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Abstract 

Preserved remnants of fluvial activity in deserts constitute evidence for changing boundary conditions. 

The Atacama Desert of northern Chile is the global end-member for aridity, so the history of relict 

stream networks in this region is a record of how landscapes develop under extreme conditions. On 

Pampa de Tana in northern Chile (19.4°S), a series of channel forms that are presently inactive but in the 

past flowed westward are incised into the surface of a fault bounded, topographically elevated portion 

of the El Diablo Formation, a regionally extensive, relict pediment. We measure cosmic-ray produced 

10Be, 26Al and 21Ne in fluvial deposits to date the timing of abandonment of three channels and couple 

this with topographic profile information from a SPOT-6 derived, 2 m resolution digital elevation model. 

We find two of the channels were abandoned approximately >5.6 Myr and 2.0 Myr ago. One channel is 

still capable of flow and has ages suggesting it was fluvially active within the last few hundred thousand 

years. Using the paleochannel ages measured here and published ages for the end of aggradation of the 

El Diablo Formation we estimate the rates of fluvial channel incision before channel abandonment, and 

uplift rates on the faults after channel abandonment. Maximum uplift rates of ~12 m/Myr over the last 2 

Myr are found. In general, while rates of uplift are relatively low they are several-fold more rapid than 

the rates of fluvial incision prior to channel abandonment. This implies that westward channel flow was 

interrupted by uplift of topography above a blind NW-SE striking reverse fault that affects the Central 

Depression, an alluvial forearc basin. We consider also that shrinkage of the upstream catchment area 

by stream capture, promoted via headward erosion and lateral expansion of adjacent canyons 

(quebradas) could be a factor in the abandonment of the channels on Pampa de Tana. Our results 

highlight the polygenetic nature of this landscape and show that relatively minor amounts of fault 

displacement in hyperarid regions can have implications for stream network evolution. Even subtle 

topographic uplift upstream should be taken into account when fluvial deposits are used as proxies for 

long-term environmental conditions. 



1. Paleochannels of the northern Atacama Desert 

Stream channels are sensitive indicators of change in the majority of landscapes, able to adapt rapidly to 

varying environmental conditions. Understanding adjustments of stream courses can provide insights 

into both past climatic conditions and relief forming tectonic processes (e.g. Amos et al. 2010; García 

and Hérail., 2005; Hampel and Hetzel, 2016; Humphrey and Konrad, 2000; Jackson et al 1996; Jansen et 

al., 2013; Keller at al., 1998; Ouchi, 1985). Small, unconfined, desert streams are particularly useful in 

this respect as they are often close to thresholds for change and can be influenced by relatively subtle 

variations in their controlling tectonic and climatic factors (Pearce et al., 2004; Schumm et al., 2000; 

Tooth, 2013). At the same time, care must be taken when untangling the effects of climate and tectonics 

alongside adaptations that can occur in dryland fluvial systems without any changes in external 

influences (Vandenberghe, 2003). Robust chronologies of drainage adaptation are key to their 

usefulness as a proxy for revealing and isolating forcing mechanisms of landscape evolution but such 

chronologies are often unavailable (Reid, 2009; Tooth, 2012).  

The prevalence of ancient but well preserved, abandoned stream channels in the northern Chilean 

Atacama Desert attests to the long-term hyperaridity of this region (Carrizo et al., 2008; García and 

Hérail., 2005; Ritter et al., 2018a). However, this notion of environmental stability is juxtaposed with the 

nature of the landforms themselves, in that there must be some causal mechanism to explain their 

abandonment. Channels traversing tectonically active, uplifting topography are often termed transverse 

drainages, or watergaps. Following defeat and rerouting of a stream, the remaining elevated ‘dry’ valley 

may be labelled a windgap; though the term windgap is often applied more broadly to any raised notch 

on a ridge, so here we refer more specifically to paleochannels that retain some qualitative 

characteristics of streams. The response of streams that traverse a growing fold have been discussed by 

Humphrey and Konrad (2000), who suggest that the concept of stream power used to model bedrock 

erosion is a poor predictor of how channels will adapt to uplift. They propose that it is not the ability of 



the stream to incise into the uplifting topography that will dictate whether or not it is defeated, instead 

defeat will depend on whether or not alluvial deposition upstream of the growing fold manages to raise 

the channel bed concomitantly with the uplift of the antecedent channel. A watergap will be maintained 

until the rate of uplift exceeds the rate of sediment deposition, whereby the stream becomes blocked 

and a paleochannel or windgap may be preserved. However, other studies have found the lithology of 

the rising topography is a control (Collignon et al., 2016), suggesting the incision capability and thus in 

some sense the stream power of transverse drainage is important. Whether it is the transport and 

deposition of alluvial material upstream of the uplifting topography raising the channel bed, or the 

streams ability to incise the growing fold that is the key in deciding if stream channels can keep pace 

with uplift, both scenarios require sufficient discharge. Some modelling studies show aridification 

controls windgap formation, supporting a climatic driver for channel abandonment (Hampel and Hetzel, 

2016), while others find a combination of rapid uplift and low precipitation are needed to defeat 

drainage traversing uplifting faults (e.g. Sobel et al., 2003). Modelling by Tomkin and Braun (1999) 

predicts windgaps can form under constant uplift with no change in climatic conditions, challenging the 

notion of Jackson et al. (1996), that windgaps found in a New Zealand study were controlled by a 

combination of the periodicity of earthquake and climate cycles. 

In this paper we establish a chronology for stream channel abandonment at a site on the Pampa de Tana 

(~19.4°S), in the Tarapacá region of the northern Atacama Desert. The antiquity of preserved fluvial 

features in the Atacama Desert can make estimating their age challenging, often requiring dating to 

extend into the Miocene (Dunai et al., 2005; Nishiizumi et al., 2005). We date the timing of 

abandonment by measuring cosmic-ray produced 10Be, 26Al and 21Ne exposure ages of fluvial channel 

deposits and compare this chronology with detailed channel and topographic profiles derived from 

SPOT-6 satellite imagery. Differing age interpretations between the different isotopes and saturated 

radionuclide concentrations are addressed. We discuss the implications of our study for the ongoing 



debate regarding the climatic history of the region. Rates of fluvial incision are estimated and related to 

rates of underlying fault displacement and we appraise the likely causes of channel abandonment. 

Lastly, we consider our findings in light of the broader-scale tectonic history of the region and reflect on 

how constraining drainage reorganization in the vein of what we find here might be combined with 

studies of biological evolution and extraterrestrial geomorphology. 

 

2. Field area 

2.1 Regional setting 

The Atacama Desert contains the ‘oldest’ remnant landscapes in the world (Dunai et al., 2005; 

Nishiizumi et al., 2005; Kober et al., 2007). The pervading landscape stability of the region is linked to its 

extreme hyperaridity, but when that period of stability began and how consistent it has been is 

contentious, with proponents arguing for the onset of hyperarid conditions as recently as the 

Pleistocene and as long ago as the Miocene/Oligocene (Alpers and Brimhall, 1988; Amundson et al., 

2012; Dunai et al., 2005; Evenstar et al., 2009; Hartley, 2003; Hartley and Chong, 2002; Jordan et al., 

2014; Nishiizumi et al., 2005). Several authors have also pointed to evidence that there have been 

episodic wetter, though still arid, periods within these time-frames, questioning the notion that the 

landscape is entirely stable over several millions of years (Dunai et al., 2005; Evenstar et al., 2009; Garcia 

et al. 2011; Houston and Hartley, 2003; Oerter et al., 2016; Placzek et al., 2010; Ritter et al., 2019; Sáez 

et al., 2012), while others note the spatial context and type of proxy used in individual studies may help 

resolve discrepancies between the various studies (Jordan et al., 2014; Ritter et al., 2018a). 

