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Approximately counting and sampling small witnesses
using a colourful decision oracle∗

Holger Dell† John Lapinskas‡ Kitty Meeks§

Abstract
In this paper, we prove “black box” results for turning algorithms
which decide whether or not a witness exists into algorithms to
approximately count the number of witnesses, or to sample from the
set of witnesses approximately uniformly, with essentially the same
running time. We do so by extending the framework of Dell and
Lapinskas (STOC 2018), which covers decision problems that can be
expressed as edge detection in bipartite graphs given limited oracle
access; our framework covers problems which can be expressed
as edge detection in arbitrary k-hypergraphs given limited oracle
access. (Simulating this oracle generally corresponds to invoking a
decision algorithm.) This includes many key problems in both the
fine-grained setting (such as k-SUM, k-OV and weighted k-Clique)
and the parameterised setting (such as induced subgraphs of size k

or weight-k solutions to CSPs). From an algorithmic standpoint, our
results will make the development of new approximate counting
algorithms substantially easier; indeed, it already yields a new
state-of-the-art algorithm for approximately counting graph motifs,
improving on Jerrum and Meeks (JCSS 2015) unless the input graph
is very dense and the desired motif very small. Our k-hypergraph
reduction framework generalises and strengthens results in the graph
oracle literature due to Beame et al. (ITCS 2018) and Bhattacharya
et al. (CoRR abs/1808.00691).

1 Introduction
Many decision problems reduce to the question: Does a
witness exist? Such problems admit a natural counting
version: How many witnesses exist? For example, one may
ask whether a bipartite graph contains a perfect matching, or
how many perfect matchings it contains. As one might expect,
the counting version is never easier than the decision version,
and is often substantially harder; for example, deciding
whether a bipartite graph contains a perfect matching is
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easy, and counting the number of such matchings is #P-
complete [41]. However, even when the counting version
of a problem is hard, it is often easy to approximate well.
For example, Jerrum, Sinclair and Vigoda [31] gave a
polynomial-time approximation algorithm for the number
of perfect matchings in a bipartite graph. The study of
approximate counting has seen amazing progress over the
last two decades, particularly in the realm of trichotomy
results for general problem frameworks such as constraint
satisfaction problems, and is now a major field of study in
its own right [17, 18, 24, 27, 28]. In this paper, we explore
the question of when approximating the counting version of a
problem is not merely fast, but essentially as fast as solving
the decision version.

We first recall the standard notion of approximation in
the field: For all real x, y > 0 and 0 < ε < 1, we say that x
is an ε-approximation to y if |x− y| < εy. Note in particular
that any ε-approximation to zero is itself zero, so computing
an ε-approximation toN is always at least as hard as deciding
whether N > 0 holds. For example, it is at least as hard to
approximately count the number of satisfying assignments of
a CNF formula (i.e. to ε-approximate #SAT) as it is to decide
whether it is satisfiable at all (i.e. to solve SAT).

Perhaps surprisingly, in many cases, the converse is also
true. For example, Valiant and Vazirani [42] proved that any
polynomial-time algorithm to decide SAT can be bootstrapped
into a polynomial-time ε-approximation algorithm for #SAT,
or, more formally, that a size-n instance of any problem
in #P can be ε-approximated in time poly(n, ε−1) using
an NP-oracle. A similar result holds in the parameterised
setting, where Müller [39] proved that a size-n instance of any
problem in #W[i] with parameter k can be ε-approximated
in time g(k) · poly(n, ε−1) using a W[i]-oracle for some
computable function g : N → N. Another such result holds
in the subexponential setting, where Dell and Lapinskas [14]
proved that the (randomised) Exponential Time Hypothesis
is equivalent to the statement: There is no ε-approximation
algorithm for #3-SAT which runs on an n-variable instance
in time ε−22o(n).

We now consider the fine-grained setting, which is the
focus of this paper. Here, we are concerned with the exact
running time of an algorithm, rather than broad categories
such as polynomial time, FPT time or subexponential time.

Copyright c© 2019
Copyright for this paper is retained by authors



The above reductions all introduce significant overhead, so
they are not fine-grained. Here only one general result is
known, again due to Dell and Lapinskas [14]. Informally,
if the decision problem reduces “naturally” to deciding
whether an n-vertex bipartite graph contains an edge, then
any algorithm for the decision version can be bootstrapped
into an ε-approximation algorithm for the counting version
with only O(ε−2polylog(n)) overhead. (See Section 1.1 for
more details.)

The reduction of [14] is general enough to cover core
problems in fine-grained complexity such as ORTHOGONAL
VECTORS, 3SUM and NEGATIVE-WEIGHT TRIANGLE, but
it is not universal. In this paper, we substantially generalise it
to cover any problem which can be “naturally” formulated as
deciding whether a k-partite k-hypergraph contains an edge;
thus we essentially recover the original result on taking k = 2.
For any problem which satisfies this property, our result
implies that any new decision algorithm will automatically
lead to a new approximate counting algorithm whose running
time is at most a factor of logO(k) n larger. Our framework
covers several reduction targets in fine-grained complexity
not covered by [14], including k-ORTHOGONAL VECTORS,
k-SUM and EXACT-WEIGHT k-CLIQUE, as well as some
key problems in parameterised complexity including weight-
k CSPs and size-k induced subgraph problems. (Note that the
overhead of logO(k) n can be re-expressed as k2kno(1) using
a standard trick, so an FPT decision algorithm is transformed
into an FPT approximate counting algorithm; see Section 1.3.)

