as well as HDA19 

(22) are essential positive regulators of thermomorphogenesis, whereas HDA15 was identified as negative regulator of 

the response (22). 

Here, we show that HDA9 defines a temperature signaling pathway that is uncoupled from shade avoidance. 

Under warm temperatures, HDA9 protein levels are high in young seedlings and mediates histone deacetylation at 

nucleosomes positioned at the transcriptional start-site and gene body of YUC8. This deacetylation event proposedly 

results in lower H2A.Z levels at warm temperatures, which allows for PIF4 binding to the G-box motif in the YUC8 

promoter followed by conditional YUC8 transcriptional activation, resulting in auxin production and ultimately 

thermomorphogenesis.  

 

 

Results 
 

HDA9 defines a thermosignaling pathway 

To investigate the role of HDA9 in thermomorphogenesis responses of vegetative organs (‘type 3 

thermomorphogenesis’ (5)), we first examined the morphology of mutants in HDA9 in control (22oC) and elevated 

(27oC) ambient temperature. Arabidopsis hda9 mutants are compromised in thermomorphogenesis (21), as displayed 

by reduced hypocotyl elongation (Fig. 1A), petiole elongation and hyponastic growth (SI Appendix, Fig. S1A-D). 

Hypocotyl elongation of hda9 mutants was not affected in darkness (skotomorphogenesis) nor by spectral neutral 

shading (SI Appendix, Fig. S1E), indicating that elongation capacity is not compromised by HDA9. Furthermore, 

temperature-induced hypocotyl elongation was complemented in a line carrying functional HDA9 in the hda9-1 mutant 

background (27), confirming the requirement of HDA9 for thermomorphogenesis (SI Appendix, Fig. S1C). Some residual 

elongation was observed in hda9 mutant lines at high temperature (Fig. 1A, SI Appendix, Fig. S1A-D), which suggests 

that while HDA9 is clearly essential, other factors contribute to thermomorphogenesis. 

Temperature shift experiments, where seedlings were transferred from control to elevated temperatures 

conditions and vice versa, indicated that hda9-1 and pif4-2 mutants exhibit reduced temperature sensitivity in hypocotyl 

elongation (SI Appendix, Fig. S1F). However, not all temperature-associated phenotypes are compromised in hda9 

mutants. For example, high temperature-induced expression of the HEAT SHOCK PROTEIN 70 (HSP70) marker gene (16), 

was not affected in the hda9-1 mutant (SI Appendix, Fig. S1G). Furthermore, the typical high temperature-induced 

acceleration of the floral transition (28, 29) in hda9-1 was comparable to wild type (SI Appendix, Fig. S1H), even though 

hda9 mutants exhibit a mild early flowering phenotype in short day conditions (27, 30). Notably, mutants in HDA9 also 

retained responsiveness to light quality signals that induce shade avoidance, whereas shade avoidance was attenuated 

in the pif4-2 mutant, as expected (31) (Fig. 1B, SI Appendix, Fig. S1I). Moreover, the hda9-1 mutation could not suppress 

the constitutively elongated phenotype of the phyB-9 mutant (Fig. 1C, SI Appendix, Fig. S1J), suggesting that phyB 

effects do not depend on HDA9. In conclusion, HDA9 defines a novel thermosignaling pathway independent of 

temperature-induced flowering and is unlikely to have a role in hypocotyl elongation during shade avoidance. 

 

HDA9 promoter activity, expression and protein dynamics 

To examine if elevated temperature affects HDA9 promoter activity, we performed studies on transgenic lines carrying 

HDA9 promoter-reporter fusion constructs. Our study using pHDA9::GUS lines revealed that HDA9 promoter activity 

was largely, but not exclusively, restricted to roots, the root-shoot junction and basal hypocotyl tissues of germinating 

seedlings and declined during seedling establishment (SI Appendix, Fig. S2A,B). Testing pHDA9::GUS and pHDA9::LUC 

lines and quantitative RT-PCR experiments demonstrated that high temperature had no effect on HDA9 transcript 

levels, nor promoter activity (SI Appendix, Fig. S2A,C-F, SI Appendix, Fig. S3A). Diurnal in planta luminescent profiling 

using HDA9 protein-reporter fusion constructs (35S::HDA9-LUC) lines revealed that HDA9 protein levels peak at dawn in 

response to warm temperature conditions, starting from day 3 after initiation of germination (2 day-old seedlings) (Fig. 

2A, SI Appendix, Fig. S3A-C). HDA9 levels then gradually decreased during the day, with minimal levels displayed at dusk 

(Fig. 2A, SI Appendix, Fig. S3A). The peak amplitude of HDA9 protein levels at dawn faded during seedling establishment, 

reaching levels comparable to control temperature (22oC) at approximately day 7 after initiation of germination. No 



 
4 

 

apparent diurnal changes in HDA9 were observed at control temperature (22oC). We therefore conclude that the 

elevated temperature signal is essential for observed increases in HDA9 protein levels.  

Detected LUC signals of our 35S::HDA9-LUC lines (Fig. S2A, SI Appendix, Fig. S3A) were ~50-fold lower than that of 

seedlings expressing 35S::LUC (SI Appendix, Fig. S3B). This difference likely can be attributed to suppression of the LUC 

signal by proteasomal degradation of HDA9 (32). Combined with the low expression from the native pHDA9 promoter 

(compared to the constitutive 35S promoter), this also explains why the diurnal peaks in LUC activity at warm 

temperature were not clearly detectable in seedlings expressing pHDA9::HDA9:LUC (Fig. S3A). We therefore next 

analyzed whole-mount seedlings of several independent 35S::HDA9-LUC and pHDA9::HDA9-LUC lines (SI Appendix, Fig. 

S3D,E) and normalized the detected LUC signals at warm temperatures to those at control temperature levels. This 

confirmed that temperature triggers HDA9 accumulation, also when expressed from the native promoter (SI Appendix, 

Fig. S3F,G). PIF4 promoter activity and PIF4 protein levels followed a diurnal cycling pattern in response to high 

temperature at dawn of day 3 (Fig. 2A, SI Appendix, Fig. S3H), as observed before (33–35). 

To test whether the diurnal HDA9 and PIF4 protein abundance profiles match their requirement for 

thermomorphogenesis, we monitored the progression of hypocotyl elongation in pif4 and hda9 mutants in response to 

elevated temperatures (Fig. 2B, SI Appendix, Fig. S4A). At control 22oC, hda9-1 and pif4-2 exhibited overall wild type 

rates of hypocotyl elongation during a 7-day exposure to short-day photoperiod conditions. An increase in hypocotyl 

elongation in response to elevated temperature (27oC) started immediately after germination and initially occurred 

independent of PIF4 and HDA9 (Fig. 2B, SI Appendix, Fig. S4A). However, this high temperature induction in hypocotyl 

elongation was largely impaired in hda9-1 and pif4-2 from day 3 onwards, whereas wild type seedlings retained an 

increased elongation rate throughout the experimental period at 27oC. This indicates that HDA9 and PIF4 promote 

thermomorphogenesis from day 3 (t=48h after initiation of germination), which correlates with the protein abundance 

profile of HDA9 and PIF4 (Fig. 2A). Of note, growth attenuation of hda9-1 and pif4-2 relative to wild type occurred 

largely, but not exclusively during the night period (Fig. 2B, SI Appendix, Fig. S4A). 

