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Extrinsic Gaussian Processes for Regression and
Classification on Manifolds

Lizhen Lin∗, Niu Mu†, Pokman Cheung‡, and David Dunson§

Abstract. Gaussian processes (GPs) are very widely used for modeling of un-
known functions or surfaces in applications ranging from regression to classifi-
cation to spatial processes. Although there is an increasingly vast literature on
applications, methods, theory and algorithms related to GPs, the overwhelming
majority of this literature focuses on the case in which the input domain corre-
sponds to a Euclidean space. However, particularly in recent years with the in-
creasing collection of complex data, it is commonly the case that the input domain
does not have such a simple form. For example, it is common for the inputs to be
restricted to a non-Euclidean manifold, a case which forms the motivation for this
article. In particular, we propose a general extrinsic framework for GP modeling
on manifolds, which relies on embedding of the manifold into a Euclidean space
and then constructing extrinsic kernels for GPs on their images. These extrinsic
Gaussian processes (eGPs) are used as prior distributions for unknown functions
in Bayesian inferences. Our approach is simple and general, and we show that
the eGPs inherit fine theoretical properties from GP models in Euclidean spaces.
We consider applications of our models to regression and classification problems
with predictors lying in a large class of manifolds, including spheres, planar shape
spaces, a space of positive definite matrices, and Grassmannians. Our models can
be readily used by practitioners in biological sciences for various regression and
classification problems, such as disease diagnosis or detection. Our work is also
likely to have impact in spatial statistics when spatial locations are on the sphere
or other geometric spaces.

Keywords: extrinsic Gaussian process (eGP), manifold-valued predictors,
neuro-imaging, regression on manifold.

1 Introduction

Over the past few decades, Gaussian process (GP) models have emerged as very power-
ful tools in many problems of statistics and machine learning. In particular, GP models
have been widely used in regression and classification, in which a Gaussian process is
used as the prior distribution for the regression function or the latent function of a
classification map. GP models are particularly appealing in their ability to accurately
quantify uncertainty in estimation and prediction. Rasmussen and Williams (2005) pro-
vide an overview on GPs in machine learning. van der Vaart and van Zanten (2008,
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2009) develop theoretical guarantees of GP models in terms of support and posterior
asymptotic theory. However, few attempts have been made in developing applicable
GP models for regression and classifications on manifolds except for some very spe-
cial cases, such as the 2-dimensional sphere (Hitczenko and Stein, 2012; Guinness and
Fuentes, 2016).

One of the paramount challenges in developing GP models on manifolds is construct-
ing valid covariance kernels. Castillo et al. (2014) develop an elegant framework for
intrinsic GP models on Riemannian manifolds by rescaling solutions of heat equations,
but the constructed intrinsic kernels are often impractical to implement. We provide
a general and simple solution by first embedding manifolds into Euclidean spaces via
equivariant embeddings, which are embeddings that preserve a great deal of the geome-
try of the manifolds, and then constructing extrinsic kernels on the image manifold. We
refer to the resulting GPs as extrinsic GPs (eGPs). eGPs are shown to inherit appeal-
ing properties of GPs defined on Euclidean spaces, and they adapt to the dimension of
the manifolds instead of the dimension of the Euclidean space where the manifolds are
embedded onto. Another appealing feature of eGPs is their ease of implementation for
inference.

One of the motivations for developing GP models on manifolds is the ubiquity of
modern data that are represented in various non-conventional forms. In neuroimaging,
the diffusion matrices in diffusion tensor imaging (DTI) are 3× 3 positive definite ma-
trices (Alexander et al., 2007). In engineering and machine learning, pictures or images
are often preprocessed or reduced to a collection of subspaces (Ho et al., 2004; Teja
and Ravi, 2012). In machine vision and medical diagnostics, a digital image can also be
represented by a set of k-landmarks, the collection of which form landmark-based shape
spaces (Kendall, 1984). Other common examples include orthonormal frames (Downs
et al., 1971), surfaces, curves, and networks(Kolaczyk et al., 2017). Most of the above
examples can be described as manifolds, which are locally Euclidean spaces with smooth
structures.

There are growing needs and practical motivations for studying regression and clas-
sification with predictors on known manifolds. For instance, in medical imaging, a com-
mon goal is to reliably predict disease status using DTI data or landmark-based digital
images. This can be viewed as a classification problem with manifold-valued inputs
or predictors. One example is diagnosis of Attention Deficit Hyperactivity Disorder
(ADHD) in children based on DTI. There are also many applications in which it is of
interest to relate manifold-valued predictors to quantitative traits. One such case is the
study of how intelligence quotient relates to the shape contours of certain brain areas
(such as the Hippocampus (Bartsch, 2012)). The shape can be represented by a set
of landmarks on the boundary of the contours, the collection of which form a shape
manifold. Without valid models and appropriate inferential methods for regression and
classification on manifolds, making accurate inferences and predictions in the above
applications and related settings will remain difficult.