In fact, we get more than fast approximate counting
algorithms — we also prove that any problem in this
framework has an algorithm for approximately-uniform
sampling, again with logO(k) n overhead over decision. There
is a well-known reduction between the two for self-reducible
problems due to Jerrum, Valiant and Vazirani [32], but it does
not apply in our setting since it adds polynomial overhead.

In the parameterised setting, our results have interesting
implications. Here, the requirement that the hypergraph be k-
partite typically corresponds to considering the “colourful” or
“multicolour” version of the decision problem, so our result
implies that uncoloured approximate counting is essentially
equivalent to multicolour decision. We believe that our
results motivate considerable further study of the relationship
between multicolour parameterised decision problems and
their uncoloured counterparts.

Finally, we note that the applications of our results are
not just complexity-theoretic in nature, but also algorithmic.
They give a “black box” argument that any decision algorithm
in our framework, including fast ones, can be converted
into an approximate counting or sampling algorithm with
minimal overhead. Concretely, we obtain new algorithms
for approximately counting and/or sampling zero-weight
subgraphs, graph motifs, and satisfying assignments for first-
order models, and our framework is sufficiently general that

we believe new applications will be forthcoming.
In Section 1.1, we set out our main results in detail as

Theorems 1 and 2, and discuss our edge-counting reduction
framework (which is of independent interest). We describe
the applications of Theorems 1 and 2 to fine-grained com-
plexity in Section 1.2, and their applications to parameterised
complexity in Section 1.3.

1.1 The k-hypergraph framework Given a k-hypergraph
G = (V,E), write e(G) = |E|, and let

C(G) :=

{(X1, . . . , Xk) : X1, . . . , Xk are disjoint subsets of V }.

For any (X1, . . . , Xk) ∈ C(G), we write G[X1, . . . , Xk] for
the k-partite k-hypergraph on X1 ∪ · · · ∪ Xk whose edge
set is {e ∈ E(G) : |e ∩Xi| = 1 for all i ∈ [k]}. We define
the coloured independence oracle of G to be the function
cINDG : C(G)→ {0, 1} such that cINDG(X1, . . . , Xk) = 1
if the k-partite k-hypergraph on G[X1, . . . , Xk], the k-partite
k-hypergraph on X1 ∪ · · · ∪ Xk whose edge set is {e ∈
E(G) : |e ∩Xi| = 1 for all i ∈ [k]},

G[X1, . . . , Xk] has no edges, and
cINDG(X1, . . . , Xk) = 0 otherwise. Informally, we
think of elements of C(G) as representing k-colourings of
induced subgraphs of G, with Xi being the i’th colour class;
thus given a vertex colouring of an induced subgraph of G,
the coloured independence oracle outputs 1 if and only if no
colourful edge is present. We consider a computation model
where the algorithm is given access to V and k, but can only
access E via cINDG. We say that such an algorithm has
coloured oracle access to G, and for legibility we write it to
have G as an input. Our main result is as follows.

THEOREM 1. There is a randomised algorithm
Count(G, ε, δ) with the following behaviour. Suppose G is
an n-vertex k-hypergraph, and that Count has coloured
oracle access to G. Suppose ε and δ are rational with
0 < ε, δ < 1. Then, writing T = log(1/δ)ε−2k6k log4k+7 n:
in time O(nT ), and using at most O(T ) queries to
cINDG, Count(G, ε, δ) outputs a rational number ê. With
probability at least 1− δ, we have ê ∈ (1± ε)e(G).

We note that an analogue of Theorem 1 in a more abstract
setting was obtained in subsequent independent work by
Bhattacharya, Bishnu, Ghosh and Mishra [9]; our result
achieves better running time in terms of ε (ε−2 as compared
with ε−4 in [9]).

As an example of how Theorem 1 applies to approximate
counting problems, consider the problem #k-CLIQUE of
counting the number of cliques in an n-vertex graph H
of size k. We take G to be the k-hypergraph on vertex
set V (H) whose hyperedges are precisely those size-k
sets which span cliques in G. Thus ε-approximating the
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number of k-cliques in H corresponds to ε-approximating
the number of hyperedges in G. We may use a decision
algorithm for k-Clique with running time f(n, k) to evaluate
cINDG in time f(n, k), by applying it to an appropriate
subgraph of G (in which we delete all edges within each
colour class Xi). Thus Theorem 1 gives us an algorithm
for ε-approximating the number of k-cliques in H in time
O(nT + Tf(n, k)). Any decision algorithm for k-Clique
must read a constant proportion of its input, so we have
f(n, k) = Ω(n) and our overall running time isO(Tf(n, k)).
It follows that any decision algorithm for k-clique yields an
ε-approximation algorithm for #k-Clique with overhead only
T = ε−2(k log n)O(k).

