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Highlights
Tumour heterogeneity drives a

diverse and plastic spectrum of

cancer-associated fibroblasts (CAF)

subpopulations in pancreatic

ductal adenocarcinoma (PDAC).

CAF heterogeneity is spatially

regulated by signals derived from

genetically diverse cancer cells and

distinct microenvironment condi-

tions, resulting in a range of

tumour-promoting and/or tumour-

suppressive functionalities.

The recent appreciation of CAF di-

versity has resulted in innovative

approaches to targeting their

tumour-promoting functions.

Normalisation of pathogenic CAF

subtypes, or the blockade of their

tumour-promoting functions, can

increase tumour cell sensitivity to

cytotoxics or immunotherapy,

highlighting the potential for dual

treatment approaches in PDAC.
Cancer-associated fibroblasts (CAFs) are one of the most significant components in the tumour

microenvironment (TME), where they can perform several protumourigenic functions. Several

studies have recently reported that CAFs aremore heterogenous and plastic thanwas previously

thought. As such, there has been a shift in the field to study CAF subpopulations and the emer-

gent functions of these subsets in tumourigenesis. In this review, we explore how different as-

pects of CAF heterogeneity are defined and how these manifest in multiple cancers, with a focus

on pancreatic ductal adenocarcinoma (PDAC). We also discuss therapeutic approaches to selec-

tively target protumourigenic CAF functions, while avoiding normal fibroblasts, providing

insight into the future of stromal targeting for the treatment of PDAC and other solid tumours.

Cancer-Associated Fibroblasts: Major Players in Pancreatic Tumourigenesis

PDAC is one of the most lethal solid malignancies, with a 5-year survival rate of �9% [1]. Widespread

fibrotic desmoplasia is one of the cornerstones of PDAC development, progression, metastasis, and

treatment resistance, where stromal components of the TME can have fundamental and integrated

roles in promoting tumourigenesis [2–6]. This extensive desmoplastic reaction is characterised by

the recruitment and activation of CAFs, aberrant extracellular matrix (ECM) deposition and remodel-

ling, tumour angiogenesis, altered blood supply, as well as increased inflammation coupled with

altered (and often impaired) innate and adaptive immune responses [4,5,7–9].

CAFs are one of the most prominent and active components in the pancreatic TME [4,5]. During early

tumour initiation, reciprocal tumour–stroma signalling drives the reprogramming of mesenchymal

cells, such as pancreatic stellate cells (PSCs), into CAFs [6], after which they can perform numerous

anti- and protumourigenic functions in the TME. For instance, PDAC CAFs are the chief source of

fibrotic matrisomal components, such as collagens, hyaluronic acid (HA), and fibronectin, among

others, as recently described by Tian et al. [10]. This fibrosis has downstream biomechanical and

biochemical effects in the TME [11], including impaired drug efficacy due to reduced interfibrillar

spacing in the interstitium, which leads to reduced vascular patency and poor immune cell infiltration

[12–17]. Moreover, CAFs produce several chemokines, cytokines, growth factors, miRNAs, exosomes,

and metabolites that can instruct cancer cells and other TME components to promote malignant

biology [4,5].

Given the central role of CAFs in the TME, there have been several attempts to target them in com-

bination with other therapeutic approaches, such as chemotherapy or immunotherapy, for the treat-

ment of PDAC. Thus far, this treatment approach has been largely unsuccessful and, in some preclin-

ical studies, harmful. This is best exemplified through the studies of Özdemir et al. [18] and Rhim et al.

[19], which both found that depletion of CAFs in genetically engineered mouse models (GEMMs) of

PDAC resulted in poorly differentiated and aggressive tumours and, therefore, worse survival. These

findings were also reflected in the clinic, where the therapeutic targeting of stromal fibrosis via

Hedgehog (Hh) pathway inhibition in several clinical trials with patients with PDAC added no benefit

or were more harmful than standard-of-care gemcitabine chemotherapy and/or neoadjuvant treat-

ment with the cytotoxic drug combination FOLFIRINOX alone [20–22]i,ii. Conversely, other preclinical

studies have reported that targeting the TME in this way may sensitise the tumours to immuno-

therapy, which we discuss later in this review. Furthermore, targeting stromal Hh signalling has

proved beneficial in other cancers, such as breast cancer [23],iii, indicating that the therapeutic ben-

efits of this approach may be tissue or cancer type specific. In parallel, virtual microdissection of a
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large cohort of primary and patient-derived PDAC specimens using a bioinformatics approach found

two subpopulations of PDAC fibroblasts that had either a ‘normal’ or ‘activated’ genomic signature,

with the activated status resulting in significantly poorer patient outcomes [24]. These studies have

prompted the field to re-evaluate the function and biology of stromal populations, such as CAFs,

with a view that these cells are more heterogeneous and plastic than was previously thought. Since

then, several groups have identified distinct subpopulations of pancreatic CAFs, which have multiple,

and in some cases differential, functions in the TME [25,26]. Furthermore, this functional diversity in

CAFs and other stromal populations is mirrored in other malignancies, such as breast [27], lung

[28], and colon cancer [29]. Importantly, all these studies reveal the dynamic complexity of CAFs

and hint that normalisation, or targeted depletion, of certain subsets rather than widespread ablation

may be a more promising approach to stromal targeting in PDAC. Evidently, new work should focus

on how CAF phenotype and function are spatiotemporally regulated throughout pancreatic tumouri-

genesis, and how this heterogeneity in stromal populations drives tumour progression.We argue that

understanding this diversity will uncover novel and specific therapeutic targets, presenting an oppor-

tunity to improve the dismal outcomes currently observed in patients with PDAC.

Defining CAF Heterogeneity
Heterogeneity of CAF Biomarkers

Generally speaking, the term ‘cancer-associated fibroblast’ is used to describe all activated fibro-

blastic cells in the TME of solid cancers that have a phenotype, function, or location distinct from

normal, quiescent fibroblasts. It is thought that the most frequent cellular precursor for pancreatic

CAFs are PSCs [30,31]. PSCs can be identified by the expression of desmin and glial fibrillary acidic

protein (GFAP), as well as acetylcholine receptors and vitamin A-containing lipid droplets, all of which

are distinct from other fibroblast populations [32–34], but share similarities with other stellate cells

throughout the body, such as hepatic stellate cells [34,35]. Besides PSCs, there is evidence that

PDAC CAFs can also arise from mesenchymal stem cells (MSCs), bone marrow-derived stem cells,

and/or endothelial cells (Figure 1A) [36–38]. In other solid tumours, there is evidence to suggest

that CAFs also derive from local resident fibroblasts [39], adipocytes [40], adipose-derived MSCs

[41,42], hematopoietic stem cells [43], and pericytes [44]. However, most of these studies were per-

formed using cell culture or transplantation approaches, highlighting the lack of lineage-tracing

studies that adequately address the origin of CAFs (see Outstanding uestions). Evidently, more

research is required to elucidate these transitions further. Also, future studies should investigate

whether the developmental origin of a CAF correlates with its functions and ability to be targeted

(see Outstanding Questions). Interestingly, some populations of MSCs can also influence pancreatic

tumourigenesis. For example, in 2016, Waghray et al. identified and characterised a novel population

of cancer-associated MSCs (CA-MSCs) in PDAC that controls tumour growth and progression via

granulocyte-macrophage colony-stimulating factor (GM-CSF) [36].

