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ABSTRACT: We present a simple procedure to create
smooth-sided, transparent polymer-based microfluidic devices
by presegmentation with hydrophobized glass slides. We study
the hypothesis that the smooth side planes permit rapid
multiangle imaging of microfluidic systems in contrast to the
turbid side planes that result from cutting the polymer. We
compare the compatibility of the entire approach with the
conventional widefield microscopy, confocal and 2-photon
microscopy, as well as three-dimensional (3D) rendering and
discuss limitations and potential applications.

1. INTRODUCTION

Poly-dimethylsiloxane (PDMS) is an indispensable tool in
today’s laboratory-on-a-chip research and microfluidics in
general, largely because of its easy molding, biocompatibility,
and rapid-prototyping at low cost, and especially its trans-
parency.1−3 Often, cast PDMS devices are cut and sub-
sequently bonded to glass or PDMS parts to make microscope-
compatible devices for microfluidic studies.4−6

While this is a rapid and convenient route, cutting the edges
of PDMS generates turbid areas that scatter the light, inhibiting
microscopic imaging through this angle. In some applications
in biological research, it could be useful to visualize samples
from different angles at different stages in the experiment,
which is not possible in devices with turbid sides.
The established multiangle microscopic methods to generate

two-dimensional (2D) and three-dimensional (3D) recon-
structions of samples employ optical coherence tomography,7,8

Fourier ptychography of light field measurements,9 deconvo-
lution of lens-free images,10 or ultrasonography11,12 and
generally rely heavily on extensive image processing, while
not generating 2D images of perpendicular planes. Recently,
light field measurement9 and polarized multiangle total internal
reflection fluorescence (MA-TIRF) achieved live cell imaging
below the lateral resolution limit but only at a frequency of one
image every 2 s.13

In contrast to these methods, which employ only two sides
(top and bottom) of their sample for multiangle imaging, we
have devised a method that will generate devices with four
optically clear sides (top, bottom, front, and back) through
which imaging can take place. By using polished, hydro-
phobized glass slides, inserted into the PDMS prior to curing,
we can generate clear sided walls that can be used for rapid

multiangle imaging of microfluidic devices across perpendic-
ular planes, e.g., the x−y-plane and the x−z-plane.
An alternative way to achieve a high spatial and temporal

resolution in a thick sample (i.e., the proposed devices) is the
usage of light sheet (fluorescence) microscopy (LSM).14

There, the sample is not illuminated along the same optical
pathway that is used to observe the sample but by a sheet of
light that spans the x−y-plane but has only minimal thickness
in the z-direction.14 For this illumination, often Bessel beams
or Airy beams of monochromatic light or lasers are used,15 for
they are shape-preserving and self-healing,14,16,17 and thus able
to illuminate several objects in their path without the loss of
accuracy due to diffraction.

2. RESULTS AND DISCUSSION

2.1. Widefield Microscopy. Our simple approach enabled
us to record images of our microfluidic system from top view,
side-on view, and, when shining the light at an angle, an
enhanced view that shows more information about the device
structure (see Figure 1B−D). The enhancement was caused by
reflection at the air−PDMS interface and complete trans-
mission at the PDMS−PDMS interface between the two
device halves.
Within the microfluidic system, fluorescently labeled silica

beads and internal structures of the microfluidic system
(pillars, corners, inlets) were visible in both the x−y-plane
and the x−z-plane, allowing us to determine their position with
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a high spatial resolution by taking only a single image per plane
(see Figure 2).
From the side view, we could distinguish whether the beads

were located at the top or the bottom of the device chamber.
Additionally, the side view exhibited a very low level of
background fluorescence from beads on other focal planes.
Using a confocal fluorescence microscope for imaging does
further reduce this background.
There is one serious limitation to this approach due to the

thickness of the generated microfluidic devices. The width of
the device in the x−y-plane becomes the height upon rotating

to image in the x−z-plane. This height has to fit under the
microscope and, when scanning through the device, the focal
plane has to be moved up through this height. This requires
the use of long working distance objectives (LWDOs), and we
recommend a maximum working distance of at least 3 mm.

2.2. Confocal Microscopy. Due to the dimensions of the
devices, confocal microscopy also required a LWDO, which
limited the use of higher magnification objectives. Thus, the
resulting images were of a comparable quality than the
widefield images (see the Supporting Information).