There is already a rich literature on statistical inference for manifold-valued data
consisting of i.i.d measurements. Much of this literature focuses on inference on the
location and spread of manifold-valued data (Bhattacharya and Patrangenaru, 2003,
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2005; Bhattacharya and Lin, 2017). Some model based methods have also been pro-
posed (Bhattacharya and Dunson, 2010b; Lin et al., 2017; Pelletier, 2005). However,
regression or classification problems with predictors on manifolds have received much
less attention. Bhattacharya and Dunson (2010a) proposed a framework for regression
and classification on manifolds by modeling the joint distribution of covariate and re-
sponse variables (x, y) using a Dirichlet process mixture of product kernels. This joint
model induces a nonparametric model for the conditional distribution of y given x with
which one can infer the regression/classification function. However, the practical perfor-
mance of these models is often unsatisfactory as the cluster allocations are driven too
much by the marginal distribution of x, a nuisance parameter.

Our work focuses on regression and classification on known manifolds. There is, how-
ever, an important line of work in manifold learning, where the predictors concentrate
around some unknown lower-dimensional manifold but are observed in an often higher-
dimensional ambient space. The lower-dimensional geometry is often learnt first via
dimension reduction tools, based on which a regression model is built (see, e.g., Cheng
and Wu (2013)). An interesting exception is due to Yang and Dunson (2016) in which
they show that by imposing a Gaussian process prior on the regression function with a
covariance kernel defined directly on the ambient space, the posterior distribution yields
a posterior contraction rate depending on the intrinsic dimension of the manifold. They
assume that the unknown lower-dimensional space where the predictors center around
are a class of submanifolds of Euclidean space. Many interesting manifolds do not natu-
rally arise as sub-manifolds; in particular, those given as quotient manifolds; projective
shape spaces, planar shapes, 3-D shapes, affine shapes and many other manifolds aris-
ing as quotient spaces of spheres. Our framework first embeds the manifold onto the
Euclidean space via some often non-trivial embeddings and then defines eGPs on the
image of the manifolds (including submanifolds as special cases with the embedding
given by the identity map).

The paper is organized as follows. Sections 2 introduces eGP models. In section 3,
we illustrate the broad utility of eGP models by applying them to a large class of re-
gression/classification problems with predictors lying on various manifolds. Section 4 is
devoted to studying the properties of eGP models in terms of mean squared differen-
tiability and posterior contraction rates. Our paper ends with a discussion.

2 Regression and classification on manifolds

Let M be a smooth manifold where the predictors lie. Given data (xi, yi) with xi ∈ M
and yi ∈ R (i = 1, . . . , n), assume the following regression model

yi = F (xi) + εi, (1)

where F : M → R is the regression function on M . Here εi’s are some independent
errors which determine the likelihood of the regression model. The goal is to develop
statistical models for inference on the regression function F (x). The above model can be
easily generalized to binary or categorical responses, and F (x) is called the classification
map in the former case (see (11) for more details on the binary model).
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We focus on Bayesian inference on F . Let Π(F ) be a prior distribution for F ,
which updates with the data to produce a posterior distribution, based on which in-
ference is carried out. We denote the posterior distribution by Π(F |D), where D =
{(x1, y1), . . . , (xn, yn)} is the data. A Gaussian process (GP), which can be viewed as a
probability distribution on the space of functions, is one of the most popular candidates
for a nonparametric prior for the regression function. The popularity of GP is due to
its simple representation, tractability, flexibility for modeling and appealing theoretical
properties. We proceed to propose a general extrinsic framework for constructing GPs
on manifolds.

The usual definition of a GP in a Euclidean space generalizes to a manifold M .
A stochastic process w(x) indexed by x ∈ M is a Gaussian process on M if its evalua-
tion at any finite number of points on M follows a multivariate Gaussian distribution.
Specifically, we say w(x) is a GP with mean function μ(x) and covariance kernel K(·, ·)
if for any x1, . . . , xn ∈ M ,

(w(x1), . . . , w(xn)) ∼ N ((μ(x1), . . . , μ(xn)),Σ) ,

where Σij = cov (w(xi), w(xj)) = K(xi, xj).

Notice that K : M ×M → R is a positive semi-definite kernel on M . Namely, for any
points x1, . . . , xn on M and real numbers a1, . . . , an,

n∑
i=1

n∑
j=1

aiajK(xi, xj) ≥ 0. (2)

The fundamental difficulty in imposing a GP prior on a manifold stems from the highly
challenging task of constructing a valid covariance kernel K(·, ·). Below we describe a
simple recipe for constructing valid covariance kernels using an extrinsic approach.

Let J : M → R
D be an embedding of M into some higher dimensional Euclidean

space RD (D ≥ dimM) and denote the image of the embedding as M̃ = J(M). By
definition of an embedding, J is a smooth map such that its differential at each point
x ∈ M is an injective map (from the tangent space of M at x to the tangent space of

R
D at J(x)), and J is a homeomorphism between M and its image M̃ . Given a positive

semi-definite kernel K̃ on R
D, we can then define a positive semi-definite kernel (and

hence the covariance kernel of a GP) on M by

Kext(x1, x2) = K̃(J(x1), J(x2)). (3)

Indeed, Kext satisfies condition (2) on M because K̃ satisfies the same condition on

R
D, hence in particular on M̃ ⊂ R

D. We call the Gaussian process with the covariance
kernel Kext(·, ·) defined above an extrinsic Gaussian process (eGP).

Remark 1. Note that there are many valid covariance kernel K̃ available on the Eu-
clidean space in R