The polynomial dependence on ε in Theorem 1 is not
surprising, as by taking ε < 1/2nk and rounding we can
obtain the number of edges of G exactly. Thus if the
dependence on ε were subpolynomial, Theorem 1 would
essentially imply a fine-grained reduction from exact counting
to decision. This is impossible under SETH in our setting;
see [14, Theorem 3] for a more detailed discussion.

We extend Theorem 1 to approximately-uniform sam-
pling as follows.

THEOREM 2. There is a randomised algorithm
Sample(G, ε) which, given a rational number ε with
0 < ε < 1 and coloured oracle access to an n-vertex
k-hypergraph G containing at least one edge, outputs either
a random edge f ∈ E(G) or Fail. For all f ∈ E(G),
Sample(G, ε) outputs f with probability (1 ± ε)/e(G);
in particular, it outputs Fail with probability at most ε.
Moreover, writing T = ε−2k7k log4k+11 n, Sample(G, ε)
runs in time O(nT ) and uses at most O(T ) queries to
cINDG.

We call the output of this algorithm an ε-approximate
sample. Note that there is a standard trick using rejection
sampling which, given an algorithm of the above form,
replaces the ε−2 factor in the running time by a polylog(ε−1)
factor; see [32]. Unfortunately, it does not apply to Theorem 2,
as we do not have a fast way to compute the true distribution
of Sample’s output.

By the same argument as above, Theorem 2 may be
used to sample a size-k clique from a distribution with total
variation distance at most ε from uniformity with overhead
only T = ε−2(k log n)O(k) over decision. (We also note that
it is easy to extend Theorems 1 and 2 to cover the case where
the original decision algorithm is randomised, at the cost of
an extra factor of k log n in the number of oracle uses; we
discuss this further in the full version.)

Theorems 1 and 2 are also of independent interest,
generalising known results in the graph oracle literature. Our
colourful independence oracles are a natural generalisation
of the bipartite independent set (BIS) oracles of Beame et
al. [6] to a hypergraph setting, and when k = 2 the two

notions coincide. Their main result [6, Theorem 4.9] says that
given BIS oracle access to an n-vertex graph G, one can ε-
approximate the number of edges of G using O(ε−4 log14 n)
BIS queries (which they take as their measure of running
time). The k = 2 case of Theorem 1 gives a total of
O(ε−2 log19 n) queries used, improving their running time
for most values of ε, and Theorem 2 extends their algorithm
to approximately-uniform sampling.

When k = 3, our colourful independence oracles are
similar to the tripartite independent set (TIS) oracles of
Bhattacharya et al. [8]. (These oracles ask whether a 3-
coloured graph H contains a colourful triangle, rather than
whether a 3-coloured 3-hypergraph G contains a colourful
edge. But if G is taken to be the 3-hypergraph whose edges
are the triangles of H , then the two notions coincide exactly.)
Their main result, Theorem 1, says that given TIS oracle
access to an n-vertex graph G in which every edge belongs
to at most d triangles, one can ε-approximate the number
of triangles in G using at most O(ε−12d12 log25 n) TIS
queries. Our Theorem 1 gives an algorithm which requires
only O(ε−2 log22 n) TIS queries, with no dependence on
d, and which also generalises to approximately counting k-
cliques for all fixed k. Again, Theorem 2 extends the result
to approximately-uniform sampling.

We note in passing that the main result of [14] doesn’t
quite fit into this setting, as it also makes unrestricted use of
edge existence queries. It resembles a version of Theorem 1
restricted to k = 2 and with slightly lower overhead in n.

1.2 Corollaries in fine-grained complexity In [14], fine-
grained reductions from approximate counting to decision
were shown for the problems ORTHOGONAL VECTORS,
3SUM and NEGATIVE-WEIGHT TRIANGLE (among oth-
ers). The approximate counting procedure for k-uniform
hypergraphs in Theorem 1 allows us to generalize these re-
ductions to k-OV, k-SUM, ZERO-WEIGHT k-CLIQUE, and
other subgraph isomorphism problems. They also apply to
model checking of first-order formulas with k variables. In
each case, Theorem 2 yields a corresponding result for ap-
proximate sampling of witnesses.

1.2.1 First-order Formulas on Sparse Struc-
tures and k Orthogonal Vectors We consider first-
order formulas ϕ, that is, formulas of the form:
Q1x`+1Q2x`+2 . . . Qk−`xk . ψ(x1, . . . , xk). The vari-
ables x1, . . . , x` are the free variables of ϕ, each Qi is a
quantifier from {∃,∀}, and ψ is a quantifier-free Boolean
formula over the variables x1, . . . , xk. We consider first-
order formulas in prenex-normal form with ` ∈ {0, . . . , k}
free variables and quantifier-rank at most k − `; let k-FO
denote the set of all such formulas. The property testing
problem for k-FO is, given a formula and a structure (e.g.,
the edge relation of a graph), to decide whether the formula
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is satisfiable in the structure, that is, whether there is an
assignment to the free variables that makes the formula true.
Correspondingly, the property counting problem is to count
all satisfying assignments.