Figure 1. Layout, top-down, side-on, and enhanced views of the microfluidic platform filled with a solution of Rhodamine B coated silica
microspheres. (A) Mask layout of the device’s top part (left), bottom part, which was kept to a flat surface (right), and a close-up on the imaged
section (middle). The inner architecture of the device (black) connects the inlets to the outlets (green). Specific geometries (gray) are used to align
the top and bottom parts of the device. Images of the section indicated by the magenta rectangle were taken using brightfield and fluorescence light
sources at the same time. The dark blue arrow indicates the optical pathway of C and D. (B) Top-down (x−y-plane) view of the indicated section
of the device, simultaneously illuminated for fluorescence and brightfield. (C) Side-on view (x−z-plane) into the same device, with the plane of
focus indicated by the dark red dashed line and the viewing side indicated by the dark blue arrow. (D) An enhanced view of the same section of the
device; the focal plane was slightly shifted compared to C, as indicated in yellow, and the source for the brightfield illumination was projected at an
angle. Thus, the light was reflected on the PDMS−air interface (gray areas) but transmitted on the PDMS−PDMS interface (black), which resulted
in the distinct projection of the pillars (black rectangles within gray areas). Nota bene (NB): B and C are shown in annotated form in Figure 2A, C.

Figure 2. Top-down view and side-on views of the device taken by simultaneous brightfield and fluorescence imaging. (A) Same top-down view of
the device as seen in Figure 1B, with the positions of selected beads indicated by numbers and that of pillars by yellow rectangles. The dark blue
arrow indicates the optical pathway of B and C. Dashed lines and letters indicate focal planes corresponding to the side-on views in B and C (see
matching color frame). (B, C) Side-on views into the device along the planes indicated in A. Yellow rectangles indicate the position of the pillars,
and teal colored numbers indicate the corresponding beads in each image. Scale bar is the same for all panels and indicates 100 μm. NB: for
unannotated versions of A and C, see Figure 1B, C.

Figure 3. Dual-structure device with arrow markers for pillars (yellow), bottom manifold (blue), and top z-bend (green). (A) Top-down widefield
micrograph of a dual-structure device with bottom (blue) and top (green) structures, including pillars (yellow). Fluorescent beads have been
recorded using 2-photon microscopy (red); their distribution shows that the halves are connected. The inset shows a 3D model rendered from top-
down images. (B) Side-on view of the dual structure recorded in widefield with inverted colors and maximized contrast. (C) 3D recreation from
(B) and 3 additional images of parallel focal planes.
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2.3. Two-Photon Microscopy. The experimental two-
photon microscopy setup permitted the devices to be scanned
in both top-down and side-on devices without the need for
LWDOs and thus at higher magnification than widefield and
confocal imagery. Using third harmonic generation, it is
possible to image interfaces, i.e., PDMS/air (comparable to the
enhanced view in Figure 1D, see associated content), which
can serve as a substitute to brightfield images but still require
scanning and are thus much slower to obtain and only work in
setups with minimal scattering, which precluded side-on
imaging. An additional advantage of 2-photon microscopy is
the insensitivity toward contaminations on the sample surface,
which allows for easier handling.
2.4. Three-Dimensional Rendering of Images. We

rendered two models from the images: one model was created
from the top-down images and another was rendered from the
side-on images we recorded from an identical dual-structure
device. While the image-processing steps were the same, the
side-on model looked better when using more images taken
with shorter interspacing than the top-down model, but it
could not recreate the same level of detail within the device.
This, however, can simply be explained with the presence of
the grid in the lower structure, as the images in the gridless
single-structure devices are much clearer (see Figure 3B,C).
The grid has a lattice length of 15 μm with an interspacing of 5
μm, which acts like an array of slits that create interferences.
While the grid reduced the clarity of side-on widefield
micrographs, both confocal and 2-photon microscopies are
impervious to this drawback.
2.5. Potential Applications. Such a grid can be used as a

