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Results of an investigation into the impact of in-situ H2 plasma exposure on the electrical properties of the p/n-

In0.3Ga0.7Sb-Al2O3 interface are presented. Samples were processed using a clustered inductively coupled plasma reac-

tive ion etching (ICP-RIE) and atomic layer deposition (ALD) tool. Metal oxide semiconductor capacitors (MOSCAPs)

were fabricated subsequent to H2 plasma processing and Al2O3 deposition and the corresponding capacitance-voltage

(CV) and conductance-voltage (GV) measurements were analyzed quantitatively via the simulation of an equivalent

circuit model. Interface state (Dit) and border trap (Nbt) densities were extracted for samples subjected to the optimal

process, with a minimum Dit of 1.73 × 1012 eV−1 cm−2 located at ∼110 meV below the conduction band edge and

peak Nbt approximately aligned with the valence and conduction band edges of 3 × 1019 cm−3 and 6.5 × 1019 cm−3

respectively. Analysis of the inversion response in terms of the extraction of the activation energy of minority carriers

in inversion (p-type) and the observation of characteristics which pertain to minority carriers being supplied from an

external inversion region (n-type) unequivocally demonstrate that the Fermi level is unpinned and that genuine surface

inversion is observed for both doping polarities.

Antimony-based compound semiconductors are promis-

ing candidates for future complementary metal oxide semi-

conductor (CMOS) devices,1 tunnel field effect transistors

(TFETs),2 and mid infrared optoelectronics.3 Unlike other III-

V compounds, antimonides exhibit excellent transport proper-

ties4 for both electrons and holes and therefore could circum-

vent the bottleneck in III-V p-type metal oxide semiconductor

field effect transistor (MOSFET) performance. Accordingly,

both p and n-type antimonide based MOSFETs have the po-

tential to produce significantly higher on-currents than their Si

counterparts at a given supply voltage, VDD.5 Thus, in com-

parison to Si CMOS, an antimonide based CMOS technology

could enable either: clock frequencies to be increased with-

out increasing power consumption (due to a reduced CV/I

gate delay)6; or power consumption to be decreased with-

out degrading on-state performance.6 Furthermore, an all III-

V antimonide based CMOS technology would offer substan-

tially reduced fabrication complexity in comparison to hybrid

CMOS, where p and n-type devices of different (largely lat-

tice mismatched) materials require co-integration on a com-

mon substrate, and each device polarity has a significantly

different thermal budget.7 InxGa1−xSb ternary compounds of-

fer the combined optimal performance for electrons and holes

in the same material8: the incorporation of In maintains ex-

cellent electron transport,8 while room temperature (RT) hole

mobilities as high as 1,500 cm2V−1s−1 have been demon-

strated in strained p-In0.4Ga0.6Sb quantum wells.9 As such,

complementary devices which have a common channel ma-

terial of InxGa1−xSb have the potential to offer the simplest
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manifestation of III-V CMOS, where p and n-type devices

can be fabricated with a unified process. Forming an un-

pinned dielectric interface to InGaSb with a low interface trap

density (Dit) is critical in order to fully exploit its advanta-

geous material properties. To date, while InGaSb devices have

been demonstrated,8,10–17 systematic studies on improving the

electrical properties of the dielectric interface to antimonides

have been limited to GaSb13,14,16,18–26 and InSb27–33 only. For

the former, ex-situ HCl13,14,17,20 and (NH4)2S18,21,22 surface

treatments, and in-situ H2 plasma exposure23–26 have yielded

promising results. In this paper we report on the impact of

in-situ H2 plasma exposure on the electrical properties of the

In0.3Ga0.7Sb-Al2O3 interface.

In0.3Ga0.7Sb epitaxial layers were grown by molecular

beam epitaxy (MBE) on heavily doped GaAs (100) substrates.