Model checking and property testing are important
problems in logic and database theory, and have recently been
studied in the context of fine-grained complexity [15, 25, 44]:
Gao et al. [25] devise an algorithm for the property testing
problem for k-FO that runs in time mk−1/2Θ(

√
logm), where

m is the number of distinct tuples in the input relations.
This improves upon an already slightly non-trivial Õ(mk−1)
algorithm.1 By using this improved decision algorithm as
a black box, we obtain new algorithms for approximate
counting (via Theorem 1) and approximate sampling (via
Theorem 2). Note all our approximate counting algorithms
work with probability at least 2/3; this can easily be increased
to 1−δ in the usual way, i.e. running themO(log(1/δ)) times
and taking the median result.

COROLLARY 3. Fix k ∈ Z≥0, suppose an instance of
property testing for k-FO can be solved in time T (n,m) =
O((m+n)k), where n is the size of the universe and m is the
number of tuples in the structure, and write S for the set of
satisfying assignments. Then there is a randomised algorithm
to ε-approximate |S|, or draw an ε-approximate sample from
S, in time ε−2 · Õ(T (n,m)).

In combination with the algorithm of Gao et al. [25],
we can thus ε-approximately sample from the set of
satisfying assignments to any k-FO-property in time
ε−2mk−1/2Θ(

√
logm). For example, this algorithm can be

used to sample an approximately uniformly random solution
tuple to a conjunctive query.

The k-ORTHOGONAL VECTORS (k-OV) problem is a
specific example of a property testing problem, and has con-
nections to central conjectures in fine-grained complexity
theory [1, 25]. The problem asks, given k sets X1, . . . , Xk ⊆
{0, 1}D of Boolean vectors, whether there exist x1 ∈ X1,
. . . , xk ∈ Xk such that

∑D
j=1

∏k
i=1 xij = 0. (The sum and

product are the usual arithmetic operations over Z.) When
x1, . . . , xk are viewed as representing subsets of [D] in the
canonical manner, this condition is equivalent to requiring
they have an empty intersection; when k = 2, it is equiva-
lent to x1 and x2 being orthogonal. Any tuple (x1, . . . , xk)
satisfying the condition is called a witness. Clearly, k-OV
can be solved in time O(NkD) using exhaustive search.
Gao et al. [25] stated the Moderate-Dimension k-OV Con-
jecture, which says that k-OV cannot be solved in time
O(Nk−ε poly(D)) time for any ε > 0. We show that any
reasonable-sized improvement over exhaustive search carries
over to approximate counting and sampling.

1The notation Õ(f(n,m)) means f(n,m) · polylog(n+m).

COROLLARY 4. Fix k ≥ 2, suppose an N -vector D-
dimension instance of k-OV can be solved in time T (N,D),
and write W for the set of witnesses. Then there is a ran-
domised algorithm to ε-approximate |W |, or draw an ε-
approximate sample from W , in time ε−2 · Õ(T (N,D)).

Note that such an improvement is already known for 2-
OV, which has an N2−1/O(log(D/ logN))-time algorithm [3],
although Chan and Williams [12] already generalised this to
an exact counting algorithm.

1.2.2 k-SUM The k-SUM problem has been studied since
the 1990s as it arises naturally in the context of computational
geometry, see for example [23], and it has become an
important problem in fine-grained complexity theory [45].
For all integers k ≥ 3, the k-SUM problem asks, given a
set of integers, whether some k of them sum to zero. Each
k-subset of integers that does sum to zero is called a witness.
While Kane, Lovett, and Moran [33] very recently developed
almost linear-size linear decision trees for k-SUM, the fastest
known algorithm for this problem still runs in time Õ(ndk/2e),
and no(k) as k →∞ is ruled out under the exponential-time
hypothesis [40]. We prove that any sufficiently non-trivial
improvement over the best known decision algorithm carries
over to approximate counting and witness sampling.

COROLLARY 5. Fix k ≥ 3, suppose an n-integer instance
of k-SUM can be solved in time T (n), and write W for the
set of witnesses. Then there is a randomised algorithm to
ε-approximate |W |, or draw an ε-approximate sample from
W , in time ε−2 · Õ(T (n)).