With aridity retarding denudation, the gross topographic form of northern Chile has been dictated by 

large-scale tectonic structures. The Central Depression (Pampa del Tamarugal) is a north-south 

elongated forearc sedimentary basin situated between the Western Precordillera of the Andes to the 



east and the Coastal Cordillera to the west (Figure 1A). The topography of the Western Precordillera 

rises from approximately 1 km average elevation in the Central Depression to higher than 4 km towards 

the Altiplano and its overall smooth form has led to it being described as a crustal scale monocline 

(Isacks, 1988), elevated by uplift on several west vergent thrust faults in the Precordillera (Farías et al, 

2005; García and Hérail, 2005; Muñoz and Charrier, 1996; Victor et al., 2004). The timing of this uplift is 

still debated but is generally agreed to have occurred during the Cenozoic (Farías et al., 2005; Garcia et 

al., 2011). 

 

<<Approximate location of figure 1 >> 

 

The macroscale drainage pattern of northern Chile between approximately 18.5°S and 19.5° S is one 

where catchments source most of their stream discharge in the High Andes or Precordillera (Mortimer, 

1980) and flow westwards, through the hyperarid basin of the Central Depression on their path to the 

Pacific Ocean (Figure 1A), in some cases breaching the northern tip of the Coastal Cordillera before this 

mountain range ends at the city of Arica. Further south of around 19.5°S, the catchments emanating 

from the Precordillera are endorheic, draining internally into the Central Depression. The major 

channels, or quebradas, traversing the Central Depression typically take one of two forms; either deeply 

incised canyons, the channels and steep side slopes of which contrast with the surrounding low relief 

pediplain, or broad braided channels that may not have incised notably into the pediplain surface at all 

(Mortimer and Sarič, 1972; Mortimer, 1980).  

The basin of the Central Depression contains a succession of fluvio-lacustrine and alluvial gravel 

deposits. The upper surface of these gravels onlaps the western flanks of the Andean Precordillera as a 

series of coalesced pediments and abandoned fan surfaces, resulting in an elongated, approximately 



north-south oriented pediplain between around 18°S to 22°S, termed the Tarapaca Pediplain by 

Mortimer and Saric (1975). These deposits, or their eroded surfaces, have been used in arguments for 

the long-term climatic conditions that would have prevailed during their formation over the last circa 19 

Myr, or more (Evenstar et al., 2017, and references therein). The El Diablo Formation mantles the 

Pampa de Tana and surrounding areas with coalesced alluvial and fluvial fan matrix supported gravel 

deposits (García et al., 2013; Figure 2A), considered to derive predominantly from erosion of andesitic 

lava of the Eastern Precordillera and Western Cordillera (Charrier et al., 2013; Farías et al., 2005; García 

and Hérail, 2005; Pinto, 2004). Dating of overlying and intefingering lavas and interbedded tuffs, plus 

stable cosmogenic isotope surface exposure dating have placed temporal constraints on when 

deposition of the El Diablo Formation ceased. Farías et al. (2005) ascribe an upper and a lower unit to 

the El Diablo Formation and propose an 11.7 ± 0.4 Myr age for deposition at the base of the upper unit 

from a single K/Ar age. Based mostly on the K-Ar and Ar-Ar ages of Blanco and  Tomlinson (2013) and 

Jordan et al (2010), who dated interbedded volcanic material, Jordan et al. (2014) propose that 

deposition of the El Diablo Formation gravels had ended by 11-12 Myr. Evenstar et al. (2017), using 

cosmogenic nuclide exposure dates of surface clasts suggest a regional hiatus in deposition 11 Myr ago. 

An earlier span of between 11 and 7.5 Myr for the deposition of the El Diablo Formation from exposures 

in the valley of Quebrada de Camarones has been proposed by von Rotz et al. (2005), using an 

interbedded 8.2 Myr old tuff and magnetostratigraphy. However, García et al. (2011) suggest this age 

range is too young, as it is inconsistent with the generally accepted 8.3 ± 0.5 Myr age for the Tana lava 

that overlies the El Diablo Formation (García et al., 2004; Mortimer et al., 1974; Naranjo and Paskoff, 

1985; Muñoz and Sepúlveda, 1992). 

 

 



2.2 Local setting of the Pampa de Tana paleochannels 

The triangular shaped surface comprising the Pampa de Tana lies between the Quebrada de Camarones 

and Quebrada de Camiña and slopes on average 4° to the south-west (Figure 1B, Figure 2B). The eastern 

portions act as the modern catchment heads for the surface drainages that are flowing westwards. 

Presumably, prior to the incision or lateral expansion of the bounding Quebradas, the streams flowing 

over the Pampa de Tana had their headwaters at higher elevations to the east. This notion is supported 

by the remnant thin tongue of Tana lava that is found overlying the El Diablo Formation at the north 

eastern edge of the pampa (García et al., 2011; 2013), and which would have flowed downhill (to the 

west) from higher elevations (see also section 2.1). A once more expansive eastern Pampa de Tana is 

also evident in the beheaded streams that can be found around the eastern edge of the pampa and this 

will be discussed in more detail in section 6.2. Presently, the eastern apex of the wedge-shaped surface 

that is Pampa de Tana tapers to a narrow ridge that acts as a drainage-divide between the bounding 

Quebrada de Camerones and Quebrada de Camiña (Figure 1B). 

 

<<Approximate location of figure 2 >> 

 

The low relief, planar form of the Pampa de Tana surface is interrupted by an east facing and northwest-

southeast oriented scarp (herein termed the eastern scarp), as much as forty meters high, which marks 

the eastern extent of an elongated topographic bulge (Figure 2, B-B’, Figure 3A). A few kilometers to the 

west, the extents of this bulge are delineated by a less well defined, south-westward facing scarp. The 

approximate locations of the eastern and western scarps, and other scarps in the area, are suggested by 

Garcia et al. (2013) to be monoclonal flexures, based on 1:100 000 scale mapping (Figure 3C). 



Several sinuous channel forms with widths of a few meters to a few tens of meters have been incised 20 

m or more into the smooth crest of the topographic bulge (Figures 3A, Figures 4A and 4B). That these 

features contain channel bars of coarser, rounded cobble material attests to their fluvial nature (Figure 

4A). Evenstar et al. (2017) report several cosmogenic 3He derived exposure ages from the Pampa de 

Tana area. They targeted the pediment surfaces in order to constrain the timing of deposition, or 

aggradation, of these fluvial-lacustrine gravels and mapped a contact between two different generations 

of pediment surface along the eastern scarp. The ages that Evenstar et al. (2017) derive from six samples 

split between two proximal sites upstream of the topographic bulge range between approximately 1 to 

7 Myr. The same authors measured 3He in three samples collected from the crest of the bulge (Figure 

3D) and obtain ages of between around 11 to 20 Myr. 

 

<<Approximate location of figure 3 >> 

 

3. Methods 

3.1. Sample preparation and measurement 

3.1.1. 10Be and 26Al 

Pebble and cobble samples were collected from three paleochannel sites and two sites on the crest of 

the topographic bulge (Figure 3D, Figure 4). Samples were mostly pure quartz and ranged in size from 

around 1 – 10 cm in diameter, often with a dark desert varnish patina. One fluvial sediment sample was 

collected from the Quebrada de Camiña, a few km downstream of the paleochannel sampling locations. 

From each site sampled, several single clast samples were chosen based on quartz content, size and 

evidence for fluvial rounding. The samples were documented, crushed and sieved to retain the 250 – 



710 μm size fraction. During crushing the samples often exhibited conchoidal fracturing, typical of 

microcrystalline varieties of quartz. The sample of fluvial sediment from the active Quebrada de Tiliviche 

was sieved in the field to retain the 250 – 710 μm fraction. Initially, seven samples were prepared as 

AMS (Accelerator Mass Spectrometry) targets for 10Be/9Be at the University of Edinburgh using the 

chemistry protocols described in Binnie et al. (2007). These targets were measured at SUERC (Scottish 

Universities Environmental Research Centre) AMS (Xu et al., 2010) normalized to the NIST SRM 4325 

standard with an assumed nominal value of 3.06x10-11.  Later, twenty-one further samples were 

prepared as 10Be targets at the University of Cologne using the quartz etching scheme of Kohl and 

Nishiizumi (1992) and the stacked column approach described in Binnie et al. (2015). These targets were 

measured at CologneAMS (Dewald et al., 2013) normalized to the standards of Nishiizumi et al., (2007). 