  

The HDA9, PIF4, ARP6/H2A.Z module 

A possible genetic interaction between HDA9 and PIF4 was examined using a pif4-2 x hda9-1 double mutant. This 

double mutant showed impaired hypocotyl elongation in response to elevated temperature (Fig. 2C). Interestingly, 

temperature-induced hypocotyl elongation was suppressed by the specific HDAC-inhibitor Trichostatin-A (TSA) (36) in a 

PIF4 overexpression line (35S::PIF4-HA), indicating that HDAC activity has a role downstream or parallel to PIF4 

signalling during thermomorphogenesis (SI Appendix, Fig. S4B).  

The next step was to assess the role of the ARP6-containing SWR1 complex, known to be required for the 

incorporation of H2A.Z (24) at nucleosomes of thermoresponsive genes (15, 16, 20, 23). Consequently, the arp6-1 

mutant displays a warm temperature transcriptome and elongated hypocotyls even at control temperatures (22oC) (16). 

We observed that the arp6-1 mutant was resistant to TSA application (Fig. 2D). This observation suggests that ARP6 and 

H2A.Z genetically operates downstream of HDAC-mediated thermomorphogenesis. Attempts to obtain double 

homozygous hda9-1-/- x arp6-1-/- mutants were unsuccessful as independent progenies of hda9-1-/- x arp6-1-/+ lines 

segregated on average in a 56% (hda9-1-/- x arp6-1 +/+)/44% (hda9-1-/- x arp6-1-/+) ± 5.3% ratio. Such a close to 50/50 

non-Mendelian ratio implies that the double mutant is most likely lethal, indicating possible mutual dependency of 

HDA9 and ARP6/H2A.Z for viability. Examination of pif4-2 x arp6-1 double mutants revealed suppression of the arp6-1 

phenotype (Fig. 2C), demonstrating that PIF4 is required for ARP6/H2A.Z-mediated thermomorphogenesis. Importantly, 

the transcriptional activation of PIF4 in response to warm temperature does however not require HDA9 and ARP6 (SI 

Appendix, Fig. S4C,D).  

We next tested the possibility of a direct interaction between HDA9 and PIF4 and between HDA9 and HSFA1a, 

that allows for transcriptional induction of thermoresponsive genes by facilitating eviction of H2A.Z-nucleosomes during 

the day time (16, 20, 23), by Bimolecular Fluorescence complementation (BiFC) experiments (SI Appendix, Fig. S5A-C) 

and Yeast-two-hybrid assays. No direct interaction between HDA9 and PIF4 nor HSFA1a was however observed, with 

the approaches used and under the conditions tested, whereas the known (37) ZINC-FINGER HOMEODOMAIN 10 

(ZFHD10) homodimerization (BiFC) and interaction between TANDEM ZINC-FINGER PLUS3 (TZP) and ZFHD10 (Yeast-two-

hybrid), here used as positive controls, were confirmed (SI Appendix, Fig. S5D,E). Although this does not exclude the 

possibility that HDA9, PIF4 and/or HSFA1a are part of a multi-protein complex. Together, these results indicate that 

HDA9, PIF4, ARP6 and H2A.Z present a genetic thermosignaling module that orchestrates thermomorphogenesis. 
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HDA9 promotes auxin biosynthesis 

It is well-established that HDA9 is an epigenetic regulator of gene transcription. Therefore, we decided to investigate 

the effect of HDA9 on the transcriptional level to identify HDA9 targets during vegetative plant thermomorphogenesis. 

More specifically, to identify early and late differentially regulated genes, we performed RNA-sequencing and 

comparative analysis of the control (22oC) and warm temperature transcriptomes (27oC) of hda9-1, pif4-2 and Col-0 

(wild type) seedlings at dawn of day 3 (2d-old) and day 8 (7d-old) (SI Appendix, Fig. S6A). Hierarchical clustering (SI 

Appendix, Fig. S6B) and principal component analyses (PCA) (SI Appendix, Fig. S6C-E) indicated that expression 

differences were primarily explained by age of the plant and temperature. Two day-old seedlings showed similar trends 

for high temperature-regulated genes between Col-0 and pif4-2, whereas hda9-1 exhibited a distinct transcriptome (SI 

Appendix, Fig. S6F, SI Appendix, Fig. S6D). Seven day-old seedlings exhibited apparent transcriptome differences 

between wild type and pif4-2 and less so between wild type and hda9-1 (SI Appendix, Fig. S6G, SI Appendix, Fig. S6E).  

Gene Ontology enrichment analysis revealed an auxin-responsive signature for the genes that were 

upregulated in response to high temperature in 2 day-old wild type, but not in hda9-1 seedlings (Table 1, SI Appendix, 

Table S1). Given the requirement of auxin for thermomorphogenesis (6–8), the levels of bioactive IAA were quantified in 

hda9-1 and pif4-2 seedlings. These measurements showed that HDA9 is required for high temperature-induced auxin 

accumulation in 7 day-old seedlings and confirmed the necessity of PIF4 (6–8) (Fig. 3A). However, no significant changes 

in IAA levels were observed in 2 day-old seedlings (Fig. 3A), suggesting that high temperature-induced hypocotyl 

elongation during the first two days after germination (Fig. 2B) may not require de novo auxin biosynthesis. These data 

are consistent with our observation that temperature-dependent effects on HDA9 and PIF4 protein levels (Fig. 2A; SI 

Appendix, Fig. S3) and elongation growth (Fig. 2B) are only observed from dawn of day 3 after germination and 

onwards.  

Detailed examination of auxin biosynthesis and signaling genes (SI Appendix, Table S1) revealed that high 

temperature-induced upregulation of among others the rate-limiting auxin biosynthesis gene YUC8 was suppressed in 

hda9-1, supporting our hypothesis that histone deacetylation is necessary for YUC8 induction (21). This requirement of 

HDA9 (and PIF4 (7)) for YUC8 induction was independently confirmed by qRT-PCR analysis (Fig. 3B) and luminometric 

assays using lines transiently expressing pYUC8-LUC (38) (SI Appendix, Fig. S7A). Assessment of a pYUC8-n3GFP 

transgenic line confirmed that YUC8 promoter activity is induced by high temperature in the root-hypocotyl junction 

(Fig. S7B) in 2 day-old seedlings, the tissue where HDA9 promoter activity is prevalent (SI Appendix, Fig. S2A,B). The 

application of the HDAC inhibitor TSA further confirmed that HDAC activity positively contributes to YUC8 induction (SI 

Appendix, Fig. S7B). 

YUCCA enzymes catalyze the conversion of Indole-3-pyruvic acid (IPyA) to bioactive Indole-3-acetic acid (IAA) 

(39) and mutation of YUC8 alone is sufficient to impair thermomorphogenesis (7). Auxin metabolite profiling 

demonstrated an increase of IpyA relative levels in the hda9-1 and pif4-2 mutant backgrounds, consistent with the 

requirement of HDA9 and PIF4 (7, 8) for YUC8 induction (Fig. 3C, SI Appendix, Fig. S8A,B). Accordingly, application of the 

synthetic auxin analogue Picloram to hda9-1 and pif4-2 (7, 8) seedlings exposed to warm temperatures substantially 

attenuated the impairment of hypocotyl elongation (Fig. 3D, SI Appendix, Fig. S8C), whereas the response to IpyA 

application was less effective (SI Appendix, Fig. S8C). Strikingly, levels of various auxin metabolites and IAA, were 

elevated in the arp6-1 mutant (Fig. 3C), suggesting that the constitutive elongated hypocotyls at control temperatures 

of arp6-1 (16) is auxin-dependent. Indeed, application of the polar auxin transport inhibitor 1-naphthylphthalamic acid 

(NPA) suppressed the arp6-1 hypocotyl elongation phenotype (SI Appendix, Fig. S8D), as in 35S::PIF4-HA and wild type. 