1.2.3 EXACT-WEIGHT k-CLIQUE and Other Subgraph
Problems Recall that Theorem 1 applies to the problem #k-
CLIQUE. This observation generalizes to other subgraph
problems as well. We consider weighted graph problems,
where we are given a graph G with an edge-weight function
w : E(G) → Z. The weight of a clique X in G is the
sum

∑
e w(e) over all edges e ∈ E(G) with e ⊆ X . The

EXACT-WEIGHT k-CLIQUE problem is to decide whether
there is a k-clique X of weight exactly 0. It has been
conjectured [1] that there is no real ε > 0 and integer k ≥ 3
such that the EXACT-WEIGHT k-CLIQUE problem on n-
vertex graphs and with edge-weights in {−M, . . . ,M} can
be solved in time O(n(1−ε)kpolylog(M)). (For the closely
related MIN-WEIGHT k-CLIQUE problem, a subpolynomial-
time improvement over the exhaustive search algorithm is
known [1, 43, 12], with running time nk/ exp(Ω(

√
log n)).)

Theorems 1 and 2 imply that any sufficiently non-trivial
improvement on the running time of an EXACT-WEIGHT
k-CLIQUE algorithm will carry over to the approximate
counting and sampling versions of the problem.

COROLLARY 6. Fix k ≥ 3, suppose an n-vertex m-edge
instance of EXACT-WEIGHT k-CLIQUE with weights in

Copyright c© 2019
Copyright for this paper is retained by authors



[−M,M ] can be solved in time T (n,m,M), and write C for
the set of zero-weight k-cliques. Then there is a randomised
algorithm to ε-approximate |C|, or draw an ε-approximate
sample from C, in time ε−2 · Õ(T (n,m,M)).

There is a more general version of EXACT-WEIGHT k-
CLIQUE which takes as input an edge-weighted d-hypergraph
and asks whether it contains a zero-weight k-clique. A similar
conjecture exists for this version of the problem [1], and
Theorems 1 and 2 yield a result analogous to Corollary 6.

Our framework also applies to subgraphs more general
than cliques. The EXACT-WEIGHT-H problem asks, given
an edge-weighted graph G, whether there exists a subgraph
of G that has weight zero and is isomorphic to H . We say
H is a core if every homomorphism from H to H is also an
automorphism. Cores are a rich class of graphs, including
cliques, odd cycles, and (with high probability) any binomial
random graph G(n, p) with edge probability n−1/3 log2 n <
p < 1 − n1/3 log2 n (see [11, Theorem 2]). Corollary 6
generalises to EXACT-WEIGHT-H whenever H is a core.
In particular, Abboud and Lewi [2, Corollary 5] prove that
EXACT-WEIGHT-H can be solved in time Õ(nγ(H)), where
γ(H) ≥ 1 is a graph parameter that is small whenever H has
a balanced separator, so we obtain the following result.

COROLLARY 7. LetH be a core, letG be an n-vertex graph,
and let H(G) be the set of zero-weight H-subgraphs in G.
There is an algorithm to draw an ε-approximate sample from
H(G) in time Õ(ε−2nγ(H)).

Our framework also applies to colourful subgraphs. The
COLOURFUL-H problem asks, given a graph G and a vertex
colouring c : V (G)→ {1, . . . , |V (H)|}, whether G contains
a colourful copy of H — that is, a subgraph isomorphic to H
containing one vertex from each colour class.

COROLLARY 8. Let H be a fixed graph, suppose an n-
vertex m-edge instance of COLOURFUL-H can be solved
in time T (m,n), and write H for the set of colourful H-
subgraphs. Then there is a randomised algorithm to ε-
approximate |H|, or draw an ε-approximate sample from
H, in time ε−2 · Õ(T (m,n)).

Daz, Serna, and Thilikos [16] show using dynamic
programming that #COLOURFUL-H can be solved exactly
in time Õ(nt+1), where t is the treewidth of H . Marx [36]
asks whether it is possible to detect colourful subgraphs in
time no(t), and proves that no(t/ log t) is impossible under the
exponential-time hypothesis (ETH). Our result shows that any
algorithm to detect colourful subgraphs in time no(t) would
essentially also have to approximately count these subgraphs
— a more difficult task.

1.3 Corollaries in parameterised complexity When con-
sidering approximation algorithms for parameterised count-
ing problems, an “efficient” approximation scheme is an

FPTRAS (fixed parameter tractable randomised approxima-
tion scheme), as introduced by Arvind and Raman [5]; this
is the analogue of an FPRAS in the parameterised setting.
An FPTRAS for a parameterised counting problem Π with
parameter k is an algorithm that takes an instance I of Π
(with |I| = n) and a rational number ε > 0, and in time
f(k) · poly(n, 1/ε) (where f is some computable function)
outputs a rational number z such that

P[(1− ε)Π(I) ≤ z ≤ (1 + ε)Π(I)] ≥ 2/3.

Note that this definition is equivalent to that given in [5]
which requires the failure probability to be at most δ, where δ
is part of the input; repeating the process above O(log(1/δ))
times and returning the median solution allows us to reduce
the error probability from 1/3 to δ.

As mentioned above, a large number of well-studied
problems in parameterised complexity fall within our k-
hypergraph framework; for standard notions in parameterised
(counting) complexity we refer the reader to [21]. Observe
that we can rewrite our overhead of logO(k) n in the form
k2kno(1): if k ≤ log n/(log log n)2 then logO(k) n =
eO(logn/ log logn) = no(1), and if k ≥ log n/(log logn)2

then logO(k) n = O(k2k). Thus we can consider this to be a
“fine-grained FPT overhead”.