An InSb mole fraction of 30 % was chosen as simulations have

shown mole fractions between 20-40 % to offer the maximum

drive current for n-type devices8: increasing the In concentra-

tion increases the injection velocity, Vin j, and decreases the

density of states (DOS), and mole fractions between 20-40 %

yield the optimal trade-off between these two parameters.8

The complete layer structure comprised, from the substrate-

up: 250 nm GaAs regrowth; a 200 nm GaSb relaxed buffer; a

3 µm In0.3Ga0.7Sb buffer; and a 500 nm In0.3Ga0.7Sb capacitor

layer. The regrowth and buffer layers were doped to a nominal

value of 1 × 1018 cm−3, while the In0.3Ga0.7Sb capacitor layer

was uniformly doped at a nominal value of 2 × 1017 cm−3.

Both p (Zn doped substrate, Be doped epitaxial layers) and

n-type (Si doped substrate, Te doped epitaxial layers) variants

were grown.

Prior to H2 plasma exposure, all samples were subjected to

an ex-situ HCl surface clean (HCl:H2O, 1:2, for 3 minutes,

followed by rinsing in isopropyl alcohol) and subsequently
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loaded into a central vacuum load lock, which is part of a clus-

tered inductively coupled plasma reactive ion etching (ICP-

RIE) and atomic layer deposition (ALD) tool. Samples were

exposed to the H2 plasma in the ICP-RIE chamber with vary-

ing exposure times. The following ICP-RIE parameters were

common to all samples: H2:Ar (1:7) plasma chemistry, 150 W

ICP power, 2 W platen power, 90 mT chamber pressure and

150◦C platen temperature. Following H2 plasma treatment,

samples were transferred under vacuum to the ALD cham-

ber where Al2O3 was deposited via 80 cycles (8 nm nom-

inal thickness) of a thermal ALD process at 200◦C using

trimethyl-aluminium (TMA) and H2O as precursors. Imme-

diately prior to Al2O3 deposition, the samples were exposed

to in-situ TMA pulses (30 cycles, 20 ms TMA exposure, 3 s

Ar purge), which has demonstrated a self-cleaning effect for

other III-Vs.34–36

Metal oxide semiconductor capacitors (MOSCAPs) were

fabricated with circular gate diameters ranging from 50 to

250 µm in size. The gate metal (20 nm Pt/200 nm Au) was

deposited by ebeam evaporation through a shadow mask. Sub-

sequently, the samples were annealed in forming gas (H2:N2,

5%:95%) at 350◦C for 15 minutes. Ti/Pt/Au (30/50/100 nm)

ohmic contacts were formed to the substrate via blanket metal

deposition using ebeam evaporation to the back of the sample.

The impact of H2 plasma cleaning on the electri-

cal properties of the interface was assessed using vari-

able temperature (RT to −50◦C), multifrequency (1 kHz

to 1 MHz) capacitance-voltage (CV) and conductance-

voltage (GV) measurements, which were acquired using a

Keysight B1500A semiconductor parameter analyser in con-

junction with a microchamber probe station (Cascade Summit

12971B). Measurements were recorded in a dark, dry air (dew

point < −65◦C) environment.

Fig. 1 shows RT CV measurements for p-type MOSCAPs

processed with H2 plasma cleaning times of 1, 10 and 30 min-

utes, in addition to a control sample which had no plasma ex-

posure. The gate leakage current for all samples was <1×

10−7 A/cm2 at an applied gate voltage, Vg, of ± 2 V (not

shown). The capacitance modulation, Cmod (where Cmod =

(Cmax-Cmin)/Cmax at 1 MHz), of all samples which included

H2 plasma cleaning was significantly greater than the control;