We conclude that HDA9 mediates thermomorphogenesis by promoting YUC8-transcription and auxin accumulation and 

that this response is likely antagonized by ARP6/H2A.Z. 

 

HDA9 permits H2A.Z depletion to facilitate PIF4 binding to the YUCCA8 promoter 

It has been reported that high ambient temperature (40) and heat stress (41) lead to increased levels of histone 

acetylation at specific loci across the genome. Moreover, the HDA9/PWR complex stimulates H3 deacetylation (25, 26) 

and we have shown that PIF4 and YUC8 +1 nucleosomes are hyperacetylated at elevated temperatures in 10 day-old 

pwr mutants (21). We also monitored H3K9K14 acetylation levels in 2 day-old seedlings by Western blot analysis and 

showed a genome-wide increase in this epigenetic mark in response to elevated temperature (Fig. 4A). Acetylation 

levels in the pif4-2 mutant were similar to wild type, suggesting that PIF4 does not have a role in mediating global 
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acetylation levels (Fig. 4A). Furthermore, the data confirmed that hda9-1 seedlings exhibit constitutive H3K9K14 

hyperacetylation at both control and high temperature (26, 30, 42) conditions (Fig. 4A).  

To assess the effect of HDA9 on histone acetylation levels at the YUC8 locus, we performed Chromatin 

Immunoprecipitation (ChIP) assays in 2 day-old seedlings, since our data (Fig. 2) showed that thermomorphogenesis is 

initiated at this time point. This revealed a warm temperature-specific increase in H3K9K14 acetylation at the YUC8 

transcriptional start site and gene body in hda9-1 seedlings (Fig. 4B, SI Appendix, Fig. S9A,B) compared to wild type and 

pif4-2 mutant plants. In 10-day old wild type seedlings we also observed H3K9K14 deacetylation at the transcriptional 

start site, as described previously (21) (SI Appendix, Fig. S9C). HDAC activity has been primarily associated with 

transcriptional repression (43–45), however, these results together with our earlier findings (21), indicate that HDA9-

mediated H3K9K14 deacetylation permits thermal induction of YUC8 transcription (Fig. 4B, Fig. 3B, SI Appendix, Fig. S7, 

SI Appendix, Fig. S9A,B). Accordingly, PIF4 binding to the G-box motif (CACGTG) in the YUCCA8 promoter (Fig 4C; SI 

Appendix, Fig. S9D), but not the PIF4 promoter (SI Appendix, Fig. S9E), was abolished in the hda9-1 mutant. Although, 

PIF4 protein levels in the hda9-1 35S::PIF4 line background were slightly lower than in the 35S::PIF4 background (SI 

Appendix, Fig. S9F), likely due to (partial) silencing of the 35S::PIF4 transgenic construct by the hda9-1 SALK T-DNA 

insert, an effect that is not uncommon for T-DNA insertion lines (46).  

 The resistance of the arp6-1 mutant to TSA application (Fig. 2D) indicated that ARP6/H2A.Z operates genetically 

downstream of HDA9. Furthermore, studies in rat (47) and yeast (48) demonstrated that H3K9K14 acetylation levels 

positively correlate with H2A.Z occupancy. Taking this information into consideration, we hypothesized that HDA9-

mediated H3K9K14 deacetylation at warm temperature conditions could modulate H2A.Z occupancy in Arabidopsis as 

well, allowing for PIF4 binding followed by thermal induction of YUC8 expression. We tested this by ChIP experiments 

using transgenic lines expressing epitope-tagged H2A.Z (HTA11-FLAG) (16) in the Col-0 wild type and hda9-1 mutant 

backgrounds (SI Appendix, Fig. S10A,B). Our results showed that in wild type seedlings YUC8 nucleosomes are indeed 

depleted from H2A.Z in response to warm temperature, in a similar manner to the temperature-regulated locus HSP70 

(16) used here as a positive control (Fig. 4D, SI Appendix, Fig. S10C). However, H2A.Z eviction from YUC8 and HSP70 

chromatin was abolished in the hda9-1 mutant background (Fig. 4E, SI Appendix, Fig. S10D). As expected, the GYPSY 

retrotransposon used as a negative control that is not regulated by temperature or H2A.Z (16), showed no signs of 

depletion (SI Appendix, Fig. S10E). Thus, HDA9 activity is indeed required for the net eviction of H2A.Z from YUC8 

nucleosomes at warm temperatures during thermomorphogenesis, which proposedly allows for PIF4 binding to the G-

box of YUCCA8 followed by auxin biosynthesis and thermomorphogenesis. 

 

 

Discussion 
Plant thermomorphogenesis depends on accumulation of the phytohormone auxin (4, 7, 8, 49). We show that HDA9 

allows for PIF4 binding and transcriptional activation of YUC8 to stimulate auxin biosynthesis during warm days (Fig. 5). 

In agreement, a recent study showed that hda9-1 silique valve cells exhibit attenuated auxin signaling and likely have 

reduced auxin levels in response to high temperatures (50).  

Recent work demonstrated that high temperature-induced hypocotyl elongation requires a cotyledon-derived mobile 

auxin signal and a permissive hypocotyl-localized thermosensor in established four to eight day-old seedlings (49). In 

apparent contrast, HDA9 promoter activity was mainly detected in the hypocotyl/root junction and roots of germinating 

seedlings (Fig. 2A, SI Appendix, Fig. S2). Moreover, HDAC-dependent induction of YUC8 promoter activity at warm 

temperature conditions (SI Appendix, Fig. S7) spatially and temporally co-localizes with HDA9 promoter activity (SI 

Appendix, Fig. S2A). Furthermore, HDA9 promoter activity and HDA9 protein levels declined during seedling 

establishment (Fig. 2, SI Appendix, Fig. S2). Therefore, we propose that HDA9 defines an early temperature signaling 

pathway in the hypocotyl that is substituted by cotyledon-mediated temperature signalling during the course of 

seedling establishment (49). In agreement, although YUC8 expression remains detectable in the hypocotyl, YUC8 

expression is more pronounced in the cotyledons of 4 day-old (51) and 7 day-old seedlings (49). 

We propose, that due to HDA9-mediated deacetylation, eviction of H2A.Z at warm temperature can supersede 

SWR1/ARP6-mediated incorporation at the YUC8 locus in wild type plants. This results in net eviction of H2A.Z, allowing 

for accessible YUC8 chromatin to which PIF4 can bind and activate transcription (Fig. 5). It is worth noting that 

acetylation changes in hda9-1 mutant seedlings were apparent only at the TSS and gene body of YUC8 at 27oC (Fig. 4B), 
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whereas H2A.Z is evicted upstream of the gene as well (Fig. 4E). This suggests that HDA9-mediated histone 

deacetylation is not directly causal for H2A.Z eviction but has a facilitating role.  

Our model (Fig. 5) is supported by the observation that the SWR1 complex preferentially binds to acetylated 

nucleosomes and acetylation enhances the exchange of H2A for H2A.Z in yeast (48, 52). Moreover, H2A and H4 

acetylation can stimulate SWR1 activity (52). Nevertheless, we cannot exclude alternative possibilities by which HDA9 

might influence YUC8 transcription e.g. by silencing of a repressor or deacetylation of a non-histone transcriptional 

regulator by HDA9. Whether HDA9 dependency for H2A.Z eviction extends beyond the YUC8 (and HSP70) locus is a 

subject for further study.  