Theorems 1 and 2 can therefore be applied immediately
to any self-contained k-witness problem (see [38]); that is, any
problem with integer parameter k in which we are interested
in the existence of witnesses consisting of k-element subsets
of some given universe, and we have the ability to quickly test
whether any given k-element set is such a witness. Examples
include weight-k solutions to CSPs, size-k solutions to
database queries, and sets of k vertices in a (weighted) graph
or hypergraph which induce a sub(hyper)graph with specific
properties. This last example encompasses many of the
best-studied problems in parameterised counting complexity,
including the problem #SUB(H,G) (with parameter |V (H)|)
which asks for the number of subgraphs of G isomorphic to
H; the well-studied problems of counting k-vertex paths,
cycles and cliques are all special cases. More generally,
we can consider the problem #INDUCED SUBGRAPH WITH
PROPERTY(Φ) (#ISWP(Φ)), introduced by Jerrum and
Meeks [30], for any property Φ.

However, our coloured independence oracle doesn’t quite
correspond to deciding whether a witness exists: it needs to
solve a multicolour version of the decision problem. The
multicolour decision version of a self-contained k-witness
problem takes as input a universe U together with a k-
colouring of the elements of U , and asks whether there exists
a witness which contains precisely one element of each colour.
The following result is immediate from Theorems 1 and 2 on
taking the vertex set of the hypergraph to be U , the edges to
be the k-witnesses, and simulating the coloured independence
oracle by invoking a multicolour decision algorithm.
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THEOREM 9. Let Π be a self-contained k-witness decision
problem, and suppose that the multicolour version of Π
can be solved in time T (n, k) when the universe U has
size n. Let c : U → [k] be a colouring, let W be the set
of (uncoloured) witnesses of Π, and let W c be the set of
multicolour witnesses of Π with respect to c. Then given U
and c, in time ε−2k2kno(1)T (n, k), there is a randomised
algorithm to ε-approximate |W | or |W c|, or draw an ε-
approximate sample from W or W c.

Such multicolour problems have been studied before in
the literature, including #MISWP(Φ), the multicolour version
of #ISWP(Φ); see [37] for a survey of results relating the
complexity of multicolour and uncoloured problems in this
setting. In many cases, the multicolour decision problem
reduces straightforwardly to the original decision problem —
for example, if our witnesses are k-vertex cliques in a graph.
But this is not true in general; if our witnesses are k-vertex
cliques and k-vertex independent sets, then the uncoloured
decision problem admits a trivial FPT algorithm by Ramsey’s
theorem [5], but the W[1]-complete problem k-CLIQUE
reduces to the multicolour version [37]. In the restricted
setting of SUB(H ,G), it is straightforward to verify that the
multicoloured and uncoloured versions of the problem are
equivalent when the graph H is a core, but this is not known
for general H . In fact, a proof of equivalence would imply
the long-standing dichotomy conjecture for the parameterised
embedding problem (see [13] for recent progress on this
conjecture). We believe that Theorem 9 motivates substantial
further research into the complexity relationship between
multicoloured problems and their uncoloured counterparts.

One consequence of Theorem 9 is that if MISWP(Φ)
admits an FPT decision algorithm, then we obtain FPTRASes
for both #MISWP(Φ) and #ISWP(Φ) with roughly the same
running time as the original decision algorithm. This
generalises a previous result of Meeks [37, Corollaries 4.8
and 4.10] which states that subject to standard complexity-
theoretic assumptions, if we restrict our attention to properties
Φ that are preserved under adding edges, there is an FPTRAS
for the counting problems #MISWP(Φ) and #ISWP(Φ) if and
only if there is an FPT decision algorithm for MISWP(Φ).
Theorem 9 strengthens this result in two ways. Firstly, we
no longer need the restriction that the property is preserved
under adding edges, as we can now consider an arbitrary
property Φ. Secondly, we demonstrate a close relationship
between the running-times for decision and approximate
counting, meaning that any improvement in a decision
algorithm immediately translates to an improved algorithm
for approximate counting.

One example where Theorem 9 already gives an improve-
ment (in almost all settings) to the previously best-known
algorithm for approximate counting is the GRAPH MOTIF
problem, introduced by Lacroix, Fernandes and Sagot [35] in
the context of metabolic networks. This problem takes as in-

put an n-vertex m-edge graph with a (not necessarily proper)
vertex-colouring, together with a multiset M of colours, and
a solution is a subset U of |M | = k vertices such that the
subset induced by U is connected and the colour multiset of
U is exactly M ; M is called a motif, and we call U a motif
witness for M .