D which allows us to readily construct valid covariance kernels on
manifold M via the construction in (3). Depending on the manifolds and applications
of interests, both isotropic and non-isotropic kernels for Kext can be constructed by
adopting appropriate kernels K̃ on the image manifold.
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We illustrate some popular examples of isotropic kernels. Let || · || be the Euclidean
norm. We define the extrinsic distance on the manifold M as

ρ(x1, x2) = ‖J(x1)− J(x2)‖. (4)

One can immediately generalize the popular squared exponential kernel in Euclidean
spaces to manifolds by letting

Kext(x1, x2) = α exp(−βρ2(x1, x2)), (5)

where ρ(x1, x2) is the extrinsic distance given in (4). One can also generalize the class
of Matérn covariance kernels to manifolds by letting

Kext(x1, x2) = σ2 1

Γ(ν)2ν−1

(√
2νρ(x1, x2)

κ

)ν

Kν

(√
2νρ(x1, x2)

κ

)
, (6)

where Γ(ν) is the gamma function,Kν is the modified Bessel function of the second kind,
and κ and ν are non-negative parameters of the covariance. Matérn covariance kernels
are often used in spatial statistics with which one can easily control the smoothness of
the sample paths with parameter ν. The following is clear.

Proposition 1. The kernels given in (5) and (6) are positive semi-definite kernels
on M .

Figure 1: An simple illustration of equivariant embeddings.

Remark 2. The embedding J is never unique. It is desirable to have an embedding
that preserves as much geometry as possible. An equivariant embedding is one type of
embedding that preserves a substantial amount of geometry. Figure 1 provides a visual
illustration. Suppose M admits an action of a (usually ‘large’) Lie group H. Then we
say that J is an equivariant embedding if we can find a Lie group homomorphism
φ : H → GL(D,R) from H to the general linear group GL(D,R) of degree D acting on

M̃ such that

J(hp) = φ(h)J(p)

for any h ∈ H and p ∈ M . The definition seems technical, however, the intuition is
clear: if a large group H acts on the manifolds such as by rotation before embedding,
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such an action can be preserved via φ on the image M̃ . Therefore, the embedding is
geometry-preserving in this sense.

Remark 3. The extrinsic method described above has some advantages over using
intrinsically defined covariance kernels. In particular, intrinsic kernels are difficult to
construct in general. For example, the squared exponential kernel α exp(−βρ2g(x1, x2))
with ρg given by the geodesic or intrinsic distance is in general not a valid kernel.
Explicit examples have been found for very special manifolds only, such as spheres. At
the same time, simulation tests have shown that there is no significant difference in
statistical performance between certain extrinsic and intrinsic models, at least for the
example of spheres. However, intrinsic methods are often computationally more complex
and expensive.

With a valid covariance kernel on M , one can specify an eGP as a prior Π(F ) and
carry out inference in a Bayesian framework. Given the regression model in (1), we
assume that εi ∼ N(0, σ2), where the parameter σ2 has a prior distribution such as the
inverse gamma distribution with density πσ2 . The prior distribution for the regression
function Π(F ) will be given by the eGP with the covariance kernel in (3). The posterior
distribution is given by

Π (U | (x1, y1), . . . , (xn, yn)) =

∫
U

∏n
i=1 N(yi;F (xi), σ

2)πσ2Π(dF )∫ ∏n
i=1 N(yi;F (xi), σ2)πσ2Π(dF )

, (7)

where U is a measurable set in the product space M × (0,∞) with M denoting the
space of all M → R regression functions.

Another important class of problems are classification problems, in which one is
generally interested in predicting a categorical (e.g., binary as a special case) outcome
given the predictors. Denote the responses or outcomes as 1 or 0 for the binary case,
and let F (x) be the probability of observing 1 at predictor level x. One can impose
a prior distribution on F by imposing an eGP on a latent process w(x), such that
F (x) = L(w(x)) and L is a fixed link function – for example the probit or logistic link.
Properties of F (x) can be derived from those for w(x) as L provides a smooth one-
to-one monotone transformation of w(x) into L(x). Extensions to categorical outcomes
beyond binary are straightforward.

3 Examples

To illustrate the broad utility of eGP models, we consider a large class of examples with
predictors lying on manifolds including spheres, planar shapes, positive definite matri-
ces, and Grassmannians. All details of the embeddings are provided for constructing the
extrinsic kernels for eGPs. Embedding manifolds into Euclidean spaces or other mani-
folds has been applied in different settings. In St. Thomas et al. (2014), for example, the
manifold of the parameters of a statistical model is embedded into a big sphere, while
Lin et al. (2017) embed the response manifold of a regression model into a Euclidean
space for inference. In section 3.1, a simulation study is carried out to compare the
performances of an eGP model with that of an intrinsic one in a regression model with
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predictors on a sphere. In section 3.2, an eGP model is applied to classify gender of go-
rillas based on skull images. In this case, the predictor space is the 2-d landmark-based
shape space, i.e., the planar shape. In Section 3.3, we consider a classification problem
whose predictors are positive definite matrices; this problem has important applications
in neuro-imaging. We apply the eGP model to an HIV study in identifying the most
sensitive sites for disease detection or diagnostics. Lastly in section 3.4, we apply our
eGP model to a regression problem with predictors lying on a Grassmannian manifold
in a simulation study.

