

Olaosebikan, S. and Manlove, D. (2020) An Algorithm for Strong Stability

in the Student-Project Allocation Problem With Ties. In: 6th Annual

International Conference on Algorithms and Discrete Applied Mathematics

(CALDAM 2020), Sangareddy, India, 13-15 Feb 2020, pp. 384-399. ISBN

9783030392185 (doi:10.1007/978-3-030-39219-2_31).

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

http://eprints.gla.ac.uk/203082/

Deposited on: 12 November 2019

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1007/978-3-030-39219-2_31
http://eprints.gla.ac.uk/203082/
http://eprints.gla.ac.uk/

An Algorithm for Strong Stability in the
Student-Project Allocation Problem with Ties

Sofiat Olaosebikan? and David Manlove??

School of Computing Science, University of Glasgow,
e-mail: s.olaosebikan.1@research.gla.ac.uk, David.Manlove@glasgow.ac.uk

Abstract. We study a variant of the Student-Project Allocation problem
with lecturer preferences over Students where ties are allowed in the pref-
erence lists of students and lecturers (spa-st). We investigate the concept
of strong stability in this context. Informally, a matching is strongly sta-
ble if there is no student and lecturer l such that if they decide to form
a private arrangement outside of the matching via one of l’s proposed
projects, then neither party would be worse off and at least one of them
would strictly improve. We describe the first polynomial-time algorithm
to find a strongly stable matching or to report that no such matching
exists, given an instance of spa-st. Our algorithm runs in O(m2) time,
where m is the total length of the students’ preference lists.

1 Introduction

Matching problems, which generally involve the assignment of a set of agents
to another set of agents based on preferences, have wide applications in many
real-world settings, including, for example, allocating junior doctors to hospitals
[25] and assigning students to projects [15]. In the context of assigning students
to projects, each project is proposed by one lecturer and each student is required
to provide a preference list over the available projects that she finds acceptable.
Also, lecturers may provide a preference list over the students that find their
projects acceptable, and/or over the projects that they propose. Typically, each
project and lecturer have a specific capacity denoting the maximum number
of students that they can accommodate. The goal is to find a matching, i.e., an
assignment of students to projects that respects the stated preferences, such that
each student is assigned at most one project, and the capacity constraints on
projects and lecturers are not violated — the so-called Student-Project Allocation
problem (spa) [1,6,19].

Two major models of spa exist in the literature: one permits preferences only
from the students [15], while the other permits preferences from the students
and lecturers [1,14]. In the latter case, three different variants have been studied
? Supported by a College of Science and Engineering Scholarship, University of Glas-

gow. Orcid ID: 0000-0002-8003-7887.
?? Supported by grant EP/P028306/1 from the Engineering and Physical Sciences Re-

search Council. Orcid ID: 0000-0001-6754-7308.

2

based on the nature of the lecturers’ preference lists. These include SPA with lec-
turer preferences over (i) students [14], (ii) projects [12,21,22], and (iii) (student,
project) pairs [2]. Outwith assigning students to projects, applications of each of
these three variants can be seen in multi-cell networks where the goal is to find
a stable assignment of users to channels at base-stations [3,4,5].

In this work, we will concern ourselves with variant (i), i.e., the Student-
Project Allocation problem with lecturer preferences over Students (spa-s). In
this context, it has been argued in [25] that a natural property for a matching to
satisfy is that of stability. Informally, a stable matching ensures that no student
and lecturer would have an incentive to deviate from their current assignment.
Abraham et al. [1] described two linear-time algorithms to find a stable matching
in an instance of spa-s where the preference lists are strictly ordered. In their
paper, they also proposed an extension of spa-s where the preference lists may
include ties, which we refer to as the Student-Project Allocation problem with
lecturer preferences over Students with Ties (spa-st).

If we allow ties in the preference lists of students and lecturers, three different
stability definitions are possible [8,9,10]. We give an informal definition in what
follows. Suppose that M is a matching in an instance of spa-st. Then M is (i)
weakly stable, (ii) strongly stable, or (iii) super-stable, if there is no student and
lecturer l such that if they decide to become assigned outside of M via one of
l’s proposed projects, respectively,

(i) both of them would strictly improve,
(ii) one of them would be better off, and the other would not be worse off
(iii) neither of them would be worse off.

Existing results in spa-st. Every instance of spa-st admits a weakly stable
matching, which could be of different sizes [20]. Moreover, the problem of finding
a maximum size weakly stable matching (max-spa-st) is NP-hard [11,20], even
for the so-called Stable Marriage problem with Ties and Incomplete lists (smti).
Cooper and Manlove [7] described a 3

2 -approximation algorithm for max-spa-st.
On the other hand, Irving et al. argued in [9] that super-stability is a natural
and most robust solution concept to seek in cases where agents have incomplete
information. Recently, Olaosebikan and Manlove [23] showed that if an instance
of spa-st admits a super-stable matching M , then all weakly stable matchings
in the instance are of the same size (equal to the size of M), and match exactly
the same set of students. The main result of their paper was a polynomial-time
algorithm to find a super-stable matching or report that no such matching exists,
given an instance of spa-st. Their algorithm runs in O(L) time, where L is the
total length of all the preference lists.

