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Abstract 

    Magnesium stannide, Mg2Sn, can be synthesised from the elements using microwaves over 

minute timescales in the solid state. The effects of Mg content, pressure and microwave 

irradiation time have been investigated and single phase Mg2Sn is produced in 1 min under 

only 200 W of incident irradiation in vacuuo (P < 10-6 mbar). The fine Mg and Sn metal 

powders both couple efficiently with the microwave field under vacuum, heating rapidly and 

generating plasma. The metal plasma formation is shown to be essential for reaction 

completion and promotes the enhanced kinetics of the reaction via one or more possible 

reaction pathways to sintered Mg2Sn. This approach provides a simple, ultra-fast, sustainable 

and energy-efficient route to phase-pure Mg2Sn, a material that is extremely challenging to 

make at high purity by conventional methods. The MIMP formalism should be applicable to 

many other metalloid materials of this and other types. 
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 Introduction 

    The demands for low-carbon (or even carbon-free) and ecologically clean power 

generation from renewable sources and for maximising the energy efficiency of industrial 

processes are ever-increasing. These demands provide the impetus for sustainable synthesis 

and manufacturing technologies of energy-conversion/storage materials, which themselves 

are low-cost and Earth-abundant [1-5]. Magnesium stannide (Mg2Sn) is an intermetallic 

semiconductor belonging to the family of compounds Mg2X (X= Si, Ge, Sn and Pb) [6]. 

Mg2Sn together with Mg2Si, Mg2Ge and their solid solutions derived from various 

combinations of p-block elements (e.g. Mg2SixSn1-x, Mg2SnxGe1-x, and Mg2SixSn1-x-yGey), 

have emerged as a promising class of thermoelectric materials for waste heat recovery at a 

mid-temperature range with light-weight, abundant and non-toxic constituent elements [7-13]. 

These materials show large Seebeck coefficients, high electrical conductivities, low thermal 

conductivities and ZT values exceeding unity [7-13]. A theoretical study has claimed Mg2Sn 

exhibits the highest ZT value at 800 K among Mg2X compounds (X = Si, Ge and Sn) and that 

this value of 1.1 arises from a minimisation of the lattice thermal conductivity [14]. Due to the 

prevalence of narrow band gaps in Mg2X semiconductors, Mg2Sn and Mg2Si have also been 

considered as good candidates for infrared optoelectronic devices [15]. Additionally, 

magnesium ion batteries (MIBs), with the benefit of an Earth-abundant working cation 

(Mg2+), have received considerable attention as potential long term replacements for Li-ion 

technologies. In this context, Mg2Sn has attracted interest over the last 2 years as an emerging 

magnesiated-state anode material for the reversible storage of Mg2+ ions because of its high 

theoretical capacity, the relatively low potential for Mg2+-insertion into Sn and its 

compatibility with a wider selection of electrolytes than Mg metal anodes themselves [16-20].  

    One of the chief reasons that the development of Mg2Sn (or other Mg2X compounds) is 

hindered as a sustainable energy material of choice, is its difficult and time-consuming 

synthesis. Large energy barriers need to be overcome for the diffusion of the metallic 

reactants in the solid state. Mg2Sn is normally synthesised by conventional high temperature 

solid-state methods[7, 20], but can also be prepared via spark plasma sintering (SPS), or 

mechanical alloying methods[21-27]. Thermal reactions are complicated by the easy 

volatilization and oxidation of Mg and the aggregation of Sn during the long-duration, high-

temperature synthesis process, thus annealing or multi-step treatments may be necessary [7, 20, 

21, 22]. By contrast, room temperature synthesis by mechanical alloying offers a less energy-

intensive alternative but still requires a long processing time with the possibility of 



introducing contaminants and forming multi-phase products (and even metastable Mg2Sn 

phases, which while fundamentally of significant interest can make selectivity and 

reproducibility difficult) [16, 23-27]. In fact, the mechanical alloying of the ductile-ductile Mg-

Sn binary system often requires the addition of process control agents (PCAs), usually 

organic additives like octane and stearic acid, to prevent “sticking” and “caking” [16, 28]. In 

these circumstances, self-ignition induced by the PCA is possible. Moreover, the presence of 

a PCA can be detrimental to the properties of Mg2X materials, necessitating the removal of 

the agent from the final products [16, 28]. Conversely, SPS is a very promising processing route 

that can eliminate sources of impurity such as PCAs without requiring the long heating times 

of conventional high-temperature methods [29]. Unfortunately, high-cost specialist equipment 

is essential and energy-expenditure is still relatively high since thermal treatments involving 

melting and/or annealing of the starting materials prior to the SPS process are often needed 

[29]. In fact, it is critical to maintain short SPS processing times to avoid the possible oxidation 

of the synthesised products. To varying extents, although mechanochemical and SPS methods 

offer distinct advantages, all the above-mentioned methods are either time consuming, energy 

consuming and/or lead to products often containing elemental X impurities (such as Sn in 

Mg2Sn synthesis) or oxidised magnesium (MgO) [7, 16, 20, 21-29]. 

With an appropriate choice of conditions, application of microwave (MW) methods to 

materials synthesis can yield high-purity products sustainably and economically, offering 

rapid processing, increased energy efficiency and reduced equipment cost as compared to 

conventional high temperature methods [2-5]. The fast conversion of the absorbed MW energy 

into heat allows an instantaneous volumetric heating in the irradiated material [2-5, 30, 31]. Bulk 

metals generally reflect MWs due to their small skin depth. MWs cannot penetrate deep into 

the metal bulk and only the surface undergoes heating with a typical penetration depth of 

several microns [30, 31]. Reducing metal powders to particle sizes commensurate with the skin 

depth dramatically improves the absorption of MWs and can induce very high heating rates 

[32, 33]. Although the electrical interactions of microwaves with matter are usually defining, it 

has been suggested that the effect of magnetic loss in such fine metal powders can also 

contribute to efficient MW heating [31]. Although no single theory can precisely explain all 

the different possible interactions between MWs and materials [30, 31], the rapid MW heating 

of powders can be utilised reproducibly in solid-state MW syntheses, either by direct 

microwave heating or by “hybrid” microwave heating (“microwave-assisted heating”) with 

the introduction of susceptors; a host of inorganic materials such as carbides, borides, halides, 



nitrides, chalcogenides, metal clusters and intermetallic compounds can be prepared in this 

way[2-5, 34-36]. Equally, the method can be used purely for processing, such as in the sintering 

of metals or ceramics [37, 38]. MW-treated materials can exhibit a variety of morphologies 

from nanostructured particles through powders to solid ingots depending on the materials 

systems investigated and the experimental/instrumental design. 