3.1 Spheres

Modeling on the sphere has received particular attention due to applications in spatial
statistics; for example, global models for climate or satellite data (Jun and Stein, 2008;
Huang et al., 2011). We consider eGP models for regression with the predictors lying on
a sphere Sd. The model is illustrated with predictors on S2. Note that for the particular
case of spheres, there has been a literature investigating valid positive definite functions
or covariance functions on the spheres (see. e.g., Gneiting (2013) and Du et al. (2013)).

To construct a valid extrinsic covariance kernel on Sd, first note that Sd is a sub-
manifold of Rd+1, so that the inclusion map J serves as a natural embedding of Sd into
R

d+1. It is easy to check that J is an equivariant embedding with respect to the Lie
group H = SO(d + 1), the group of d + 1 by d + 1 special orthogonal matrices. This
embedding preserves the symmetry of the sphere.

One can adopt the extrinsic squared exponential kernel (3) on Sd for an eGP model,
with

Kext(x, x
′) = α exp

(
−β‖J(x)− J(x′)‖2

)
= α exp

(
−β‖x− x′‖2

)
.

We now consider a simulation study in which the performance of an eGP model
is compared with that of a GP model using an intrinsic kernel. Intrinsic kernels that
are computation friendly are only available for some special cases such as S1 and S2.
We compare eGP to a GP model with the following intrinsic kernel. Letting d(x, x′) =
2 arcsin

(
1
2‖x− x′‖

)
, define

Kint(x, x
′) = α exp

(
− βd(x, x′)

)
, (8)

which is a valid covariance kernel on a sphere (e.g., see section 3 of Huang et al. (2011)).

Data are simulated from the regression model,

y = F (x1, x2, x3) + ε, (9)

where x is a point on the unit sphere, x1:3 are the coordinates of x in the three di-
mensional Euclidean space, the true regression function F is taken to be the sum of
x1:3 and ε is a zero mean Gaussian noise term. We apply a GP model with covariance
kernels Kint and Kext. Since the kernel parameters (θ = {α, β}) are correlated (Ras-
mussen, 2004), standard Markov Chain Monte Carlo (MCMC) sampling traverses the
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parameter space slowly. Instead, we use Hamiltonian Monte Carlo (HMC) for inference
of kernel parameters which improves efficiency by producing relatively distant proposals
that are accepted with high probability (Duane et al., 1987). Here are some details on
the priors and the HMC chains: both the length-scale and magnitude hyperparameters
of the covariance kernels of the eGP are given gamma(10,10) priors; πσ2 is given by
gamma(1,10); the number of Monte Carlo iterations is 10,000 with a burn in of 1,000;
The results are not sensitive to varying parameter values of the gamma distributions.

Two kernels are tested using 100 samples with signal-to-noise ratio 26db. The true
function is plotted in red and the estimate is plotted in blue in Figure 2. The horizontal
axis is the Euclidean coordinate x1 and the vertical axis is the functional output. The
eGP model appears to produce an estimate that is closer to the true function compare
to that from the intrinsic model. Indeed, the eGP model using the kernel Kext yields
a smaller root mean square error, which is 0.063 compared to 0.3727 for the intrinsic
model. One of the potential reasons for superior performance of eGP over the intrinsic
model is non-differentiability of the intrinsic distance hence intrinsic kernel. This non-
differentiability can lead to non-smoothness of the Gaussian process (see section 4.1 for
more details) thus impacting inference results.

Figure 2: GP predictive results using spherical exponential kernel vs eGP with an ex-
trinsic kernel. Truth is shown in red dashed lines and posterior mean estimates in blue.

3.2 Landmark-based shape spaces Σk
2

We now apply eGP models to regression and classification on planar shapes. Planar
shape spaces are one of the most important classes of landmark-based shape spaces
with wide applications in biology and medical imaging. Such spaces were first stud-
ied in Kendall (1977), and in the pioneering work of Bookstein (1978) motivated by
applications to biological shapes.

We first describe planar shapes. Let z = (z1, . . . , zk), with z1, . . . , zk ∈ R
2, be a

set of k landmarks. The planar shape Σk
2 is the collection of zs modulo the Euclidean

motions including translation, scaling and rotation. One has Σk
2 = S2k−3/SO(2), the

quotient of sphere by the action of SO(2) (or modulo the effect of rotation), the group
of 2× 2 special orthogonal matrices;

A point in Σk
2 can be identified as the orbit of some u ∈ S2k−3, which we denote as

σ(z). Viewing z as a vector of complex numbers, one can embed Σk
2 into S(k,C), the
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space of k × k complex Hermitian matrices, via the Veronese-Whitney embedding (see
e.g. Bhattacharya and Bhattacharya (2012)):

J(σ(z)) = uu∗ = ((uiūj))1≤i,j≤k. (10)

One can verify that J is equivariant (see Kendall (1984)) with respect to the Lie group

H = SU(k) = {A ∈ GL(k,C), AA∗ = I, det(A) = I},

with its action on Σk
2 induced by left multiplication. This embedding J will be used to

construct covariance kernels for eGPs on Σk
2 .

As an example, we apply an eGP to a classification problem with predictors on Σk
2 .

We aim to classify the gorilla skull images from Dryden and Mardia (1998), which are
represented as planar shapes with 8 landmarks, by gender. A binary GP classification
model is developed using 59 gorilla skull images. We take yi ∈ {0, 1}, where 0 represents
a female and 1 a male.

