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Total Syntheses of 11-Acetoxy-4-deoxyasbestinin D,
4-Deoxyasbestinin C, Asbestinin-10, -20, -21 and -23

Angus Campbell, Ian Mat Som, Claire Wilson, and J. Stephen Clark*[a]

Abstract: Six members of the asbestinin family of marine di-
terpene natural products have been synthesized in an effi-
cient and stereoselective manner from a single oxa-bridged
intermediate. Five of these natural products have not been
synthesized previously and the structures of four of them

have been confirmed as those proposed originally or follow-
ing revisions to the original structures. The fifth natural
product—asbestinin-21—has been shown to be a diastereo-
mer of the compound that had been proposed previously.

Introduction

The asbestinins are structurally complex tetracyclic marine di-

terpenes that have been isolated from the gorgonian octoco-

rals Briareum asbestinum and Briareum polyanthes. The isolation
and characterization of the first members of the family—asbes-

tinins-1–5—were reported by Faulkner, Clardy and co-workers
in 1980.[1] The 39 asbestinins that have been isolated and char-

acterized to date partition into two distinct structural groups:
members that lack a C-4 substituent, such as 11-acetoxy-deox-
yasbestinin D (1) and 4-deoxyasbestinin C (2), and those that

are oxidised at C-4, such as asbestinin-12 (3) and asbestinin-2
(4) (Figure 1).[2–8] A biosynthetic route to the asbestinins from

related briarellin natural products has been proposed in which
Wagner–Meerwein rearrangement transfers a methyl group

from C-11 to C-12.[1, 9] The briarellin natural products are, in

turn, thought to be derived from the simpler cladiellins (euni-
cellins).

Many of the asbestinins have been reported to possess sig-

nificant biological activities: 4-deoxyasbestinin A, 11-acetoxy-4-
deoxyasbestinin B, 4-deoxyasbestinin C, 11-acetoxy-4-deoxyas-

bestinin D and asbestinins-6–10 possess significant in vitro ac-
tivity against several cancer cells lines; nor-asbestinin A, 11-ace-

toxy-4-deoxyasbestinin F, and asbestinins-10, -20, -21 and -26,
display activity against the malarial parasite Plasmodium falci-
parum ; 4-deoxyasbestinin A, 11-acetoxy-4-deoxyasbestinin B, 4-

deoxyasbestinin C, 11-acetoxy-4-deoxy-asbestinin D are active
against the bacterium Klebsiella pneumoniae. However, the bio-

logical activities of most of the asbestinins have not been fully
determined.[10, 11]

Several of the structures that were proposed for the asbesti-
nins upon isolation have been revised as a consequence of the

acquisition of better quality NMR data and the advent of new
NMR techniques.[8] Several asbestinins that were thought to be
oxidized at the C-4 position are likely to be 4-deoxyasbestinins
that contain a hydroxyl, hydroperoxy or carbonyl group at C-6
instead (Figure 2). This work has resulted in tentative revision

of the structures of asbestinin-20 (5!6), 11-acetoxy-4-deoxyas-
bestinin F (9!10), asbestinin-10 (13!14) and asbestinin-21

(15!16). It is likely that the structures of 4-deoxyasbestinin G
(7!8), asbestinin-9 (11!12), asbestinin-22 (17!18) and as-
bestinin-23 (19!20) also require revision.[8]

The asbestinins possess a complex fused tetracyclic core
that contains two medium-sized cyclic ethers (ring sizes seven

and nine) and bears a total of 9–12 stereogenic centres. The
significant synthetic challenges presented by the asbestinins
combined with their biological activities and the fact that

there are ambiguities about their structures in many cases,
makes them highly alluring targets for total synthesis. To date,

11-acetoxy-4-deoxyasbestinin D and asbestinin-12 are the only
members of the asbestinin family of natural products that
have been synthesized, as reported by Crimmins and Ellis in
2005 and 2008.[12]

Figure 1. Examples of asbestinin natural products with and without an
oxygen-containing substituent at the C-4 position.
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Results and Discussion

At the outset, we intended to synthesize 11-acetoxy-4-deoxyas-
bestinin D (1) and 4-deoxyasbestinin C (2), and prepare several

other asbestinins from these natural products thereafter.[3] The
retrosynthetic analysis of the natural products 1 and 2 began
with the cleavage of the ester and formation of a ketone at C-

11 and removal of the C-12 methyl substituent to give ad-
vanced tetracyclic intermediate i (Scheme 1). Sequential open-
ing of the oxepane by scission of the C@O bond distal to the

quaternary centre at C-3, conversion of the methyl substituent
into a methylene group and the C-11 ketone into an enol
ether, followed by removal of the C-3 methyl substituent led
to the tricyclic ketone ii. Subsequent conversion of the side-

chain allylic ether into a methyl ketone produced intermedia-
te iii, an analogue of a synthetic intermediate used in our total

syntheses of members the cladiellin natural products.[13] Fur-
ther Diels–Alder disconnection led to the diene iv, and discon-
nection of the diene revealed the bridged bicyclic ether v.