The very limited examples of solid-state MW reactions involving Sn were usually 

performed under vacuum in sealed ampoules (e.g. synthesis of Sn-Se Zintl phases, Li17Sn4 

alloy and doped stannides, TiNiSn) [39-43]. Mg-containing main group alloys and compounds 

can also be synthesised in the solid state using MWs. These include the diboride 

superconductor MgB2 and Mg2Si-based thermoelectric materials [44-46]. Typically, high 

incident power MWs are required for tens of minutes under an inert gas atmosphere. The 

successful production of nano-powders of Mg2Si sets an encouraging precedent for the MW 

synthesis of Mg2X phases and in this case, pucks of Mg and Si powders that had been ball 

milled for two hours were heated using an incident microwave power of only 175 W for two 

minutes under nitrogen [47]. Interestingly, it was proposed that Mg does not significantly 

absorb microwaves during the Mg2Si synthesis whereas silicon acts as a microwave susceptor 

during the reaction [47]. 

To date, no solid-state MW synthesis of any other Mg2X phase has been reported. Herein, 

we report the first ultra-fast and energy-efficient solid-state MW synthesis of phase-pure 

Mg2Sn. Whereas plasma formation has been reported in the MW synthesis of some metal 

chalcogenides and intermetallic compounds under vacuum, no equivalent reactions of this 

type have been reported for silicides or stannides and the influence of plasma formation in the 

synthesis of solid state materials remains largely unexplored [34-36]. We demonstrate that the 

contribution of plasma generation is likely to be profound in enabling the ultra-fast MW 

reaction of Mg2Sn to proceed. In an effort both to optimise the MW reaction process and to 

appreciate the role of plasma in Mg2Sn formation, we have studied the effects of varying 

experimental parameters on the progress of the stannide synthesis. The resulting observations 

have allowed us to propose potential MW interaction and reaction mechanisms towards 

magnesium intermetallics. 

Experimental 

    



Materials synthesis 

Sample preparation was entirely performed inside an Ar-fed LABstar glovebox (mBRAUN) 

with an operating pressure of 2.3 mbar and H2O and O2 concentrations typically below 0.5 

ppm. Mg (99.8%, 325 mesh, Alfa-Aesar) and Sn (99.5%, 10μm, Sigma-Aldrich) powders 

were weighed and mixed thoroughly in the ratios indicated in Table 1 and transferred into an 

alumina crucible (which can be considered MW-transparent). The crucible was placed at the 

bottom of a quartz tube with adjustable Swagelok sealing accessories and a quick-fit tap. The 

quartz tube was closed in the glovebox and then connected to a vacuum line, with pressure 

measured by a Pirani Gauge. This reaction setup is shown in Figure 1 and was designed to 

allow implementation of four very different gas pressure regimes. At one extreme, a closed 

quartz tube transferred directly from the recirculating glovebox provided an Ar atmosphere at 

ca. 1 bar. A pressure of 1.2  10-1 mbar was generated by opening the tap to the vacuum line 

and using the rotary pump only. A reduced pressure of P ≤ 10-6 mbar was generated in the 

reaction tube by utilising a vacuum line configuration connecting a turbomolecular pump in 

series with the rotary pump. Alternatively, a static vacuum was achieved by closing the 

quick-fit tap once the desired vacuum conditions were achieved prior to the start of the 

experiment. 

A modified single-mode cavity MW reactor (CEM Discovery, 2.45 GHz) with an 

adjustable input power from 0 - 300 W was used for solid-state synthesis. The reaction tube 

was inserted inside the reactor such that the alumina crucible is located at the centre of the 

cavity. MW irradiation of 200 W was applied for different reaction times, spanning from 5-80 

s under different vacuum conditions (Table 1). Following irradiation, the quartz tube was 

naturally cooled to room temperature. Mg2Sn is reported to be air-stable, even after months of 

exposure to atmospheric conditions [48]. Our observations and characterisation results 

suggested the same, but due to the unknown air-sensitivity of other potential products and the 

likelihood of the aerial oxidation/hydration of any unreacted Mg, the closed quartz reaction 

tube was transferred directly to the glovebox after cooling in each case. All the ground 

samples were then stored in the Ar-filled glovebox for further characterisation. 



 

Figure 1. Experimental setup for the solid-state MW synthesis of Mg2Sn. 

Materials characterisation 

Powder X-ray Diffraction (PXD) was performed using a PANalytical X’pert Pro MPD 

diffractometer in Bragg-Brentano geometry with Cu-Kα1 radiation (λ = 1.5406 A
o

), operating 

at an accelerating voltage and an emission current of 40 kV and 40 mA, respectively. PXD 

patterns were collected at room temperature over a 2θ range of 15-85 ° with a step size of 

either 0.0167 ° or 0.0334 ° and 55 s per step.  The potentially air sensitive samples were 

loaded in the glove box into a bespoke aluminium sample holder consisting of a sealed 

chamber equipped with a Mylar window [49]. Previously published Mg2Sn, Sn and Mg 

structures were used as initial model structures for Rietveld refinements [50, 51], which were 

performed by using GSAS through the EXPGUI interface [52]. However, for the phase-pure 

sample (Experiment 8), a PXD pattern was also collected at a 0.0167 ° step size over 15-120 ° 

(2θ) range for a longer time (150 s per step) with the related Rietveld refinement performed 

by using JANA 2006 [53] (Figure 2a).  

Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) 

were performed with a Philips/FEI XL30 ESEM (beam voltage 20 kV, maximum 

magnification 20 k) equipped with an INCA X-Act detector (Oxford Instruments Analytical, 

UK).  Raman spectroscopy was performed over an effective Raman shift range of 50 - 500 

cm-1 by using a LabRAM HR confocal microscope (Horiba Ltd., Kyoto, Japan) system with a 

variable optical hole aperture (100 - 300 μm), 600 mm-1 grating and a Synapse CCD detector. 

The excitation source was a Nd:YAG second harmonic laser (Ventus532, Laser Quantum, λ 

emission = 532 nm, output power 50 mW-1.5W). Thermogravimetric-differential thermal 



analyses (TG-DTA) were performed using a Netzsch STA 409 PC instrument located in an 

Ar-fed MBraun glovebox (<0.1 ppm H2O, <0.1 ppm O2). Approximately 15 mg of Mg2Sn 

sample from Experiment 8 was heated to 700 oC at a heating rate of 5 oC/min in an alumina 

pan under flowing Ar (60 mL/min). 

Results 

In a typical synthesis reaction, a mixture of Mg and Sn (in most cases in a 2.3:1 molar ratio) 

was contained in a quartz tube which was closed under vacuum (P < 10-6 mbar). The reaction 

vessel was irradiated by MWs for varying durations, typically of 60 s or less (Table 1). 

Plasma formed within a few seconds of applying MW radiation (Supporting Information 

Video 1), which was an indication of the immediate interaction between the metal powders 

and the MWs as soon as incident power was supplied. The colour of the plasma turned from 

an initial pale-bright purple to brilliant green as the reaction proceeded. Under these 

conditions (Experiment 8, Table 1), the MW reaction generates crystalline, phase-pure cubic 

Mg2Sn as observed by powder X-ray diffraction (PXD) (PDF # 01-071-9596, Figure 2a) [50]. 

PXD patterns presented no evidence of any oxidation of the synthesised product. Repeatable 

preparation of high-purity Mg2Sn is dependent on certain, well-defined parameters, as 

indicated by the different conditions and resulting products in Table 1, respectively. Higher 

purity materials tend to be formed at higher vacuum (lower pressures). 

Rietveld refinement against PXD data (Figure 2a, Tables 2, 3) confirmed the cubic fluorite 

structure (space group Fm3
_

m), where Mg is at the 8c (1/4, 1/4, 1/4) site and Sn is at the 4a (0, 

0, 0) site (a = 6.7653(1) Å, Figure 2b).The synthesised Mg2Sn appears as an inhomogeneous 

mixture of larger pieces (with a metallic appearance, which is possibly caused by the melting 

of the product) and fine powders of a blueish colour [48]. The condensed pieces (Figures 2c 

and S11) were brittle and could be easily ground into micron-size particles. The SEM images 

of the ground sample (Figure 2d) shows clearly faceted fragments, indicating that the MW-

synthesised product is highly crystalline. Finer particles of spheres and sub-micrometric 

fragments could also be observed in some SEM images, which were probably formed under 

the effect of the observed plasma [35]. EDX spectra taken across both the larger chunks and 

the ground sample (Figures 2e and S11) consistently confirmed Mg/Sn atomic ratios of 2.0  

0.1 in excellent agreement with the theoretical composition of Mg2Sn. Only one major peak, 

at 214.5 cm-1, was observed in the Raman spectrum (Figure S1), which corresponds to the 

reported longitudinal optical mode band in bulk Mg2Sn at 222 cm-1 [54]. An almost negligible 



weight change (< 0.1-0.4 wt % across samples) occurred over the experimental temperature 

range according to the TG-DTA results (Figure S2a). No endothermic peaks relating to the 

melting of Sn or Mg could be detected [21]. The data support the thermal stability of the 

synthesised product, although coupled with the suggestion of Mg-deficiency from the 

Rietveld refinement of 8, it is possible that small amounts of Mg are lost from Mg2Sn at high 

temperature. 

 

Figure 2. Characterisation of a typical Mg2Sn sample synthesised at 200 W for 60 s in which the quartz reaction tube is 

initially closed under a static vacuum P < 10-6 mbar (Experiment 8, Table 1): (a) profile plot from Rietveld refinement; (b) 



refined crystal structure; (c) SEM image of one condensed metallic piece; (d) SEM image of the ground powders; and (e) A 

representative EDX spectrum taken from the surface of the particles shown in (d). 

 

Effect of Mg Content 

MW irradiation of Mg and Sn powders individually under vacuum leads in the former case 

to the expected sublimation of Mg, in the latter case to sublimation of tiny amounts of Sn and 

in both cases to re-deposition of the elements on the walls of the quartz tubes on cooling 

(Figure S4, Figure S5, Supporting Information Video 3, Supporting Information Video 4). In 

light of these observations, an excess Mg content in the starting material is needed to account 

for Mg loss as has been reported in previous conventional syntheses of Mg2Sn under inert gas 

atmospheres [7, 20, 21, 22, 29]. Using excess Mg representing 105 – 120 % of the stoichiometric 

molar amount (Experiments 1-4, Table 1) was investigated in various dynamic vacuum (P< 

10-6 mbar) syntheses in order to assess how much would be required to counteract the loss of 

reactant and to optimise the reaction towards single-phase product. 

Unlike the “optimum” synthesis described above (Experiment 8), the products from 

experiments 1 - 4 were composed only of fine powders when using a dynamic vacuum (P < 

10-6 mbar). The observation of plasmas was noted in each case. The PXD patterns and the 

Rietveld refinements results (Table 1, Figures 3, S12e & f) indicate that a 2.3:1 Mg:Sn molar 

ratio provides a product purity of 98.4(1) wt%, compensating for much of the volatilisation of 

Mg. A further excess of Mg content to 2.4 molar equivalents did not increase the purity of the 

product any further, however (and a 2.3:1 Mg:Sn ratio was maintained in all subsequent 

experiments, Figure S17). The deviation of Mg2Sn phase purity from 100% in the products 

might be attributed to the higher rates of sublimation of Mg over Sn. As Mg interacts with the 

electromagnetic field it transforms into plasma. The ionised Mg could then react with the 

quartz tube in the hotter irradiated region or re-condense/redeposit on the quartz tube walls 

towards the top of the reaction vessel, where the temperature begins to fall below the melting 

point of Mg (650 °C [21]).  