We have the following model:

yi ∼ Bernoulli(πi), πi = Φ(F (xi)), F (.) ∼ GP(0,Kext), (11)

where Φ is the standard normal cdf and Kext is the extrinsic kernel defined in (5).

Following Williams and Rasmussen (1996) and Neal (2012), we used Hamiltonian
Monte Carlo (HMC) method for posterior computation. The likelihood is approximated
using Laplace’s method as in Williams and Barber (1998). Gamma priors are used on
the kernel hyperparameters, with gamma(0.5,2) for the length-scale and gamma(50,1)
for the magnitude parameter. The number of MCMC iterations is 10,000 with a burn
in of 3,000; The HMC estimates of the kernel parameters are shown in Figure 3.

Figure 3: Posterior distributions of the eGP kernel parameters (the length-scale and
magnitude).

We use eight skull images as testing data and all these images are successfully clas-
sified with our eGP classifier. The classification probabilities are provided in Table 1.
The results are compared with a naive GP on the preshape data (modulo the effects of
translation and scaling) without any embedding; the latter completely failed at classi-
fication by returning all the classification probabilities of 0.5. The results indicate that
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Class female female female female male male male male

GP classification prob. 7.2e-4 0.319 0.029 0.041 0.96 0.89 0.54 0.86

naive GP classification prob. 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Table 1: Planar shape classification of gender based on gorilla skull shape.

naive GPs are not suitable for complex manifolds not arising as submanifolds of an Eu-
clidean space or when simple representation of the space using Euclidean coordinates is
not available. In particular, for complex manifolds such as planar shapes, the naive rep-
resentation of the data without properly incorporating the underlying geometry (e.g.,
via equivariant embeddings as in our case), result in a posterior estimate of the latent
function that is close to the prior mean (which is zero in our case) thus producing a
classification probability of 0.5.

3.3 Diffusion tensor imaging and positive definite matrices

Diffusion tensor imaging (DTI) is designed to measure the diffusion of water molecules
in the brain; diffusion tends to be directional along white matter tracks or fibers, corre-
sponding to structural connections between brain regions along which substantial brain
activity and communications occur. DTI data are now collected routinely in human
studies, and there is abundant interest in using DTI to build better predictive models
of cognitive traits and neuropsychiatric disorders. The diffusion anisotropy characterized
in terms of diffusion matrices, corresponding to 3×3 positive definite matrices measured
at each voxel in the brain. We denote the space of all such matrices as SPD(3).

The space SPD(3) belongs to an important class of manifolds that possesses particu-
lar geometric structures, which should be taken into account in statistical analyses. Our
goal is to study the regression relationship between DTI-valued covariates and patient
outcomes.

In order to carry out regression and classification on SPD(3) using our eGP models,
we need a nice embedding to construct the extrinsic kernels. There are a few natural
embeddings of SPD(3) into Euclidean spaces. In particular, one can embed it into the
space Sym(3) of 3× 3 real symmetric matrices via the log-map

log : SPD(3) → Sym(3). (12)

For A ∈ SPD(3) with a spectral decomposition (or diagonalization) A = UΛU−1,
we have log(A) = U log(Λ)U−1 where log(Λ) is the diagonal matrix whose diagonal
entries are the logarithms of the diagonal entries of Λ. The embedding (12) is in fact
a diffeomorphism, and is equivariant with respect to the actions of GL(3,R), the 3× 3
general linear group, by conjugation. Indeed, for h ∈ GL(3,R), one has

log(hAh−1) = h log(A)h−1. (13)

Given A1, A2 ∈ SPD(3), their extrinsic distance under the embedding (12) is given by

ρ(A1, A2) = ‖ log(A1)− log(A2)‖, (14)



L. Lin, N. Mu, P. Cheung, and D. Dunson 897

where ‖ · ‖ denotes the Frobenius norm of matrices (i.e. ‖A‖ = Tr(AAT )1/2). This
extrinsic distance will be used to construct an eGP kernel in (5).

We now consider a diffusion tensor imaging (DTI) data set consisting of 46 subjects
with 28 HIV+ subjects and 18 healthy controls. Diffusion tensors were extracted along
one atlas fiber tract of the splenium of the corpus callosum. The DTI data for all the
subjects are registered in the same atlas space based on arc lengths, with 75 tensors
obtained along the fiber tract of each subject. This data set has been studied in a regres-
sion setting in Yuan et al. (2012) and in the context of two sample testing (Bhattacharya
and Lin (2017)). A GP sampler is carried out between the control group and the HIV+
group for each of the 75 sites along the fiber tract. Therefore, 75 classifiers were run in
total. We aim to find out which sites of the splenium of the corpus callosum are most
sensitive to influence by HIV.

14 subjects (six controls and eight HIV+) are used to test the HIV status classifiers
(0 for healthy and 1 for HIV+) using eGP models. A similar binary GP classification
model is applied to the DTI data at each of the prespecified 75 locations along the
chosen tract. We have identified the top ten most sensitive sites indexed by the arc
length (location on the brain). The results are recorded in Table 2, which shows the
total number of correct GP predictions of HIV status of the 14 tested subjects among
the top ten sites.

arclength 1.76 4.42 13.56 26.52 31.19 33.16 34.45 35.62 36.80 37.11
# of correct
GP prediction

11 11 12 11 11 11 11 11 12 11

Table 2: Diffusion tensor imaging results: top 10 most sensitive sites to influence of HIV.