The ketone corresponding to tricyclic intermediate iii in
Scheme 1 was prepared as shown in Scheme 2. Several ap-

proaches to the synthesis of the bridged bicyclic ketone 23 (a

compound corresponding to ketone v in Scheme 1) from tetra-
hydropyranyl ester 21 were explored. In the first approach, we

employed the method that we had used in our cladiellin syn-
theses.[13] Conversion of ester 21 into a-diazo ketone 22 pro-

ceeded smoothly and subsequent sequential copper-catalysed
carbenoid generation, ylide formation and rearrangement de-

livered the oxa-bridged bicyclic ketone 23 in high yield. In the
second approach, the metal-mediated reaction of triazole 25
according to conditions described by Boyer was explored.[14]

Ester 21 was subjected to reduction to give the corresponding
aldehyde followed by Bestmann–Ohira homologation to deliv-

er alkyne 24.[15] Deprotonation of alkyne 24 and reaction of the
resulting anion with tosyl azide afforded triazole 25.[14] The rho-

dium-mediated reaction of triazole 25 produced the expected

ketone 23 with a high level of diastereocontrol but in lower
yield than that obtained from the copper-catalysed reaction of

a-diazo ketone 22. Finally, direct oxidative gold-catalysed cycli-
zation of alkyne 24 was performed in an attempt to generate

the bicyclic oxonium ylide directly from this substrate and thus
obviate the use of either a-diazo ketone 22 or triazole 25.[16]

Figure 2. Asbestinin natural products that have had their structures correct-
ed or are likely to require structural revision.

Scheme 1. Retrosynthetic analysis of 11-acetoxy-4-deoxyasbestinin D (1) and
4-deoxyasbestinin C (2).

Scheme 2. Oxonium ylide formation and ring expansion to form the oxa-
bridged tricyclic core system. a) LiOH, EtOH-H2O (3:1), RT, 86 %; b) iBuOCOCl,
Et3N, RT, then CH2N2, Et2O, RT, 82 %; c) Cu(hfacac)2, CH2Cl2, reflux, 90 % (5:1,
Z :E) ; d) iBu2AlH, CH2Cl2, @78 8C; e) MeCOC(N2)P(O)(OMe)2, K2CO3, MeOH, RT,
86 % (2 steps); f) nBuLi. TsN3, THF, @78 8C, 87 %; g) Rh2(OAc)4, DCE, reflux,
48 % (>20:1, Z :E) ; h) SPhosAuNTf2, ClCH2CO2H, 5-bromo-2-methyl-pyridine-
N-oxide, DCE, RT, 36 % (26).
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Unfortunately, ester 26 was obtained instead of the required
rearrangement product 23.

Bicyclic ether 23 was converted into tricyclic ketone 27, as
reported previously.[13] Further functionality was introduced to

enable the construction of the oxepane, the final ring in the
tetracyclic ensemble (Scheme 3). One-carbon chain extension

was performed by conversion of the methyl ketone into tri-

flate 28 followed by palladium-mediated carbonylation in
methanol to deliver ester 29 in excellent yield. Selective reduc-

tion of the carbonyl group of the a,b-unsaturated ester was ac-

companied by the loss of the TBS (tert-butyldimethylsilyl ether)
protecting group, and diol 30 was produced in high yield. Se-

lective acetylation of the primary allylic alcohol and subse-
quent oxidation of the free secondary hydroxyl group deliv-

ered ketone 31. Treatment of this ketone with a large excess
of methylmagnesium chloride resulted in a highly stereoselec-

tive installation of the C-3 methyl substituent and concurrent

cleavage of the acetate group.[17] The enol ether was converted
into the corresponding C-11 ketone by hydrolysis during the
acidic workup and keto diol 32 was produced in excellent
yield.