Perhaps unsurprisingly, there is no knownuniquebiomarker toprecisely identify the entire pancreaticCAF

population [45,46]. Instead, there are several conventional and emerging biomarkers that can be used in

concert to identify this diverse stromal population. The most commonly used PDAC CAF biomarkers are

alpha-smooth muscle actin (a-SMA), fibroblast activation protein (FAP), vimentin, fibroblast-specific pro-

tein 1 (FSP1), podoplanin (PDPN/gp38), and platelet-derived growth factor receptor alpha and/or beta

(PDGFRa/b) [23,47]; however, this list is neither all-inclusive nor entirely CAF specific [46]. In the pancreas

specifically, PSC-derived CAFs lose lipid droplet expression once activated [30]. Clearly, there are diffi-

culties in isolatingCAFs from tissue, sinceevenabiomarkerpanel approachwill not identify allCAFswithin

a tumour. Therefore, it is important to consider the combination of markers utilised to isolate CAFs when

comparing studies and interpreting results in this context; however, this could be circumvented with the

discovery and development of novel and more specific CAF biomarkers in the future (see Outstanding

Questions).

Cancer Cell Genotype-Driven CAF Heterogeneity

PDAC tumours are molecularly heterogeneous; different regions of the tumour contain molecularly

distinct cancer cells, which results in distinct CAF subpopulations (Figure 1B) [24–26,31,48–51]. Laklai
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Figure 1. Mechanisms of Cancer-Associated Fibroblast (CAF) Heterogeneity.

(A) CAFs can originate from several different cell types and, therefore, exhibit a range of activation states that can

be further stimulated to alter cancer development. (B) The molecular heterogeneity of cancer cells drives

differences in CAF subpopulations via direct, short-, and long-range paracrine signalling. (C) Cancer cells

secrete factors that can reprogram the epigenome of CAFs, resulting in more aggressive phenotypes. (D) Varied

localisation of CAFs within the tumour microenvironment (TME) leads to differences in the signals that CAFs

receive, resulting in functionally and spatially distinct CAF subpopulations. (E) Specific CAF populations can

promote a highly plastic, stem cell-like population of cancer cells that can contribute to chemoresistance. (F)

Metabolic coupling between CAFs and tumour cells occurs via tumour cell manipulation of distinct CAF

subpopulations, where CAFs produce energy-rich metabolites to feed the tumour cells. Abbreviations: a-SMA,

alpha smooth muscle actin; BMDSC, bone marrow-derived stem cell; ECM, extracellular matrix; iCAF,

inflammatory CAF; IL-6/8, interleukin 6/8; MSC, mesenchymal stem cell; myCAF, myofibroblastic CAF; PSC,

pancreatic stellate cell; ROS, reactive oxygen species.
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et al. (2016) revealed that the genetically regulated phenotype of pancreatic tumour cells tunes the

function of the adjacent periductal stroma to promote tumourigenesis via integrin and Yes-associ-

ated protein (YAP) signalling [7]. In line with this, Wörmann and colleagues found that loss of tumour

suppressor gene p53 function in PDAC tumour cells resulted in a more fibrotic stroma compared

with wild-type p53 controls, which was conducive to tumour growth via activation of the Janus kinase

2-signal transducer and activator of transcription 3 (JAK2–STAT3) signalling pathway in cancer cells

[52]. Furthermore, in a PDAC GEMM, pancreatic cancer cells with a gain-of-function (GoF) mutant

p53 (p53mut) genotype were found to induce fibroblast activation via altered exosomal secretion

of podocalyxin (PODXL), a highly sialylated glycoprotein, compared with the exosomes from p53-

null (p53null) cancer cells [53]. This p53mut-specific exosome signature also altered integrin signalling

and increased ECM deposition by normal fibroblasts, pushing them towards a pro-invasive CAF-like

phenotype [53]. The fibroblasts that were exposed to p53mut cancer cell-derived exosomes
726 Trends in Cancer, November 2019, Vol. 5, No. 11
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produced an ECM with a similar stiffness to fibroblasts treated with p53null cancer cell-derived exo-

somes, but this ECM was significantly less adhesive [53]. These weaker cancer cell–matrix interactions

allowed cancer cells to migrate and invade more readily over the ECM produced by p53mut-

educated fibroblasts compared with their p53null counterparts. In addition, it was shown that exoso-

mal PODXL released by p53mut cancer cells also significantly altered the ECM architecture of lung

parenchyma in mice to be more amenable to metastatic colonization [53].

In line with this study, the existence of a p53-driven hierarchy in PDAC was recently reported, where GoF

p53mut cancer cells educate CAFs partially via tumour necrosis factor-alpha (TNF-a) and nuclear factor-

kB (NFkB) signalling to create a permissive environment with pro-invasive cues via deposition of perlecan,

an ECM proteoglycan [47]. Strikingly, these p53mut-educated CAFs caused invasion of normally poorly

invasive p53null tumour cells (to the same extent as the highly invasive p53mut cancer cells) through

both direct and long-range paracrine signalling [47]. Furthermore, p53null-educated CAFs, which create

an environment less permissive to invasion and metastasis than p53mut-educated CAFs, can be subse-

quently re-educated by either p53mut cancer cells or their matched CAFs to, in turn, behave like

p53mut-educated CAFs [47]. These data show that this chain reaction of transferring aggressive pheno-

types to less aggressive fibroblasts and cancer cells can lead to enhanced invasion and metastatic spread

aswell as chemotherapy resistance in vivo [47]. Overall, the specific genotype of tumour cells can therefore

directly influence CAF functions, with CAFs exhibiting extensive plasticity, whereby they can be educated

by, and respond to, cancer cells via local- and/or long-rangebidirectional interactions to enhance tumouri-

genesis (Figure 2). Thus, a more nuanced, context-dependent fine-tuned treatment approach, where only

certain subsets of CAFs, or their actions, are specifically targeted, should be investigated further as a ther-

apeutic intervention to potentially improve clinical outcomes, as discussed in more detail later.
CAF Heterogeneity at the Epigenetic Level

While genetic aberrations, such as mutations or chromosomal rearrangements, are rare in CAFs

[54,55], they can be epigenetically altered upon interactions with neighbouring cells via DNA and
Figure 2. Cancer-Associated Fibroblast (CAF) and Tumour Cell Crosstalk Can Occur through Both Local and

Long-Range Paracrine Signalling.