support structure for in vitro cell culture, supplying seeded
cells with a scaffold that supports the growth and differ-
entiation into tissues (e.g., dermal or cerebral endothelial tissue
cultures), while the interspacings can carry nutrients to and
metabolites from the cells for further analysis. The possibility
to record tissues from both top-down and side-on views, in
combination with high-speed imaging, could unlock the real-
time visualization of barrier function of cell monolayers, such
as gut epithelial cells or endothelial cells. It would be useful to
be able to visualize a cell barrier from a side-on view to capture
conformational changes to the cells during cell transmigration
and other barrier disruptions. Being able to view the cells from
the top while they are growing would enable a quick visual
confirmation that they have formed a confluent layer prior to
starting the experiment.
Other applications that could benefit from visualization in a

side-on view would be microfluidic-based drug assays,4,6

visualization of the glycocalyx and tissues/organs on a chip.
The glycocalyx is an important layer of sugars that coat many
cells, and its disruption is important in many diseases.18 It has
historically been difficult to visualize the glycocalyx of cells,19

although the thickness of the layer in cultured cells in response
to stimuli can be estimated using z-stacks of multiple confocal
fluorescence microscopy images.20 Direct visualization of the
glycocalyx or tissues/organs on a chip from the side view could
grant a better resolution and therefore a better estimation of
their thickness. It would also enable real-time monitoring of
their responses to any kind of stimulus.

3. CONCLUSIONS
While the hypothesis holds true that the presegmentation
procedure generates clear-sided devices that permit micros-
copy through four instead of two sides, the device dimensions

require the use of long working distance objectives, which
limits the magnification and resolution that can be achieved.
For 2-photon microscopy, this limit is not valid; however, the
setup we used did only show fluorescent signals and required
long acquisition times for each individual image.
Brightfield imaging is not possible with 2-photon micros-

copy; however, third harmonic generation can be used as a
substitute for nonfluorescing samples, since it shows interfaces
between materials with optical density. Third harmonic
generation is a scanning method that requires rather long
acquisition times per image.
Using stacks of several images taken from parallel focal

planes, we could recreate a 3-dimensional impression of the
dual-structure device from both angles and compare them (see
Figure 3). While the individual 3D model shows similarities to
each other and to the normal micrographs taken from both the
same and the orthogonal focal plane, there are pronounced
differences and the creation involves massive image processing,
which allows creation of artefacts and demands careful
handling of the sample images to allow automatization and
ensure reproducibility.
The main strength of this approach of generating devices is

its simplicity and low cost, which makes it easily accessible to
groups with limited resources. Additionally, we have shown
that with our approach, we can obtain information about the
x−z-plane of microfluidic devices in only one image and scan
along the device in the y-direction, providing additional
information on the images taken in the x−y-plane.
Gridlike structures can cause interferences in the side-on

view, and all structures that are not perfectly orthogonal or
vertical to the employed optical axis create artefacts, just as is
usual in microscopy.
The usage of two instead of one optical axis means that

irregularities in the z-axis of the device cannot be neglected any
more, as can be seen in the appearance of thin vertical
structures at higher magnifications in the inner walls of the
device, in Figure 2C. These structures most likely stem from
the lithographic process and influence the quality of brightfield
images along the x−z-plane in these areas. These structures
would also be expected in other vertical walls made from
photoresist, and so glass slides should always be used for
generating the clear sides. These distortions would also
preclude imaging along long narrow structures such as
channels, so care should be taken during the device design
step that any area of interest is not shaped in this way (e.g., the
leftmost channel in Figure 2C).
While, in general, it is possible to create devices that allow

light microscopy along the x−y- and x−z-planes, the long
working distance that is needed for upright, inverted, and
confocal microscopy preclude higher magnifications. While 2-
photon microscopy can be used to achieve higher magnifica-
tions with such a thick sample, it is still very expensive, does
not allow for brightfield imaging, and requires long sampling
times for each image.
Light sheet microscopy and the presegmentation procedure

might be a very powerful combination, providing high
magnification at high frame rates, but it would be a costly
combination that has not been tested yet.
All in all, this presegmentation procedure really does

generate clear-sided devices that are compatible with common
microscopy techniques (Table 1) and unlocks multiangle
imaging for many potential applications (e.g., artificial cells,
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tissue engineering, organs on a chip, replacing animal
experiments, etc.) and, arguably, for (almost) everybody.