Conversion of tricyclic diol 32 into the fully functionalised
tetracyclic asbestinin framework was accomplished by follow-

ing the route shown in Scheme 4. Oxepane formation was per-

formed by treatment of diol 32 with triflic anhydride in the
presence of 2,6-lutidine. The primary allylic triflate was not iso-

lated from this reaction and instead the required cyclic allylic
ether 33 was obtained in excellent yield as a result of immedi-

ate intramolecular nucleophilic displacement of the triflate by
the tertiary alcohol. Hydrogenation of allylic ether 33 in the

presence of Adams’ catalyst was both chemoselective and ste-

reoselective; the tetracyclic ketone 34 was obtained as a single
diastereomer in high yield.[18] To convert ketone 34 into the

natural products 1 and 2 it was necessary to install the C-12
methyl substituent, reduce the ketone and esterify the result-

ing alcohol. Direct methylation at C-12 by ketone deprotona-
tion and alkylation was low-yielding and non-stereoselective,

so other methods for the introduction of the methyl substitu-

ent were explored. Reaction of ketone 34 with Bredereck’s re-
agent[19] at 100 8C in DMF produced enamine 35, which was

subjected to immediate reduction with DIBAL-H to afford

enone 36. Reduction of this enone under Luche conditions
produced the crystalline allylic alcohol 37 as a single diastereo-

mer, but the configuration at the hydroxyl-bearing stereogenic
centre (C-11) was not the one required for the synthesis of the

asbestinins, as revealed by X-ray analysis.[20, 21] Treatment of
enone 36 with either L-Selectride or Stryker’s reagent[22] result-
ed in the formation of a diastereomeric mixture of the required

ketone 38 a and its C-12 epimer 38 b, in which the latter predo-
minated marginally. The epimeric ketones were separated and
equilibration of each ketone under mildly basic conditions de-
livered a mixture of diastereomers in a similar ratio to that ob-

tained by conjugate reduction of enone 36.
Completion of the total syntheses of 11-acetoxy-4-deoxyas-

bestinin D (1) and 4-deoxyasbestinin C (2) was finally possible

(Scheme 5). Reduction of ketone 38 a to give the alcohol by
treatment with sodium borohydride was highly diastereoselec-

tive.[23] Immediate acetylation of the resulting alcohol 39 pro-
vided 11-acetoxy-4-deoxyasbestinin D (1) in excellent yield and

reaction of alcohol 39 with butyric anhydride produced 4-de-
oxyasbestinin C (2) in good yield. The NMR and other charac-

terization data of the synthetic esters 1 and 2 matched the

data reported for each natural product.
Several other asbestinin natural products were synthesized

from 11-acetoxy-4-deoxyasbestinin D (1) in just two or three
steps. Of particular interest was the synthesis of asbestinin-20

(6) to verify its reassigned structure (Scheme 6). 11-Acetoxy-4-
deoxyasbestinin D (1) was first epoxidized by treatment with

Scheme 3. Functionalised of the tricyclic core in preparation for construction
of the oxepane. a) NaN(SiMe3)2, PhNTf2, THF, @78 8C; b) Pd(PPh3)4, CO, MeOH,
iPr2NEt, RT, 96 % (2 steps); c) iBu2AlH, PhMe, @35 8C, 80 %; d) Ac2O, DMAP (4-
dimethylaminopyridine), Et3N, CH2Cl2, RT; e) Dess–Martin periodinane, pyri-
dine, CH2Cl2, RT, 98 % (2 steps) ; f) MeMgCl, THF, 0 8C!RT then 1 m HCl aq. ,
RT, 87 %.

Scheme 4. Completion of the tetracyclic asbestinin core. a) Tf2O, 2,6-lutidine,
CHCl3, 0 8C, 97 %; b) H2, PtO2, EtOAc, RT, 90 %; c) tBuOCH(NMe2)2, DMF,
100 8C; d) iBu2AlH, CH2Cl2, @78 8C then MeI, RT, 52 % (2 steps) ; e) NaBH4,
CeCl3·7 H2O, MeOH, @78 8C, 49 % (3 steps) ; f) L-Selectride, THF, @78 8C, 76 %
(30 % 38 a + 46 % 38 b) ; g) [CuH(PPh3)]6, PhMe, @78 8C, 62 % (25 %
38 a + 37 % 38 b) (3 steps) ; h) K2CO3, MeOH, RT, 85–99 % (1:1.4, 38 a :38 b).
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mCPBA to give a mixture (2:1) of diastereomeric epoxides 40 a
and 40 b. The crystalline epoxides were readily separable by
chromatography and their structures were determined by X-
ray crystallography.[20] To amplify or override the weak sub-
strate bias and thereby generate epoxides 40 a and 40 b with

higher levels of diastereocontrol, the epoxidation reaction was
performed by the application of Shi’s asymmetric protocol

using both enantiomers of the fructose-derived catalyst.[24] In
the case of the (++)-catalyst, the relatively weak substrate bias
was reinforced and the ratio of diastereomers improved to