Again the likelihood is approximated using Laplace approximation techniques and
HMC is used for posterior inference. The posterior distribution of kernel hyperparame-
ters for the GP classifier for one of the 75 sites along the fiber tract is shown in Figure 4.
Gamma(0.5,2) prior is used for kernel length-scale and gamma(2.5,2) prior for kernel
variance. The number of Monte Carlo iterations is 10,000 with a burn in of 3,000.

Figure 4: Posterior distribution for the eGP kernel covariance parameters in the diffusion
tensor and HIV application.
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3.4 Stiefel manifolds and Grassmann manifolds (Grassmannians)

We now consider regression and classification problems whose predictors lie on Stiefel
or Grassmann manifolds. Given integers m ≥ k ≥ 0, the Stiefel manifold Vk(R

m) is
the collection of all k-tuples of orthonormal vectors in R

m, and the Grassmann mani-
fold Grk(R

m) is the collection of all k-dimensional subspaces in R
m. Every k-tuple of

orthonormal (hence linearly independent) vectors span a k-dimensional subspace, and
every k-dimensional subspace is spanned by some k-tuple of orthonormal vectors. This
means there is a surjective map Vk(R

m) → Grk(R
m). There is a natural action of O(k),

the group of k × k orthogonal matrices, on Vk(R
m) and any two k-tuples of orthonor-

mal vectors span the same subspace precisely if they differ by an action of O(k), which
provides the identification Vk(R

m)/O(k) = Grk(R
m). Grassmann manifolds have many

applications in signal processing and machine learning (Kutyniok et al., 2009).

There is an equivariant embedding of Grk(R
m) into a Euclidean space (Chikuse,

2003). Let X ∈ Vk(R
m) and σ(X) = X · O(k) be the O(k)-orbit of X in Grk(R

m) =
Vk(R

m)/O(k). Note that

J(σ(X)) = XX ′

defines an embedding J of Grk(R
m) into the space of m ×m matrices, which may be

identified as R
m2

. Also, it is equivariant with respect to the group H = O(m) acting
on Grk(R

m) via left multiplication on R
m and on m × m matrices by conjugation.

Indeed, for h ∈ H, one has J(hσ(X)) = hXX ′h′ = φ(h)J(σ(X)), where φ(h) stands for
conjugation by h. Now the extrinsic distance between two points in Grk(R

m) is given by

ρ(σ(X1), σ(X2)) = ‖X1X
′
1 −X2X

′
2‖,

where ‖ · ‖ is the Frobenius norm on matrices. We use the kernel (5).

Remark 4. The Stiefel manifold Vk(R
m) is naturally a submanifold of Rm×k and the

inclusion map is an equivariant embedding.

We now apply the eGP model to data simulated from y = F (X) + ε, where X is an
m × k matrix with m = 10 the ambient dimension and k = 5 the subspace dimension.
The data are simulated from the model with F (X) = βXX ′β, where β is some known
vector. We simulated 100, 200 and 300 training data points and additional 50 points for
testing with different signal-to-noise ratio levels. Table 3 records the RMSE (root mean
square error) values. As expected, the RMSE reduces with increasing training size and
signal-to-noise ratio.

The posterior distribution of kernel hyperparameters are estimated using HMC.
A gamma(2.5,2) prior is used for the kernel length-scale and gamma(40,1) prior for the
kernel magnitude. The number of Monte Carlo iterations is 6,000 with a burn in of 1,000.

4 Properties of eGPs

In this section, we first study the properties of an eGP in terms of mean square differ-
entiability. The smoothness of a stochastic process captures and quantifies the intuition
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Training size
Signal-to-noise ratio

10db 20db 30db

n = 100 1.25 0.6 0.31
n = 200 0.95 0.31 0.098
n = 300 0.77 0.27 0.089

Table 3: Simulation results for out-of-sample RMSE for prediction (for 50 testing points)
based on predictors on the Grassmannian.

that inputs that are close (on a manifold) are likely to produce similar output values.
Therefore, understanding the smoothness property is important for interpolation and
prediction. In addition, we show that (see Proposition 4) the posterior contraction rates
of eGPs are adaptive to the dimension of the underlying manifold instead of the ambi-
ent space where the manifolds are embedded onto building on results from Yang and
Dunson (2016).

4.1 Mean square differentiability

We first give the definition of mean square differentiability and mean square derivative
of a stochastic process on a differentiable manifold. Consider a smooth manifold M and
a stochastic process w(x) indexed by x ∈ M . Let μ(x) and K(x1, x2) be the mean and
covariance functions of w(x).

Definition 1. (a) Let x ∈ M and v ∈ TxM . Choose a smooth path γ : (−ε, ε) → M
(for some ε > 0) such that γ(0) = x and γ′(0) = v. The stochastic process w is mean
squared (MS) differentiable at x with respect to v if, as a → 0, the random variable

w(γ(a))− w(x)

a

converges to some limit Dvw in mean squares, i.e.

E

[(
w(γ(a))− w(x)

a
−Dvw

)2
]
→ 0.

In this case, Dvw is called the MS derivative of w at x with respect to v.

(b) If w is MS differentiable at x with respect to every tangent vector at that point,
then we simply say that w is MS differentiable at x.