Molecularly and phenotypically aggressive cancer cells and CAFs are able to confer protumourigenic

characteristics in spatially distinct, less aggressive counterparts through short- and long-range secreted and

exosomal factors. Abbreviation: met, metastasis/metastatic.
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histone methylation (Figure 1C) [56,57]. Methylation is a reversible process that can be targeted with

demethylating drugs, such as 5-aza-2’-deoxycytidine (DAC). In 2015, Albrengues et al. found that the

CAF phenotype in head and neck, lung, and breast tumours was sustained through epigenetic mod-

ifications via a prominent proinflammatory cytokine called leukemia inhibitory factor (LIF), with this

effect reversed by DNA methylation inhibitors. Interestingly, a recent paper by Biffi et al. implicated

LIF in PDACCAF heterogeneity, where it functions as an autocrinemediator of JAK/STAT signalling in

PSCs, which then causes the PSCs to become more inflammatory (and pro-metastatic) in phenotype

[26]. Xiao et al. reported that PDAC tumour cells promoted methylation of the SOCS1 gene in CAFs,

leading to reduced expression of SOCS1, a known STAT inhibitor [56]. This resulted in phosphoryla-

tion of STAT3, which promoted the secretion of several protumourigenic growth factors, such as

insulin-like growth factor 1 (IGF-1) [56]. Interestingly, it was shown that, in the absence of epigenetic

reprogramming, the resident pancreatic fibroblasts were hostile to tumour development, indicating

that this process may be a critical mechanism in PDAC tumourigenesis [56]. This reprogramming ap-

pears to occur via contact between cancer cells and CAFs [56], highlighting the importance of spatial

location in contributing to specific CAF phenotypes. The preclinical efficacy for targeting DNA

methylation in PDAC has already been shown, whereby early intervention treatment slowed tumouri-

genesis and increased survival in a stroma-rich GEMM of PDACmodel, where CAFs would have been

targeted [58]. Most recently, Eckert et al. identified nicotinamide N-methyltransferase (NNMT), a

methyltransferase involved in metabolic regulation, as the master regulator of CAF phenotype and

function in high-grade serous ovarian cancer (HGSC) [59]. Strikingly, NNMT maintained the CAF

phenotype by metabolically reprogramming the epigenome of the stroma via DNA and histone hy-

pomethylation [59]. Functionally, treatment with an NNMT inhibitor in an orthotopic model of HGSC

reduced tumour cell burden and proliferation [59]. This result was mirrored in a cohort of patients with

TCGA, where high NNMT expression was correlated with platinum-treatment resistance as well as

poorer survival [59]. As such, the prognostic value and function of NNMT in PDAC should be investi-

gated. Although there are several active clinical trials therapeutically targeting the epigenome of

tumours, thus far most have focussed on blood-related malignancies and have yet to be assessed

for cell-specific stromal reprogramming in solid tumours [60].
CAF Heterogeneity Based on Spatial Location

The location of CAF populations can have far-reaching consequences for PDAC development and

progression. In 2017, Ӧhlund and colleagues described two spatially and functionally distinct CAF

populations in PDAC: inflammatory CAFs (iCAFs), which have low expression of a-SMA and high

expression of inflammatory mediators, such as interleukin-6 (IL-6), IL-11 and LIF, and myofibroblasts

(myCAFs), which express high levels of a-SMA and low levels of inflammatory mediators [25]. iCAFs

and myCAFs were found in distinct spatial locations, with myCAFs residing in close proximity to

tumour foci, whereas iCAFs were located more distantly to tumour cells [25] (Figure 1D). Interestingly,

the authors reported a small population of CAFs that expressed a combination of iCAF and myCAF

markers, indicating that these populations may not be fixed in differentiated states but instead

have the potential for plasticity and conversion from one state to another [25]. In a later study by

the same group [26], it was found that this heterogeneity is reliant on tumour cell-derived IL-1 and

transforming growth factor-beta (TGF-b) signalling cascades. Here, IL-1 drives the iCAF phenotype

via JAK-STAT, while TGF-b antagonises this mechanism by downregulating stromal IL-1 receptor 1

expression (IL-1R1) to promote a more myofibroblastic CAF phenotype [26]. In this study, an interme-

diate population of CAFs was identified in vivo [26], supporting previous in vitro work that CAF sub-

populations are plastic cell states [25] rather than terminally differentiated subtypes. This was further

reinforced by the successful conversion of PDAC iCAFs tomyCAFs with JAK inhibition in vivo [26]. This

plasticity presents an exciting opportunity to target deleterious CAF subpopulations, such as iCAFs,

by pushing them into a tumour-restraining state (myCAFs). Nevertheless, it remains to be seen

whether targeting a particular CAF subpopulation will have lasting effects, considering the acute abil-

ity of fibroblasts to adapt to direct, local, and long-range factors [47]. In PDAC and other cancers, it is

still not fully understood whether CAF subpopulations are intrinsically heterogenous (due to their

cellular precursor or otherwise) or whether the presence of different CAF populations are due to para-

crine and/or mechanical signalling alone. This also calls into question whether CAFs of different origin
728 Trends in Cancer, November 2019, Vol. 5, No. 11
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are differentially amenable to therapeutic targeting (see Outstanding Questions). As such, further

preclinical research is essential to fully assess the longevity of targeting CAF subpopulations.

Interestingly, Bernard et al. demonstrated that microenvironmental heterogeneity occurs in prema-

lignancy and throughout cancer progression [61]. This study examined iCAF and myCAF populations in

PDAC and in precursor low-grade and high-grade intraductal papillary mucinous neoplasms (LG- and

HG-IPMN) [61]. iCAFs were only apparent in PDAC, whereas myCAFs were lowly abundant in LG-IPMN

and highly abundant in HG-IPMN, indicating that myCAF activation can also occur in the non-invasive

setting. Interestingly, the increase in iCAFscoincidedwitha clearly defined switch from immunosurveillance

(LG-IPMN) to immunosuppression (PDAC) [61]. Considering that iCAFs produce high levels of chemokines

and cytokines that are involved in tumourigenesis and disease progression, it is likely that these cells are

also responsible for aggressive tumour spread, although this correlation has yet tobe explicitly elucidated.