26Al/27Al measurements were made at CologneAMS on nine out of the twenty-one samples prepared at 

the University of Cologne, with AMS measurements normalized to the standards reported by Nishiizumi 

et al. (2004) (see supplementary data). 27Al determinations on aliquots taken after quartz dissolution 

were measured using in-house ICP-OES (inductively coupled plasma – optical emission spectrometry) 

using standard addition (4 aliquots). For quality control, measurements of NIST SRM-165a were included 

alongside the samples during ICP-OES analysis. 

 

<<Approximate location of figure 4 >> 

 

Concentrations of 10Be and 26Al were derived following the subtraction of any atoms measured in 

reagent blanks that were prepared in tandem with the samples, as described in Binnie et al. (2019). The 

one standard deviation analytical uncertainties in our 10Be concentrations include the propagated 

measurement uncertainty on the AMS ratios of both the samples and the associated blank, and a 1% 



estimate for the one standard deviation uncertainty in the masses of 9Be added as carrier. Uncertainties 

in the 26Al concentrations come from the propagation of the uncertainties derived from the ICP-OES 27Al 

measurements, which are between 3.5% and 4.9%, with the uncertainties in the AMS ratios. Exposure 

ages were derived using version 3 (wrapper 3.0.2, constants 3.0.4) of the online calculator formerly 

known as the Cronus calculator (Balco et al., 2008).  

To investigate the possibility that our samples were buried during their exposure history we plot 10Be 

concentrations against respective ratios of 26Al/10Be, for the samples where 26Al measurements were 

made. For these plots, termed two-isotope diagrams, the envelope, or ‘island’, of constant exposure 

requires production rates scaled to the sample site. We use the elevation and coordinates of site 5 but 

note that using one of the other sample sites makes negligible difference to the position of the constant 

exposure island. Two different time-dependent spallogenic production rate scaling schemes were 

considered when constructing the two-isotope diagrams. Spallogenic production rate scaling factors for 

10Be and 26Al are derived over the last 10 Myr following Lifton et al. (2014) and the average scaling 

factors over this period, weighted by the respective rates of decay of 10Be (1.39 Myr) and 26Al (705 kyr), 

are multiplied by the production rates of 3.92 at/g/a and 28.54 at/g/a. These are the equivalent sea-

level, high-latitude values reported by Borchers et al. (2016) to give the best fits to the global calibration 

site datasets (termed ‘Sa’ in Borchers et al., 2016). We refer to this approach below as the LSD scaling 

scheme. Spallogenic production was also determined using the Lm scaling scheme described in Balco et 

al. (2008), with the time-varying values for cut-off rigidity (Rc) derived according to Lifton et al. (2014), 

weighted by respective rates of decay over 10 Myr. The resulting scaling factors are multiplied by the 

respective best fit production rates of 4.00 at/g/yr and 27.93 at/g/yr (termed ‘Lm’ in Borchers et al., 

2016). Muogenic production, which will be only a small fraction of the total production, is scaled using 

the simplified approach detailed in Balco et al. (2017). We use the resulting site specific spallogenic and 

muogenic 10Be and 26Al production rates to plot the two-isotope diagrams. 



3.1.2. 21Ne 

Quartz from the 250–710 μm fraction of the acid etched mineral separates prepared for 10Be and 26Al 

was packed into aluminum foil containers for 21Ne determinations. Neon was extracted by heating in a 

double-walled ultra-high vacuum furnace at 1200°C and the isotope composition determined using a 

Mass Analyser Products 215-50 mass spectrometer at SUERC in 2014 and in 2016 (Codilean et al. 2008). 

CREU quartz standards were measured at the same time (Vermeesch et al., 2015). In several cases 

samples were measured in duplicate or triplicate.  Age determinations were made using version 3 

(wrapper 3.0.2, constants 3.0.4) of the online calculator formerly known as the CRONUS calculator 

(Balco et al., 2008). This assumes that the samples contain a mixture of air- and spallation-derived Ne.  

Where replicate measurements have been made we have determined a mean exposure age. 

 

3.1.3. Raman Spectrometry 

Six of the twelve samples with both 10Be and 21Ne determined were subjected to Raman spectrometry 

(Table 2). The Raman spectra were obtained from randomly selected grains of the crushed and sieved 

<250 µm fraction with a Renishaw InVia Raman microscope at the University Cologne.  The spectra were 

produced after manually focusing the laser with a x10 objective (NA = 0.25) immediately below the grain 

surface for 100 x 1 sec with a 532 nm Ne:YAG laser combined with a 3200 lines/mm grating and a 

Centrus 05TJ CCD detector.  Spectrometer calibration was performed before and between analyses with 

a built-in silicon standard.   

 

 

 



3.2. Topographic surface models and profiles 

Epipolar images and subsequently a 2 m DEM (digital elevation model) were derived from a SPOT-6 

stereopair of 1.5 m resolution using Geomatica 2018 software (Figure 3B). Ground control points 

identifiable in both images were mostly manmade features and river channel junctions. Artifacts, noise, 

and to a certain extent the visible manmade features of the surface mine were smoothed using the 

proprietary filters in the DSM2DTM module. The ArcGIS v.10 AddIn tool, described by (Pérez-Peña et al., 

2017), is used to generate swath profiles along the channels from which samples were collected for 

cosmogenic nuclide analysis (Figure 3D). This tool can plot maximum and minimum topographic 

elevations in a swath of specified width along a multi-directional user defined path. In this case, our 500 

m wide swaths follow the course of the channels incised into the topographic bulge, allowing us to 

generate elevation profiles along the channel bed, or thalweg (the lowest elevations along the swath) 

and profiles of the channel-banks (the highest elevations along the swath). We used the same tool to 

derive a 500m wide topographic swath showing relief along the eastern scarp (Figure 3D). 

 

4. Results 

4.1. Sample lithology 

Besides the main quartz band at around 465 cm-1, all Raman spectra reveal peaks of varying intensity at 

503 cm-1 (Figure 5). This can be assigned to moganite (e.g. Heaney and Post, 1992), which, when 

intergrown with quartz is indicative of chalcedony.  Schmidt et al. (2012) recently reported that 

molecular vibrations of “free Si-O” bonds of silanol (Si-OH) groups (503 cm-1) on the quartz grain surface 

may overlap with the moganite band.  Thus it is unclear whether the samples consist of fine quartz-

moganite intergrowths, or microcrystalline quartz with a high surface area and consequently a greater 

capacity for silanol groups. Regardless of this, these samples are not monocrystalline quartz.  While 



most of these samples appear to consist of pure SiO2 polymorphs, sample TA06-IG contains small 

amounts of anatase (TiO2). Additionally, this sample reveals rough surfaces and appears less translucent 

than other samples. 

 

<<Approximate location of figure 5 >> 

 

4.2. Cosmogenic radionuclide concentrations and exposure age interpretation 

Concentrations of 10Be, 26Al and 21Ne are reported in Table 1, following blank subtraction. All 10Be blank 

subtractions were 1.0% or less of the total number of atoms measured in the samples, except TA1A, 

TA3B and PIS15-5, which required subtractions of 2.6%, 10.0% and 5.6% of the total 10Be measured in 

the respective targets. The largest blank subtraction for 26Al was 0.6%, except for sample PIS12-5, where 

it was 4.9% of the total number of 26Al atoms measured in the sample. The ages derived from the 

concentrations are shown in Table 2.  

 

<<Approximate location of table 1 >> 

<<Approximate location of table 2>> 

 

After a period of time equivalent to four half-lives, 10Be and 26Al concentrations in non-eroding samples 

will have reached 94% of their saturated concentrations. We thus assume the reliable upper limit of our 

10Be and 26Al exposure ages to be 5.6 Myr and 2.8 Myr respectively, or four times the half-lives of 10Be 

and 26Al. In some cases, the online calculator of Balco et al. (2008) reported ages older than this and we 



have supposed those samples to be close enough to saturation to be reported as such. In any case, we 

note the uncertainty on these ‘close to saturation’ ages was >40%.  