We demonstrate that HDA9 is not required for hypocotyl elongation in response to different light quality 

signals and by the red/far-red photoreceptor and thermosensor phytochrome B. The thermosensory event triggering 

the HDA9-dependent thermosignaling pathway is still unknown. Since the HDA9 protein accumulates at high 

temperatures and recent data indicates that HDA9 is prone to proteasomal regulation (32), studying HDA9 proteasomal 

degradation and post-translational modifications could provide hints towards a possible thermosensory mechanisms. 

HDA19 was recently identified as a positive regulator of thermomorphogenesis, whereas HDA15 negatively 

regulates thermomorphogenesis by directly suppressing high temperature-responsive genes at control temperature 

(22). Whether HDA19 and HDA15, like HDA9, control thermomorphogenesis by mediating H2A.Z remains to be 

established. However, the limited overlap in differentially regulated genes in response to warm temperatures suggests 

that different RPD3-like HDACs affect separate branches of the thermomorphogenesis regulatory network (22). In 

accordance, we show here that HDA9 operates at least partly independent of the phyB thermosignaling and shade 

avoidance pathway, whereas HDA15 can be considered an integrator of light and temperature signaling as it interacts 

with HFR1 (LONG HYPOCOTYL IN FAR RED1), a positive regulator of photomorphogenesis (22) and with PIF3, that guides 

HDA15 to its target genes (53). 

 How HDA9 is recruited to its target loci at warm temperatures remains elusive, as HDA9 lacks DNA binding 

capacity. Obvious candidates to target HDA9 would be PIF4, that is required for YUC8 activation at high temperatures 

(6–8) and/or HSFA1a, that is required for day-time H2A.Z eviction at warm temperatures (20). However, we did not 

detect a direct interaction between HDA9 and HSFA1 nor between HDA9 and PIF4 (SI Appendix, Fig. S5). Future studies 

using in planta immunoprecipitation followed by mass spectrometry would be essential for identifying the multi-protein 

complex in which HDA9 operates.  

HDA9 does interact with the SANT (SWI3/DAD2/N-CoR/TFIII-B) domain protein POWERDRESS (21, 25, 26, 54), 

which confers substrate binding specificity to HDA9, but does not bind chromatin directly. Both HDA9 (this work) and 

PWR (21) are required for YUC8 transcriptional induction and thermomorphogenesis. However, the role of PWR is 

more pleiotropic than that of HDA9, as the majority of genes misregulated in the pwr mutant are not affected in hda9-1 

(32). On the contrary, almost all genes misregulated in hda9-1 are also affected by the pwr mutation (32). Moreover, in 

the context of thermomorphogenesis, PWR is involved in the thermal induction of HSP70, PIF4 and YUC8 

(21) transcription, whereas HDA9 appears to be essential primarily for the thermal induction of YUC8. 

Recently, it was shown that HDA9 interacts with the Evening Complex (EC) component EARLY FLOWERING 3 

(ELF3) to attenuate TIMING OF CAB EXPRESSION 1 (TOC1) core clock gene transcription in the early night (55). 

Furthermore, HDA9 interacts with HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES15 (HOS15) to control 

growth (32, 53, 56) and development and, together with HOS15, ELF3, ELF4 and LUX, functions in the EC to repress 

transcription of the floral activator GIGANTEA (56). Both ELF3 (9, 10) and TOC1 (57) are negative regulators of 

thermomorphogenesis during the night period. Our findings indicate that HDA9 is a positive regulator of 

thermomorphogenesis that operates during the light period, as the protein is stabilized at dawn and subsequently 

allows for YUC8-mediated thermomorphogenesis. These apparent contrasting roles of HDA9 in growth regulation 

during high temperature signaling on one hand and as a member of the EC complex on the other, suggests that 

HDA9-mediated thermomorphogenesis likely occurs independent of its role in the EC, at least in young seedlings. 

This notion is supported by the observation that in the hda9-1 mutant the diurnal rhythmicity of elongation growth is 

attenuated during day and night time in both high temperature and control temperature conditions (Fig. S2A), 

whereas EC-complex mutants typically display enhanced elongation growth during the night period under high 

temperature conditions (9, 10). 

 Other HDA9 interacting factors include the DNA-binding AHL22 protein (58) and the HDAC complex 

components SAP30 FUNCTION-RELATED 1 (AFR1) and AFR2 (59). Whether and how HDA9 interacting factors play a role 
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in ‘type 3’ vegetative plant thermomorphogenesis remains to be investigated further. Yet, the finding of a novel HDA9-

specific thermosignaling pathway provides a very promising target for knowledge-based breeding of robust 

thermotolerant crops that maintain productivity under the regime of projected global climate warming, without 

compromising for important light responsiveness cues.  
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Materials and Methods 
Plant materials and growth conditions 

Arabidopsis seeds were obtained from the Nottingham Arabidopsis stock centre (www.arabidopsis.info; stock number 

between brackets) or were kind gifts of colleagues. The following genotypes were used: Col-0 wild type (N1092), hda9-1 

(SALK_007123) (42), hda9-2 (GABI_305G03) (42), 35S::HDA9-8, pHDA9-HDA9-HA (27), pif4-2 (N66043), 35S::PIF4-HA 

(31), phyB-9 (60) (N6217), pPIF4::LUC and pPIF4::PIF4-LUC (gift by Prof. Salomé Prat), arp6-1 (16), pHSP70::LUC (16), 

p35S:LUC (N9966), pHTA11:HTA11-FLAG (16). The pYUC8-n3GFP line contains a 2-kb fragment upstream of the YUC8 

start codon coupled to a nuclear triple GFP reporter and was generated as described (61) (gift by Prof. Dolf Weijers). 

Double mutant combinations were generated by crossing and (homozygous) progeny was selected by genotyping PCRs 

and/or testing for antibiotic resistance (SI Appendix, Table S2).  

Plants were cultivated on sterile 0.8% agar, full strength Murashige-Skoog (MS including MES Buffer and 

vitamins, Duchefa) medium without sucrose on petri dishes (plates), unless stated otherwise. Where applicable, 

Trichostatin-A (TSA), Picloram, Indole-3-acetic acid (IAA), Indole-3-pyruvic acid (IPyA), or N-1-naphthylphthalamic acid 

(NPA) (all Sigma-Aldrich) were dissolved in DMSO and supplemented to the MS-agar medium. DMSO solvent lacking 

added compounds was used as mock control (0.1 % final concentration in all cases). 

Before sowing, seeds were surface sterilized by incubation in a solution of 0.8% bleach (Glorix, 4.5% [Cl]) in 

ethanol for 10 minutes, followed by twice washing with ethanol for 10 minutes, or seeds were gas-sterilized by chlorine 

gas for 3 hours. Seeds were stratified for 2-3 days in darkness at 4oC to synchronize germination. Thereafter, the plates 

were cultivated in identical climate-controlled growth cabinets (Snijders, Microclima 1000) at either 22oC (control) or 

27oC (high ambient temperature), in short day photoperiod (8h light/16h darkness), 100-125 µmol m-2 s-1 photosynthetic 

active radiation (PAR) white light conditions and 70% relative humidity, unless stated otherwise. Long day conditions 

consisted of 16h light/8h darkness, at otherwise identical conditions.  

For skotomorphogenesis experiments, germination was induced by exposure to 4h of white light. After this the 

plates were packed light-tight in aluminium foil and incubated in the growth cabinets as described above. Low R/Fr light 

conditions (654-664 nm/724-734 nm: 0.15 in Low R/Fr compared to 1.8 in control white light) were obtained by 

supplementing the white growth chamber lights (120 µmol m-2 s-1 photosynthetic) with far-red LEDs (730 nm, Philips), 

without affecting the PAR. Low-blue light (300-400 nm: 4.3 µmol m-2 s-1 in low blue compared to 58.4 µmol m-2 s-1 in 

control white light) was achieved by shading plants using a Lee Medium Yellow 100 filter, without affecting the PAR. 