It was motivated in [10] that weakly stable matching may be undermined
by bribery or persuasion, in practical applications of the Hospitals-Residents
problem with Ties (hrt). In what follows, we give a corresponding argument for
an instance I of spa-st. Suppose that M is a weakly stable matching in I, and
suppose that a student si prefers a project pj (where pj is offered by lecturer lk)
to her assigned project in M , say pj′ (where pj′ is offered by a lecturer different
from lk). Suppose further that pj is full and lk is indifferent between si and one

3

of the worst student/s assigned to pj in M , say si′ . Clearly, the pair (si, pj) does
not constitute a blocking pair for the weakly stable matching M , as lk would
not improve by taking on si in the place of si′ . However, si might be overly
invested in pj that she is even ready to persuade or even bribe lk to reject si′

and accept her instead; lk being indifferent between si and si′ may decide to
accept si’s proposal. We can reach a similar argument if the roles are reversed.
However, if M is strongly stable, it cannot be potentially undermined by this
type of (student, project) pair.

Henceforth, if a spa-st instance admits a strongly stable matching, we say
that such an instance is solvable. Unfortunately not every instance of spa-st
is solvable. To see this, consider the case where there are two students, two
projects and two lecturers, the capacity of each project and lecturer is 1, the
students have exactly the same strictly ordered preference list of length 2, and
each of the lecturers preference list is a single tie of length 2 (any matching
will be undermined by a student and lecturer that are not matched together).
However, it should be clear from the discussions above that in cases where a
strongly stable matching exists, it should be preferred over a matching that
is merely weakly stable. Previous results for strong stability in the literature
include [8,10,13,16,18].

Our contribution. We present the first polynomial-time algorithm to find a
strongly stable matching or report that no such matching exists, given an in-
stance of spa-st – thus solving an open problem given in [1,23]. Our algorithm
is student-oriented, which implies that if the given instance is solvable then our
algorithm will output a solution in which each student has at least as good a
project as she could obtain in any strongly stable matching. We note that our
algorithm is a non-trivial extension of the strong stability algorithms for smt
(Stable Marriage problem with Ties), smti and hrt described in [8,10,18] (we
discuss this further in [24, Sect. 4.3]).

The remainder of this paper is structured as follows. We give a formal defini-
tion of the spa-s problem, the spa-st variant, and the three stability concepts in
Sect. 2. We describe our algorithm for spa-st under strong stability in Sect. 3.
Further, in Sect. 3, we also illustrate an execution of our algorithm with respect
to an instance of spa-st before moving on to present the algorithm’s correct-
ness and complexity results (all omitted proofs can be found in [24, Sect. 4.5]).
Finally, we present some potential direction for future work in Sect. 4.

2 Preliminary definitions

In this section, we give a formal definition of spa-s as described in the literature
[1,23]. We also give a formal definition of spa-st as described in [23], which is a
generalisation of spa-s in which preference lists can include ties.

2.1 Formal definition of spa-s
An instance I of spa-s involves a set S = {s1, s2, . . . , sn1} of students, a set
P = {p1, p2, . . . , pn2} of projects and a set L = {l1, l2, . . . , ln3} of lecturers. Each

4

student si ranks a subset of P in strict order, which forms her preference list.
We say that si finds pj acceptable if pj appears on si’s preference list. We denote
by Ai the set of projects that si finds acceptable.

Each lecturer lk ∈ L offers a non-empty set of projects Pk, where P1, P2, . . . ,
Pn3 partitions P, and lk provides a preference list, denoted by Lk, ranking in
strict order of preference those students who find at least one project in Pk

acceptable. Also lk has a capacity dk ∈ Z+, indicating the maximum number of
students she is willing to supervise. Similarly each project pj ∈ P has a capacity
cj ∈ Z+ indicating the maximum number of students that it can accommodate.

We assume that for any lecturer lk, max{cj : pj ∈ Pk} ≤ dk ≤
∑
{cj : pj ∈

Pk} (i.e., the capacity of lk is (i) at least the highest capacity of the projects
offered by lk, and (ii) at most the sum of the capacities of all the projects lk
is offering). We denote by Lj

k, the projected preference list of lecturer lk for pj ,
which can be obtained from Lk by removing those students that do not find pj

acceptable (thereby retaining the order of the remaining students from Lk).
An assignment M is a subset of S × P such that (si, pj) ∈ M implies that

si finds pj acceptable. If (si, pj) ∈ M , we say that si is assigned to pj , and
pj is assigned si. For convenience, if si is assigned in M to pj , where pj is
offered by lk, we may also say that si is assigned to lk, and lk is assigned si.
For any project pj ∈ P, we denote by M(pj) the set of students assigned to pj

in M . Project pj is undersubscribed, full or oversubscribed according as |M(pj)|
is less than, equal to, or greater than cj , respectively. Similarly, for any lecturer
lk ∈ L, we denote by M(lk) the set of students assigned to lk in M . Lecturer lk
is undersubscribed, full or oversubscribed according as |M(lk)| is less than, equal
to, or greater than dk, respectively. A matching M is an assignment such that
|M(si)| ≤ 1, |M(pj)| ≤ cj and |M(lk)| ≤ dk. If si is assigned to some project in
M , we let M(si) denote that project; otherwise M(si) is undefined.