There has been substantial progress in recent years on im-
proving the running-time of decision algorithms for GRAPH
MOTIF [7, 10, 19, 26, 34], with the fastest randomised algo-
rithm [10] (based on constrained multilinear detection) run-
ning in time O(2kk3m). For the counting version, Guillemot
and Sikora [26] addressed the related problem of counting
k-vertex subtrees of a graph whose vertex set has colour mul-
tiset M (which counts motif witnesses U for M weighted by
the the number of trees spanned by U ). They demonstrated
that this problem admits an FPT algorithm for exact counting
when M is a set, but is #W[1]-hard otherwise. Subsequently,
Jerrum and Meeks [30] addressed the more natural counting
analogue of GRAPH MOTIF in which the goal is to count
motif witnesses for M without weights. They demonstrated
that this problem is #W[1]-hard to solve exactly even if M
is a set, but gave an FPTRAS to solve it approximately. By
using this FPTRAS together with Theorems 1 and 2, we prove
the following.

COROLLARY 10. Given an n-vertex instance of
GRAPH MOTIF with parameter k and 0 < ε < 1,
there is a randomised algorithm to ε-approximate the number
of motif witnesses or to draw an ε-approximate sample from
the set of motif witnesses in time O(ε−2k8km log4k+8 n).

Theorem 9 also generalises a known relationship between
the complexity of uncoloured approximate counting and mul-
ticolour decision in the special case of SUB(H ,G). In this
restricted setting, multicolour decision is actually equivalent
to multicolour exact counting; there is an FPT algorithm to ex-
actly count the number of multicolour solutions whenever the
treewidth of H is bounded by a constant, with essentially the
same running time as the best-known decision algorithm [4].
On the other hand, even the multicolour decision problem
is W[1]-hard if H is restricted to any class of graphs with
unbounded treewidth [37]. Alon et al. [29] essentially give a
fine-grained reduction from uncoloured approximate count-
ing to multicolour exact counting, giving an algorithm with
running time matching the best-known algorithm for mul-
ticolour decision. (Note that their running time is slightly
better than that obtained by applying Theorem 9, and that
uncoloured exact counting is #W[1]-hard even when H is a
path or cycle [22].)

However, in general it is not true that multicolour exact
counting is equivalent to multicolour decision — indeed, there
are natural examples (such as counting k-vertex subsets that
induce connected subgraphs) in which the counting is #W[1]-
hard but the decision is FPT [30]. Theorem 9 therefore
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strengthens [29], in the sense that if a faster multicolour
decision algorithm is discovered then the improvement to the
running time will immediately be carried over to uncoloured
approximate counting, whether or not the new algorithm
generalises to exact multicolour counting.

In this specific case, the existing decision algorithm
turns out to already give an algorithm for exact counting
with the same asymptotic complexity; however, there is no
theoretical reason why the constant in the exponent could not
be improved, and our results mean that any such improvement
in a decision algorithm could immediately be translated to a
faster algorithm for approximate counting.

Organisation. In Section 2, we set out our notation. We
sketch the proof of Theorem 1 in Section 3, using a weaker
approximation algorithm which we set out in Section 4. We
sketch the proof of Theorem 2 (using Theorem 1) in Section 5.

2 Notation
Let k ≥ 2 and let G = (V,E) be a k-hypergraph, so that
each edge in E has size exactly k. We write e(G) = |E|. For
all U ⊆ V , we write G[U ] for the subgraph induced by U .
For all S ⊆ V , we write dH(S) = |{e ∈ E(G) : S ⊆ e}| for
the degree of S in H . If S = {v1, . . . , v|S|}, then we will
sometimes write dH(v1, . . . , v|S|) = dH(S).

For all positive integers t, we write [t] = {1, . . . , t}.
We write ln for the natural logarithm, and log for the base-2
logarithm. Given real numbers x, y ≥ 0 and 0 < ε < 1,
we say that x is an ε-approximation to y if (1− ε)x < y <
(1 + ε)x, and write y ∈ (1± ε)x. We extend this notation to
other operations in the natural way, so that (for example) y ∈
xe±ε/(2∓ ε) means that xe−ε/(2 + ε) ≤ y ≤ xeε/(2− ε).

When stating bounds on running times of algorithms, we
assume the standard randomised word-RAM machine model
with logarithmic-sized words; thus given an input of size N ,
we can perform arithmetic operations on O(logN)-bit words
and generate uniformly random O(logN)-bit words in O(1)
time.

Recall the definitions of C(G) and the coloured inde-
pendence oracle of G, and coloured oracle access from Sec-
tion 1.1. Note that for all X ⊆ V (G), cINDG[X] is a re-
striction of cINDG. Thus an algorithm with coloured oracle
access to G can safely call a subroutine that requires coloured
oracle access to G[X].

3 The main algorithm
In this section we sketch the proof of our main approximate
counting result, Theorem 1. We will make use of an
algorithm with a weaker approximation guarantee. We state
its properties in the following lemma, whose proof we will
sketch in Section 4.