The 10Be exposure age results based on the LSD scaling scheme and zero erosion show saturation of all 

the samples located on the interfluves and all the samples collected from the northernmost channels 

(Figure 6) (Table 2). As discussed above, we propose all these samples are older than 5.6 Myr. One 26Al 

interfluve result gives an age that is slightly less than saturation and this might indicate recent, relatively 

shallow burial, but in general the saturation of the interfluve samples suggests long-term surface 

stability of the interfluves. In the central channel the ages range from saturation to 2.0 Myr, while at the 

southern channel the ages range from 1.5 Myr to 0.1 Myr (Figure 6). In general, exposure ages within 

the channels decrease towards the south. The interfluves are older than the central and southern 

channels but it is not possible to determine by how much the northern channel is younger than the 

interfluves.  

 

<<Approximate location of figure 6 >> 

 

We plot the 10Be and 26Al results on the two-isotope diagrams shown in Figures 7A and 7B. The 

difference between 7A and 7B is the scaling scheme used (LSD and Lm respectively). It is clear from 

these plots that several of the interfluve samples have 10Be concentrations in excess of what is predicted 

for saturated samples. The point of ‘saturation’ with respect to a specific radionuclide describes the 

maximum concentration a sample can reach before the rate of radionuclide loss by decay matches the 

rate of production. Higher rates of production correspond to a greater saturation concentration. 

Conversely, if the surface of the sample is eroding the point of saturation will correspond to a lower 

concentration. Using the production rates we calculated for Pampa de Tana, the saturation 



concentration assuming zero erosion of the samples is indicated on Figures 7A and 7B by the small circle 

marking the tip of the steady-state erosion island. A 22% production rate increase would be needed to 

resolve the excess 10Be observed in Figure 7A. 

 

<<Approximate location of figure 7 >> 

 

Given that our fluvially deposited samples derived from higher elevations, any 10Be or 26Al inherited 

during erosion of the samples out of the parent bedrock and their storage or transport prior to reaching 

Pampa de Tana would assume a higher rate of production. We can consider this in regard to the 

oversaturated samples plotted in Figure 7A that, using the LSD production rate scaling, have a 10Be 

concentration excess of at least 3 x106 at/g, relative to the precision of the measurements. The 

minimum age we estimate for the saturated samples is 5.6 Myr and accounting for the radionuclide 

decay over this period would mean that, if the excess 10Be derives from a higher elevation, the samples 

must have been deposited at their modern locations with a 10Be concentration of 49 x106 at/g. The 

corresponding excess of 26Al in the samples when they were deposited on Pampa de Tana would 

approximate seven times that of 10Be, with the exact value depending on the elevation history of the 

samples (Lifton et al., 2014), but after 5.6 Myr of more rapid decay the excess 26Al concentration is 

about half the excess of 10Be. We can examine what scenarios of upstream erosion rate and 

transport/storage would allow the amounts of 10Be oversaturation we find in the Pampa de Tana 

samples. For example, erosion of the clasts from bedrock at a rate of 0.1 m/Myr and an elevation of 

3500 m and then subsequent surface exposure at this elevation for 400 kyr, before transport to the 

lower elevations of Pampa de Tana at 5.6 Myr ago, would result in a 10Be concentration of 

approximately 49 x106 at/g. This is enough to produce the oversaturation we observe in Figure 7A but 



such low erosion rates would be surprising for a mountainous region. Increasing the rate of erosion 

requires either a longer subsequent exposure time at this elevation, or that the upstream catchment 

source area was more elevated, or both. Clasts brought to the surface by erosion rates of 10 m/Myr at 

4000 m elevation would require subsequent exposure for 2.2 Myr before being transported 

downstream in order to attain the excess 10Be concentrations evident in figure 7A. Such a scenario is 

feasible if the clasts had originated from, for instance, an intermontane Andean valley, but these 

scenarios also assume zero erosion of the clast surfaces after they have eroded out of the bedrock.  

A combination of production at higher elevations and underestimated production rates at our site can 

explain the oversaturated samples shown in Figure 7. However, three samples (TA1A, TA1B and TA5A) 

have 10Be concentrations exceeding 20 x106 at/g (Table 1). These do not appear in Figure 7, as 26Al was 

not determined on these samples. Resolving oversaturation of 10Be that reaches concentrations of 25 

x106 at/g (TA5A) using production at high elevations alone would require saturation of non-eroding 

clasts at 5500 m before transport and deposition at Pampa de Tana. As this scenario is unlikely it points 

to either more significant production rate underestimates, or issues during sample 

preparation/measurement. However, we note oversaturated samples measured from similar elevations 

in northern Chile have also been reported by other groups (Nishiizumi et al., 2011). 

Accounting for uncertainties, none of our samples have experienced sufficient burial to resolutely place 

them in the zone of complex exposure, although this assertion is less clear for some of the 

oversaturated samples (Figure 7A and 7B). The measurement of 10Be and 26Al in stream sediments from 

the currently active Quebrada de Camiña, which contains flowing water (site 6, Table 1), gives a 10Be 

concentration that is at least an order magnitude less than the concentrations recorded at all sites 

except the southern channel, where it is approximately half as much as the lowest concentration (Table 

1; see Figures 3 and 6 for the location of the southern channel with respect to Quebrada de Camiña). 

This suggests the fluvial sediments in the Quebrada de Camiña are eroded and transported rapidly 



enough to prevent significant pre-exposure concentrations, or ‘inheritance’, of 10Be and 26Al, relative to 

the million-year ages we typically observe here. In some of the samples from the southern paleochannel 

we measure concentrations of 10Be and 26Al that are comparable to that found in the active channel of 

the Quebrada de Camiña, meaning the southern channel might have been recently active. However, the 

modern stream sample (site 6) is not a direct analogy for our channel sites, being a finer grain size and 

coming from a more incised channel draining a larger catchment, characteristics that might result in 

concentration differences (Codilean et al., 2014). Additionally, the ranges of the ages in the central and 

southern channels are indicative of significant, million-year equivalent pre-exposure. We suggest, in the 

absence of evidence for burial, that the youngest age of 2.0 Myr for the abandonment of the central 

channel is the most reliable and that older ages have experienced notable pre-exposure. Similarly the 

southern channel has likely been active in the last 100 kyr, after inheritance is accounted for. 

 

4.3. 21Ne results 

The neon isotope composition of all samples and CREU standards are shown in Figures 8A and 8B. 

Samples NTA1D, NTA4D and NTA5D plot above the air-spallation mixing line indicative of a contribution 

non-cosmogenic Ne present in the quartz samples.  The concentration of 21Ne in these samples is an 

upper limit on their exposure history. Cosmogenic 21Ne concentrations and exposure ages are reported 

in Table 1 and Table 2. 
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The 21Ne concentrations give ages that range from 1.4 to 8.3 Myr for the northern channel (site 1), 1.1 to 

2.4 Myr for the central channel and 0.4 Myr for the southern channel.  Ages for the interfluves range 

from 2.6 to 8.2 Myr. The overall pattern of decreasing channel ages southwards and older ages on the 

interfluves that is observed with 10Be and 26Al is preserved.  However, nine of the twelve 21Ne ages are 

younger (within 2 standard deviations) than predicted by 10Be or 26Al concentrations. Davis et al. (2011) 

find that cosmogenic 21Ne loss from chert-rich samples from near the Dead Sea in Israel can explain 

younger than predicted 21Ne ages. From south of our fieldsite, but still in the hyperarid Atacama Desert, 

Placzek et al. (2010) plot a single 21Ne/10Be result that suggests loss of 21Ne. Furthermore, cosmogenic 

3He in pyroxene from boulders from a site that should be contemporaneous with our interfluve samples 

gave exposure ages of 11 – 20 Myr (Evenstar et al. 2017), much greater than our 21Ne ages from the 

interfluves of 2.3 – 8.2 Myr, but in keeping with the uniformly saturated results from 10Be 

measurements. The Raman Spectrometry measurements of a subset of the samples and visual 

inspections during crushing show that they most likely contain microcrystalline quartz.  On the basis of 

the diffusive parameters determined by Shuster and Farley (2005), it is possible that the diffusive loss of 

cosmogenic 21Ne from fine grained quartz at Atacama Desert temperatures can explain the apparent 

discrepancy between the 10Be and 21Ne exposure ages.  Consequently we focus our below discussion on 

the ages obtained from 10Be and 26Al. 