 

Figure 3. PXD patterns showing all products obtained with (i) 105 mol%, (ii) 110 mol%, (iii) 115 mol% and (iv) 120 mol% 

Mg under a dynamic vacuum (P < 10-6 mbar)  (Inset: PXD patterns from 30 – 32.5o (2θ) highlighting the intensity changes  

of the principal Sn (black marker)  impurity peaks). 

Effect of Pressure Conditions 

Pressure has emerged as an essential parameter in the MW reaction in this work, affecting 

the stability of the plasma and the change in the physical states of the metallic species. 

During the reaction performed under Ar atmosphere at approximately 1.002 bar (Experiment 

7, Table 1), no plasma was observed for the entire irradiation period (60 s). The reaction led 

to synthesis of minimal Mg2Sn (12(1) wt% by Rietveld refinement) with most of the initial 

metal powders remaining unreacted as can be seen from the PXD results (Table 1, Figures 4 

and S6a). The analysis of the final product revealed no sign of melting or of the formation of 

agglomerates of metals. It is reasonable to assume that at atmospheric pressure under an inert 

atmosphere, there is no substantial MW heating of the metal powders; the reaction 

temperature is unlikely to reach the melting point of Sn (232 °C [21]). In a further experiment 

conducted under Ar (1.002 bar) in which the starting materials were irradiated at the same 

incident power for half the duration (30 s; experiment 19), no formation of Mg2Sn was 

observed and only the starting materials were detected by PXD (Table 1, Figure S6b). 

    Experiments conducted under reduced pressure (with all other parameters unchanged; 

Experiments 3, 5, 6 and 8, Table 1) all led to the formation of plasma. These reactions present 

much higher yields of Mg2Sn than those performed under an Ar (Experiments 7 and 19; 

Figure 4, Table 1). It is probable that the initiation of the plasma indicates the requisite 

reaction conditions with a possible interaction mechanism involving the MW field-induced 

plasma and solid reactants. This promoted further experiments to investigate the influence of 



the plasma and the behaviour of the individual Mg and Sn powders by MW irradiation under 

vacuum (Figure S4, Figure S5, Supporting Information Videos 3 and 4). Both Mg and Sn 

individually couple efficiently with the electromagnetic field. The interaction of each metal 

independently with the field creates a plasma and deposited/condensed metal was observed 

on the walls of the quartz tube in each case. These observations indicate fast heating, 

vaporization and potentially ionisation of the metal vapours, leading to plasma initiation. 

Since plasmas are hot ionised media of fast-moving positively charged ions and faster-

moving negatively charged electrons, they will be strongly influenced by both the high-

frequency electrical and magnetic components of the MW field, promoting fast mass transfer 

and high heating rates [55, 56]. The formation of plasma during these MW reactions inevitably 

introduces alternative reaction mechanisms to those which occur solely in the solid state and 

provide routes to increase the rate at which Mg2Sn is formed. 

The variations in pressure and the type of the vacuum applied (i.e. dynamic vs static) affect 

the purity and form of the final products (Figure 4, Table 1). According to Rietveld 

refinement results, higher vacuum levels (P < 10-6 mbar) lead to higher phase fractions of 

Mg2Sn  (Table 1). Phase-pure Mg2Sn could be obtained when the synthesis was conducted 

under a static vacuum (P < 10-6 mbar, experiment 8) and a dynamic vacuum condition of P < 

10-6 mbar (Experiment 3) can also lead to high Mg2Sn purity (phase fraction of 98.4(1) wt%). 

The morphology of the product also appears to exhibit a pressure-dependence. Metallic 

pieces (possibly caused by melting of the products) mixed with fine powders were observed 

for the reactions under a static vacuum of P < 10-6 mbar (Experiment 8), a static vacuum of P 

= 1.2  10-1 mbar (Experiment 6) and a dynamic vacuum of P = 1.2  10-1 mbar (Experiment 

5), while only fine powders were obtained for the reaction under a dynamic vacuum of P < 

10-6 mbar (Experiments 3 and 13-18).  



 

Figure 4.  PXD patterns comparing the products obtained by varying pressures and vacuum conditions in experiments 3 (P < 

10-6 mbar; dynamic), 5 (P = 1.2  10-1 mbar; dynamic), 6 (P = 1.2  10-1 mbar; static), 7 (Ar at 1.002 bar) and 8 (P < 10-6 

mbar; static), respectively; (Inset: PXD patterns from 30 – 37o 2θ, highlighting principal Sn (black marker)  and Mg (red 

marker)  impurity peaks).  

Effect of MW Irradiation Time 

Reactions under a Static Vacuum of P < 10-6 mbar 

Experiments employing different MW irradiation times under a static vacuum of P < 10-6 

mbar, ranging from 5 s to 1 min (Experiments 8-12, Table 1), were performed to study the 

evolution of the morphology, the progress of the reaction and the role of plasma in the 

ultrafast MW synthesis of Mg2Sn. Plasmas were initiated within seconds in all the reactions. 

An irradiation time of just 5 s (9) is adequate for the formation of a significant amount of 

Mg2Sn (63.8(7) wt%, with unreacted Mg 23.2(7) wt% and Sn 12.9(7) wt% constituting the 

balance of the sample) (Table 1, Figures 5a, 5b and S7). An Mg2Sn phase fraction of 81.3(8) 

wt% could be achieved by increasing the irradiation time to 10 s (10). Thereafter, increasing 

the MW irradiation time to 30 s (11) and 45 s (12)  increases the purity of Mg2Sn to 99.22(7) 

wt % and 99.46(7) wt %, respectively; all the products were exclusively fine powders (i.e. 

containing no larger pieces as observed in experiment 8). According to the Rietveld 

refinement data (Table 1), the lattice parameters for each of the Mg2Sn samples (8-12) are 

comparable irrespective of synthesis time, indicating that the MW irradiation times 

investigated have no significant effect on the crystal structure of Mg2Sn.  



