Preclinical evaluation of AZ12601011 and AZ12799734, inhibitors of transforming growth factor β superfamily type 1 receptors

Spender, L. C. et al. (2019) Preclinical evaluation of AZ12601011 and AZ12799734, inhibitors of transforming growth factor β superfamily type 1 receptors. Molecular Pharmacology, 95(2), pp. 222-234. (doi: 10.1124/mol.118.112946) (PMID:30459156)

Full text not currently available from Enlighten.


The transforming growth factor β (TGFβ) superfamily includes TGFβ, activins, inhibins, and bone morphogenetic proteins (BMPs). These extracellular ligands have essential roles in normal tissue homeostasis by coordinately regulating cell proliferation, differentiation, and migration. Aberrant signaling of superfamily members, however, is associated with fibrosis as well as tumorigenesis, cancer progression, metastasis, and drug-resistance mechanisms in a variety of cancer subtypes. Given their involvement in human disease, the identification of novel selective inhibitors of TGFβ superfamily receptors is an attractive therapeutic approach. Seven mammalian type 1 receptors have been identified that have context-specific roles depending on the ligand and the complex formation with the type 2 receptor. Here, we characterize the biologic effects of two transforming growth factor β receptor 1 (TGFBR1) kinase inhibitors designed to target TGFβ signaling. AZ12601011 [2-(2-pyridinyl)-4-(1H-pyrrolo[3,2-c]pyridin-1-yl)-6,7-dihydro-5H-cyclopenta[d]pyrimidine]; structure previously undisclosed] and AZ12799734 [4-({4-[(2,6-dimethyl-3-pyridinyl)oxy]-2-pyridinyl}amino)benzenesulfonamide] (IC50 = 18 and 47 nM, respectively) were more effective inhibitors of TGFβ-induced reporter activity than SB-431542 [4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide] (IC50 = 84 nM) and LY2157299 [4-[2-(6-methylpyridin-2-yl)-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazol-3-yl]quinoline-6-carboxamide monohydrate]] (galunisertib) (IC50 = 380 nM). AZ12601011 inhibited phosphorylation of SMAD2 via the type 1 receptors activin A receptor type 1B (ALK4), TGFBR1, and activin A receptor type 1C (ALK7). AZ12799734, however, is a pan TGF/BMP inhibitor, inhibiting receptor-mediated phosphorylation of SMAD1 by activin A receptor type 1L, bone morphogenetic protein receptor type 1A, and bone morphogenetic protein receptor type 1B and phosphorylation of SMAD2 by ALK4, TGFBR1, and ALK7. AZ12601011 was highly effective at inhibiting basal and TGFβ-induced migration of HaCaT keratinocytes and, furthermore, inhibited tumor growth and metastasis to the lungs in a 4T1 syngeneic orthotopic mammary tumor model. These inhibitors provide new reagents for investigating in vitro and in vivo pathogenic processes and the contribution of TGFβ- and BMP-regulated signaling pathways to disease states.

Item Type:Articles
Additional Information:This work was partially funded by AstraZeneca. L.C.S., G.J.I., G.J.F., and B.H. were supported by Cancer Research UK and Worldwide Cancer Research (International Fellowship to G.J.I. and 11-0788).
Glasgow Author(s) Enlighten ID:Spender, Dr Lindsay and Inman, Professor Gareth and Herrera, Dr Blanca and Sansom, Professor Owen
Authors: Spender, L. C., Ferguson, G. J., Hughes, G. D., Davies, B. R., Goldberg, F. W., Herrera, B., Taylor, R. G., Strathearn, L. S., Sansom, O. J., Barry, S. T., and Inman, G. I.
College/School:College of Medical Veterinary and Life Sciences > School of Cancer Sciences
Journal Name:Molecular Pharmacology
Publisher:American Society for Pharmacology and Experimental Therapeutics
ISSN (Online):1521-0111

University Staff: Request a correction | Enlighten Editors: Update this record