 

4.4. Channel profiles and topographic analysis 

The swath approach used gives both the channel profile and a profile of the maximum elevations 

adjacent to the channel, i.e. the channel bank. Channel profiles and channel-bank profiles for the 

northern, central and southern channels are shown in Figure 9 (see also Supplementary Data). The 

northern and central channels show convexities in their profiles suggesting they became abandoned and 



have since been warped upwards due to local uplift.  These malformations of the channel profiles occur 

where they cross the eastern scarp (Figure 3A). The northern channel profile exhibits two such channel 

convexities, the second instance being 4 km west of the first one. The profile of the northern channel is 

also approximately mirrored in the profile of the adjacent channel-bank, suggesting the local relief on 

the surface of the topographic bulge proximal to the northern channel is due to uplift rather than 

erosion. This seems reasonable, as the channel appears to follow the trace of a monocline (Garcia et al., 

2013) (Figure 3C). Aside from the deformation of the channel profile where it crosses the eastern scarp, 

the central channel profile maintains a generally more linear form than the northern channel. However, 

the channel-bank profile of the central channel shows a second topographic high around 4 km west of 

the eastern scarp. That this deformation is not evident in the channel profile suggests this uplift 

predates that associated with the eastern scarp and fluvial incision was rapid enough to keep pace with 

this earlier uplift. The southern channel has a linear profile that is not malformed as it passes through 

the eastern scarp, providing evidence that incision has kept pace with uplift and the channel can 

maintain flow, as supported by the relatively young ages reported in section 4.1.  

The height of the eastern scarp is greatest between the northern and central channels where it reaches 

around 40 m and lowers near the southern channel where it is around 10 m (Figure 9). The scarp 

appears to be comprised of several short, slightly offset, sections that are steepest around the central 

channel and shallowest around the northern channel (Figure 3A). Clay deposits are found along the base 

of the scarp and a claypan several kilometers across has formed in a shallow depression in front of the 

scarp to the north (Figure 3B). The claypan appears fed by small streams flowing from the north, east as 

well as from the south, parallel to the scarp, suggesting the rerouting and ponding of streams relating to 

the formation of the scarp. 
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5. History of channel abandonment, rates of uplift and rates of fluvial incision 

Our cosmogenic 10Be and 26Al exposure ages show the northern channel (Figure 6) became abandoned 

before the central and southern channels, sometime before 5.6 Myr ago, with a maximum age 

constrained by the 11 Myr age of the El Diablo Formation (see section 2.1). The central channel appears 

to have been active 2 Myr ago. The most southerly channel has seen fluvial activity in at least the last 

few hundred thousand years and probably more recently. Although the individual ages at each of the 

three channel sites show scatter, there is a clear difference between the timing of abandonment of the 

sites. All samples in the northern channel are saturated with respect to 10Be, the central channel shows a 

mixture of saturated samples and ages on the order of millions of years, while the southern channel has 

no samples saturated with respect to either 10Be or 26Al, and mostly hundred thousand year ages. In 

short, the ages suggest stream abandonment moved progressively south.  

Ages of abandonment of the northern and central channels, combined with the channel profiles, allows 

us to place constraints on the average rate of vertical uplift of the topographic bulge that has occurred 

since the streams were defeated. In order to gauge the total amount of vertical uplift we need to 

estimate what form the channels would have if the streams had not been blocked. For this we assume 

simplified, linear channel profiles from where they meet the eastern scarp to the point downstream 

where the degree of incision is minimal and presumably any influence of uplift has waned. This form is 

similar to what we currently see in the southern channel (Figure 9) and is termed the ‘no-uplift’ profile 

in Figure 10. The differences of elevation between the channel profile and the no-uplift profile gives the 

amount of vertical displacement that has occurred since channel abandonment. We then use our 

chronology of channel abandonment to estimate a rate of vertical uplift, averaging over the last 5.6 Myr 



in the case of the northern channel and the last 2 Myr in the case of the central channel (Figure 10). We 

find that the uplift of the northern channel reaches ~ 8m/Myr, while in the central channel our 

estimates reach ~12 m/Myr in places. We do not attempt to formally ascribe uncertainties to these rates 

given that the sources of uncertainty, including the timing of channel abandonment and form the 

channel would take in the absence of uplift are difficult to assess. However, the likely precision of our 

uplift rate estimates are such that the rates averaged over 2.0 Myr in the central part of the uplifted 

topographic bulge are comparable to those in the north over timescales of 5.6 Myr. If the abandonment 

of the northern channel was significantly earlier than our 5.6 Myr minimum, rates in the north might be 

low enough to discriminate from those of the central channel.  
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In addition to the rates of uplift after abandonment of the channels, we can obtain estimates for the 

rates of fluvial incision before abandonment.  To do this we recognize the channels have incised into the 

preserved surface of the El Diablo Formation and that we can use the 11 Myr estimate for when this 

surface became stable as a marker horizon (section 2.2). The total depth of incision is given by the 

difference in elevation between the channel-bank profile (i.e. the surface of the El Diablo Formation 

adjacent to the channel) and the channel profile (Figure 9). The rate of incision is then obtained by 

averaging this depth over the time between the end of the El Diablo Formation and the abandonment of 

the channels (Figure 10). Thus, we obtain fluvial incision rates for the northern channel of 4 m/Myr, 

during the period from 11 Myr to 5.6 Myr. Rates of fluvial incision are less than 3 m/Myr for the central 

and southern channels, during the periods from 11 Myr to 2 Myr, and the last 11 My, respectively. It 

should be noted that, like the rates of uplift described earlier, these incision rates are averaged over a 



significant period of time. Actual rates of incision are probably much higher over the short term, 

separated by periods of stability and perhaps also aggradation. This type of non-equilibrium fluvial 

operation is especially true of ephemeral streams in desert environments (Powell, 2009). In addition, 

this approach to quantify uplift and incision is complicated by the uncertainty in when the El Diablo 

Formation ceased to aggrade, and by our swath approach to determine the channel-bank elevation that 

might incorporate higher topography some distance from the channel itself.  None-the-less, the picture 

that emerges from this attempt to compare uplift and incision rates is one where uplift rates averaged 

over the period of time since streams were defeated appear to be greater than preceding rates of fluvial 

incision. 

 

6. Discussion 

6.1. Concurrent preservation and evolution of the Atacama landscape  

10Be saturation of all the interfluve samples (sites 4 and 5, Table 2, Figure 3D) is evidence that these 

surfaces are stable, with minimal clast erosion and turbation of the surface regolith. This notion of 

interfluve stability is in good agreement with the >11Myr age Evenstar et al. (2017) find using 3He at a 

location close to our sites and from the same depositional surface. Saturation of our interfluve samples 

and corresponding 26Al/10Be ratios are generally consistent with a period of exposure where there has 

been minimal burial and/or clast erosion. More precise constraints on the position of the steady-state 

erosion island on the two-isotope diagram (Figures 7A and 7B), or depth profiles (e.g. Davis et al., 2014; 

Jungers et al., 2013) would be needed to find strong evidence for any shallow or slowly operating 

regolith processes.  