 

Figure 5. (a) PXD patterns of products from experiments 8-12, obtained under a static vacuum (P <10-6 mbar) with MW 

irradiation times of (i) 5s, (ii)10 s, (iii) 30 s, (iv) 45s and  (v) 60 s (Inset: PXD patterns from 30 – 35o (2θ) highlighting 

principal Sn (black marker) and Mg (red marker) impurity peaks); (b) Plot of phase fractions (wt%) as a function of MW 

irradiation times. 

 

Figure 6.SEM images of the products from experiments 8-12, obtained under a static vacuum of P <10-6 mbar with a MW 

irradiation time of (a, b) 5s; (c, d) 10 s; (e, f) 30 s; and (g, h) 45 s, respectively. 

SEM images of the samples synthesised after 5 s and 10 s reveal the presence of fine 

micron-sized and submicron-sized spheres (which were possibly generated by the interactions 

caused by the plasma) and irregular micron-sized particles (Figures 6b, 6d, S8b, and S9b). 

Some large unreacted Mg particles could also be found according to EDX spectra (Figures 6a, 

6c, S8e-h, and S9e-h), which is consistent with the presence of the Mg impurities in the PXD 

patterns (Figure 5a). SEM images of samples synthesised using MW irradiation times of 30 s 

and 45 s reveal the products were composed of fine powders with particle sizes ranging from 



the submicron regime to ~20 μm across (Figures 6e-h and S10). The EDX spectra taken from 

each of these two samples (11 and 12) confirmed the Mg2Sn stoichiometry (Figure S10). 

Reactions under a Dynamic Vacuum of P < 10-6 mbar 

The effect of altering the MW irradiation time from 5 to 80 s (Experiments 3, 13-18) was 

also investigated for syntheses performed under a dynamic vacuum (P < 10-6 mbar). Similar 

to the experiments performed under a static vacuum (P < 10-6 mbar), plasma was initiated 

within a few seconds. An irradiation of 5 s (13) led to the formation of Mg2Sn (74.6(9) wt%) 

with the presence of more Mg (17.3(9) wt%) than Sn (8.1(9) wt%) (Figures 7a and 7b, Table 

1). The phase purity of Mg2Sn could be improved to 80.4(8) wt% by increasing the 

irradiation time to 10 s (14). Figures 8a-d show the morphology of samples obtained after 5 s 

and 10 s of irradiation. The samples were mainly composed of irregular particles of Mg2Sn 

approximately 1-10 μm across and large unreacted Mg particles. There was also evidence of 

the existence of some spherical particles (from submicron size to micron size), which are 

similar to those in Figures 6b&d. An irradiation time of 30 s (15) led to an Mg2Sn phase 

fraction of 91.4(6) wt% and a decrease of Mg phase fraction to 5.8(6) wt%. None of the large 

unreacted Mg particles observed at shorter irradiation times could be found according to the 

SEM and EDX data. Mg impurities in the sample irradiated for 30 s were confirmed to be 

small particles approximately 10 μm across (Figures 8e and S15). 

 

Figure 7.(a) PXD patterns of products from experiments 13-18 obtained under a dynamic vacuum (P <10-6 mbar) with MW 

irradiation times of (i) 5s, (ii)10 s, (iii) 30 s, (iv) 45s, (v) 60 s, (vi) 70 s and (vii) 80 s (Inset: PXD patterns from 30 – 35o (2θ) 

highlighting principal Sn (black markers) and Mg (red markers) impurity peaks); (b) Plot of phase fractions (wt %) of Mg2Sn, 

Sn and Mg as a function of MW irradiation time. 



Longer reaction times (t > 30 s) led to higher-purity Mg2Sn without the presence of 

residual Mg (Table 1). A highest Mg2Sn purity of 98.4(1) wt% could be observed for the 60 s 

reaction, whereas the purity of Mg2Sn slightly decreased to 97.8(1) wt% and 95.6 (2) wt% 

when the irradiation time was subsequently increased to 70 s (17) and 80 s (18), respectively 

(Figure 7b).  This apparent decrease in purity might be attributed to the loss of further Mg by 

sublimation/deposition such that residual Sn impurity in the solid product was proportionally 

greater (Figure 7b). The probable decomposition of Mg2Sn at temperatures above its melting 

point, may also lead to the transformation of Mg to the gas (or plasma) phase as seen in 

Supporting Information Video 2. SEM images (Figures 8g, 8h and S16a) show that samples 

irradiated for 45 – 80 s are mainly composed of micron-sized particles with minor amounts of 

irregular submicron-sized spheres or fragments. EDX spectra (Figure S16b) taken from both 

these types of particles confirm that the Mg:Sn molar ratios are in close agreement with the 

expected Mg2Sn stoichiometry. 

 

 

Figure 8.SEM images of the products from experiments 13-18, obtained under a dynamic vacuum (P <10-6 mbar) with MW 

irradiation times of (a, b) 5s; (c, d) 10 s;(e, f) 30 s; and (g, h) 45 s. 

Discussions 

MW irradiation of individual Mg and Sn powders under vacuum in this work (Section 3.1 

and 3.2) indicate that both elemental powders should couple well with MWs and generate 

plasma (Figure S4, Figure S5, Supporting Information Videos 3 and 4) under appropriate 

conditions. The plasmas generated by the high-frequency electromagnetic field were 

observed to play an integral role in the ultrafast synthesis of Mg2Sn. In this respect, the 



synthetic conditions are rather different from those reported previously for microwave-

induced plasma (MIP) syntheses [56], which exploit a low-pressure gas (e.g. Ar, H2, NH3, O2, 

Cl2 and H2S) to generate an inert or reactive plasma that can thermally drive solid-state 

reactions [57]. (In fact, the quenching of the plasma due to pressure fluctuations in MIP 

reactions can be challenging and separating by-products from the final product is not trivial.) 