(c) If w is MS differentiable at every point in M , then we simply say that w is MS
differentiable (in M). In this case, for any tangent vector field V in M , the random
variables {DVxw : x ∈ M} constitute a stochastic process DV w in M , called the MS
derivative of w with respect to V .

Remark 5. The definition in (a) depends only on x and v, but otherwise not on the
choice of γ. This notion of MS differentiability generalizes the existing one in Euclidean
spaces.
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Proposition 2. If the mean function μ is differentiable at x and the covariance function
K is of class C2 at (x, x), then the stochastic process w is MS differentiable at x.

Proof. Since μ is differentiable at x, the statement will hold for w if it also holds for
w−μ, whose mean function is 0. Hence we may assume μ = 0 without loss of generality.

Suppose γ : (−ε, ε) → M is a smooth path with γ(0) = x (for some ε > 0). Let

v = γ′(0) ∈ TxM, v(1) = (v, 0), v(2) = (0, v) ∈ T(x,x)(M ×M) = TxM × TxM.

For a ∈ (−ε, 0) ∪ (0, ε), consider the random variable

Da =
w(γ(a))− w(x)

a
.

It suffices to show that Da has a limit in mean squares (i.e. in L2) as a → 0. Notice
that

E[DaDb] =
1

ab

(
K(γ(a), γ(b))−K(γ(a), x)−K(x, γ(b)) +K(x, x)

)
.

Since K is of class C2 at (x, x), as (a, b) → (0, 0), we have

E[DaDb] →
(
Dv(1)Dv(2)K

)
(x, x).

It follows that, under the same limit,

E[(Da −Db)
2] = E[D2

a] + E[D2
b ]− 2E[DaDb]

→
(
Dv(1)Dv(2)K

)
(x, x) +

(
Dv(1)Dv(2)K

)
(x, x)− 2

(
Dv(1)Dv(2)K

)
(x, x)

= 0.

Therefore, as a → 0, Da satisfies the Cauchy condition with respect to the L2 norm
and, by completeness, admits an L2 limit.

Proposition 3. If the mean function μ is differentiable in M and the covariance func-
tion K is of class C2 in M × M , then the stochastic process w is MS differentiable
in M . In this case, for any tangent vector field V in M , the MS derivative DV w has
mean function DV μ and covariance function DV (1)DV (2)K, where V (1) and V (2) are

the tangent vector fields in M ×M with V
(1)
(x1,x2)

= (Vx1 , 0) and V
(2)
(x1,x2)

= (0, Vx2).

Proof. The first statement is immediate from Proposition 2. For i = 1, 2, let xi ∈ M
and γi : (−ε, ε) → M be a smooth path with γi(0) = xi and γ′

i(0) = Vxi . By the
Cauchy-Schwarz inequality and the MS differentiability of w, we have

E

[(
(DV w)(x1)−

w(γ1(a))− w(x1)

a

)]
→ 0, as a → 0

⇐⇒ E[(DV w)(x1)]−
μ(γ1(a))− μ(x1)

a
→ 0, as a → 0
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so that E[(DV w)(x1)] = (DV μ)(x1). Now let w̃ = w − μ. Similarly as above, we have

E

[(
(DV w̃)(x1)−

w̃(γ1(a))− w̃(x1)

a

)
w̃(x2)

]
→ 0, as a → 0

⇐⇒ E[(DV w̃)(x1) w̃(x2)]−
K(γ1(a), x2)−K(x1, x2)

a
→ 0, as a → 0

so that E[(DV w̃)(x1) w̃(x2)] = (DV (1)K)(x1, x2). Similarly again, we also have

E

[(
(DV w̃)(x1)−

w̃(γ1(a))− w̃(x1)

a

)(
(DV w̃)(x2)−

w̃(γ2(b))− w̃(x2)

b

)]
→ 0

⇐⇒ E[(DV w̃)(x1) (DV w̃)(x2)]

− K(γ1(a), γ2(b))−K(γ1(a), x2)−K(x1, γ2(b)) +K(x1, x2)

ab
→ 0

as (a, b) → (0, 0), which means

E[(DV w̃)(x1) (DV w̃)(x2)]

= (DV (2)DV (1)K)(x1, x2) + (DV (1)DV (2)K)(x1, x2)− (DV (1)DV (2)K)(x1, x2)

= (DV (1)DV (2)K)(x1, x2).

This completes the proof.

Corollary 1. If μ is of class Cn and K is of class C2n, then w is n-times MS differ-
entiable.

Proof. Repeatedly apply Proposition 3.

Example 1. Suppose J : M → R
D is an embedding of M into a (higher-dimensional)

Euclidean space R
D. Given a stochastic process w in R

D, we can pull it back to a
stochastic process J∗w in M , with

(J∗w)(x) = w(J(x)), for x ∈ M.

Clearly, if the mean and covariance functions of w are μ and K, then the mean and
covariance functions of J∗f are J∗μ and (J × J)∗K. Also, if μ is Cn, K is C2n and J
is C2n as well, then J∗μ is Cn and (J × J)∗K is C2n; and hence by Corollary 1, J∗w
is n-times MS differentiable.

For example, if w is a Gaussian process in R
D with a Matérn-ν covariance function

(and zero mean), then J∗w is an ν−1
2 �-times MS differentiable Gaussian process in M ;

and if w is a Gaussian process in R
D with a squared-exponential covariance function,

then J∗w is an infinitely MS differentiable Gaussian process in M .