indicating an increased freedom of Fermi level movement.37

The 1 minute sample exhibited the largest Cmod, with a value

of 73.78 %. This degraded with increasing plasma exposure

time and decreased to 61.36 % for the 10 minute sample and

to 41.06 % for the 30 minute sample. Interestingly, the max-

imum capacitance in accumulation, Cmax, increased with in-

creasing plasma exposure time: with reference to the control,

Cmax increased by 8.11 %, 14.64 % and 16.48 % for 1, 10

and 30 minute samples respectively. Further research is re-

quired to determine the impact of H2 plasma cleaning on the

chemical composition of the InGaSb-Al2O3 interface and how

this relates to the effective oxide permittivity and magnitude

of Dit. This, however, is beyond the scope of this paper. The

frequency dispersion in accumulation was extremely low for

all samples, with a value of 1.1 %/Dec. for the 1 minute

sample. A correlation has been shown to exist between fre-

quency dispersion in accumulation and MOS device reliabil-
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FIG. 1. RT CV measurements over a frequency range of 1 kHz to

1 MHz for p-type Au/Pt/Al2O3/In0.3Ga0.7Sb MOSCAPs, processed

with H2 plasma cleaning times of (a) 0, (b) 1, (c) 10 and (d) 30 min-

utes.

ity,38 and this therefore may have important ramifications for

III-V p-type devices. The minimum measured capacitance of

the 1 minute sample closely approaches its theoretical mini-

mum value based on the nominal doping density (Cmin,theory =

187 nF/cm2, shown in Fig. 1 by the black dashed line). This

is not the case for any of the other samples which clearly have

limited Fermi level movement away from the valence band

edge.

It should be noted that the inclusion of the above-discussed

forming gas anneal (FGA) appears to be critical in order to

fully obtain the benefits of H2 plasma cleaning on the elec-

trical properties of the In0.3Ga0.7Sb-Al2O3 interface, since the

optimal electrical characteristics cannot be achieved with H2

plasma cleaning in isolation, without FGA treatment, or vice

versa (the Reader is referred to the supplementary material).

Further investigation may be required to optimise this anneal-

ing process, however, this is beyond the scope of this paper.

Fig. 2 shows RT and low temperature (-50◦C) CV measure-

ments for both p and n-type MOSCAPs processed with a 1

minute H2 plasma clean. Unlike the p-type sample, the n-type

sample does not reach its theoretical minimum value. This

may lead one to infer that Fermi level is pinned towards the

conduction band edge, assuming that the doping density of

the n-type sample is not significantly higher than the nomi-

nal value. For the same gate stack process to be applicable

to both p and n-type InGaSb MOSFETs, it is critical that the

Fermi level at the InGaSb-dielectric interface is unpinned so

that both device polarities can turn on. Accordingly, in order

to discern if the Fermi level is indeed pinned, or if it is un-

pinned and genuine minority carrier responses are observed,

the following presents a comprehensive analysis of the inver-

sion response of both p and n-type MOSCAPs processed with

a 1 minute H2 plasma clean.

For the n-type sample, it was observed that at fixed mea-

surement frequency, the capacitance in inversion increased
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FIG. 2. RT and low temperature (-50◦C) CV measurements

over a frequency range of 1 kHz to 1 MHz for p and n-type

Au/Pt/Al2O3/In0.3Ga0.7Sb MOSCAPs, processed with a H2 plasma

cleaning time of 1 minute.

with decreasing gate area. This is shown in Fig. 3(a) at a fre-

quency of 1 MHz for gate diameters of 50, 100 and 250 µm.