Spectral neutral low light conditions were achieved by reducing the PAR by 90% to ~10-15 µmol m-2 s-1 using spectral 

neutral shade cloth. Spectra were obtained by a Jaz Spectrofotometer and SpectraSuite analysis software (Ocean 

Optics).  

 

Phenotyping  

Seedlings used for hypocotyl elongation quantifications on MS-plates were scanned using a flatbed scanner and 

hypocotyl lengths were measured using ImageJ image-analysis software (https://imagej.nih.gov/ij/). 

For shift experiments, plants were sown on several MS-agar plates and put in 22oC or 27oC conditions. At dawn 

(lights on) and dusk (lights off) of each photoperiod, one plate was shifted to the other temperature condition (22oC to 

27oC and vice versa) and left there for the remaining experimental period. At dusk of day 4 after initiation of 

germination the plates were scanned, and hypocotyl lengths were measured as described above. 

Plants containing 10-12 true leaves, grown on standard potting soil (Primasta), were used for petiole length, 

leaf blade length and leaf angle measurements. The plants were first photographed from the side for leaf angle 

measurements and subsequently harvested, flattened and photographed from the top. Leaf angles (hyponasty) were 

determined from the photos by measuring the average elevation of two opposing leaves per plant relative to the 

horizontal (62), by ImageJ. Petiole and leaf blade lengths of all leaves of the plant were measured from the top photos 

using ImageJ, starting from the youngest leaf where a petiole was visible. The petiole and leaf blade length per plant 

was defined as the average of the lengths of the 3th-6th youngest leaves.  

Flowering time was determined of plants grown on standard potting soil (Primasta) by counting the number of 

rosette leaves and the number of days after germination at floral bud appearance. 

 

Construction of transgenic HDA9 β-GLUCURONIDASE and LUCIFERASE lines 
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The 1035 bp intergenic region upstream of the HDA9 (At3g44680) start codon (pHDA9), starting from the stop codon of 

the upstream gene At3g44690 and the HDA9 coding sequence (CDS), excluding the stop codon (CDS HDA9-stop) were 

PCR amplified (primers in SI Appendix, Table S2), using the proofreading Phusion DNA polymerase (ThermoScientific®) 

and cloned by GATEWAY BP recombination (Invitrogen) in entry vector pDONRP4-P1 (Box1; attL4 & attR1) or pDONR-

221 (Box2 attL1 & attL2). To generate a pHDA9:GUS/GFP vector pDONR-221_pHDA9 (Box 2) was recombined into 

destination vector pFAST-GO4 (63) by a LR recombination. pHDA9:fLUC-nosT (pHDA9:LUC) was constructed by multisite 

Gateway™ (Three-Fragment Vector Construction Kit (Invitrogen; Thermo Fisher Scientific) by recombining pDONRP4-P1-

pHDA9 (Box1), pDONR221-fLUC-F7 (64) (Box2) and pEN-R2-6-L3_nosT (attR2 & attL3; Box3) (65) into destination vector 

pGreenII0125, with its resistance cassette replaced by a Norflurazon resistance marker (gift from Renze Heidstra, 

Wageningen University). pHDA9:HDA9-fLUC was constructed by combining pDONRP4-P1-pHDA9 (Box1), pDONR-

221_CDS HDA9-stop (Box2) and pDONR-L2rL3_fLUC (Box3) (64) into destination vector pGreenII0125. 35S::HDA9-fLUC 

was constructed by combining pDONR_L4L1r_35S (Box1), pDONR221-HDA9-stop (Box2) and pDONR-L2rL3_fLUC (Box3) 

(64) into destination vector pGreenII0125. All (multisite) GATEWAY reactions were performed according to 

manufacturer protocols. Primers used for cloning are listed in SI Appendix, Table S2.  

Constructs were transformed to Escherichia coli DH5α cells, selected for by colony PCR and confirmed by 

restriction analysis and sequencing (Macrogen, Europe) before further usage. Expression vectors for plant 

transformation were transformed to electro-competent Agrobacterium tumefaciens strain C58 and plants were 

transformed by floral-dip transformation (66). Seeds carrying pHDA9-GUS/GFP were selected on their GFP fluorescence 

using a Zeiss fluorescence microscope and pHDA9:LUC, pHDA9:HDA9-LUC and 35S:HDA9-LUC seedlings were selected 

and propagated on MS-agar plates containing 10 μM norflurazon, until homozygous lines were obtained. 

 

LUCIFERASE assays 

For quantitative LUCIFERASE (LUC) assays, protein extracts were prepared from approximately 25 mg harvested 

seedlings that were snap-frozen in liquid nitrogen. Tissue was homogenized using a mortar and a pestle in 100µl 1x 

passive lysis buffer (PLB, Promega E1941), followed by 10 minutes incubation at RT. Col-0 wild type seedlings lacking 

LUC activity were included with each replica as negative control. Debris was pelleted by centrifugation and subsequently 

20µl of supernatant was transferred to a 96-well Lumitrac plate (Promega). Unless stated otherwise, LUC activity was 

assayed using the LUC Assay System detection kit (Promega, #E1500) in a Glomax 96 microplate luminometer (Promega, 

#E6521), with the “LUC Assay System with Injector” protocol (2 second delay between injection and measurement, 10 

second integration time). Thereafter, protein concentrations were determined of each sample using Bradford reagent 

(Sigma-Aldrich, #B6916). Absorbance was measured using a Biotech synergy HT-plate reader. A Bovine Serum Albumin 

(Sigma-Aldrich, #A7906) standard curve was included to calculate protein concentrations, to normalize the LUC signal to 

the protein concentration of each sample. 

Visualization of LUC signals was done using a Hamamatsu ImaEM-X2 camera, with electron-multiplying (EM) gain. 

For pYUC8-Luciferase experiments, seedlings were transiently transformed as previously described (67) with 

the dual-reporter construct carrying the YUC8 promoter fused to Firefly-Luciferase and the constitutive 35S:CaMV 

promoter fused to Renilla-Luciferase (pYUC8:fLUC-35S:rLUC) (38). 1.0 µm gold micro-carriers (Bio-Rad, #1652263) were 

coated with the vector and transformed to 7 day-old seedlings, that were pre-grown on MS-agar plates under control 

22oC, SD conditions, using a Bio-Rad PDS-1000 He Biolistic particle delivery system, with 600 psi rupture discs (Bio-Rad, 

#1652327). After transformation, plants were transferred back to either control (22oC) conditions or were placed in high 

temperature (27oC) conditions in short day regime. At dawn of the next morning (18-20h incubation), the whole 

seedlings were snap-frozen in liquid N2. To determine fLUC activity, protein extracts were made as described above and 

activity was measured using the ‘Dual-Luciferase Reporter Assay System’ (Promega, #E1960) with the “LUC Assay 

System with Injector” protocol (2 second delay between injection and measurement, 10 second integration time). The 

fLUC signal was normalized to the rLUC internal control. 

 

Diurnal luciferase profiling in germinating seeds and seedlings 

Seeds were sown on felt, drenched in 100ml 0.5mM D-luciferin (Promega) in 0.5x nutrient solution (Hyponex). For 

positioning of seeds, the felt was covered by an aluminum plate with 200 holes, each hole containing a single seed. 