4.2 Posterior contraction rates of eGPs

In this short subsection, we explore the posterior contraction rates of a regression model
on a manifold with eGP as the prior for the regression function. Posterior contrac-
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tion rates measure how fast the posterior concentrates in small neighborhoods of the
true regression function, providing frequentist asymptotic guarantees on the behavior
of the eGP posterior. Given data (xi, yi) with xi ∈ M and yi ∈ R (i = 1, . . . , n),
assume the regression model (1) where yi = F (xi) + εi, xi ∈ M and εi ∼ N(0, σ2).
The prior distribution Π(F ) will be given by the eGP with the covariance kernel (5)
(with a fixed magnitude). The length-scale parameter β is assumed a prior πβ such
that βd follows a gamma distribution gamma(a0, b0), where d is the dimension of man-
ifold. For simplicity in exposition, assume σ is known though the results are straight-
forward to generalize to unknown σ. The posterior distribution of F is then given
by

Π (U | (x1, y1), . . . , (xn, yn)) =

∫
U

∏n
i=1 f(yi;F (xi), σ

2)Π(dF )∫ ∏n
i=1 f(yi;F (xi), σ2)Π(dF )

, (15)

where U is a measurable set in the space of regression functions and f(yi;F (xi), σ
2) is

the value of a normal density (with mean F (xi) and variance σ2) evaluated at yi. Let
F0 be the true regression function. We say the eGP posterior contracts to F0 at a rate
of εn if

Π
(
Uεn(F0)

C | (x1, y1), . . . , (xn, yn)
)
→ 0, a.s.Pn

F0
, (16)

where Uεn(F0)
C = {F : dM(F, F0) > Rεn}, as n → ∞ for some large constant R and

distance dM. We have the following proposition.

Proposition 4. Assume the regression model (1) with an eGP prior with covariance
kernel (5), the following holds.

(a) Assume M is a smooth and compact manifold and the covariates are from a fixed
design. Let F0 ∈ Cs(M) (s ≤ 2), the s-Hölder smooth class of functions on M ,
then the posterior distribution of eGP contracts to the true regression function F0

at a rate of εn = n−s/(2s+d)(logn)d+1 with dM(F, F0) =
1
n

∑n
i=1 |F (xi)− F0(xi)|.

(b) Assume M is a smooth and compact manifold and the covariates are from a ran-
dom design with xi ∼ G(·), i = 1, . . . , n, for some distribution G(·) on M with
density g(x). Then the results in part (a) hold with Uεn(F0)

C = {F :
∫
x∈M

(FA(x)−
F0(x))

2g(dx) > Rεn}, where FA(x) = (F ∨ (−A)) ∧A, for some A large enough.

Proof. (a) Given the embedding J : M → R
D, M̃ = J(M) is a d-dimensional subman-

ifold of RD. Any function F ∈ M on M induces a function F̃ = F ◦ J−1 on M̃ . One
has

yi = F̃ (x̃i) + εi,

where x̃i = J(xi) ∈ M̃ . Then by Theorem 2.1 of Yang and Dunson (2016), one has

Π
(
Ũεn(F̃0)

C | (x̃1, y1), . . . , (x̃n, yn)
)
→ 0,



L. Lin, N. Mu, P. Cheung, and D. Dunson 903

where Ũεn(F0) = {F̃ : 1
n

∑n
i=1 | F̃ (x̃i) − F̃0(x̃i) |< Rεn}. There is a one-to-one corre-

spondence (a bijection) between F̃ and F , and one has Uεn(F0) = {F : 1
n

∑n
i=1 |F (xi)−

F0(xi)| = 1
n

∑n
i=1 | F̃ (x̃i)− F̃0(x̃i) |< Rεn}. Then

Π
(
Uεn(F0)

C | (x1, y1), . . . , (xn, yn)
)
→ 0,

where εn is given in part (a).

(b) Similar proofs follow from part (a) noting that there is one-to-one correspondence
between {F̃ :

∫
M̃
(F̃ (x̃)−F̃0(x̃))

2g̃(x̃)dx̃ < εn} and {F :
∫
M
(F (x)−F0(x))

2g(x)dx < εn},
where g̃(x̃) is the density on M̃ induced by the embedding J and the density g(x)
on M .

5 Discussion and conclusion

We propose a general extrinsic framework for constructing Gaussian processes on man-
ifolds for regression and classification with manifold-valued predictors. Such models
are general, easy to implement and shown to inherit good properties from Gaussian
processes on Euclidean spaces. Applications are considered by applying eGP models
to regression and classification problems with predictors on a large class of manifolds
ranging from spheres, landmark-based shapes spaces, to the spaces of positive definite
matrices and Grassmannians. Our work will likely help practitioners make more accu-
rate predictions or diagnoses based on medical imaging. Although the work focuses on
regression and classification, eGPs can be used in much broader settings such as in ex-
ponential family models for the response yi given xi. In addition, eGPs can be certainly
used for spatial modeling where the spatial domain is some geometric space such as
the sphere. Future work will be devoted to constructing applicable covariance kernels
employing the intrinsic Riemannian geometry of manifolds, which are only currently
available for a very limited class of manifolds, and also constructing valid GP models
for spaces beyond manifolds such as stratified spaces of interests.
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