2.2 Ties in the preference lists

We now give a formal definition, similar to the one given in [23], for the general-
isation of spa-s in which the preference lists can include ties. In the preference
list of lecturer lk ∈ L, a set T of r students forms a tie of length r if lk does not
prefer si to si′ for any si, si′ ∈ T (i.e., lk is indifferent between si and si′). A tie
in a student’s preference list is defined similarly. For convenience, in what follows
we consider a non-tied entry in a preference list as a tie of length one. We denote
by spa-st the generalisation of spa-s in which the preference list of each student
(respectively lecturer) comprises a strict ranking of ties, each comprising one or
more projects (respectively students). An example spa-st instance I1 is given
in Fig. 1, which involves the set of students S = {s1, s2, s3}, the set of projects
P = {p1, p2, p3} and the set of lecturers L = {l1, l2}. Ties in the preference lists
are indicated by round brackets.

In the context of spa-st, we assume that all notation and terminology carries
over from spa-s with the exception of stability, which we now define. When ties
appear in the preference lists, three types of stability arise, namely weak stability,
strong stability and super-stability [9,10]. For our purpose in this paper, we only

5

Student preferences Lecturer preferences offers
s1: (p1 p2) l1: s3 (s1 s2) p1, p2
s2: p2 p3 l2: (s3 s2) p3
s3: p3 p1

Project capacities: c1 = c2 = c3 = 1
Lecturer capacities: d1 = 2, d2 = 1

Fig. 1. An example spa-st instance I1.

give a formal definition of strong stability in the context of spa-st. Henceforth,
I is an instance of spa-st, (si, pj) is an acceptable pair in I and lk is the lecturer
who offers pj .

Definition 1 (strong stability). We say that M is strongly stable in I if
it admits no blocking pair, where a blocking pair of M is an acceptable pair
(si, pj) ∈ (S × P) \M such that either (1a and 1b) or (2a and 2b) holds as
follows:

(1a) either si is unassigned in M , or si prefers pj to M(si);
(1b) either (i), (ii), or (iii) holds as follows:

(i) pj is undersubscribed and lk is undersubscribed;
(ii) pj is undersubscribed, lk is full, and either si ∈ M(lk) or lk prefers si

to the worst student/s in M(lk) or is indifferent between them;
(iii) pj is full and lk prefers si to the worst student/s in M(pj) or is indif-

ferent between them.

(2a) si is indifferent between pj and M(si);
(2b) either (i), (ii), or (iii) holds as follows:

(i) pj is undersubscribed, lk is undersubscribed and si /∈M(lk);
(ii) pj is undersubscribed, lk is full, si /∈ M(lk), and lk prefers si to the

worst student/s in M(lk);
(iii) pj is full and lk prefers si to the worst student/s in M(pj).

Some intuition for the strong stability definition is given in [24, Sect. 3]. In
the remainder of this paper, any usage of the term blocking pair refers to the
version of this term for strong stability as defined above.

3 An algorithm for spa-st under strong stability

In this section we present our algorithm for spa-st under strong stability, which
we will refer to as Algorithm SPA-ST-strong. In Sect. 3.1, we give some defini-
tions relating to the algorithm. In Sect. 3.2, we give a description of our algorithm
and present it in pseudocode form. We illustrate an execution of our algorithm
with respect to a spa-st instance in Sect. 3.3. Finally, we present the algorithm’s
correctness results in Sect. 3.4.

6

3.1 Definitions relating to the algorithm
Given a pair (si, pj) ∈ M , for some strongly stable matching M in I, we call
(si, pj) a strongly stable pair. During the execution of the algorithm, students
become provisionally assigned to projects (and implicitly to lecturers), and it
is possible for a project (and lecturer) to be provisionally assigned a number of
students that exceeds its capacity. We describe a project (respectively lecturer)
as replete if at any time during the execution of the algorithm it has been full
or oversubscribed. We say that a project (respectively lecturer) is non-replete if
it is not replete.

The provisional assignment graph is an undirected bipartite graph G = (S ∪
P,E), with S ⊆ S and P ⊆ P such that there is an edge (si, pj) ∈ E if and
only if si is provisionally assigned to pj . During the execution of the algorithm,
it is possible for a student to be adjacent to more than one project in G. Thus,
we denote by G(si) the set of projects adjacent to si in G. Given a project
pj ∈ P , we denote by G(pj) the set of students who are provisionally assigned
to pj in G and we let dG(pj) = |G(pj)|. Similarly, we denote by G(lk) the set of
students who are provisionally assigned to a project offered by lk in G and we
let dG(lk) = |G(lk)|.

As stated earlier, for a project pj , it is possible that dG(pj) > cj at some point
during the algorithm’s execution. Thus, we denote by qj = min{cj , dG(pj)} the
quota of pj in G, which is the minimum between pj ’s capacity and the number
of students provisionally assigned to pj in G. Similarly, for a lecturer lk, it is
possible that dG(lk) > dk at some point during the algorithm’s execution. At
this point, we denote by αk =

∑
{qj : pj ∈ Pk ∩ P} the total quota of projects

offered by lk that is provisionally assigned to students in G and we denote by
qk = min{dk, dG(lk), αk} the quota of lk in G.