After sowing the imbibed seeds were stratified for 3 days at 5°C. Subsequently, seeds were placed in a custom-made 

climate cabinet with high performance PIXIS 1024 CCD camera (Princeton Instruments) fitted with a 35mm f/1.4 Nikon 
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SLR lens (Nikon). Temperature was kept constant 22°C or 27°C and relative humidity at 40%. The germinating seeds 

were grown for 7 days at a short day photoperiod (8h light/16h dark cycles). Light was provided from the top by LEDs 

emitting light in blue (B; 420-500nm) red (R; 590-660nm), and far red (FR; 680-760nm) spectra. To mimic the low light 

intensities and altered spectrum at the start of the day and end of the day, during the first and last hour of the day time 

period the light intensity was 30 µmol m-2 s-1 and Blue:Red:Far-Red ratio was 1:2:1. During the remaining hours of the 

day time, light intensity was 100 µmol m-2 s-1 and Blue:Red:Far-Red ratio was 3:6:1. Every morning the seedlings were 

provided with fresh luciferin and nutrient solution by injecting 50ml 0.5mM D-luciferin (Promega) in 0.5x nutrient 

solution (Hyponex) into the felt on which the seedlings were growing. Top-view images were taken every 30 minutes 

with an exposure time of 7 minutes. The camera (Princeton Instruments) was fitted with a ZBPB074 Bandpass Filter 

(Asahi Spectra) to block chlorophyll fluorescence and LED lights were turned off 30 seconds before imaging to allow for 

chlorophyll fluorescence decay. Luciferase signal values were quantified from the images using ImageJ software by 

determining mean grey values of each single grid-compartment holding one seed/seedling. Effectiveness of 

thermomorphogenesis in these experimental conditions was determined by measuring hypocotyl length of 7 day-old 

seedlings shortly after finishing the LUC measurements (SI Appendix, Fig. S3C). 

Measurements of free IAA and auxin metabolite profiling 

Indole-3-acetic acid (IAA), was extracted, purified, and analysed as previously described by liquid chromatography-

tandem mass spectrometry analysis, with minor modifications (68). IAA was extracted from approximately 10 mg (FW) 

seedling tissue (2 day-old or 7 day-old, grown at either 22oC or 27oC) at 4°C o/n in 1 ml methanol containing [phenyl 
13C6]-IAA (0.02 nmol/mL) as internal standard. The methanol fraction was purified by anion-exchange column (Grace 

Extra Clean Amino 100 mg/1.5 mL Solid Phase Extraction; Grace Davison Discovery Sciences). The volume of the wash 

and elution solvent was scaled down to 1 ml each to compensate for the reduced column size. 

Quantification of auxin metabolites and IAA were performed according to the method described by Pěnčík et 

al. (2018) (69). Samples (10 mg FW) were homogenized and extracted in 1.0 ml of ice-cold Na-phosphate buffer (50 

mM, pH 7.0, 4°C) containing 0.1% diethyldithiocarbamic acid sodium salt together with a cocktail of stable isotope-

labelled internal standards (5 pmol of [13C6]ANT, [13C6]IAA, [13C6]IAAsp, [13C6]IAGlu, [13C6]IAM, [2H5]IAOx, [13C6]oxIAA and 

[2H2]TRA, 5 pmol of [13C6]IAN and [2H4]IPyA, and 50 pmol of [2H5]Trp per sample added). The extracts were purified using 

in-tip microSPE based on the StageTips technology (70). Briefly, a volume of 250 μl of each plant extract was acidified to 

pH 2.7 with 0.1 M hydrochloric acid (~100 μl). Combined multi-StageTips (containing C18/SDB-XC layers) were activated 

sequentially, with 50 μl each of acetone, methanol, and water (by centrifugation at 434×g, 15 min, 4°C). After 

application of aliquots of the acidified sample (678×g, 30 min, 4°C), the micro-columns were washed with 50 μl of 0.1% 

acetic acid (525×g, 20 min, 4°C), and elution of samples was performed with 50 μl of 80% (v/v) methanol (525×g, 20 

min, 4°C). Another 250 μl of the extract was derivatized by adding 100 μl of 0.75 M cysteamine (pH 8.2) to convert the 

labile compound IPyA to its respective thiazolidine derivatives (71). After 15 min incubation, the sample was adjusted to 

pH 2.7 and purified as described above. Both eluates were then evaporated to dryness in vacuum and stored at -20°C. 

The levels of IAA, its precursors, conjugates and catabolites were determined using ultra-high performance liquid 

chromatography-electrospray tandem mass spectrometry (a 1290 Infinity LC system and a 6490 Triple Quadrupole 

LC/MS system, Agilent Technologies) using stable isotope-labelled internal standards as a reference (72). Four 

independent biological replicates were performed. 

 

Time lapse growth assays 

A custom digital time-lapse camera system was developed in house to quantify hypocotyl growth throughout the photo- 

and dark period. A modified Canon EOS 350D DSLR camera was used, in which the standard internal IR and UV rejection 

filters were replaced by a 715 nm long pass filter, allowing detection of wavelengths beyond 715 nm (73). The camera 

was placed in front of vertical-positioned MS-agar plates containing the seedlings. Photos were taken every 2h, from 

imbibed stratified seed to 8 day-old seedlings, using an Aputure AP-R1C LCD Timer Remote controller. Hypocotyl lengths 

of individual plants were measured manually using ImageJ Image analysis software. A LED spotlight (940 nm ± 50 nm; 

Kingbright, #BL0106-15-28) was used to illuminate seedlings during the night. The emitted light by the LED was very 

weak and the emitted light was barely detectable above background levels during the day time (SI Appendix, Fig. S11A-

F), as determined using a Jaz Spectrofotometer and SpectraSuite analysis software (Ocean Optics). The emitted light did 
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not interfere with plant development, as no de-etiolation and germination was observed in LED-exposed dark-grown 

seedlings, respectively imbibed stratified seeds, in otherwise complete darkness (SI Appendix, Fig. S11G).  

 

Quantitative-Reverse Transcriptase PCR  

Seedlings were harvested at dawn and snap-frozen in liquid N2. Each sample for qPCRs contained at least 20 seedlings. 

RNA was isolated as described previously (74) with minor modifications. Genomic DNA was removed using DNaseI 

(Thermo Scientific) and cDNA was synthesized using RevertAid H Minus Reverse Transcriptase (Thermo Scientific) using 

a mix of odT18VN primer and oligo dT primers. qRT-PCR reactions were performed using SYBR green mastermix (Life 

Technologies) on a ViiA7 Real Time PCR system and ViiA7 software was used to analyse the data. Relative expression 

levels were calculated using the ΔΔCt method (75), normalized to the expression of the reference genes: At1G57870 

and At5g08290. See SI Appendix, Table S2 for used primers. 

 

Β-Glucuronidase staining and microscopy 

Seedlings were harvested at dawn and vacuum-infiltrated in β-glucuronidase (GUS) staining buffer containing 0.2 mM X-

gluc (5-bromo-4-chloro-3-indolyl glucuronide) in a sodium phosphate buffer (pH=7.2, supplemented with Triton X-100, 

potassium ferrocyanide and potassium ferricyanide) on ice. Samples were incubated at RT for 30 minutes and 

subsequently bleached in ethanol baths with increasing concentration (20%, 30%, 50%, 70%). The tissues were fixed in 

FAA fixative (50% ethanol, 5% (v/v) acetic acid, 3.7% (v/v) formaldehyde) and stored in 70% ethanol. Intensity-scoring of 

β-glucuronidase staining per organ was performed visually, using a binocular on a scale from 0 (GUS staining absent) to 

4 (GUS staining saturated).  