The plasma in our synthesis of Mg2Sn is most likely generated by the solid metal reactants 

themselves (Figures S4 and S5, Supporting Information Videos 3-5), with the extent of the 

plasma controlled by adjusting the nature and magnitude of the external gas pressure; one 

might differentiate from MIP in terms of a “Microwave Induced Metal Plasma (MIMP)” 

synthesis. 

Mg and Sn plasmas 

Sn plasma has been widely generated by high-intensity laser pulses in a vacuum 

environment (with the first pulse evaporating Sn droplets while the second generates Sn 

plasma) to produce extreme-ultraviolet (EUV) light sources [58, 59]. Notably, up to 13 electrons 

in the intense heat of the Sn plasma could be lost per Sn atom with specific colours 

attributable to each of the possible charged states, resulting in a complex light emission [60]. 

The heating behaviour of Sn irradiated by MWs in an ambient atmosphere was studied by 

Buchelnikov et al. After an initial period of rapid heating, the Sn sample reached a 

temperature plateau followed by a further rapid heating phase after initiation of a spark-

discharge [61]. However, to the best of our knowledge, Sn plasma generated by MWs under 

reduced pressure (vacuum) has not been reported before. It should be noted that, due to the 

low MP of Sn (231.93 °C), the heating of Sn in the liquid state by MWs is likely to be 

unavoidable. Even though the heating mechanism of liquid Sn by MWs is not well-

established, both our experiments (Figure S5) and the study of Buchelnikov et al. indicate 

that MWs can heat Sn rapidly above its melting point [61]. Compared with Sn, Mg presents a 

higher MP (650 °C) but, conversely a much higher vapour pressure than Sn at the same 

temperature [59] (Figure S3); hence Mg requires a much less effective vacuum to evaporate 

than Sn. Mg vapours have been reported to generate a green plasma under vacuum conditions 

by MW irradiation from 580 °C and above [62, 63]. It should also be noted that the direct 

evaporation (sublimation) of solid Mg to gaseous Mg (Figure S4) has also been reported in 

conventional high temperature syntheses of Mg2Sn [20, 21, 22]. 



Although different charged states of the metal cations exhibit different colours, in this 

study, Sn consistently produced bright purple plasma when irradiated independently 

(Supporting Information Video 4), while Mg generated purple plasma within the first ca. 15 s 

which became green on further heating (Supporting Information Video 3). The latter green 

plasma is similar to previous observations of Mg in a MW field under vacuum 62, 63]. In this 

case, the fluctuation in colour with time of the Mg plasma may come from the change of the 

corresponding charged states of Mg cations. However, another reason for the observed 

variations may be attributed to the microplasma caused by the ionisation of the surrounding 

medium (residual Ar in this case) by electric discharge from the metal surface in a MW field. 

Typically, a purple emission from Ar plasma in the near UV region (400-480 nm) is produced 

under these circumstances [64, 65]. To evaluate the influence of plasma from residual Ar gas, a 

control experiment was performed in which SiC (acting as a thermally stable MW susceptor) 

was irradiated under a static vacuum (P < 10 -6 mbar) (Supporting Information Video 5). 

Unlike when Mg or Sn reactants were irradiated (Supporting Information Videos 1-4), any 

plasma that formed was purple and dissipated gradually. This strongly indicates that the 

plasmas generated in the Mg-Sn reactions are formed primarily by the metal reactants 

themselves rather than from residual Ar gas, which in turn promote the ultrafast synthesis 

process. 

Hypothetical Mechanism for the MW Synthesis of Mg2Sn 

A simplified representation of the proposed synthesis mechanisms of Mg2Sn by MW 

irradiation is shown in the schematic in Figure 9. The formation of Mg2Sn in a MW field is 

likely to share some features with the nucleation-growth mechanism observed in the 

conventional thermal solid-state synthesis of Mg2Sn [66], but contrasts significantly in other 

respects. As fine metal particles, Mg and Sn powders couple efficiently with MWs and heat 

rapidly as a result. This is to be expected from ohmic heating, given that the MW penetration 

depth is of the same order as the particle diameter [32, 33] and that such behaviour was 

observed for each metal independently as described above. We assume that the melting of Sn 

and the ionisation of residual Ar occurs within seconds and that vapours of Mg and Sn are 

subsequently generated rapidly under vacuum conditions. The vapours will form plasmas 

(due to the relatively low ionisation energies of the outer shell electrons of the metals [62, 63]) 

containing Mg and Sn cations. Once plasmas form, the mode of heating should change 

markedly. The motion of the charged species is influenced by both the high-frequency 

electrical and magnetic field of the MWs. This leads to rapidly increased cation diffusion 



rates and an even faster transport of electrons, giving rise to rapid heating, mass transport and 

enhanced reaction kinetics. Thus, the MW reaction process can involve: (a) the interaction 

between Mg and Sn plasmas; (b) the diffusion of the Mg plasma components into the liquid 

phase of Sn; (c) the interaction of the Sn plasma components with Mg particles/droplets (for 

example, solid Mg with a possible liquid “shell” coating); (d) dissolution of Mg in liquid Sn, 

where this dissolution is likely to be facilitated by the increasing solubility with temperature. 

In this final case, given the rapid rise in reaction temperature, the rate of this dissolution is 

likely to be greater than in conventional thermal reactions, which would promote the 

nucleation of Mg2Sn at the Mg – Sn interface. Due to the heightened dynamics of plasmas 

governed by the high-frequency (2.45 GHz) MW field, it might be anticipated that the 

plasma-directed routes (a) – (c) would dominate the rapid kinetics of the Mg2Sn MW 

synthesis from the solid elements over such short timescales. 

 

Figure 9. Hypothetical reaction routes in the MW synthesis of Mg2Sn. 

    The metastable “high pressure” modification of Mg2Sn previously reported in the literature 

[23 - 27] was not observed in any of the MW-synthesised products. In this study, the refined 

structures of each of the Mg2Sn samples synthesised under different conditions match 

unequivocally with the cubic antifluorite structure [50]. This is perhaps unsurprising 

considering that the hexagonal form reverts to the cubic antifluorite at 600 °C and ambient 

pressure in any case [27]. Which of the above reaction routes, if any, is preferred requires 



further investigation and would benefit from in situ experiments. Indeed, the interaction of 

Mg2Sn itself with the MW field could be explored further given the alloy’s nature as a narrow 

band gap semiconductor. 