There is a sharp contrast in 10Be concentrations, and hence ages, between the most recently active, 

southern channel and the adjacent interfluve (sites 3 and 4 on Table 1, Figure 6). These sites are 



approximately 100 m apart and the channel is incised only a few meters into this surface. There are two 

implications of this contrast. Firstly, there is no evidence for transport of clasts over short distances from 

the flat interfluves into the channels, again indicating the stability of this surface, at least in the case of 

cm sized pebbles. Secondly, interfluves that have undergone minimal modification since the Miocene 

exist adjacent to shallowly incised channels that show evidence for much more recent fluvial activity 

(likely within the last 100 kyr in the case of the southern channel). The origins and evolution of different 

geomorphological features within this landscape are thus governed by processes operating over very 

different timescales. Precipitation that has fallen on Pampa de Tana since at least the Late Miocene 

appears not to have been sufficient to have removed clasts that have existed at, or close to, the gypsum 

dust mantled surfaces of the conglomeratic El Diablo Formation. Jordan et al. (2014) note that the 

location or geomorphic feature under consideration may be a contributing factor to the disagreement 

between several studies attempting to constrain the timing of hyper-aridification within the Atacama 

Desert. Our results reiterate the point that the source of fluvial deposits as proxies in this debate need 

to be carefully considered, as do other extrinsic tectonic and intrinsic geomorphic mechanisms 

influencing such proxies and these are discussed in more detail below. 

 

6.2. Causes of channel abandonment 

Given that we find progressively younger ages of channel abandonment southwards it is tempting to 

ascribe the directional forcing of drainage around uplifting topography as the cause, as recorded 

elsewhere (e.g. Burbank et al., 1996; Medwedeff et al., 1992), and in the results of modelling studies 

(Tomkin and Braun, 1999). However, the topographic profile along the scarp at the leading edge of the 

uplift (Figure 9) shows the surface of Pampa de Tana upstream of the scarp is tilted downward towards 

the north, as can also be seen by the lower elevations of the channels in the north compared to the 



south (Figure 8). This effect of lower northern channels is due to the orientation of the topographic 

bulge in a north-west to south-east direction on a west facing slope, meaning the scarp at the 

northwestern end is at a lower elevation when compared to the southeastern end. This also means that 

drainages could not be forced south as they were blocked by growing topography and as such the 

drainages crossing the anticline were antecedent and then superposed as the surface uplifted. That 

these channels did not develop more significant low order tributaries and widen their catchments via 

headward erosion of those tributaries where they incised the uplifting bulge further suggests any 

precipitation that has fallen on Pampa de Tana since the beginning of uplift, at least as far back as 5.6 

Myr ago, has had minimal influence shaping this surface. Our long-term average fluvial incision and 

uplift rates (Figure 10, section 5) suggest uplift rates since abandonment of the northern channel over 

the last >5.6 Myr and abandonment of the central channel over the last 2 Myr were greater than the 

preceding rates of fluvial incision. This is particularly apparent on the central channel, where our 

estimates of uplift over the last 2 Myr reach rates six-fold greater than preceding fluvial incision. Though 

there are several broad assumptions included in these rate derivations, we propose uplift has been the 

first order control of channel avulsion.  

Incision of the southern channel has been able to keep pace with the displacement rates of the scarp. 

This might relate to lower uplift rates in the southeast. The southern channel also flows into the deeper 

incised Quebrada de Camiña downstream of the anticline and this connection to a lower local base-level 

could have driven more rapid incision and helped it maintain its course through the uplifting scarp. 

However, there appears to be little incision of the reach lying upstream of the point where the southern 

channel joins the trunk of the quebrada (Figure 3A), suggesting the influence of this lower local base-

level has not propagated upstream in the southern channel as far as the area of topographic uplift. 

Abandonment of the northern and central but not the southern channels could also relate to 

consumption of the Pampa de Tana surface, where lateral expansion of the Quebrada de Camarones to 



the north has annexed the catchment areas feeding the northern and central channels more so than has 

occurred in the south. It is clear from satellite imagery of the area upstream of the topographic bulge 

that capture of the pampa drainages is ongoing and the narrow apex at the highest point of Pampa de 

Tana, where access to discharge from higher elevations has been cut-off, is the result of the headward 

and lateral expansion of the quebradas (Figure 11). Similar drainage capture of older streams by more 

recent, large canyon incision is observed north of Pampa de Tana (García and Hérail, 2005; Hoke et al., 

2004). The notion that capture has been more prevalent for northern Pampa de Tana drainages than 

southern ones agrees with the general picture of quebrada evolution, whereby incision of the Quebrada 

de Camarones into the Central Depression occurred around 13-12 Myr ago, while Quebrada de Camiña 

(Quebrada de Tana) connected to the sea later, incising through the Coastal Cordillera 7-5 Myr ago 

(Evenstar et al, 2017; Farías et al., 2005, Naranjo and Paskoff, 1985) and downcutting significantly into 

the Central Depression perhaps only the last 3 Myr (Kirk-Lawler et al., 2013).  More lateral expansion of 

the Quebrada de Camarones may be occurring via the large landslides reported for its tributaries (Garcia 

et al., 2011; Pinto et al., 2008; Crosta et al., 2014). Here, we suggest that the removal of the upstream 

catchment area by the headward erosion of the large bounding quebradas, especially to the north, has 

reduced the discharge of the streams flowing over the pampa and diminished their ability to keep pace 

with the rate of uplift of the eastern scarp, either due to having less stream power or transporting less 

sediment to the base of the scarp. This effect is less pronounced in the south and may have allowed the 

southern channel to keep pace with uplift.  

 

<<Approximate location of figure 11 >> 

 

 



6.3. Broader implications of drainage adaptation 

6.3.1. Tectonic interpretation 

The chronology of evolution of the three channels on top of a tectonically raised bulge gives some 

insights into the active tectonic processes during the Neogene (Pliocene) in northern Chile. Presumably, 

these channels formed directly after the formation of the Pampa de Tana surface, which itself formed as 

result of the regional uplifting of the Precordillera and the subsequent aggradation processes linked with 

the infill of the Central Depression since the Oligocene (Azapa Formation, Salas et al., 1966), ending with 

the deposition of the El Diablo Formation during the Miocene. The asymmetric profile of the 

topographic bulge, characterized by a steeper eastern scarp and gentler western scarp is interpreted as 

the surface expression of fault propagation folding above a west-dipping blind reverse fault forming the 

anticline depicted in Figure 3c.  We used cross-sectional topographic profiles of the channels and 

channel banks (Figure 9) as well as the Pampa de Tana surface (Figure 6)  as morphological markers to 

reconstruct the uplift and anticlinal bending, which could best be reproduced by reverse faulting. 

Although there is no direct information about the fault geometry at depth, normal faulting for the 

formation of the observed structure can be excluded due to the shape of the surface traces of the scarps 

located at the western and eastern limbs of the anticline. Their convex shape with regard to the 

topographic scarps require an east dipping fault plane for the western limb and a west dipping fault 

plane for the eastern limb. Together with the uplift signal this geometry clearly points to a fault 

propagation fold geometry, well in agreement with other compressional structures along the foothills of 

the western Altiplano flank south of Pampa Tana (Farias et al. 2005, Munoz & Charrier 1996, Victor et al 

2004). The resulting topographic displacement can be followed for 46 km along-strike between 

Quebrada de Camarones to south of Quebrada de Camiña. Therefore, we suggest that this reverse blind 

fault is a major structure of the forearc that has been at least in part responsible for the uplift of Pampa 

de Tana and the Coastal Cordillera at this latitude. This finding demonstrates that the regional Neogene 



tectonic regime is in some way dominated by east-west compression, which has constructed a forearc 

bulge between the western border of the Coastal Cordillera and the Pampa de Tana.  

 

6.3.2. The downstream implications of stream diversion 

Our findings show that the pampa surface to the west of the topographic uplift ceased to receive 

overland channel flow from the east at around 2 Myr ago, when the central channel became 

abandoned. This assumes the southern channel was draining then, as it does now, into an incised 

Quebrada de Camiña just downstream of the topographic bulge, and thus not supplying discharge to the 

western areas of the Pampa de Tana during the last 2 Myr. It seems plausible that the southern channel 

was draining into the Quebrada de Camiña at this time given that major incision of this quebrada was 

proposed to have occurred sometime after 3 Myr ago, following the draining of a paleolake that 

occupied western portions of the pampa (Kirk-Lawler et al. 2013). About 20 – 25 km downstream of the 

eastern scarp, the Coastal Cordillera forms a topographic barrier to minor westward flowing drainages 

and there is little evidence for eastward directed flow emanating from the Coastal Cordillera at this 

latitude. Thus, the tract of land lying between the topographic bulge and the eastern fringe of Coastal 

Cordillera between the Quebrada de Camarones and Quebrada de Camiña has not received channel 

flow in the last 2 Myr due to the slow average uplift of a subtle tectonic structure. The geochronological 

constraints on when drainages were last active in this area make it well suited to studies investigating 

long-term biological evolution in extreme environments, or to geomorphological studies considering the 

development of topography in the absence of flowing water in terrestrial and extra-terrestrial 

landscapes.  