GFP signals were captured using a Zeiss Axio Zoom.V16 Fluorescence Stereo Zoom Microscope with Axiocam 506 Color 

and HXP 200C Fluorescent Illuminator and ZEN Image acquiring software.  

 

Transcriptomics  

For transcriptomic experiments, 12 batches, each containing >50 individual Col-0 wild type, hda9-1 or pif4-2 mutant 

seedlings were grown on MS-agar plates under control (22oC) or high temperature (27oC) conditions, with each batch 

sown and harvested on different dates. At dawn of day 3 (2d-old) and day 8 (7d-old), the plates were photographed and 

seedlings snap-frozen in liquid N2. Effectiveness of the treatments was confirmed by measuring the hypocotyl lengths of 

the replicates using ImageJ (SI Appendix, Fig. S6A). Next, RNA was isolated using the Sigma Spectrum Plant Total RNA 

isolation kit and gDNA was removed by on-column DNAse treatment (Sigma-Aldrich). RNA integrity and concentration 

were checked using RNA 6000 Nano Chips on a Bioanalyzer (Agilent-2100). For RNA-seq library preparation in total 3 

samples were prepared for each genotype, treatment and time-point, by combining isolated RNA of 3 individually 

harvested batches per sample. Illumina TruSeq RNA Library preparation and Illumina HiSeq2500 (high-throughput) 

single-end 50 bp sequencing was outsourced to Macrogen, Korea.  

Quality Control (QC) was performed in house on the raw sequencing reads prior to analysis using FastQC 

(www.bioinformatics.babraham.ac.uk/projects/fastqc). Subsequently the raw reads were aligned to the Arabidopsis 

genome (TAIR10) using TopHat v2.0.131 with the parameter settings: ‘bowtie (76)’, ‘no-novel-juncs’, ‘p 6’, ‘G’, ‘min-

intron-length 40’, ‘max-intron-length 2000’. On average, 91.6% (54.4–97.9%) of the RAW reads could be aligned to the 

genome per biological replicate. This represents an average of 45.1 (23.2–71.3) million mapped reads per sample. 

Aligned reads were summarized over annotated gene models using HTSeq-count (77) v0.6.12 with settings: ‘-stranded 

no’, ‘-i gene_id’. From the TAIR10 GTF file all ORFs of which the annotation starts with ‘CPuORF’ were manually 

removed prior summarization to avoid not counting all double annotated bZIP TF family members. Sample counts were 

depth-adjusted and differential expression was determined using the DESeq package (78) with default settings. Gene 

expression differences were determined by a full factorial ANOVA (genotype*temperature) per time point, genes with a 

p value <0.001 and an absolute log2 ratio difference >0.5 were taken as significant. TukeyHSD was used to pairwise 

compare samples. Genes with a temperature effect are show in the Venn-diagrams in SI Appendix, Fig. S6F,G. 

All statistics associated with testing for differential gene expression were performed with R (www.r-

project.org). Gene expression profiles were hierarchically clustered using the Euclidean distance measure with average 

linkage using the Bioinformatics package of Matlab release 2014a. PCA analysis (SI Appendix, Fig. S6C-E) was done on 

the whole dataset obtained by taking the log2 ratio of each sample with the mean for each gene by using the “prcomp” 
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function from R version 3.4.1 and visualization using package “ggplot2”, GO analysis (Table 1, SI Appendix, Table S1) was 

done by using the hypergeometric test function “phyper” from R. 

 

 

Protein extraction and Western blot analysis  

Seedlings were snap-frozen in liquid N2 at dawn of day three, post-germination (2 day-old seedlings). Total protein was 

extracted by grinding 50 mg of tissue in 4x Laemmli sample buffer (79). SDS-PAGE analysis was performed using 4-12% 

pre-cast, Bis-Tris gradient gels in MES buffer (Life Technologies). The Bio-Rad transfer system and nitrocellulose 

membrane were used for western blot transfer. The following antibodies were used for western blot analysis: anti-

H3K9K14Ac (Diagenode), anti-HA-Peroxidase, High Affinity Roche; anti-Flag (SIGMA) (all 1:1000 dilution); anti-UGPase 

(Agrisera) (1:5000); anti-mouse HRP (Bio-Rad), anti-rabbit HRP (Bio-Rad) (1:10000 dilution).  

 

Chromatin immunoprecipitation-qPCR 

Chromatin immunoprecipitation assays were performed on 2g of plant tissue. Chromatin extraction was carried out as 

previously described (80, 81). DNA was sheared using a Bioruptor sonicator (Diagenode, B01020001) using the following 

settings: 20 cycles 30 sec ON, 30 sec OFF at high power. Anti-H3K9K14Ac (Diagenode), anti-FLAG (Sigma) and anti-HA 

tag-ChIP Grade (ab9110; Abcam) were used to IP the chromatin according to the manufacturer’s instructions. ChIP-qPCR 

was performed using the following cycles: 95°C X 2 min, 95°C x 3 sec, 59.5°CX 30 sec for 50 cycles, 95°C X 1 min and 60°C 

X 30 sec to calculate the melting curve. Oligonucleotides for YUC8, HSP70 and GYPSY genomic regions were derived 

from Lee et al. 2014 (11) and Kumar & Wigge, 2010 (16), respectively and for the PIF4 promoter from (57). Relative 

enrichment was calculated as described previously (80). Effectiveness of the high temperature treatment was confirmed 

by measurement of hypocotyl lengths of 7 day-old seedlings, as described above.  

 

Bimolecular Fluorescence complementation  

BiFC experiments on transiently transformed Nicotiana benthamiana epidermal cells and protein extraction was 

performed as previously described (37). For protein detection, approximately 100 mg of tissue was homogenized in 4x 

Laemmli protein sample buffer, boiled at 100°C and 25 µl of the protein extract was separated on an 4-12% Bolt SDS-

PAGE (ThermoFisher). Western blot analysis was subsequently performed using a Bio-Rad system on nitrocellulose 

membrane probed with an anti-HA- HRP [(1:1000 dilution (Roche)] and an anti-cMYC antibody [(1:2000 (Santa Cruz)]. 

Confocal microscopy was performed using a Leica SP8 inverted microscope. All BiFC constructs were cloned first in 

pDONR207 (ThermoFisher) followed by LR recombination into Gateway-compatible BiFC plasmids (82). All inserts in 

pDONR, spYNe and spYCe were sequenced prior to BiFC experiments. Primers used for cloning are listed in SI Appendix, 

Table S2. 

 

Yeast-2-Hybrid 

Assays were performed as previously described in (37). The yeast strain MaV203 was used for the auxotrophy and beta-

galactosidase assays according to the manufacturer’s instructions (Invitrogen). HSFA1 and PIF4 were cloned in pDEST32 

(GAL4 DB) and HDA9 in pDEST22 (GAL4 AD) by LR recombination from pDONR221. All constructs were cloned in 

pDONR221 using the same strategy as for pDONR207 according to the manufacturer’s instructions. 

 

Statistical analyses 

Statistical analyses per experiment are described in the figure legends and results and full test models are shown in the 

SI Appendix, Supporting information data sets. Two-sided t-test using the means and standard deviations were used to 

determine statistical significance for the difference in responses. These significance tests were done by calculating the 

mean response from the means of the two treatments and the standard deviation from the two treatments, then 

testing was done on these mean responses (change) and standard deviation, taking in to account the number of 

observations in each case. Full factorial ANOVA’s were done to determine significance of involved variables. Subsequent 

pair-wise ANOVA’s were done to further determine the significance of the observed differences. TukeyHSD tests were 

used for all pairwise statistical differences and effects.  