The algorithm proceeds by deleting from the preference lists certain (si, pj)
pairs that are not strongly stable. By the term delete (si, pj), we mean the re-
moval of pj from si’s preference list and the removal of si from Lj

k (the projected
preference list of lecturer lk for pj); in addition, if (si, pj) ∈ E we delete the edge
from G. By the head and tail of a preference list at a given point we mean the
first and last tie respectively on that list after any deletions might have occurred
(recalling that a tie can be of length 1). Given a project pj , we say that a student
si is dominated in Lj

k if si is worse than at least cj students who are provision-
ally assigned to pj . The concept of a student becoming dominated in a lecturer’s
preference list is defined in a slightly different manner.
Definition 2 (Dominated in Lk). At a given point during the algorithm’s
execution, let αk and dG(lk) be as defined above. We say that a student si

is dominated in Lk if min{dG(lk), αk} ≥ dk, and si is worse than at least dk

students who are provisionally assigned in G to a project offered by lk.
Definition 3 (Lower rank edge). We define an edge (si, pj) ∈ E as a lower
rank edge if si is in the tail of Lk and min{dG(lk), αk} > dk.
Definition 4 (Bound). Given an edge (si, pj) ∈ E, we say that si is bound to
pj if (i) pj is not oversubscribed or si is not in the tail of Lj

k (or both), and (ii)

7

(si, pj) is not a lower rank edge or si is not in the tail of Lk (or both). If si is
bound to pj , we may also say that (si, pj) is a bound edge. Otherwise, we refer
to it as an unbound edge.1

We form a reduced assignment graph Gr = (Sr, Pr, Er) from a provisional as-
signment graph G as follows. For each edge (si, pj) ∈ E such that si is bound to
pj , we remove the edge (si, pj) from Gr and we reduce the quota of pj in Gr (and
intuitively lk2) by one. Further, we remove all other unbound edges incident to
si in Gr. Each isolated student vertex is then removed from Gr. Finally, if the
quota of any project is reduced to 0, or pj becomes an isolated vertex, then pj is
removed from Gr. For each surviving pj in Gr, we denote by q∗j the revised quota
of pj , where q∗j is the difference between pj ’s quota in G (i.e., qj) and the number
of students that are bound to pj . Similarly, we denote by q∗k the revised quota
of lk in Gr, where q∗k is the difference between lk’s quota in G (i.e., qk) and the
number of students that are bound to a project offered by lk. Further, for each
lk who offers at least one project in Gr, we let n =

∑
{q∗j : pj ∈ Pk ∩ Pr} − q∗k,

where n is the difference between the total revised quota of projects in Gr that
are offered by lk and the revised quota of lk in Gr. Now, if n ≤ 0, we do nothing;
otherwise, we extend Gr as follows. We add n dummy student vertices to Sr.
For each of these dummy vertex, say sdi , and for each project pj ∈ Pk ∩Pr that
is adjacent to a student vertex in Sr via a lower rank edge, we add the edge
(sdi

, pj) to Er.3
Given a set X ⊆ Sr of students, define N (X), the neighbourhood of X, to be

the set of project vertices adjacent in Gr to a student in X. If for all subsets X of
Sr, each student in X can be assigned to one project in N (X), without exceeding
the revised quota of each project in N (X) (i.e., |X| ≤

∑
{q∗j : pj ∈ N (X)} for

all X ⊆ Sr); then we say Gr admits a perfect matching that saturates Sr.

Definition 5 (Critical set). It is well known in the literature [17] that if Gr

does not admit a perfect matching that saturates Sr, then there must exist a
deficient subset Z ⊆ Sr such that |Z| >

∑
{q∗j : pj ∈ N (Z)}. To be precise, the

deficiency of Z is defined by δ(Z) = |Z| −
∑
{q∗j : pj ∈ N (Z)}. The deficiency

of Gr, denoted δ(Gr), is the maximum deficiency taken over all subsets of Sr.
Thus, if δ(Z) = δ(Gr), we say that Z is a maximally deficient subset of Sr, and
we refer to Z as a critical set.

We denote by PR the set of replete projects in G and we denote by P ∗R a subset
of projects in PR which is obtained as follows. For each project pj ∈ PR, let lk
1 An edge (si, pj) ∈ E can change state from bound to unbound, but not vice versa.
2 If si is bound to more than one projects offered by lk, for all the bound edges

involving si and these projects that we remove from Gr, we only reduce lk’s quota
in Gr by one.

3 An intuition as to why we add dummy students to Gr is as follows. Given a lecturer
lk whose project is provisionally assigned to a student in Gr. If q∗

k <
∑
{q∗

j : pj ∈
Pk ∩ Pr}, then we need n dummy students to offset the difference between

∑
{q∗

j :
pj ∈ Pk ∩ Pr} and q∗

k, so that we don’t oversubscribe lk in any maximum matching
obtained from Gr.

8

be the lecturer who offers pj . For each student si such that (si, pj) has been
deleted, we add pj to P ∗R if (i) and (ii) holds as follows:

(i) either si is unassigned in G, or (si, pj′) ∈ G where si prefers pj to pj′ , or
(si, pj′) ∈ G and si is indifferent between pj and pj′ where pj′ /∈ Pk;

(ii) either lk is undersubscribed, or lk is full and either si ∈ G(lk) or lk prefers
si to some student assigned to lk in G.