Furthermore, most recently a third PDAC CAF subpopulation was identified using single-cell RNA

sequencing (scRNA-seq), which was described as ‘antigen presenting CAFs’ (apCAFs) [135]. ApCAFs ex-

press major histocompatibility complex (MHC) class II family genes as well as CD74 and were reported

to have an immunodulatory role, where they can interact withCD4+ T cells [135]. In addition, another recent

scRNA-seqstudybyHoseinet al. identified three subpopulationsof fibroblasts innormalmousepancreata,

which then give rise to twodistinct populations of fibroblasts (i.e., CAFs) in the pancreatic tumours from the

KrasLSL�G12D/+; Ink4afl/fl; Ptf1aCre/+ (KIC) GEMM [62]. These two populations were described as inflamma-

tory and myofibroblastic in phenotype, with the latter also expressing some MHC-II-associated genes,

perhaps indicating a hybrid population comprising myCAFs and apCAFs. This study again supports the

notion of intratumoural CAF heterogeneity in PDAC, albeit with slightly different clustering. Although

we know that there are myofibroblastic, inflammatory, and/or antigen-presenting CAFs in PDAC, it is

possible that, with further advances in single-cell transcriptomic sequencing andother technologies, either

more subpopulations will emerge or, more likely, that a spectrum of CAFs with intersecting and diverse

roles in the pancreatic TME will be revealed that could be targeted in the future.
CAF Heterogeneity in Promoting Stemness

CAFs have been implicated in promoting stemness in adjacent tumour cells via the secretion of

inflammatory cytokines in several tumour types [23,63–69], including PDAC [70,71]. More recently,

it was reported that certain subpopulations of CAFs specifically regulate stemness in lung and breast

tumour cells, thus conferring chemoresistance [72] (Figure 1E). Su et al. reported that a population of

CAFs positive for the cell surface markers CD10 and GPR77 were responsible for promoting cancer

formation and chemoresistance in cohorts of patients with either lung or breast cancer [72]. This

secretory CAF subpopulation enhanced stemness in cancer cells through high secretion of IL-6

and IL-8 due to sustained NFkB signalling [72]. This is in line with other work where increased

NFkB signalling in p53mut PDAC cancer cells caused an increase in pro-invasive perlecan production

in adjacent CAFs via TNF-a secretion from the cancer cells [47,73]. Furthermore, CD10 is implicated in

tumour–stroma interactions in PDAC, where CD10+ PSCs can significantly increase the invasiveness

of PDAC cancer cells compared with their CD10– counterparts [74]. Considering these studies, inves-

tigating the CD10+GPR77+ CAF subpopulation and NFkB crosstalk in PDAC therefore warrants

further study. Conversely, Patel et al. reported a myofibroblastic CAF subpopulation that inhibited

cancer cell stemness via secretion of bone morphogenetic protein 4 (BMP-4) in oral carcinoma [75],

highlighting the tissue-dependent multifaceted role of CAF subpopulations in regulating cancer

cell stemness and subsequent chemoresistance.
CAF Heterogeneity in Metabolic Reprogramming

Solid tumours, such as PDAC, are metabolically heterogeneous. In 1927, Warburg et al. described a

metabolic phenomenon where tumour cells favour oxygen-independent glycolysis over mitochon-

drial oxidative phosphorylation, even in the presence of sufficient oxygen [76], termed the ‘Warburg’

effect. More recently, a newmodel of cancer metabolism has been described called the ‘reverse War-

burg effect’, where tumour cells and CAFs become metabolically coupled [77] (Figure 1F). In this

model, tumour cells induce oxidative stress in adjacent CAFs via reactive oxygen species (ROS)

[78] or miRNAs [79]. CAFs, in turn, undergo a metabolic switch to glycolysis, producing energy-rich
Trends in Cancer, November 2019, Vol. 5, No. 11 729
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metabolites that the tumour cells then use to perform oxidative phosphorylation or glycolysis, pro-

ducing abundant ATP and resisting cell death [77].

In 2010,Martinez-Outschoorn and colleagues found that loss of caveolin-1 (CAV1) in breast fibroblasts

resulted in their metabolic reprogramming and acquisition of the CAF phenotype [78]. In 2012, this

result was confirmed by others to be due to upregulated TGF-b signalling [80]. CAV1 loss is also

observed in PDAC stroma and is associated with poor clinical outcomes in patients with pancreatic

cancer [81]. Besides downregulation of CAV1, upregulation of monocarboxylate transporter 4

(MCT4) is observed in CAFs and tumour cells, where it effectively shuttles lactate into tumour cells

to increase production of ATP. In 2016, Knudsen et al. found that PDAC CAFs express high levels of

hypoxia inducible factor 1a (HIF1a), which then promotes high expression of MCT4, thereby aiding

glycolysis [82]. In addition, Zhang et al. found that downregulation of the a subunit of the isocitrate

dehydrogenase 3 complex (IDH3a) was responsible for a metabolic switch in CAFs from oxidative

phosphorylation to glycolysis and also helped maintain an activated CAF phenotype in breast cancer

[83]. In this study, it was established that CAFs undergo metabolic reprogramming to help provide a

supportive niche for the adjacent tumour cells, rather than for their own proliferation [83]. In PDAC,

Sousa et al. reported that ‘activated’ PSCs supported tumourigenesis via secretion of alanine, which

aids tumour cell proliferation even in low-nutrient conditions. So far, little is known about heteroge-

neity in CAF metabolism and whether this is correlated with known CAF subtypes; however, it is likely

that CAFs will have a spectrum of metabolic profiles that they and tumour cells take advantage of

depending on the availability of metabolites. Improving our knowledge of heterogenous cancer

cell–CAF metabolic coupling could prove to be an exciting new avenue for the treatment of PDAC.

It would also be interesting to investigate whether cancer cells have variable reliance on metabolic

coupling to CAFs.

Targeting the Protumourigenic Functions of CAFs: New Therapeutic Avenues
in Pancreatic Cancer

Given themany tumour-promoting functions of CAFs, this stromal population and their actions repre-

sent a promising therapeutic target for cancer treatment. Over the past decade, many studies have

attempted to target CAFs, either using direct targeting of CAFs, via reprogramming of CAFs towards

a normal fibroblast phenotype, or by inhibiting crosstalk between CAFs and neighbouring cells.