 

Data availability 
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RNA Sequencing data generated in this study have been deposited in the GEO repository 

(https://www.ncbi.nlm.nih.gov/geo/) under accession code GSE121383. All data supporting the findings of this study 

are available within the paper and its Supporting Information. Computational codes used for the analysis of the data is 

available upon request. 
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Figure legends 
 

Fig. 1. Mutations in HDA9 impair thermomorphogenesis independent of light quality signaling and phyB. A-C, Hypocotyl lengths of 

8 day-old seedlings at A,C, 22oC or 27oC and B, different light quality conditions and their combination. Boxes indicate boundaries of 

2nd and 3rd quartiles of data distributions. Black bars indicate median and whiskers Q1 and Q4 values within 1.5 times the 

interquartile range. Violin plots designate phenotype distributions. Red arrows designate mean hypocotyl elongation responses. Red 

letters indicate statistical differences between hypocotyl responses (changes) in all panels (P< 0.05; two-sided t-test, See SI Appendix, 

Supporting information data set), with different letters indicating significantly different groups. A,B,C, N= respectively 208-295, 247-

323, 131-236 seedlings per genotype and treatment, divided over 7, 12, 7, biological replicates. 

 

Fig. 2. HDA9, PIF4 and ARP6/H2A.Z present a thermosignaling module. A, Dynamics of HDA9 and PIF4 protein and PIF4 transcript 

levels. N=6-19 per genotype. See SI Appendix, Fig. S3 for details. B, Progression of hypocotyl elongation. N=110-212 seedlings per 

genotype, per treatment, divided over 32 replicates. Statistics (Tukey HSD per time point, genotype and treatment) are presented in 

SI Appendix, Fig. S4A and SI Appendix, Supporting information data set. A,B, Colored areas behind lines represent SEM. Black boxes, 

and gray-shaded bands/white bands indicate darkness/day time. C,D, Hypocotyl lengths of 8 day-old seedlings in D, the presence of 

Trichostatin-A and mock. C, N=157-324 and D, N=157-324 seedlings per genotype and treatment, divided over 7 (C) and 9 (D) 

replicates. Boxes indicate boundaries of 2nd and 3rd quartiles of data distributions. Black bars indicate median and whiskers Q1 and 

Q4 values within 1.5 times the interquartile range. Violin plots designate phenotype distributions. Red arrows indicate the mean 

hypocotyl response. Red letters in C,D, indicate statistical differences between hypocotyl responses (changes) (P< 0.01; two-sided t-

test), with different letters indicating significantly different groups.  

 

Fig. 3. HDA9 is required for YUCCA8-dependent auxin biosynthesis. A, IAA levels. Boxes indicate boundaries of 2nd and 3rd quartiles 

of data distributions. Black bars indicate median and whiskers Q1 and Q4 values within 1.5 times the interquartile range. Violin plots 

designate phenotype distributions. Bold letters indicate statistical differences between IAA levels over all samples (P< 0.05; Tukey 

HSD), N= 4-10 replicas per genotype per treatment per time point, each of 100 mg (FW) seedlings. B, relative YUCCA8 expression, 3-4 

replicas per genotype, per treatment, per timepoint, each of >25 seedlings. Asterisks indicate significant difference on the range of 

timepoints between 22oC and 27oC (**** P<0.001, n.s. indicates non-significant; two-sided t-test). For statistical comparisons of 

individual time points, see SI Appendix, Supporting information data set. C, Auxin metabolite levels, normalized to Col-0 wild type. 

White symbols indicate not detectable. See SI Appendix, Fig. S8 for details and abbreviations of metabolites. N=4 replicates per 

genotype and treatment, each of 10 mg (FW) of 2 day-old seedlings. D, Hypocotyl lengths of 8 day-old seedlings in the presence of 

different concentrations Picloram, N=104-132 seedlings per genotype per treatment divided over 4 replicates. See SI Appendix, 

Supporting information data set for comparative statistics. B,D, Colored areas behind the lines represent SEM.  

 

Fig. 4. HDA9 permits H2A.Z eviction. A, Western blot analysis of H3K9K14ac levels of 2 day-old seedlings at 22oC or 27oC (50 mg 

pooled seedlings per genotype and treatment). Ponceau staining of RIBULOSE BIPHOSPHATE CARBOXYLASE LARGE CHAIN (RbcL) is 

shown as loading control. B-E, Chromatin immunoprecipitation-qPCR analysis of B, H3K9K14Ac levels, C, PIF4 binding to the G-Box 

motif and D,E, H2A.Z (HTA11) enrichment at B,C,E, YUCCA8 and D, HSP70 loci, in 2 day-old seedlings of indicated genotypes. Tested 

chromatin regions are B,E, P1 (-1374 bp), P2 (-657 bp), P3 (4 bp) and P4 (1813 bp) and C, P1 (-359 bp), P2 (4 bp), P3 (80 bp) and P4 

(159 bp) relative to the transcriptional start site and are from (11, 16). B, N=4 and E, N=2, independent replicates of pooled seedlings 

(see SI Appendix, Fig. S9B), error bars represent SEM. B, Red letters indicate statistical differences on input fraction per tested 

position (P<0.05; TukeyHSD).  

  

Figure 5. Schematic model of proposed HDA9-mediated thermomorphogenesis regulation in 2 day-old seedling. A, At control 

temperatures, PIF4 expression (blue box) is limited and nucleosomes associated with YUCCA8 (yellow box) contain high levels of 

H2A.Z (purple circles), deposited by ARP6 (orange ellipse). Therefore, auxin (IAA) levels are low and elongation growth is repressed 

(dashed lines; red traffic light). B, when temperatures rises, HDA9 protein (red ellipse) levels are high during day time, resulting in 

maintenance of a low acetylation level at high temperature, comparable to control temperature levels at the YUCCA8 locus. This 

facilitates the warm temperature-induced eviction of H2A.Z from nucleosomes (gray nucleosomes) over ARP6-mediated deposition, 

providing a net permissive chromatin environment (orange traffic light). At the same time, PIF4 levels rise independently of HDA9 and 

C, subsequently binds the G-Box motif in the YUCCA8 promoter. This triggers YUC8 accumulation, followed by turnover of IPyA to 

IAA, which induces elongation growth (green traffic light). Thermosensing by photo-activated Phytochrome B (PhyB-PFR; brown 

rectangles) inhibits PIF4 activity by a parallel mechanism. D, When HDA9 is inactivated by mutation or Trichostatin-A (TSA) 

application, YUCCA8 is hyperacetylated at warm temperatures. This shifts the balance from net H2A.Z eviction to net deposition. As a 

result, PIF4 cannot efficiently bind the YUCCA8 promoter and IAA accumulation is prohibited, resulting in attenuation of 

thermomorphogenesis, despite a permissive warm temperature environment. Possible secondary effects of HDA9 on other 

regulators of YUC8 expression (e.g. transcriptional regulation of repressors) or HDA9-mediated deacetylation of non-histone proteins 

are not illustrated in this model. 
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Table 1. Top 5 enriched GO terms among genes upregulated by 27oC vs. control 22oC in Col-0 but not hda9-1 (2 day-old 

seedlings). See SI Appendix, Supporting information data sets full dataset. 

 

GO Process Total 
genes 

Found 
genes 

p-value  
(non-adjusted) 

response to auxin 279 39 1.11E-12 

auxin-activated signaling pathway 170 28 2.01E-11 

regulation of organ growth 10 7 2.16E-10 

water transport 19 8 1.29E-08 

ion transmembrane transport 26 8 3.42E-07 
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