Definition 6 (Feasible matching). A feasible matching in the final provi-
sional assignment graph G is a matching M obtained as follows:

1. Let G∗ be the subgraph of G induced by the students who are adjacent to a
project in P ∗R. First, find a maximum matching M∗ in G∗;

2. Using M∗ as an initial solution, find a maximum matching M in G.

3.2 Description of the algorithm

Algorithm SPA-ST-strong, described in Algorithm 1, begins by initialising an
empty bipartite graph G which will contain the provisional assignments of stu-
dents to projects (and intuitively to lecturers). We remark that such assignments
(i.e., edges in G) can subsequently be broken during the algorithm’s execution.

The while loop of the algorithm involves each student si who is not adjacent
to any project in G and who has a non-empty list applying in turn to each project
pj at the head of her list. Immediately, si becomes provisionally assigned to pj

in G (and to lk). If, by gaining a new provisional assignee, project pj becomes
full or oversubscribed then we set pj as replete. Further, for each student st in
Lj

k, such that st is dominated in Lj
k, we delete the pair (st, pj). As we will prove

later, such pairs cannot belong to any strongly stable matching. Similarly, if by
gaining a new provisional assignee, lk becomes full or oversubscribed then we set
lk as replete. For each student st in Lk, such that st is dominated in Lk and for
each project pu ∈ Pk that st finds acceptable, we delete the pair (st, pu). This
continues until every student is provisionally assigned to one or more projects or
has an empty list. At the point where the while loop terminates, we form the
reduced assignment graph Gr and we find the critical set Z of students in Gr (we
describe how to find Z on Page 9). As we will see later, no project pj ∈ N (Z)
can be assigned to any student in the tail of Lj

k in any strongly stable matching,
so all such pairs are deleted.

At the termination of the inner repeat-until loop in line 21, i.e., when Z is
empty, if some project pj that is replete ends up undersubscribed, we carry out
some certain deletions4. We let sr be any one of the most preferred students (ac-
cording to Lj

k) who was provisionally assigned to pj during some iteration of the
algorithm but is not assigned to pj at this point (for convenience, we henceforth
refer to such sr as the most preferred student rejected from pj according to Lj

k).
If the students at the tail of Lk (recalling that the tail of Lk is the least-preferred
4 This type of deletion was also carried out in Algorithm SPA-ST-super for super-

stability [23].

9

tie in Lk after any deletions might have occurred) are no better than sr, it turns
out that none of these students st can be assigned to any project offered by lk
in any strongly stable matching – such pairs (st, pu), for each project pu ∈ Pk

that st finds acceptable, are deleted. The repeat-until loop is then potentially
reactivated, and the entire process continues until every student is provisionally
assigned to a project or has an empty list.

At the termination of the outer repeat-until loop in line 30, if a student is
adjacent in G to a project pj via a bound edge, then we may potentially carry
out extra deletions. First, we let lk be the lecturer that offers pj and we let U
be the set of projects that are adjacent to si in G via an unbound edge. For
each project pu ∈ U \Pk, it turns out that the pair (si, pu) cannot belong to any
strongly stable matching, thus we delete all such pairs. Finally, we let M be any
feasible matching in the provisional assignment graph G. If M is strongly stable
relative to the given instance I then M is output as a strongly stable matching
in I. Otherwise, the algorithm reports that no strongly stable matching exists in
I. We present Algorithm SPA-ST-strong in pseudocode form in Algorithm 1.

Finding the critical set. Consider the reduced assignment graphGr = (Sr, Pr,
Er) formed from G at a given point during the algorithm’s execution (at line 15).
To find the critical set of students in Gr, first we need to construct a maximum
matching Mr in Gr, with respect to the revised quota q∗j , for each pj ∈ Pr. In
this context, a matching Mr ⊆ Er is such that |Mr(si)| ≤ 1 for all si ∈ Sr, and
|Mr(pj)| ≤ q∗j for all pj ∈ Pr. We describe how to construct Mr as follows:

1. Let G′r be the subgraph of Gr induced by the dummy students adjacent to
a project in Gr. First, find a maximum matching M ′r in G′r.

2. Using M ′r as an initial solution, find a maximum matching Mr in Gr.5

Given a maximum matching Mr in the reduced assignment graph Gr, the critical
set Z consists of the set U of unassigned students together with the set U ′ of
students reachable from a student in U via an alternating path (see [24, Lemma
1] for a proof).

3.3 Example algorithm execution

In this section, we illustrate an execution of Algorithm SPA-ST-strong with
respect to the spa-st instance I3 shown in Fig. 2 (Page 10), which involves the
set of students S = {si : 1 ≤ i ≤ 8}, the set of projects P = {pj : 1 ≤ j ≤ 6} and
the set of lecturers L = {lk : 1 ≤ k ≤ 3}. The algorithm starts by initialising the
bipartite graph G = {}, which will contain the provisional assignment of students
to projects. We assume that the students become provisionally assigned to each
project at the head of their list in subscript order. Figs. 3, 4 and 5 illustrate how
this execution of Algorithm SPA-ST-strong proceeds with respect to I3.

5 By making sure that all the dummy students are matched in step 1, we are guaran-
teed that no lecturer is oversubscribed with non-dummy students in Gr.