 

 



7. Conclusions 

Preserved remnants of drainages in deserts constitute sensitive indicators of changing boundary 

conditions and provide a means to estimate rates of tectonic and geomorphological processes. 

Topographical analyses shows westward flowing stream networks on Pampa de Tana in the northern 

Atacama Desert have been blocked by a scarp formed above a blind reverse fault, preserving 

paleochannels in the uplifted topography. By dating the timing of paleochannel abandonment using 

cosmogenic nuclides in fluvial sediment deposits we derive a chronology for the long-term evolution of 

this drainage. While chronological constraints are only broadly defined, we see a clear variation in the 

timing of channel abandonment that moved progressively south over at least the last 5.6 Myr. The first-

order control of the abandonment of the channels that once incised into this uplifted topography 

appears to be tectonic uplift of a scarp at a rate that averages typically less than ten meters per million 

years. While relatively slow, this rate of uplift exceeds rates of earlier fluvial incision by several-fold. 

Upstream drainage capture and the beheading of streams on the pampa, as it was consumed by 

headward erosion and the lateral expansion of the north and south bounding quebradas, could have 

played a role in reducing the ability of the paleochannels to traverse the uplifting scarp by reducing their 

catchment areas and thus lowering the precipitation they receive. The southernmost channel dated 

here shows relatively recent fluvial activity across a surface of great antiquity that is a testament to the 

polygenetic nature of the Atacama Desert. This notion of polygenesis, plus the recognition that subtle 

topographic changes in response to slow rates of tectonic uplift can reroute past stream networks, 

suggests care is needed when using fluvial records to examine the long-term stability of hyperarid 

climates in tectonically active regions. Furthermore, we consider that the fault that has driven the 

channel abandonment extends several tens of km further south of our study area, and constitutes a 

major east-west compressional structure of the forearc bulge in this region.  
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Figure captions 

Figure 1A the coast of northern Chile showing the main topographical domains and large scale drainage 

patterns. 1B the study area of Pampa de Tana is located in the red box between the Quebrada de 

Camarones and Quebrada de Camiña. 

 

Figure 2A shows the geology of the Pampa de Tana region adapted from Herrera et al. (2017), 

illustrating the distribution of the El Diablo Formation (EDF) discussed in the main text. Extent is the 

same as in Figure 1B. MB is the metamorphic basement of the Coastal Cordillera; AOAF is the Azapa, 

Oxaya and Altos de Pica Formations; LCF is the Lupica and Chucal Formations.  Black lines bisecting red 

boxes are the respective centers and widths of swath profiles shown in the panels beneath. The boxes 

11A and 11B refer to the areas covered in Figure 11 (see text for details). The blue dashed box is the 

area covered by SPOT-6 imagery for which DEM data was derived (see Figures 3 and 6). The grey and 

white points show the positions of the photos of Figures 4A and 4B, respectively. The swath profile B-B’ 

shows the smooth downslope, low relief form of the pediment is interrupted at around 15 km by the 

east facing scarp and incised topography related to uplift of a topographic bulge. The reduced incision 

and concave form of the pediment for a few km upslope of the anticline suggests sediment deposition in 

this zone. The swath profile C-C’ traces the approximate crest of the topographic bulge, showing 

changes in relief along the length of the scarp and an overall reduction in elevation in a north-west, 

downslope, direction. 

 

Figure 3, A to E illustrate the topographic bulge and channels studied, with the location and extent of 

the images shown in Figure 2A. 3A- is a hillshade draped over a 2m resolution DEM derived from a pair 

of 1.5m SPOT-6 images and viewed in 3D with a 5-fold vertical exaggeration. The view is looking 



approximately towards the southwest. The paths of the northern, central and southern channels 

discussed in the text are given, as is the location of the eastern scarp of the topographic bulge that has 

blocked the northern and central channels and the western scarp of this elevated topographic feature 

further downstream. Offset linear sections of the eastern scarp are indicated by the dashed pink lines. 

3B- shows one of the SPOT-6 images used to derive the DEMs used in the topographic analyses. The 

location of the surface mining and the claypan discussed in the main text are given. 3C- shows the 

locations of monoclonal flexures, digitized from the 1:100 000 scale geological map of Garcia et al. 

(2013) and overlain on a hillshade. 3D- illustrates the path of the channel swath profiles for the 

northern, central and southern channels (red boxes) and the topographic swath profile that traces the 

base of the eastern scarp (yellow box) in Figure 9. Numbered yellow circles refer to cosmogenic nuclide 

sample sites described in the main text and Tables 1 and 2. The grey star is the 3He sample location of 

Evenstar et al. (2017). 3E- A surface model of slope gradient shows the path of the paleochannels where 

they have incised into the topographic bulge and the intervening smooth, flat surfaces, or interfluves. 

Aside from the mining buildings, the only steep slopes in the area relate to scarps and fluvial incision. 

 

Figure 4A- A panorama shot of the southern channel sampling site (site 3) showing a preserved coarse 

clastic bar in the center of the channel to the right of the people and steep, incised banks.  4B- shows 

the smooth, low relief topography of the crest of the topographic bulge, where interfluve samples were 

collected for cosmogenic nuclide analysis. The surface is covered by a thick layer of gypsum dust. 

 

Figure 5. An example of a Raman spectrum (sample NTA5D), with a main quartz band at 465 cm-1 and an 

adjacent band at 503 cm-1 that could represent silanol or moganite. 

 



Figure 6. Individual pebble ages (Myrs) derived from 10Be and 26Al measurements and LSD production 

rate scaling are indicated for the different sample locations. Values in black are ages derived from 10Be 

and values in red are ages derived from 26Al. Uncertainties on individual ages are one standard deviation 

(see text for details). Saturated samples are indicated along with the number of these measurements 

(n). In general ages decrease southwards suggesting channel abandonment propagated south. 

 

Figure 7. Two-isotope diagrams plotting the samples from which both 26Al and 10Be were measured. 7A 

uses LSD scaling (Lifton et al., 2014). 7B uses Lm scaling (Balco et al., 2008). Both scaling approaches take 

high latitude-sea level production factors from Borchers et al. (2016). Error ellipses are one standard 

deviation and green refers to the interfluve sites (near the crest of the topographic bulge), yellow to the 

northern channel, blue to the central channel and red to the southern channel. Samples that experience 

constant exposure should plot, within uncertainties, within the black outlined envelope (or steady-state 

erosion ‘island’) extending from the left. Samples that have experienced sufficiently long periods of 

burial should plot beneath the island, in the zone of complex exposure. The position of the steady-state 

erosion island is dependent on the production rates and scaling scheme assumed (see main text for 

more details). The samples denoted by the green error ellipses plotting to the right of the island tip 

exceed the saturation value predicted by the production rates used. The red dashed lines show the 

paths samples would follow if they were shielded from cosmic rays after a period of constant exposure. 

 

Figure 8A. A three-isotope diagram of 22Ne/20Ne against 21Ne/20Ne for the samples given in table 1. The 

black lines show the upper and lower bounds for the air-spallation line. Also shown with the individual 

samples are measurements of the CRUE standard made at the same time. Uncertainties are one 

standard deviation. Figure 8B. A close up of the region shown by the dashed box in 8A. 



 

Figure 9. The channel profiles are shown in blue and channel-bank profiles in red for the northern, 

central and southern channels; based on the 500m wide multidirectional swaths indicated by the red 

boxes in Figure 3D. The bottom panel shows the maximum and minimum elevations in the 500 m wide 

topographic swath profile measured along the base of the scarp, indicated by the yellow box in Figure 

3D. The locations of the channels along the scarp are shown in the bottom panel. The profiles are 

described in more detail in the main text. 