Such a dependancy is a signature of genuine surface inver-

sion with minority carriers supplied from an external inversion

layer situated beyond the periphery of the gate (resulting from

charge in the oxide). In such a case, the dominant mechanism

over all temperatures by which minority carriers are supplied

to the inversion layer beneath the gate is diffusion from the

externally inverted surface (depicted in the left hand side of

the MOS schematic inset to Fig. 3(a)).39 The gate area depen-

dance of the measured capacitance arises due to the increasing

diffusion distance with increasing gate size from the externally

inverted surface to the centre of the gate. The existence of this

mechanism is further validated by the fact that the inversion

response is not suppressed at low temperature (Fig. 2(d)) as

minority carriers supplied in this manner are not thermally

generated. These characteristics cannot be explained by Dit

and unequivocally demonstrate a genuine minority carrier re-

sponse. With regards to the theoretical minimum capacitance,

it can be seen in Fig. 2(b) and (d) that the true high frequency

CV response of the n-type sample is not observed for any mea-

sured frequency or temperature: each dataset features a dis-

tinct minimum in measured capacitance at Vg ∼ 0.4 V . This is

a further consequence of an external inversion layer: at high

frequency, the minority carriers cannot follow the applied AC

signal and thus the surface beneath the gate remains inverted

and acts as a conductor through which AC current can flow lat-

erally beyond the gate edge into the external inversion layer.

The semiconductor beyond the gate edge behaves as a dis-

tributed R-C network40 (depicted in the right hand side of the

schematic inset to Fig. 3(a)). As the gate bias is pushed fur-

ther into inversion, the coupling between the inversion layer

beneath the gate and the external R-C network increases, and

thus the measured capacitance increases.40 Consequently, this
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FIG. 3. (a) RT CV measurements at 1 MHz for the n-type

Au/Pt/Al2O3/In0.3Ga0.7Sb MOSCAP processed with a H2 plasma

cleaning time of 1 minute, for gate diameters of 50, 100 and 250 µm.

Inset: schematic of an n-type MOSCAP with negative charge in the

oxide causing a peripheral inversion layer. (b) Left-hand y-axis:

Arrhenius plot of the equivalent parallel conductance in inversion

(Vg = 3 V), GI , against 1/kT for the p-type Au/Pt/Al2O3/In0.3Ga0.7Sb

MOSCAP processed with a H2 plasma cleaning time of 1 minute.

Right-hand y-axis: the calculated activation energy associated with

ni for InSb and GaSb, normalised to their respective bandgap ener-

gies. This was calculated by taking d

d(1/kT )
ln(ni), where the empirical

relation of ni(T ) was known for InSb and GaSb from Refs. 41 and 42

respectively.

mechanism masks the true high frequency response and it is

suggested that this results in the discrepancy between the mea-

sured and nominal theoretical minimum capacitance of the n-

type sample, for which there is explicitly a genuine minority

carrier response.

It should be noted that there are no ramifications due to

the presence of the above-discussed external inversion layer

on the performance of a corresponding inversion mode p-type

MOSFET, where minority carriers would be injected into the

channel from the highly-doped source of the MOSFET, and

not supplied from the external inversion layer. The character-

istics observed in the n-type CV measurements due to the ex-

ternal inversion layer are merely an artefact of the MOSCAP

test set up used, which, advantageously, we have been able to

exploit in order to discern genuine surface inversion.

The above characteristics were not present for the p-type

MOSCAP, which is to be expected as the same oxide charge

which peripherally inverts the n-type surface, will accumu-

late, not invert, the p-type surface.39 In order to discern a

genuine inversion response for the p-type sample, the activa-

tion energy, EA, of minority carriers was extracted from an
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Arrhenius plot of the equivalent parallel conductance in in-

version, GI , versus 1/kT, as shown in Fig. 3(b) (left hand y-

axis). Here, k is Boltzmann’s constant and T temperature.

GI was calculated from the measured capacitance and con-

ductance at Vg = 3 V as per Ref. 43. The extracted EA of

0.296 eV is in close agreement with half of the band gap

energy (EG/2 ∼ 0.245 eV, measured by photoluminescence

spectroscopy) indicating genuine surface inversion with mi-

nority carriers supplied via generation-recombination (G-R)

in the bulk.39 The magnitude of the discrepancy between the

extracted EA and EG/2 is within the margin of error reported

for both InGaAs43 and Si.39 Furthermore, it should be noted

that the assignment of EG/2 for the activation energy of the

G-R dominated regime is derived from the dependency of GI

on intrinsic carrier concentration, ni, which, when Boltzmann

statistics are assumed, yields the expression in Eqn. 1.39

ni =
√

NcNvexp(
EG

2kT
) (1)