Although some promising results have emerged, CAF targeting still faces many obstacles and chal-

lenges due to the heterogeneity of CAF identity and functions, as well as a lack of CAF-specific

markers, as highlighted earlier. Nevertheless, our increased knowledge of CAF function and biology

has led to several preclinical studies, some of which have begun to be translated into ongoing clinical

trials.

Depleting CAFs

Direct depletion of CAFs has been attempted in GEMM of PDACmodels using CAF-related cell surface

markers, such as a-SMA or FAP (Figure 3). For instance, depletion of cells expressing a-SMA can be

achieved using the a-SMA-thymidine kinase mouse, where all aSMA-expressing cells are ablated upon

ganciclovir administration. This model was crossed with the Ptf1acre/+; LSL-KrasG12D/+; Tgfbr2flox/flox

(PKT) or Pdx1cre/+; LSL-KrasG12D/+; p53R172H/+ (KPC) mouse models of spontaneous PDAC. Surprisingly

however, in these mice, selective depletion of a-SMA+ cells resulted in poorly differentiated primary

tumours, increasedmetastatic spread, enhanced intratumoural infiltration of immunosuppressive regula-

tory T cells (Treg), and, thus, reduced survival (Figure 3A) [18]. Similarly, when Rhim et al. generated a

Hh-knockout PDAC GEMM, it was reported that the resulting tumours were more aggressive, less differ-

entiated, and highly proliferative despite having lower stromal content [19]. Conversely, the depletion of

FAP-expressing cells reduced tumour growth and re-established tissue homeostasis [84]. In this study,

conditional ablation of FAP+ cells using diphtheria toxin resulted in an enhancement of antitumourigenic

cytotoxic CD8+ T cells and slowed pancreatic tumour growth [84] (Figure 3B). Moreover, in 2010, Duda

and colleagues reported that the depletion of CAFs through systemic administration of diphtheria toxin

decreased both primary tumour growth and overt metastatic colonization [85]. The authors showed that

this was due to a reduction in CAFs co-migrating to the metastatic niche, a phenomenon that has also
730 Trends in Cancer, November 2019, Vol. 5, No. 11



Trends in Cancer

(B)

(C)

(A)

Figure 3. Therapeutic Potential of Targeting Cancer-Associated Fibroblasts (CAFs) via Widespread

Depletion Highlights the Heterogeneity of CAF Populations.

(A) Widespread ablation of alpha smooth muscle actin (a-SMA)-expressing CAFs results in poorly differentiated,

immunosuppressive, and metastatic tumours. (B) Depletion of fibroblast activation protein (FAP)-expressing

CAFs through genetic deletion, pharmacological targeting or (C) chimeric antigen receptor (CAR) T cell therapy

can decrease tumour growth and metastatic spread. Targeting FAP can also increase cytotoxic immune

infiltration and, therefore, survival. Abbreviation: Treg, regulatory T cell.

Trends in Cancer
been observed in breast and lung cancer models [85–87] (see Outstanding Questions). Furthermore, ge-

netic deletion or pharmacological targeting of FAP-expressing cells reduced tumour growth in mouse

models of pancreatic cancer [88] as well as colorectal, lung, and breast cancer [89–92]. Considering these

promising results, targeting FAP in patients with cancer was assessed using sibrotuzumab, a FAP-specific

antibody. While sibrotuzumab was found to be well tolerated and to halt tumour progression in Phase I

trials [89,90], it failed to improve survival in a Phase II trial for patientswithmetastatic colorectal cancer [93].
Trends in Cancer, November 2019, Vol. 5, No. 11 731



Trends in Cancer
This suggests that further efforts are needed to develop therapeutically efficient agents against FAP

before use in patients with PDAC.

Interestingly, the development of novel immunotherapies also offers new routes to deplete CAFs. For

instance, strategies for vaccination against the FAP antigen were shown to reduce tumour growth,

decrease metastatic burden, and overcome immune tolerance in mouse models of colon, lung,

and breast cancer [94,95]. In addition, FAP-specific chimeric antigen receptor T (CAR T) cells were

shown to induce an immune response against FAP-expressing cells, while also reducing tumour

growth in pancreatic and lung cancer [96–98] (Figure 3C). Considering this, targeting FAP-expressing

cells in human pancreatic tumours with immunotherapy could be beneficial; however, there are

inherent issues with this approach because PDAC tumours are often classed as immunologically

’cold’, with relatively low basal cytotoxic T cell infiltration. Therefore, future work should include inves-

tigating how to enhance the infiltration of T cells into PDAC tumours to maximise the efficacy of this

approach. One way this can be done is by improving the vascular patency of tumours, which allows

better infiltration of cytotoxic T cells. For example, Johansson-Percival et al. reported that targeted

treatment with LIGHT (a TNF family cytokine) normalised and activated the vasculature of tumours

[99]. This led to a significant influx of macrophages, CD4+ T cells, and CD8+ T cells, which sensitised

the tumours to immunotherapy [99]. Alternatively, the innate immune system could be targeted to

enhance cancer cell killing, avoiding any adverse effects caused by overstimulating the adaptive im-

mune system. Furthermore, targeting of the CXCR4/CXCL12 axis has been shown to improve T cell

infiltration in PDAC tumours [84]. Overall, targeting FAP in the clinic, whether via antibodies or immu-

notherapy, remains challenging. In the context of stromal targeting, FAP is not solely expressed by

CAFs and, as such, global and/or whole-body inhibition strategies are likely to be accompanied by

toxicity. Consequently, the identification of novel, CAF subpopulation-specific markers is required

to develop more effective treatments. This could be achieved by targeting cells expressing both

CD10 and GPR77, which were recently shown to identify a population of CAFs with protumourigenic

and chemoresistance functions in human tumours [72], as mentioned earlier. However, it is yet to be

seen whether targeting this subpopulation alone would be sufficient to increase survival in PDAC

models and patients, or whether it exists in PDAC tumours. In addition, because of the heterogeneity

and plasticity of CAFs, profiling the CAF signature of individual patients may identify patient- or can-

cer subtype-specific changes in CAF subpopulations that could help with the development and opti-

misation of novel targeted stromal therapies, in line with the current efforts to develop a personalised

medicine approach to cancer treatment [4,5] (see Outstanding Questions).
Reprogramming CAFs into Quiescent Fibroblasts

Rather than complete CAF depletion, which can have adverse effects, researchers have begun to

investigate reprogramming CAFs into quiescent fibroblasts to hinder pancreatic cancer progression

and to render cancer cells more responsive to treatments (Figure 4). For instance, reprogramming

CAFs can be achieved using all-trans retinoic acid (ATRA), which switches both PSCs and CAFs

into more quiescent fibroblasts [100,101] (Figure 4). For example, Han et al. treated ‘activated’

PSCs with PEG-grafted polyethylenimine (PEI)-coated gold nanoparticles loaded with ATRA and

heat shock protein 47 (HSP47), which is a collagen-specific molecular chaperone [102] (Figure 4).