4. EXPERIMENTAL SECTION
4.1. Glass Slide Hydrophobization. The hydrophilicity

of untreated glass slides can result in low contact angles at the
interface of liquid PDMS and glass, generating a meniscus in
the PDMS, which introduces unwanted lens effects at the
edges of each PDMS device.
This meniscus can be reduced by hydrophobizing the glass

surface. To do this, cleaned, polished glass slides (Menzel
Glas̈er, VWR, U.K.) were exposed to a saturated atmosphere of
1H,1H,2H,2H-perfluoro-octyl-trichloro-silane (Sigma, U.K.) at
around 1 mbar for 15 min to 8 h. Excessive silane was washed
off with methanol.
4.2. Device Preparation. The devices were produced with

standard soft-lithography methods as described previously.21

Briefly, SU 8-3050 photoresist (MicroChem) was spin-coated
onto commercially available 4-inch silicon wafers according to
the manufacturer’s directions and exposed to ultraviolet (UV)
light through a mask (Compugraphics Jena, Germany) on a
mask aligner (MA6; Süss MicroTec, Switzerland) and
developed using UV light of 345 nm wavelength to create
masters. PDMS monomer and curing agent (Corning, U.K.)
were mixed in a 10:1 ratio and poured over the masters. The
devices used in this paper consisted of a simple open chamber
with two inlet/outlet channels and a row of support pillars
along the middle (see Figure 1A).
Prior to curing the PDMS, hydrophobized glass slides were

placed orthogonally to the silicon wafer on either side of the
device design. Glass slides were glued to a supportive structure
(e.g., pixel pegboards, Junio, Denmark, see Figure 4) such that
they could be held orthogonal to the master and parallel to

each other. The supporting structures could be made of any
other material and were intended to keep the glass slides at the
desired distances and orthogonal to the wafer surface. Once
the glass slides were placed in the PDMS, it was cured at 80 °C
overnight.
When pouring the PDMS and placing the glass slides, care

was taken to ensure that any parts through which imaging
would take place were thin enough that the area of interest
would lie within the focal range of the microscope.

4.3. Single-Structure Device. For the first experiments,
we used a single structure (see Figure 1A “top”, Figure 2) as
one half of the device that was combined with a plain cube of
PDMS to create the devices used for microscopy.

4.4. Dual-Structure Device. By combining two different
structures (see Figure 1A “top and bottom”, Figure 3) into one
device, more complex experiments can be conducted. The
dual-structure device has two sets of inlets and outlets to allow
both halves to be supplied independently. The interface
between the halves can be fitted with a separating membrane
or used to grow tissues in vitro, which allows to study diffusion
rates and the tissues response to any kind of stimuli, including
metabolomics. To support in vitro growth of tissues, a grid
with a lattice length of 15 μm plus 5 μm interspacing was
integrated in the bottom half.

4.5. Device Assembly. Once cured, the PDMS was cut
along the ends of the glass slides, pulled from the wafer and
peeled from the enveloping glass slides. Due to the elasticity of
PDMS, this process is solid and reproducible. Careless
handling can result in misaligned glass slides or fingerprints
or glove marks on the clean surface, which can be removed by
either using sticky tape or washing the PDMS with appropriate
solvents (e.g., methanol, isopropanol), with optional ultra-
sonication and recommended drying. To allow fluid into the
devices, holes were cut into the upper part of the device using a
biopsy puncher (1.5 mm diameter, KIA, Japan). Two PDMS
parts were bonded together after surface activation in reactive
oxygen plasma. Top and bottom parts should be aligned such
that the sides make a flat surface to allow for proper
microscopic imaging (see Figure 4C).

4.6. Widefield Microscopy. Rhodamine B coated silica
beads (Bang Labs, 7−9 μm diameter) at a concentration of
200 beads/mL were injected into the device, where they stuck
to the inner surface and remained while injecting air to create a
flow-free device for consistent imaging. The beads were excited