Effect of Experimental Parameters on the MW Synthesis of Mg2Sn 

Although both metallic, the variations in the chemical and physical properties of Mg and 

Sn, as well as their different particle sizes, can explain why the two elements might couple 

quite differently with MWs. These differences lead to inevitable variation in heating rates, 

vaporisation rates and plasma generation rates. This, in turn, means that the purity and 

morphology of the final products would be intimately affected by the synthesis parameters. 

An excess of 15 mol% Mg is needed to obtain an Mg2Sn product of high purity. Even with 

this excess of Mg, almost negligible amounts of Mg2Sn was formed under Ar at atmospheric 

pressure, with no evidence of the melting-solidification of Sn observed (Experiment 19 and 

7). Even at elevated temperature, (initially) ambient pressure would not be sufficient for the 

vaporisation of either Mg or Sn and the consequent formation of plasmas was hindered. 

Conversely, the result from Experiment 7 implies the significance of plasma formation for the 

MW reaction of the solid state reactants to occur. As discussed in Sections 3.2 and 4.2, the 

plasma would not only provide an additional heat source (inducing a fast heating rate) but 

also facilitate rapid reaction kinetics because of the enormously enhanced diffusion rates of 

ions in the gaseous state over the solid or liquid states. By comparison, in experiments 

performed under either dynamic or static vacuum conditions (P < 10-6 mbar) - with the 

formation of plasma (Experiment 9 & 13) - consistently high yields of Mg2Sn could be 

obtained in just 5 s of MW irradiation, emphasising the ultrafast kinetics in the MIMP 

reaction. The submicron sized particles generated in the final products attest to the fact that 

plasma will generate fine particles even without intimate physical contact between precursors 

[35]. 

The pressure conditions have important effects on the vaporisation behaviour of Mg and 

Sn. In static vacuum experiments (P < 10-6 mbar), the pressure in the tube would naturally 

increase due to the thermal expansion of residual Ar and the accumulation of Sn and Mg 

vapours during the reaction.  This pressure increase would in turn mediate the vaporisation 

rates of Mg and Sn, influencing plasma formation and the purity of the final products. Under 

dynamic vacuum conditions (P < 10-6 mbar), there is no such increase in pressure and the 

vaporisation of Mg and Sn is not hindered (Figures S4 and S5).  A large proportion of Mg 



will enter the vapour phase with an increased likelihood of forming plasma. This vaporised 

Mg could thus re-condense/redeposit on the cooler walls of the quartz tube outside the 

reaction zone or even react with the quartz tube in the hotter irradiated region. This may be 

one reason why synthesis under a static vacuum (e.g. P < 10-6 mbar, 60 s, Experiment 8) 

produced products of higher purity than from dynamic vacuum experiments (e.g. P < 10-6 

mbar, 60 s, Experiment 3). However, since plasma formation was observed to be both more 

rapid and more sustained under dynamic vacuum conditions (Supporting Information Videos 

2 and 3), in principle the products are more likely to be composed of fine powders rather than 

large metallic particles. 

At the other extreme, some conditions are far more likely to yield impure products. For 

example, under a dynamic vacuum of P = 1.2  10-1 mbar, the vaporisation of Mg is likely to 

be much faster than that of Sn due to the higher volatility of the former (Figures S4 and S5), 

leading to a high content of Sn impurity in the solid product. Hence, modifying the vacuum 

conditions significantly influences the vaporisation equilibrium of Mg and Sn, which is a 

major determinant in plasma formation and the purity of the stannide product. 

For syntheses performed under a static vacuum (P < 10-6 mbar), an irradiation time of 30 - 

60 s is necessary to complete the reaction. However, a relatively long irradiation time of 60 s 

led to the presence of larger particles in the final products (Figure 2c). This can be attributed 

to the melting and sintering of the material under longer MW irradiation times. By 

comparison, for equivalent reactions under a dynamic vacuum (P < 10-6  mbar), an irradiation 

time of 45 - 60 s led to high-purity Mg2Sn, but increasing the MW irradiation time further 

tended to affect the purity of the final products adversely. High temperature over long 

irradiation times might not only result in loss of gaseous reactants but might also lead to the 

melting of Mg2Sn itself with its subsequent vaporisation and de-alloying of Mg from the 

compound [20]. 

To the best of our knowledge, definitive characterisation techniques to investigate the 

interaction of plasmas during solid-state MW synthesis have not been previously reported in 

the literature. The study of the physical conditions inside the reactor during synthesis are also 

critical, and advanced methods are required if one is to measure the temperature and potential 

distribution of matter without perturbing the MW field. Challenges exist not only in finding 

suitable time-resolved non-destructive methods to study the interactions between plasmas and 

the electromagnetic field but also in implementing those needed to study the formation 



mechanism of the solid product. Among the possible options, in-situ spectroscopy (optical, 

acoustic emission), synchrotron XRD or in-situ Neutron diffraction could be potentially 

integrated with a MW reactor setup for further investigations [2-5, 58, 60]. The reflected power of 

MW from the solid reactants/products and especially the formed plasma phase(s) back to the 

MW source needs to be measured in future studies, as the plasma phase(s) might exhibit 

influence on the amount of reflected MW and the effective power for the proceeding of 

reaction. Moreover, the basic physics of the interaction between MWs and the reactant, 

intermediate and product materials needs to be better understood and related high-accuracy 

simulations are likely to be essential. Further, the experimental configuration used in the 

present study provided no means to measure the absorbed or reflected power and a bespoke 

single mode cavity reactor for in situ measurements would incorporate such a capability to 

enable measurement of power with time and temperature. We intend to address some of these 

fundamentally important issues in our further studies, establishing the boundaries for MIMP 

synthesis. We will also measure the properties of Mg2Sn and similar materials synthesised by 

these routes and determine how synthesis variables impact on performance. 