Using this nanoparticle treatment approach, quiescence was induced in the activated PSCs and

ECM production was reduced to normal levels. This resulted in a reversal of the desmoplastic reac-

tion, which was shown to be antitumourigenic in vitro and in vivo [102]. Clinically, ATRA is being tested

in combination with standard-of-care gemcitabine and Abraxane in a Phase I clinical trial for pancre-

atic cancer (STARPACiv). Interestingly, ATRA treatment can also enhance T cell infiltration, which pro-

longed survival in KPC mice [101].

CAF reprogramming can also be achieved using vitamin D or calcipotriol (a synthetic form of vitamin

D), where CAF activation is reversed via stimulation of the vitamin D receptor (of which ATRA is also a

ligand) [103] (Figure 4). Such a strategy reduced inflammation and fibrosis in PDAC tumours. In line

with this, treating CAFs with Minnelide, a novel prodrug of a plant-derived diterpenoid epoxide

called triptolide, reduced TGF-b signalling and pushed CAFs into a more quiescent state [104]
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Figure 4. Reprogramming Cancer-Associated Fibroblasts (CAFs) into Quiescent Fibroblasts.

Activated CAFs produce increased amounts of extracellular matrix (ECM), leading to desmoplasia and poorer

outcomes for patients. Reverting the phenotype of CAFs to a more quiescent state ablates this increase in

fibrosis. It is also possible to target fibrotic ECM directly with enzymes, such as pegvorhyaluronidase alfa

(PEGPH20). These treatments improve drug delivery, vascular patency, and/or increase cytotoxic immune cell

infiltration. Overall, this results in decreased metastatic burden and improves survival. Abbreviations: ATRA, all-

trans retinoic acid; HSP47, heat shock protein 47; PSC, pancreatic stellate cell; ROCKi, Rho-associated protein

kinase inhibitor; SAA1/3, serum amyloid A1/3; VitD, vitamin D.
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(Figure 4). This treatment also resulted in reduced collagen and HA deposition in the stroma of mouse

and patient-derived pancreatic tumours, while improving vasculature patency and drug delivery due

to reduced interstitial fluid pressure (IFP) in the tumour [105]. Similarly, lipoxin a4 (LXA4), a bioactive

lipid associated with antifibrotic properties in the kidney [106] and lung [107], was demonstrated to

revert the myofibroblastic state of pancreatic CAFs without affecting their viability [108] (Figure 4).

Here, treatment with LXA4 restricted crosstalk between cancer cells and CAFs, resulting in reduced

cancer cell growth in vitro and in vivo [108]. Serum amyloid A3 (SAA3), an inflammatory apolipopro-

tein, was recently found to be specifically expressed in protumourigenic murine CAFs and to be a key

mediator of interactions between CAFs and cancer cells [109] (Figure 4). In line with this, high stromal

SAA1 expression (the ortholog of murine SAA3) in human PDAC tumours was correlated with worse

survival [109], suggesting that specifically targeting SAA1+ CAFs is a promising approach to revert the

TME to a tumour-restraining status [109].

Rho-associated protein kinase (ROCK) is a small GTPase that regulates cell contraction and is

commonly upregulated in PDAC [110]. Fasudil, a potent ROCK inhibitor, also reduced PSC activation

in a murine model of PDAC, and led to decreased collagen deposition in the TME, increased gemci-

tabine delivery, and improved survival [111] (Figure 4). Moreover, inhibition of ROCK-based contrac-

tility via the small-molecule inhibitor AT13148 resulted in antitumourigenic effects in both in vitro and

in vivo models of PDAC (Figure 4) [112]. The same group also established that activation of ROCK in

KPC cancer cells promoted protumourigenic ECM remodelling via matrix metalloproteinase (MMP)

secretion [113]. In the KPC mouse model, this aberrant ECM remodelling was abolished upon
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treatment with Fasudil, improving overall survival [113]. This aligns with a previous study that demon-

strated that transient short-term ROCK inhibition in murine and patient-derived xenograft (PDX)

models of PDAC improved the efficacy of gemcitabine and Abraxane and impairedmetastatic spread

[114] (Figure 4). Moreover, in this study, the grade of fibrosis in the PDXs was associated with the level

that this dual-targeting approach was effective. Considering these studies, it would be advisable to

further investigate the use of ROCK inhibitors in stratified patients with PDAC, particularly in those

where high levels of tumour fibrosis are evident.
Targeting Interactions between CAFs and Their Surrounding Microenvironment

Over the past decade, numerous studies have demonstrated that the intricate crosstalk between

CAFs and their surrounding environment can influence tumour progression. This new knowledge

may facilitate the development of therapeutic strategies whereby targeting signallingmolecules sup-

porting the interactions between CAFs and other tumour compartments may impair cancer progres-

sion (Figure 5). For example, targeting CAF education by cancer cells could have therapeutic benefits.

As such, IL-6 and JAK/STAT have been shown to promote CAF activation by cancer cells, with several

drugs targeting IL-6, its receptor IL-6R, or JAK being tested in cancer clinical trials [115–117]v. Simi-

larly, IL-1 and TGF-b were recently demonstrated to shape CAF heterogeneity in murine models of

PDAC, as mentioned earlier [26]. This study reported that IL-1 and JAK/STAT signalling induces LIF

expression to generate inflammatory CAFs, while TGF-b inhibits the IL-1 receptor and pushes

CAFs towards amyofibroblastic phenotype [26] (Figure 5A). Interestingly, Shi et al. also recently found

that LIF is a key mediator of interactions between pancreatic cancer cells and CAFs [118]. Here, phar-

macological targeting and genetic depletion of LIF impaired pancreatic tumour growth and

enhanced chemotherapy efficacy [118]. In mouse and patient-derived models of pancreatic cancer,

high levels of circulating LIF correlated with poor response to therapy and worse survival, suggesting

that targeting LIF could improve the outcome of patients with pancreatic cancer [118]. Furthermore,

in the KPCmouse model, Pinho and colleagues found that fibroblast activation and protumourigenic

T cell infiltration was enhanced via the loss of ROBO2 in adjacent tumour cells, thereby making it a