10.5:1 (40 a :40 b). In the mismatched case, in which the (@)-
catalyst was employed, the substrate bias was overturned and

a 1:5.5 ratio of diastereomers (40 a :40 b) was obtained. Epoxi-
des 40 a and 40 b were then converted into the corresponding

allylic alcohols by sequential reaction with tert-butyldimethylsil-

yl triflate in the presence of 2,6-lutidine and treatment with
TBAF.[25] The crystalline allylic alcohols 6 and 9 were obtained

with yields of 39 and 64 %, respectively ; their structures were
confirmed by X-ray crystallography.[20] In the case of epoxi-

de 40 a, treatment with titania-supported gold nanoparticles in
dichloroethane (DCE) at 80 8C, according to the procedure de-

scribed by Garcia and Stratakis,[26] delivered allylic alcohol 6 in
35 % yield. Comparison of NMR and other characterization data

of alcohols 6 and 9 with that of natural asbestinin-20 con-
firmed that the natural product is compound 6. Thus, the reas-

signed structure and relative stereochemistry of asbestinin-20
published by Ospina and Rodr&guez is correct.[8] Dess–Martin

oxidation of asbestinin-20 (6) produced asbestinin-10 (14) and
the structure of this natural product was confirmed. Enone re-
duction under Luche conditions afforded the allylic alcohols in

a 3.2:1 ratio favouring asbestinin-20 (6), a result consistent
with that reported by Ospina and Rodr&guez when they re-

duced natural asbestinin-10 (14) under similar conditions.[8]

The next target to be synthesized was asbestinin-21, which

had been originally identified as the ketone 15 (Figure 2), but
was later reassigned to be the a-hydroxy ketone 16
(Scheme 7).[6, 8] Dihydroxylation of 11-acetoxy-4-deoxyasbesti-

nin D (1) under standard Upjohn dihydroxylation conditions af-

forded a diastereomeric mixture of 1,2-diols 41 a and 41 b in
56 % yield, in which the crystalline diol 41 a predominated (5:1

ratio).[20] The diol 41 a was separated from the minor iso-
mer 41 b and oxidized to give a-hydroxy ketone 16 by the use

of the Dess–Martin protocol. Alternatively, the diastereomeric
mixture of diols 41 a and 41 b was oxidized directly to produce
a separable mixture of a-hydroxy ketones 16 (67 % yield) and
42 (14 % yield).

Attempts were made to produce diol 41 b as the major dia-

stereomer by performing dihydroxylation according to the
Sharpless asymmetric protocol.[27] The use of AD-mix-a to per-

form the dihydroxylation reaction of 11-acetoxy-4-deoxyasbes-

tinin D (1) resulted in the formation of diol 41 a with an en-
hanced level of diastereocontrol (>12:1). However, diol 41 a
was obtained in only 23 % yield, and the major product was
the a-hydroxy ketone 16 (46 % yield), an unexpected product

resulting from over-oxidation. In the case where substrate con-
trol and reagent control were expected to be mismatched, di-

Scheme 5. Completion of the syntheses of 11-acetoxy-4-deoxyasbestinin D
(1) and 4-deoxyasbestinin C (2). a) NaBH4, CH2Cl2-MeOH (1:1), RT; b) Ac2O,
DMAP, Et3N, CH2Cl2, RT, 88 % (2 steps); c) (n-PrCO)2O, DMAP, Et3N, CH2Cl2, RT,
50 % (2 steps).