10

Algorithm 1 Algorithm SPA-ST-strong
Input: spa-st instance I
Output: a strongly stable matching in I or “no strongly stable matching exists in I”

1: G← ∅
2: repeat
3: repeat
4: while some student si is unassigned and has a non-empty list do
5: for each project pj at the head of si’s list do
6: lk ← lecturer who offers pj

7: add the edge (si, pj) to G
8: if pj is full or oversubscribed then
9: for each student st dominated in Lj

k do
10: delete (st, pj)
11: if lk is full or oversubscribed then
12: for each student st dominated in Lk do
13: for each project pu ∈ Pk ∩At do
14: delete (st, pu)
15: form the reduced assignment graph Gr

16: find the critical set Z of students
17: for each project pu ∈ N (Z) do
18: lk ← lecturer who offers pu

19: for each student st at the tail of Lu
k do

20: delete (st, pu)
21: until Z is empty
22: for each pj ∈ P do
23: if pj is replete and pj is undersubscribed then
24: lk ← lecturer who offers pj

25: sr ← most preferred student rejected from pj in Lj
k {any if > 1}

26: if the students at the tail of Lk are no better than sr then
27: for each student st at the tail of Lk do
28: for each project pu ∈ Pk ∩At do
29: delete (st, pu)
30: until every unassigned student has an empty list
31: for each student si in G do
32: if si is adjacent in G to a project pj via a bound edge then
33: lk ← lecturer who offers pj

34: U ← unbound projects adjacent to si in G
35: for each pu ∈ U \ Pk do
36: delete (si, pu)
37: M ← a feasible matching in G
38: if M is a strongly stable matching in I then
39: return M
40: else
41: return “no strongly stable matching exists in I”

Student preferences Lecturer preferences offers
s1: p1 p6 {3} l1: s8 s7 (s1 s2 s3) (s4 s5) s6 p1, p2
s2: p1 p2 {2} l2: s6 s5 (s7 s3) p3, p4
s3: (p1 p4) {3} l3: (s1 s4) s8 p5, p6
s4: p2 (p5 p6)
s5: (p2 p3)
s6: (p2 p4)
s7: p3 p1 Project capacities: c1 = c2 = c6 = 2, c3 = c4 = c5 = 1
s8: p5 p1 Lecturer capacities: d1 = d3 = 3, d2 = 2

Fig. 2. An instance I3 of spa-st.

11

p1 : 2
p2 : 2
p3 : 1
p4 : 1
p5 : 1

s1

s2

s3

s4

s5

s6

s7

s8

(a) The provisional as-
signment graph G(1) at
the end of the while
loop, with the quota of
each project labelled be-
side it.

p1 : 1
p2 : 2

s1

s2

s3

s4

sd1

(b) The reduced assign-
ment graph G

(1)
r , with

the revised quota of each
project labelled beside
it. The collection of the
dashed edges is the maxi-
mum matching M

(1)
r .

p1 : 1
p2 : 2
p3 : 1
p4 : 1
p5 : 1

s4

s5

s6

s7

s8

(c) The provisional as-
signment graph G(1) at
the termination of itera-
tion (1).

Fig. 3. Iteration (1).

Iteration 1: At the termination of the while loop during the first iteration of the
inner repeat-until loop, every student, except s3, s6 and s7, is provisionally
assigned to every project in the first tie on their preference list. Edge (s3, p4) /∈
G(1) because (s3, p4) was deleted as a result of s6 becoming provisionally assigned
to p4, causing s3 to be dominated in L4

2. Also, edge (s6, p2) /∈ G(1) because (s6, p2)
was deleted as a result of s4 becoming provisionally assigned to p2, causing
s6 to be dominated in L1 (at that point in the algorithm, min{dG(l1), α1} =
min{4, 3} = 3 = d1 and s6 is worse than at least d1 students who are provisionally
assigned to l1). Finally, edge (s7, p3) /∈ G(1) because (s7, p3) was deleted as a
result of s5 becoming provisionally assigned to p5, causing s7 to be dominated
in L3

2.
To form G

(1)
r , the bound edges (s5, p3), (s6, p4), (s7, p1) and (s8, p5) are re-

moved from the graph. We can verify that edges (s4, p2) and (s5, p2) are unbound,
since they are lower rank edges for l1. Also, since p1 is oversubscribed, and each
of s1, s2 and s3 is at the tail of L1

1, edges (s1, p1), (s2, p1) and (s3, p1) are un-
bound. Further, the revised quota of l1 in G

(1)
r is 2, and the total revised quota

of projects offered by l1 (i.e., p1 and p2) is 3. Thus, we add one dummy student
vertex sd1 to G1

r, and we add an edge between sd1 and p2 (since p2 is the only
project in G

(1)
r adjacent to a student in the tail of L1 via a lower rank edge).

With respect to the maximum matching M
(1)
r , it is clear that the critical set

Z(1) = {s1, s2, s3}, thus we delete the edges (s1, p1), (s2, p1) and (s3, p1) from
G(1); and the inner repeat-until loop is reactivated.