‘stroma suppressor’ gene [119]. This supports earlier work by Biankin et al., who reported that genes

involved in SLIT/ROBO signalling are frequently mutated in PDAC tumours [120]. In the Pinho et al.

study, it was found that TGF-b signalling was upregulated in ROBO2-knockout cultures, leading to

aberrant stromal reprogramming. These effects were effectively blocked using galunisertib, a

small-molecule TGF-b receptor inhibitor [119]. The authors also reported that loss of ROBO2 with

concomitant increased ROBO1 expression signalling was correlated with poor disease-free survival

in patients with PDAC [119]. In addition, Ligorio and colleagues recently reported that mitogen-acti-

vated protein kinase (MAPK) and STAT3 signalling is upregulated in a subpopulation of highly prolif-

erative and invasive PDAC cancer cells, and that this phenotype is due to CAF-derived paracrine TGF-

b signalling [121]. Collectively, these studies suggest that IL-1 and/or TGF-b could be targeted to

reduce the proportion of the prometastatic CAF subpopulations in vivo, therefore impairing tumouri-

genesis (Figure 5A).

Blocking CAF activation can also be achieved using imatinib, a broad-spectrum tyrosine kinase inhib-

itor that targets BCR-ABL, c-KIT (CD117), PDGFRa/b, and the discoidin domain receptors (DDRs). Pie-

tras et al. reported that PDGFR inhibition with imatinib reduced CAF-derived fibroblast growth factor

2 and 7 (FGF2 and 7) secretion, which in turn reduced angiogenesis and decreased cancer cell pro-

liferation in cervical cancer [122]. Recently, it was reported that GoF p53mut cancer cells activated the

NFkB pathway in CAFs via paracrine TNF-a signalling, as discussed earlier, and this pathway could

also be targeted to impair tumour-CAF crosstalk, thus normalising the PDAC TME [47] (Figure 5B).

Importantly, the diversity in secreted factors activating CAFs alludes to the potential for redundancy

in tumour-promoting CAF pathways, highlighting the necessity for homing in on downstream targets,

as well as identifying novel tumourigenic mechanisms (see Outstanding Questions).

Inhibiting the signals producedbyCAFs to shape the TME and topromote cancer development is another

viable therapeutic strategy. For instance, CAFs were recently shown to secrete high levels of IL-33, which

can induce tumour-associated macrophages (TAMs) to switch from a tumour-suppressing M1 phenotype
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Figure 5. Targeting Interactions between Cancer-Associated Fibroblasts (CAFs) and Their Surrounding Microenvironment.

(A) Two distinct populations of CAFs in the PDAC tumour microenvironment (TME) have been identified; inflammatory CAFs (iCAFs; found distally to tumour

foci) and myofibroblastic CAFs (myCAFs; adjacent to tumour cells), which may have distinct functions in vivo. Targeting this interleukin (IL)-1 and Janus

kinase-signal transducer and activator of transcription (JAK/STAT)-driven mechanism pushes the iCAFs towards a more myCAF-like phenotype,

impeding tumourigenesis and improving survival. (B) In PDAC, mutant p53 cancer cells have upregulated nuclear factor kB (NFkB) signalling, which

results in increased secretion of tumour necrosis factor (TNF)-a. TNF-a acts in an autocrine and paracrine manner, stimulating increased NFkB signalling

in cancer cells and CAFs alike. Increased NFkB signalling in CAFs results in increased secretion of perlecan, which subsequently promotes invasion and

metastasis. (C) CAF-driven aberrant cytokine signalling promotes an immunosuppressive microenvironment, resulting in increased numbers of M2

macrophages, myeloid-derived suppressor cells (MDSCs) and neutrophils. Increased expression of checkpoint blockage ligands (e.g., programmed

death-ligand 1; PDL-1) is also observed. (D) PDAC typically exhibits excessive CAF-dependent extracellular matrix (ECM) deposition and remodelling,

which can be therapeutically targeted. Abbreviations: CXCL1/2/5, chemokine (C-X-C motif) ligand 1/2/5; CXCR2, C-X-C chemokine receptor type 2; IL-

1R/6R, interleukin 1 receptor/6 receptor; LIF, leukemia inhibitory factor; LOX/LOXLs, lysyl oxidase/lysyl oxidase-like; PEGPH20, pegvorhyaluronidase

alfa; PSC, pancreatic stellate cell; ROCK, Rho-associated protein kinase; TGF-b, transforming growth factor beta.
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to a tumour-promoting M2 phenotype [123] (Figure 5C). This suggests that IL-33 would be an interesting

target to block the protumourigenic functions of CAFs. Similarly, Steele et al. reported that CXCR2 is

commonly upregulated in the neutrophils and myeloid-derived suppressor cells (MDSCs) of human

PDAC tumours and that this is associatedwithpoor prognosis [124] (Figure 5C).WhenCXCR2was targeted

using a small-molecule inhibitor of CXCR2 (AZ13381758) in the KPC mouse model, it was observed that

there was a reduction in tenascin C and collagen I/III, which are largely produced by CAFs. This treatment

also lowered metastatic burden and increased overall survival [124]. Similarly, Chao et al. reported that

genetically ablating CXCR2-mediated neutrophil recruitment in PDAC resulted in T cell-dependent sup-

pression of tumour growth. Furthermore, inhibiting CXCR2 also significantly enhanced the effects of

anti-PD1 immunotherapy, promoting cytotoxic T cell entry into the tumours [124]. Considering the effects

on the stroma with this treatment, investigating CAF–neutrophil/MDSC crosstalk could be another
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promising avenue to explore for the development of stromal treatments in PDAC. Feig et al. previously re-

ported that CAFs secrete increased levels of CXCL12, also known as stromal cell-derived factor 1 (SDF1).

Interestingly, CXCL12 can bind to the cell surface of adjacent cancer cells, rendering them resistant to

T cell-mediated killing [84]. Here, treatment with AMD3100, an inhibitor of CXCR4 (the receptor for

CXCL12) increased T cell infiltration into the tumour tissue and reduced tumour growth when combined

with immune checkpoint inhibition [84]. CAFs can secrete increased levels of IL-6 and IL-8, which can induce

the differentiation of tumour-infiltratingmyeloid cells intoMDSCs orM2 TAMs, both of which are involved

in immunosuppression in the TME (Figure 5C). Hence, blocking IL-6 and IL-8 signalling could be used to

increase the antitumourigenic activity of the immune system in vivo. In linewith this, pasireotide, a somato-

statin analogue,waspreviously shown toactivate the somatostatin type1 receptor (SSTR1) inCAFs, causing

inhibition of the mTOR/4E-BP1 pathway and, thus, reduced IL-6 secretion [125]. The authors also reported

that pasireotide reduced tumour growth and decreased chemoresistance in mouse and patient-derived

models of pancreatic cancer [125].