Taking the derivative of the natural logarithm of Eqn. 1

with respect to (1/kT) yields EA = EG/2:

EA =
d

d(1/kT )
ln(ni) =

EG

2
(2)

Of course, the use of Boltzmann statistics is not valid for nar-

row band gap materials, and a deviation from this approxi-

mation is to be expected. The right-hand y-axis of Fig. 3(b)

plots calculated values of d
d(1/kT )

ln(ni) for GaSb and InSb, nor-

malised to their respective bandgap energies, using empir-

ically determined relationships of ni(T ).41,42 As shown, for

both GaSb and InSb, this yields an activation energy which
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FIG. 4. Comparison between experimental and simulated multifre-

quency, RT, CV (a,b) and GV (c,d) responses for p-type and n-type

Au/Pt/Al2O3/In0.3Ga0.7Sb MOSCAPs processed with a H2 plasma

cleaning times of 1 minute.
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terface state model to achieve the simulation results shown in Fig. 4.

Nbt was input as uniform throughout the oxide thickness.

is higher than EG/2. The experimentally extracted EA for

In0.3Ga0.7Sb lies in the range between the calculated values

of its binary endpoints, illustrating a genuine dependance of

GI on ni and therefore a genuine minority carrier response.

The preceding analysis unequivocally demonstrates a

genuine minority carrier response for both p and n-type

MOSCAPs and therefore explicitly evidences that the Fermi

level at the In0.3Ga0.7Sb-Al2O3 interface is unpinned. In order

to further quantify this interface, the experimental CV and GV

data of both p and n-type MOSCAPs were modelled using the

full interface state model,44–46 including the distributed bor-

der trap model of Yuan et al.45 for both majority and minority

carriers. This method circumvents the well documented is-

sues associated with extracting Dit on narrow band gap semi-

conductors.47,48 Excellent fits to the experimental CV and GV

data for both p and n-type samples were achieved, shown in

Fig. 4, with Dit and Nbt distributions common to both (shown

in Fig. 5, in addition to the capture cross sections, σ, used

to achieve the best fit). For these results, doping concentra-

tions of NA = 2.5 × 1017 cm−3 and ND = 1.4 × 1017 cm−3

were used. Low Dit across the band gap was extracted, with

a minimum value of 1.73 × 1012 eV−1cm−2 located 110 meV

below the conduction band edge. The border trap distribution

was fitted with two gaussians centred close to the band edges.

Border trap densities were extracted with peak magnitudes of

3×1019 cm−3 near the valence band edge, and 6.5×1019 cm−3

near the conduction band edge. The Vg-ψs relationship is

plotted as inset to Fig. 4(b) and shows an unpinned Fermi

level that can move into both valence and conduction bands.

The similarity between the simulated and experimental CV

and GV results with common Dit and Nbt input parameters is

testament to the validity of the extracted parameters.
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In summary, it has been shown that by incorporat-

ing an in-situ H2 plasma cleaning process, p and n-type

Pt/Au/Al2O3/In0.3Ga0.7Sb capacitors can be fabricated where

the Fermi level at the In0.3Ga0.7Sb-Al2O3 interface is un-

pinned, and a genuine minority carrier response is explicitly

discernible for both doping polarities. Consequently, this gate

stack process could facilitate the realisation of a common

channel InGaSb CMOS device, where both device polarities

are fabricated with a common gate stack process. Quantitative

parameters of the interface were extracted via the simulation

of an equivalent circuit model, which found a minimum Dit

of 1.73 × 1012 eV−1 cm−2 located at ∼110 meV below the

conduction band edge.

See the supplementary material for a comparison between

CV measurements of samples processed with H2 plasma

cleaning times of 0 and 30 minutes, with and without an FGA.
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