Scheme 6. Synthesis of asbestinin-20 (6), 6-epi-asbestinin-20 (9) and asbesti-
nin-10 (14). a) mCPBA, CH2Cl2, @10 8C, 82 % (59 % 40 a + 23 % 40 b) ; b) (++)-
Shi epoxidation catalyst, oxone, K2CO3, nBu4NHSO4, Na2B4O7 V 10H2O, MeCN-
DMM (1:2) 0 8C, 81 % (75 % 40 a + 6 % 40 b) ; c) (@)-Shi epoxidation catalyst,
oxone, K2CO3, nBu4NHSO4, Na2B4O7 V 10H2O, MeCN-DMM (1:2) 0 8C, 84 %
(13 % 40 a+ 71 % 40 b) ; d) tBuMe2SiOTf, 2,6-lutidine, CH2Cl2, 0 8C then TBAF,
THF, RT, 39 % (6), 64 % (9) ; e) Au-TiO2, DCE, 80 8C, 35 %; f) Dess–Martin period-
inane, pyridine, CH2Cl2, RT, 75 %; g) NaBH4, CeCl3·7 H2O, CH2Cl2-MeOH (1:1),
@78 8C, 84 % (64 % 6 + 20 % 9).

Scheme 7. Stereoselective dihydroxylation of 11-acetoxy-4-deoxyasbestinin D
(1) and synthesis of asbestinin-21 (42) and 7-epi-asbestinin-21 (16). a) OsO4,
NMO (N-methylmorpholine N-oxide), THF-H2O (1:1), RT, 56 % (5:1, 41 a :41 b) ;
b) Dess–Martin periodinane, pyridine, CH2Cl2, RT, 87 % (41 a!16), 81 %
(41 a + 41 b!16 + 42) ; c) AD-mix-a, tBuOH-H2O (1:1), 0 8C, 23 % (>12:1,
41 a :41 b) + 46 % (16) ; d) AD-mix-b, tBuOH-H2O (1:1), 0 8C, 75 % (8:1,
41 a :41 b) + 10 % (16).
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hydroxylation of alkene 1 with AD-mix-b produced a mixture
of diols 41 a and 41 b (75 % yield combined) along with a small

amount (10 % yield) of a-hydroxy ketone 16. Interestingly, the
dihydroxylation reaction proceeded with a higher level of dia-

stereocontrol (8:1) than for the case when the reaction was
performed under simple Upjohn conditions. This unexpected

result presumably reflects the larger steric bulk of the osmium
complex in the case of AD-mix and the fact the reaction pro-

ceeds under substrate control rather than reagent control.

Comparison of the 1H and 13C NMR data of the a-hydroxy ke-
tones 16 and 42 with those of natural asbestinin-21 revealed
that the natural product is 42 rather than 16, a finding which
established that the configuration of the hydroxyl-bearing the
C-7 stereogenic centre had been misassigned by Ospina and
Rodr&guez when performing their structural revision.[8]

The last natural product to be synthesized in our study was

asbestinin-23.[6, 8] Reaction of 11-acetoxy-4-deoxyasbestinin D
(1) with borane-THF complex followed by oxidative work-up

produced an inseparable diastereomeric mixture of alcohols
(Scheme 8). This mixture of alcohols was subjected to immedi-

ate oxidation with Dess–Martin periodinane to give ketones 20
and 43, which could be separated and were isolated in yields
of 20 and 49 %, respectively. Reduction of ketone 43 with L-Se-
lectride afforded alcohol 44, a crystalline solid, in a highly ste-
reoselective manner (>20:1 selectivity). The configurations of
the stereogenic centres at C-6 and C-7 of alcohol 44 were de-

termined by X-ray crystallography,[20] and the configuration of
the C-7 stereocentres of ketones 43 and 20 were established

consequently. Comparison of NMR data of ketones 20 and 43
with the data of the natural asbestinin-23 revealed that the

natural product is ketone 20, which was suggested by Ospina
and Rodr&guez as the most likely alternative to the originally

assigned structure (19, Figure 2).[8]

Conclusions

We have completed the stereoselective total syntheses of six

members of the asbestinin family of marine diterpene natural
products from the bridged-bicyclic ether 23, which had been

prepared previously from readily available starting materials.
Syntheses of 11-acetoxy-deoxyasbestinin D (1) and 4-deoxyas-

bestinin C (2) have been completed in 16 steps from the bicy-
clic ketone 23 and the former has been converted into abesti-
nin-10, abestinin-20, abestinin-21 and abestinin-23 in two or
three additional steps. The syntheses of abestinin-10, abesti-
nin-20, and abestinin-23 confirm the revised structures for
these compounds proposed by Ospina and Rodr&guez in 2006.

In the case of abestinin-21, our work has shown that this com-
pound is the C-7 epimer of the revised structure proposed by
Ospina and Rodr&guez.
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