 

Figure 10. The channel profiles and channel-bank profiles of each channel shown in Figure 9 are given, 

along with an estimate of the form the channel would take for the northern and central channels if 

there had been no uplift (dashed line). Beneath the profile plots of the northern and central channels is 

an estimate of the uplift rates, based on the differences in elevation between the ‘no-uplift’ profile and 

the abandoned channel profile divided by the age of abandonment. Plots of fluvial incision along the 

length of all the channels are estimated based on the differences between the channel bank elevation 

and the elevation of the abandoned channel, divided by the length of time between the end of El Diablo 

Formation deposition (11 Myr, see main text) and the age of the channel. 

 

Figure 11. The perimeter of Pampa de Tana shows instances of beheading (white arrows) and drainage 

capture (orange arrow), indicative of the consumption of the interfluve between the Quebrada de 

Camarones and Quebrada de Camiña. A and B refer to the location of the images on Figure 2. The 

images are from GoogleEarth. 

  



Tables 

Table 1. Input used in online calculator age estimates
a
           

 
  

Sample 
site b 

Lat. Long. Elev. 

Sample ID 

Average 
sample 

thickness 

10Be 
conc. 

10Be 
conc. 
1 s.d. 

Be AMS 
standard 

flagc 

26Al 
conc. 

26Al 
conc. 
1 s.d. 

21Ne 
conc. 

21Ne 
conc. 
1 s.d. 

Ave. 
21Ne 

conc.e 

Ave. 
21Ne 
conc. 
1 s.d. 

Dec. Deg. m.a.s.l. cm x106 at/g x106 at/g 

1 -19.35292 -69.87942 1291 

TA1A 1.5 20.6 0.6 NIST_30600     276 11 

 

  

TA1B 1.5 22.3 0.6 NIST_30600     188 12     

NTA-1D 1.0 17.4 0.6 07KNSTD     
56.5 6.9 

77.7 14.1 74.2 12.5 

84.4 7.0 

TA06-1G 2.0 15.7 0.6 07KNSTD     49.6 11.9     

TA-1K 2 15.1 0.5 07KNSTD 58.5 2.8         

2 -19.39231 -69.83283 1323 

TA2B 3.0 11.3 0.4 NIST_30600     37.4 7.3     

NTA2D 1.5 15.5 0.5 07KNSTD     85.4 21.7     

NTA2F 1.0 17.8 0.6 07KNSTD     
33.3 19.4 

62.8 41.8 
92.4 22.8 

TA2M 3.0 13.8 0.5 07KNSTD 62.6 3.9         

TA2N 0.5 12.7 0.5 07KNSTD             

TA2P 4.0 14.6 0.5 07KNSTD             

3 -19.40353 -69.82064 1312 

TA3B 1.0 1.7 0.1 NIST_30600     
13.6 6.1 

11.7 2.7 
9.8 4.0 

TA06-3F 1.0 8.68 0.31 07KNSTD 36.5 2.3         

TA-3M 2.5 0.698 0.054 07KNSTD             

TA-3N 2.0 0.777 0.047 07KNSTD             

TA-3P 1.5 3.63 0.20 07KNSTD             

4 -19.40444 -69.82083 1315 

TA4C 2.0 19.4 0.4 NIST_30600     79.4 32.8     

NTA4D 1.0 16.3 0.6 07KNSTD     
263 12 

277 20 
291 16 

5 -19.38647 -69.83897 1337 

TA5A 2.0 24.6 0.5 NIST_30600     
88.4 7.1 

93.3 6.9 
98.2 17.6 

TA5C 2.0 19.1 0.5 NIST_30600             

NTA5D 1.5 19.7 0.6 07KNSTD     
186 10 

171 20 178 9 

149 14 

TA-5K 1.5 18.9 0.6 07KNSTD 63.2 4.1         

TA-5L 2.0 18.0 0.6 07KNSTD 63.7 5.4         

TA06X5a 1.0 19.2 0.6 07KNSTD 52.5 4.5         

TA06X5b 1.0 19.5 0.6 07KNSTD 60.4 3.1         

TA06X5c 0.5 19.5 0.6 07KNSTD 55.9 3.5         

TA06X5d 1.0 16.0 0.6 07KNSTD 57.0 3.2         

6 -19.45399 -69.94735 992 PIS12-05d 0.05 0.399 0.026 07KNSTD 2.48 0.19         

a 
Other input into the online calculator that was consistent for all the samples included: applying the 'std' flag for the atmospheric pressure model; a 

density of 2.6g/cm
3
; and a zero eroision rate (see also footnote 

d
 in Table 2). In all cases topographic shielding is negligible.  

b
 See Figure 3D for location of samples sites. 

c 
For consistency between the data measured by two different AMS, some of which was derived prior to the changes proposed to the 

10
Be half-life 

(Nishiizumi et al., 2007; Chmeleff et al., 2010; Korschinek et al., 2010), the online calculator Be isotope standardization 'NIST_30600' was applied to 
the SUERC data and 07KNSTD to the CologneAMS data. Al data used the KNSTD flag. 

d 
The sample from site 6 is considered in relation to possible inheritance and no age is calculated. 

e 
Where multiple assays were measured the arithmetic mean and standard deviation 

21
Ne concentrations are used (Table 2). 

 



Table 2. Cosmogenic nuclide exposure ages     

Sample 
site 

location
a
 

Site type Sample ID 

10
Be derived age 

± 1 s.d.
c, d

 

26
Al derived age 

± 1 s.d.
c,d

 

21
Ne derived age 

± 1 s.d.
c,d

 

(Myr) (Myr) (Myr) 

1 
Northern 
channel 

TA1A saturated − 8.34 ± 0.73 

TA1B saturated − 5.63 ± 0.57 

NTA-1D
b
 saturated − 2.44 ± 0.28 

TA-1K saturated saturated − 

TA06-1G
b
 saturated − 1.44 ± 0.36 

2 Centre channel 

TA2B 1.96 ± 0.22 − 1.10 ± 0.23 

NTA2D
b
 saturated − 2.41 ± 0.64 

NTA2F
b
 saturated − 1.77 ± 1.19 

TA2M 3.77 ± 0.76 saturated − 

TA2N 2.87 ± 0.45 − − 

TA2P 4.76 ± 0.67 − − 

3 
Southern 
channel 

TA3B 0.21 ± 0.02 − 0.36 ± 0.08 

TA06-3F 1.49 ± 0.15 1.07 ± 0.20 − 

TA-3M 0.10 ± 0.01 − − 

TA-3N 0.11 ± 0.09 − − 

TA-3P 0.54 ± 0.05 − − 

4 Interfluve 
NTA4D

b
 saturated − 8.18 ± 0.88 

TA4C saturated − 2.26 ± 0.95 

5 Interfluve 

TA5A saturated − 2.63 ± 0.29 

TA5C saturated − − 

NTA5D
b
 saturated − 4.93 ± 0.69 

TA-5K saturated saturated − 

TA-5L saturated saturated − 

TA06X5a saturated 2.25 ± 1.01 − 

TA06X5b saturated saturated − 

TA06X5c saturated saturated − 

TA06X5d saturated saturated − 

a
 See Figure 3D for location of samples sites. 

b
 Sample measured by Raman spectrometry. See main text for details. 

c
 One standard deviation uncertainties in the exposure ages are the 'external' uncertainties reported by the online calculator, 

which take into account analytical as well as estimated production rate uncertainties. 

d
 The ages presented assume zero erosion. This is justified based on many of the samples retaining fluvially rounded forms. If 

assume a maximum erosion rate of 10 cm/Myr, using the estimates of Nishiizumi et al. (2005), the only significant effect would be 

that our site 2 
10

Be ages increase. In this case the youngest age (sample TA2B) becomes 2.74 ± 0.52 Myr and samples TA2M, 

TA2N and TA2P are saturated. As sample TA2B shows evidence for fluvial rounding we assume the assumption of zero erosion 
is valid, but note our ages should be considered as minimum ages. 
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