12

p1 : 1
p2 : 2
p3 : 1
p4 : 1
p5 : 1
p6 : 1

s1

s2

s4

s5

s6

s7

s8

(a) The provisional as-
signment graph G(2) at
the end of the while
loop.

p2 : 1s4

(b) The reduced assign-
ment graph G

(2)
r .

p1 : 1
p2 : 1
p3 : 1
p4 : 1
p5 : 1
p6 : 1

s1

s2

s5

s6

s7

s8

(c) The provisional as-
signment graph G(2) at
the termination of itera-
tion (2).

Fig. 4. Iteration (2).

Iteartion 2: At the beginning of this iteration, each of s1 and s2 is unassigned
and has a non-empty list; thus we add edges (s1, p6) and (s2, p2) to the pro-
visional assignment graph obtained at the termination of iteration (1) to form
G

(2)
r . It can be verified that every edge in G

(2)
r , except (s4, p2) and (s5, p2), is a

bound edge. Clearly, the critical set Z(2) = ∅, thus the inner repeat-until loop
terminates. At this point, project p1, which was replete during iteration (1), is
undersubscribed in iteration (2). Moreover, the students at the tail of L1 (i.e.,
s4 and s5) are no better than s3, where s3 is one of the most preferred students
rejected from p1 according to L1

1; thus we delete edges (s4, p2) and (s5, p2). The
outer repeat-until loop is then reactivated (since s4 is unassigned and has a
non-empty list).

p1 : 2
p2 : 1
p3 : 1
p4 : 1
p5 : 1
p6 : 2

s1

s2

s4

s5

s6

s7

s8

(a) The provisional as-
signment graph G(3) at
the end of the while
loop.

Fig. 5. Iteration (3).

13

Iteration 3: At the beginning of this iteration, the only student that is unas-
signed and has a non-empty list is s4; thus we add edges (s4, p5) and (s4, p6)
to the provisional assignment graph obtained at the termination of iteration (2)
to form G

(3)
r . The provisional assignment of s4 to p5 led to p5 becoming over-

subscribed; thus (s8, p5) is deleted (since s8 is dominated on L5
3). Further, s8

becomes provisionally assigned to p1. It can be verified that all the edges in G(3)
r

are bound edges. Moreover, the reduced assignment graph G
(3)
r = ∅.

Again, every unassigned students has an empty list. We also have that a
project p2, which was replete in iteration (2), is undersubscribed in iteration
(3). However, no further deletion is carried out in line 29 of the algorithm, since
the student at the tail of L1 (i.e., s2) is better than s4 and s5, where s4 and
s5 are the most preferred students rejected from p2 according to L2

1. Hence, the
repeat-until loop terminates. We observe that P ∗R = {p5}, since (s8, p5) has
been deleted, s8 prefers p5 to her provisional assignment in G and l3 is undersub-
scribed. Thus we need to ensure p5 fills up in the feasible matchingM constructed
from G, so as to avoid (s8, p5) from blocking M . Finally, the algorithm outputs
the feasible matching M = {(s1, p6), (s2, p2), (s4, p5), (s5, p3), (s6, p4), (s7, p1),
(s8, p1)} as a strongly stable matching.

3.4 Correctness of the algorithm

The correctness of Algorithm SPA-ST-strong is established via a sequence of
lemmas, namely Lemmas 4-14 in [24, Sect. 4.5]. These are omitted here for space
reasons, but may be summarised as follows:

1. no strongly stable pair is ever deleted during the execution of the algorithm;
2. no strongly stable matching exists if some:

(a) non-replete lecturer lk has fewer assignees in the feasible matching M
than provisional assignees in the final assignment graph G, or

(b) replete lecturer is not full in M , or
(c) student is bound to two or more projects that are offered by different

lecturers, or
(d) pair (si, pj) was deleted where pj is offered by lk, each of pj and lk is

undersubscribed in M , and for any pj′ ∈ Pk such that si is indifferent
between pj and pj′ , (si, pj′) /∈M ;

3. if the algorithm outputs “no strongly stable matching” then at least one of
the properties in (2) above must hold;

4. Algorithm SPA-ST-strong may be implemented to run in O(m2) time,
where m is the total length of the students’ preference lists.

The following theorem collects together Lemmas 4-14 in [24] and establishes the
correctness of Algorithm SPA-ST-strong.

Theorem 1. For a given instance I of spa-st, Algorithm SPA-ST-strong de-
termines in O(m2) time whether or not a strongly stable matching exists in I. If
such a matching does exist, all possible executions of the algorithm find one in

14

which each assigned student is assigned at least as good a project as she could ob-
tain in any strongly stable matching, and each unassigned student is unassigned
in every strongly stable matchings.

Given the optimality property established by Theorem 1, we define the
strongly stable matching found by Algorithm SPA-ST-strong to be student-
optimal. For example, in the spa-st instance illustrated in Fig. 1, the student-
optimal strongly stable matching is {(s1, p1), (s2, p2), (s3, p3)}.

4 Conclusion

We leave open the formulation of a lecturer-oriented counterpart to Algorithm
SPA-ST-strong. From an experimental perspective, an interesting direction would
be to carry out an empirical analysis of Algorithm SPA-ST-strong, to investi-
gate how various parameters (e.g., the density and position of ties in the prefer-
ence lists, the length of the preference lists, or the popularity of some projects)
affect the existence of a strongly stable matching, based on randomly generated
and/or real instances of spa-st.