Conclusions 

A simple, ultrafast and energy-efficient MW synthesis route to Mg2Sn was established, 

developed and optimized. Phase-pure stannide (which is often elusive both by conventional 

heating and by other methods) can be produced as a result. Fine powders of both Mg and Sn 

couple well with MWs under vacuum and high yields of Mg2Sn could be obtained in 5 

seconds of irradiation under a vacuum of P < 10-6 mbar. The formation of plasmas is 

fundamental in the MW synthesis providing heat, dictating reaction kinetics and determining 

the microstructure of the alloy. Unlike other microwave-induced plasma syntheses, the metals 

themselves provide a source of reactive plasma. This Microwave Induced Metal Plasma 

(MIMP) method should be readily adaptable to other members of the Mg2X (X = Si, Ge) 

intermetallic antifluorite family and indeed to other alloys more broadly. 
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Tables 1 

Table 1. Experimental parameters and summary of morphology and structural parameters according to Rietveld refinement of the MW-synthesised products of Mg2Sn 2 

Experiment 

Mg/Sn 

Molar 

Ratio a 

Irradiati

on 

Time/s 

Atmosphere 

Morphology 

Refined phase fractions 

/ wt% 

Mg2Sn, Sn, Mg 

Mg2Sn cell 

parameter, 

a / Å 

Mg2Sn 

density / g 

cm-3 b 

Goodness of fit, χ2 

1 2.1:1 60 Dynamic vacuum P < 10-6 mbar Fine powders 88.4(3), 11.6(3), 0 6.7651(1) 3.589 1.809 
2 2.2:1 60 Dynamic vacuum P < 10-6 mbar Fine powders 97.0(1), 3.0(1), 0 6.7648(3) 3.590 1.701 

3 2.3:1 60 Dynamic vacuum P < 10-6 mbar Fine powders 98.4(1), 1.6(1), 0 6.7657(3) 3.588 2.155 

4 2.4:1 60 Dynamic vacuum P < 10-6 mbar Fine powders 97.7(1), 2.3(1), 0 6.7650(2) 3.589 2.572 

5 2.3:1 60 
Dynamic vacuum P = 1.2  10-1 

mbar 

Metallic pieces 
& fine powders 

78.6(4), 21.4(4), 0 6.7655(1) 3.589 1.919 

6 2.3:1 60 
Static vacuum  P = 1.2  10-1 

mbar 

Metallic pieces  

& fine powders 
97.3(3), 2.7(3), 0 6.7653(4) 3.589 2.590 

7 2.3:1 60 Under Ar,  P = 1 bar Fine powders 12(1), 37(1), 51(1) 6.7636(2)  3.591 1.538 

8 2.3:1 60 Static vacuum P < 10-6 mbar 
Metallic pieces  
& fine powders 

100, 0, 0 6.7653(1) 3.589 2.434 

9 2.3:1 5 Static vacuum P < 10-6 mbar Fine powders 63.8(7), 12.9(7), 23.2(7) 6.7643(3) 3.590 1.880 

10 2.3:1 10 Static vacuum P < 10-6 mbar Fine powders 81.3(8), 5.6(8), 13.1(8) 6.7640(1) 3.591 2.153 
11 2.3:1 30 Static vacuum P < 10-6 mbar Fine powders 99.22(7), 0.78(7), 0 6.7634(3) 3.592 1.973 

12 2.3:1 45 Static vacuum P < 10-6 mbar Fine powders 99.46(7), 0.54(7), 0 6.7635(3) 3.592 1.967 

13 2.3:1 5 Dynamic vacuum P < 10-6 mbar Fine powders 74.6(9), 8.1(9), 17.3(9) 6.7646(3) 3.590 1.679 
14 2.3:1 10 Dynamic vacuum P < 10-6 mbar Fine powders 80.4(8), 8.7(8), 10.9(8) 6.7636(3) 3.591 1.888 

15 2.3:1 30 Dynamic vacuum P < 10-6 mbar Fine powders 91.4(6), 2.8(6), 5.8(6) 6.7634(2) 3.592 1.767 

16 2.3:1 45 Dynamic vacuum P < 10-6 mbar Fine powders 98.0 (2), 2.0(2), 0 6.7660(2) 3.587 1.925 
17 2.3:1 70 Dynamic vacuum P < 10-6 mbar Fine powders 97.8(1), 2.2(1), 0 6.7638(2) 3.591 1.872 

18 2.3:1 80 Dynamic vacuum P < 10-6 mbar Fine powders 95.6(2), 4.4(2), 0 6.7646(2) 3.590 2.125 

19 2.3:1 30 Under Ar, P = 1 bar Fine powders 0, 46(1), 54(1) - - 1.657 

a 148 mg of Sn powder was employed in all experiments. Masses of Mg powder of 64, 67, 70 and 73 mg corresponded to a Mg/Sn molar ratio of 2.1:1, 2.2:1, 2.3:1 and 2.4:1, respectively. 3 

b as determined crystallographically. 4 

5 



Table 2. Crystallographic data obtained from the Rietveld refinement for Mg2Sn powders from Experiment 8 6 

Chemical Formula Mg2Sn 

Crystal System Cubic 

Space Group Fm3
—

m (225) 

Lattice Parameter, a /A

o

 6.7653(1) 

Formula Weight /g mol-1 669.200 

Formula Units, Z 4 

Calculated Density / g cm-3 3.589 

No. of Observations 6283 

Rwp 0.1227 

Rp 0.0841 

χ2 2.434 

 7 

Table 3. Atomic parameters for Mg2Sn powders from Experiment 8 8 

Atom Wyckoff Symbol x y z 100*Uiso / Å2 Occupancy 

Mg 8c 0.25 0.25 0.25 0.98(6) 0.998(6) 

Sn 4a 0 0 0 0.36(2) 1 
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 13 

Microwave-induced metal plasma (MIMP) synthesis produces phase-pure Mg2Sn in 1 minute 14 

at a fraction of the energy cost of conventional synthesis approaches. 15 
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