Table 1. Comparison of Microscopy Techniques for Thick
Samples

microscopy
technique costs

recording
speed

image post
processing

thick
samples

light (upright/
inverted)

low high optional with
LWDO

confocal medium scanning advised with
LWDO

2-photon high scanning essential yes
light sheet medium high essential yes

Figure 4. Device preparation: (A) clean microscopy glass slides were hydrophobized and glued onto the supporting scaffolds (e.g., pixel pegboards)
at the desired intervals, ensuring that the glass slides were aligned parallel to each other and orthogonal to the supporting scaffolds. (B) After the
glass slides were stably affixed to the supporting scaffolds, the resulting construction was placed between the microfluidic structures (tinted in green,
with magenta frames for visibility) on top of a master prior to adding and curing the PDMS. (C) Device (consisting of two PDMS halves,
covalently bound together) is shown standing upright, with its x−z-plane on a glass microscopy slide, while the pathway of light is parallel to the x−
y-plane of the device.
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with an excitation wavelength of 546 ± 6 nm and detected at
an emission wavelength of 607 ± 40 nm using a Zeiss 20 HE
filter-set on a Zeiss Axio Observer.A1 microscope, with a Zeiss
10× objective (NA: 0.3), fitted with an Andor iXon camera
(Oxford Instruments, U.K.). Images were processed using
Andor Solis X 3238, Irfan view 4.25, and Gnu Image
Manipulation Program (GIMP) 2.8.
4.7. Confocal Imaging. Rhodamine B coated silica beads

(Bang Labs, 3 μm diameter) at a concentration of (0.001% v/
v) were injected into the device, where they stuck to the inner
surface and remained while the water evaporated over night at
room temperature. This created a flow-free device for
consistent imaging. The dye coat was excited at a wavelength
of 532 nm and emitted light was detected at wavelengths
longer than 550 nm on a Zeiss LSM 5 Live microscope, with
an onboard camera (Zeiss, Germany). Due to the thickness of
the device, only long working distance objectives (LWDO)
with a maximum working distance of at least 3 mm have been
used.
4.8. Two-Photon Microscopy. Two-photon imaging was

carried out on a custom setup, using commercially available
parts at a wavelength of 1050 nm on the same samples as used
for confocal imaging. Rhodamine dye imaged by second
harmonic generation and the interface between air and PDMS
was imaged using third harmonic generation.22

4.9. Image Processing for 3D Rendering. To create the
3D models shown in Figure 3, widefield images were recorded
as stacks. To balance nonuniform illumination, matrix-masking
method23 was applied using python. Corrected images were
cropped to the area of interest, inverted, and their contrast and
brightness was adjusted to show the structure as bright pixels
on a black background. The resulting grayscale images were
aligned using StackReg plugin24 prior to rendering the final 3D
models using 3D viewer plugin in Fiji.25

4.10. Additional Considerations. If tubing will be
inserted into the devices in downstream applications, the
PDMS must be thick enough to properly hold tubing for
fluidic transport. Since a thin layer of PDMS may be needed
for imaging, the resulting PDMS parts may be too thin to hold
the tubing. Therefore, the bottom and top parts can be either
individually cast, or an additional PDMS layer can be bonded
to one part to provide the necessary thickness.
To properly seal a microfluidic device, it might be necessary

to surround it with at least 1 mm of PDMS on all sides. If a
microscopy glass slide with standard thickness (1.35−1.6 mm)
is used, this might limit the choice of objective to LWDO.
For the recording of images along the x−z-plane, it is crucial

that the setup of the optical path is adjusted, especially the
condenser of the brightfield illumination needs adjustment
when imaging the device along the z-axis, when using inverted
or upright microscopes. The usage of two independent optical
pathways, one for the x−y-plane and another for the x−z-plane
observations, can counteract the need for constant adjustment.
4.11. Calculation of Spatial Resolution. The resolution

in the x−y-plane is the same for conventional brightfield
microscopy. With our setup, we could resolve 130 individual
pixels per 100 μm, resulting in a 769 nm pixel pitch. For the
x−z-plane, resolution was sufficient to separate individual
fluorescent beads (7 μm diameter) within the device (see
Figure 2).
Taking these values as minimal spatial resolution, our

approach has a resulting maximal voxel size of 4.14 × 10−18 m3.
Following the equation below, we can calculate the voxel size V

using N = number of pixels resolved along a line of s μm for
each of the three dimensions x, y, and z

= × ×V
N
s

N

s
N
s

x

x

y

y

z

z (1)

Since the resolution in x and y is equal, we can rewrite the
equation eq 1 to

μ μ μ= × =
i
k
jjjjj

y
{
zzzzzV

100 m
130 pixel

7 m
1 pixel

4.14 m
voxel

2 3

(2)
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