Acknowledgement

The authors would like to convey their sincere gratitude to Adam Kunysz for
valuable discussions concerning Algorithm SPA-ST-strong. They would also
like to thank the anonymous reviewers for their helpful suggestions.

References

1. D.J. Abraham, R.W. Irving, and D.F. Manlove. Two algorithms for the Student-
Project allocation problem. Journal of Discrete Algorithms, 5(1):79–91, 2007.

2. A.H. Abu El-Atta and M.I. Moussa. Student project allocation with preference
lists over (student,project) pairs. In Proceedings of ICCEE 09, pp. 375–379, 2009.

3. M. Baidas, Z. Bahbahani, E. Alsusa. User association and channel assignment in
downlink multi-cell NOMA networks: A matching-theoretic approach. EURASIP
Journal on Wireless Communications and Networking, 2019:220, 2019.

4. M. Baidas, M. Bahbahani, E. Alsusa, K. Hamdi and Z. Ding. D2D Group Associa-
tion and Channel Assignment in Uplink Multi-Cell NOMA Networks: A Matching
Theoretic Approach. To appear in IEEE Transactions on Communications, 2019.

5. M. Baidas, Z. Bahbahani, N. El-Sharkawi, H. Shehada and E. Alsusa. Joint re-
lay selection and max-min energy-efficient power allocation in downlink multi-
cell NOMA networks: A matching-theoretic approach. Transactions on Emerging
Telecommunications Technologies, 30:5, 2019.

6. M. Chiarandini, R. Fagerberg, and S. Gualandi. Handling preferences in student-
project allocation. Annals of Operations Research, 275(1):39 – 78, 2019.

7. Frances Cooper and David Manlove. A 3/2-Approximation Algorithm for the
Student-Project Allocation Problem. In Proceedings of SEA ’18, volume 103 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 8:1 – 8:13, 2018.

15

8. R.W. Irving. Stable marriage and indifference. Discrete Applied Mathematics,
48:261–272, 1994.

9. R.W. Irving, D.F. Manlove, and S. Scott. The Hospitals/Residents problem with
Ties. In Proceedings of SWAT ’00, vol. 1851 of LNCS, pp. 259–271, 2000.

10. R. Irving, D. Manlove, and S. Scott. Strong stability in the Hospitals/Residents
problem. In Proceedings of STACS ’03, vol. 2607 of LNCS, pp. 439–450, 2003.

11. K. Iwama, D. Manlove, S. Miyazaki, and Y. Morita. Stable marriage with incom-
plete lists and ties. In Proceedings of ICALP ’99, vol. 1644 of LNCS, pp. 443–452,
1999.

12. K. Iwama, S. Miyazaki, and H. Yanagisawa. Improved approximation bounds for
the student-project allocation problem with preferences over projects. Journal of
Discrete Algorithms, 13:59–66, 2012.

13. T. Kavitha, K. Mehlhorn, D. Michail, and K. Paluch. Strongly stable matchings
in time O(nm) and extension to the Hospitals-Residents problem. In Proceedings
of STACS ’04, volume 2996 of LNCS, pages 222–233. Springer, 2004.

14. D. Kazakov. Co-ordination of student-project allocation. Manuscript, University
of York, Department of Computer Science. Available from http://www-users.cs.
york.ac.uk/kazakov/papers/proj.pdf (last accessed 25 November 2019), 2001.

15. A. Kwanashie, R.W. Irving, D.F. Manlove, and C.T.S. Sng. Profile-based optimal
matchings in the Student–Project Allocation problem. In Proceedings of IWOCA
’14, volume 8986 of LNCS, pages 213–225. Springer, 2015.

16. A. Kunysz. An Algorithm for the Maximum Weight Strongly Stable Matching
Problem. In Proceedings of ISAAC ’18, vol. 123 of LIPIcs, pages 42:1–42:13, 2018.

17. C.L. Liu. Introduction to Combinatorial Mathematics. McGraw-Hill, NY, 1968.
18. D. Manlove. Stable marriage with ties and unacceptable partners. Technical Report

TR-1999-29, University of Glasgow, Department of Computing Science, Jan 1999.
19. D. Manlove. Algorithmics of Matching Under Preferences. World Scientific, 2013.
20. D. Manlove, R.W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants

of stable marriage. Theoretical Computer Science, 276(1-2):261–279, 2002.
21. D. Manlove, D. Milne, and S. Olaosebikan. An Integer Programming Approach

to the Student-Project Allocation Problem with Preferences over Projects. In
Proceedings of ISCO ’18, volume 10856 of LNCS, pp. 313 – 325. Springer, 2018.

22. D. Manlove and G. O’Malley. Student project allocation with preferences over
projects. Journal of Discrete Algorithms, 6:553–560, 2008.

23. S. Olaosebikan and D. Manlove. Super-Stability in the Student-Project Allocation
Problem with Ties. In Proceedings of COCOA ’18, volume 11346 of Lecture Notes
in Computer Science, pages 357 – 371. Springer, 2018.

24. S. Olaosebikan and D.F. Manlove. An Algorithm for Strong Stability in the
Student-Project Allocation problem with Ties. CoRR, abs/1911.10262, 2019. Avail-
able from http://arxiv.org/abs/1911.10262.

25. A.E. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