Lastly, targeting CAF-derived ECM has been assessed to deprive cancer cells from their protective

niche. Hh signalling and HA are two of the most clinically explored stromal targeting approaches

in PDAC. In solid tumours, the Hh pathway drives ECM remodelling and promotes crosstalk between

CAFs and cancer cells [12,23] (Figure 5D). So far, several Hh inhibitors, such as vismodegib, sonidegib,

and IPI-926, have been tested in combination with chemotherapy for the treatment of PDAC [20]

(NCT01383538vi and EDALINE trialiii) (Figure 5D), with a small number of patients responding to

the treatment. In line with this, Cazet et al. reported a clinical benefit (including one complete

response) in three out of 12 patients with triple-negative breast cancer using sonidegib in combina-

tion with docetaxel chemotherapy in a Phase I clinical trial [23]. Furthermore, ongoing trials with

PEGPH20 (pegvorhyaluronidase alfa), an enzyme that depletes HA, showed improved progression-

free survival (PFS) in some patients with high HA-expressing PDAC tumours in combination with stan-

dard-of-care chemotherapy (Figure 5D) (HALO 202vii) [126]. PEGPH20 has also been tested in combi-

nation with chemotherapy and anti-programmed death-ligand 1 (PD-L1) immunotherapy in pancre-

atic cancerviii; however, these treatment approaches have had limited clinical benefit thus far.

Furthermore, tenascin C can be targeted using recombinant antibodies, which were shown to pro-

long survival when combined with chemotherapy in a Phase II trial with patients with glioma

(NCT00002753ix) (Figure 5D). Interestingly, the matrix can also provide a metastatic niche in PDAC,

where it supplies metabolites, such as proline, to tumour cells in low-nutrient conditions [127]. Inhi-

bition of the lysyl oxidase (LOX) family, a group of enzymes that promote collagen synthesis and

crosslinking [128–131], was also shown to be beneficial in PDAC GEMMs [132]. Here, targeting

LOX with a blocking antibody during the early stages of cancer development reduced ECM deposi-

tion, decreased metastatic spread, and enhanced efficacy of gemcitabine chemotherapy [132] (Fig-

ure 5D). It was also recently reported that infiltrating mast cells potentiate the protumourigenic ef-

fects of CAFs in prostate cancer via secretion of tryptase, a serine protease [133]. In this study,

mast cell-derived tryptase remodelled the stromal compartment of tissue-engineered tumours, pro-

moting a malignant phenotype in normally benign epithelial cells [133]. This was abrogated with

treatment of nafamostat mesylate, a potent tryptase inhibitor [133]. Furthermore, TAMs have been

implicated in determining the subtype of PDAC tumours, where a high number of TAMs promotes

a dense stroma and low T cell infiltrate, characteristic of the squamous subtype [134], which has worse

prognosis [50]. Considering this, further studies of the tissue-remodelling role of innate immune cells,

such as mast cells and macrophages, is warranted in PDAC. Lastly, ‘priming’ pancreatic tumours by

pulsing the dosage of ROCK inhibitor (fasudil) reduced ECM crosslinking before treatment with

chemotherapy (Figure 5D). This fine-tuned approach improved chemotherapy response at the pri-

mary tumour site, while also reducing metastasis [114]. This suggests that the timing and dosing of

stromal treatments in combination with other interventions is important for therapeutic success,

where we can maximise response, while minimising toxicity (see Outstanding Questions).
Concluding Remarks

Together, these studies show that we currently have several preclinical strategies to target subpop-

ulations of protumourigenic CAFs. Further investigation using relevant mouse and patient-derived
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Outstanding Questions

How are CAF phenotype and func-

tion spatiotemporally regulated

during solid tumour progression?

Do all CAFs originate from a com-

mon lineage? If not, which cell

types can transition into CAFs?

Does the lineage of a CAF sub-

population determine its function

or how well it can be targeted

therapeutically?

Can we further identify novel

markers delineating different CAF

subsets?

Can CAFs and tumour cells co-

migrating to metastatic sites be

targeted therapeutically to delay

and/or affect metastatic spread?

How does CAF heterogeneity vary

both within and between cancer

types, subtypes, and patients? How

can we utilise knowledge of CAF

heterogeneity to stratify patients

for improved clinical outcomes

across PDAC and other solid tu-

mours?

Can we map the CAF landscape to

identify redundancy in CAF-
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models as well as clinical trials are needed to establish the benefits of these treatments (see

Outstanding Questions). However, considering the level of CAF heterogeneity that has been recently

reported in solid tumours, such as PDAC, we propose that precise profiling of CAF identity and

function both temporally and spatially should be undertaken when designing and deploying treat-

ments. We argue that expanding our knowledge of CAF heterogeneity will help to developmore per-

sonalised approaches to cancer treatment, where mutational status as well as stromal features can be

used to stratify patients more effectively. However, further research is required to understand the

origin/s of CAFs. It is still not clear which cells can (and do) readily transition into CAFs or whether

the identity of these precursors can dictate phenotype, function, and/or drug targetability upon

activation. Moreover, the rapid discovery of new CAF subpopulations using single cell sequencing

approaches has progressed the field considerably. With further advances, it is possible that new

markers for CAF subpopulations will be identified, which may relate to cellular origin. As these tech-

nologies develop further, it is conceivable that redundancy in CAF-dependent protumourigenic

signalling pathways will be identified, thereby highlighting potential ‘master regulators’ of CAF

phenotype and function. Lately, there has been renewed interest around whether CAFs co-migrate

with tumour cells to the metastatic niche and, if so, what their function is at these sites. Further

research is required to understand this in more depth as well as how and when these co-migratory

events could be therapeutically targeted to hinder metastatic spread. In line with this, we argue

that precise and/or transient delivery of stromal treatments will be critical to their efficacy. Given

that CAFs exhibit acute dynamic plasticity, shifting the ratio of specific CAF subpopulations at certain

timepoints rather than chronic ablation might be a more suitable approach to impeding tumourigen-

esis and metastasis.

Overall, considering the intricate interactions between tumour cells, CAFs, and other TME compo-

nents, it is crucial to obtain a precise understanding of the effects of anti-CAF therapies at the molec-

ular, cellular, and systemic levels to optimise outcomes and avoid adverse effects.
dependent protumourigenic path-

ways?

Are there stage and/or regionally

dependent cancer-promoting CAF

subsets with time-dependent win-

dows of therapeutic opportunity?
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