LEMMA 11. There is a randomised algorithm
Coarse(G, δ) with the following behaviour. Suppose

G is an n-vertex k-hypergraph to which Coarse has (only)
coloured oracle access, where n is a power of two, and sup-
pose 0 < δ < 1. Then in time O(log(1/δ)k3kn log2k+2 n),
and using at most O(log(1/δ)k3k log2k+2 n) queries
to cINDG, Coarse(G, δ) outputs a rational number ê.
Moreover, with probability at least 1− δ,

e(G)

2(4k log n)k
≤ ê ≤ e(G) · 2(4k log n)k.

Write n = 2` for some integer `. We first set out a toy
algorithm for the purpose of illustration. Let t be a suitably
large integer, and take independent uniformly random subsets
X1, . . . , Xt ⊆ V (G) subject to |Xi| = 2`−1 for all i ∈ [t].
It is not hard to show that E(e(G[Xi])) ≈ e(G)/2k for all
i. Thus, using Hoeffding’s inequality, we can show that the
total number of edges

∑t
i=1 e(G[Xi]) is concentrated around

its mean of roughly te(G)/2k. It follows that, with high
probability, (2k/t)

∑t
i=1 e(G[Xi]) ≈ e(G).

Repeating this expansion procedure yields the following
(bad) algorithm. We maintain a list L of pairs (w,X),
where w ∈ Q is positive and X ⊆ V (G), and we
preserve the invariant

∑
(w,X)∈L we(G[X]) ≈ e(G) with

high probability. (We expect the quality of approximation
to degrade as the algorithm runs, but we ignore this subtlety
in our sketch.) Initially, we take L = (1, V (G)), which
clearly satisfies this invariant. At each stage, for each pair
(w,X) ∈ L, we independently choose t uniformly random
subsets X1, . . . , Xt ⊆ X subject to |Xi| = |X|/2 for all
i, as above. We then delete (w,X) from L and replace it
by (2kw/t,X1), . . . , (2kw/t,Xt). Thus, as we proceed, L
grows, but the sets X in L’s entries become smaller, and
the invariant

∑
(w,X)∈L we(G[X]) ≈ e(G) is maintained.

Eventually, the entries of L become so small that for all
(w,X) ∈ L, we can use cINDG to count e(G[X]) quickly by
brute force, and we are done.

The problem with the algorithm described above is that in
order to maintain the invariant with high probability, we must
take t = Ω(ε−2 log n), and to bring the vertex sets in L down
to a manageable size we require Ω(log n) expansion opera-
tions. Thus our final list will have length (ε−2 log n)Ω(logn),
resulting in an algorithm with superpolynomial running time.
We avoid this problem by exploiting a statistical technique
called importance sampling, previously applied to the k = 2
case by Beame et al. [6]. Given a coarse estimate of each
e(G[Xi]), as found by Coarse, this technique allows us
to prune L to a manageable length in O(|L|) time, while
maintaining the invariant

∑
(w,X)∈L we(G[X]) ≈ e(G) with

high probability. We set out our algorithm for this, Trim, in
the full version; it gives a substantially shorter list than the
algorithm used in [6], thereby improving our running time.

Unlike [6], we also use the output of Coarse to
improve the efficiency of our expansion procedure. The
algorithm described above treats all pairs (w,X) ∈ L equally,
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expanding each one into t smaller pairs. Thus L grows by
a factor of t in a single expansion step. Our real algorithm
will work differently. For each pair (wi, Xi), we will choose
the number ti of replacement pairs according to our coarse
estimate ofwie(G[Xi]). We will take ti to be large if (wi, Xi)
accounts for a large proportion of

∑
(w,X)∈L we(G[X]), and

small otherwise; thus we only spend a lot of time processing
a pair if it is “important”. This optimisation, together with the
improved importance sampling procedure discussed above,
drops our running time by a factor of roughly ε−2. We
therefore improve the results of [6] even when k = 2. In the
full version, we set out our expansion procedure as Halve.

Overall, a sketch implementation of Count is as follows.
Let I = log n−dlog(2k2)e, and let δ = 1/3(2I+1). Initially,
we take L = (1, V (G),Coarse(G, δ)), and we maintain the
invariants that∑

(w,S,ê)∈L

we(G[S]) ≈ e(G),

ê = Coarse(G[S], δ) for all (w, S, ê) ∈ L.

Then we update L ← Halve(Trim(L)) a total of I
times. Each invocation of Trim reduces the length of L
to ε−2 logO(k) n, and after the i’th invocation of Halve
we have |S| = n/2i for all (w, S, ê) ∈ L. Then, for all
(w, S, ê) ∈ L, we calculate e(G[S]) by brute force using
cINDG; this is fast since Halve guarantees that |S| = O(k2),
and since Trim guarantees that L is short. We then output∑

(w,S,ê)∈L we(G[S]) ≈ e(G). Note we have glossed over
several technical details, such as some degradation of our
invariant with repeated invocations of Trim and Halve,
which we cover in detail in the full version.

4 Coarse approximate counting
The heart of our proof for Lemma 11 is a subroutine to solve
the following simpler “gap-version” of the approximation
problem. Given a k-partite k-hypergraph G, to which we
have (only) coloured oracle access, and a guess M ≥ 0, we
ask: Does G have more than M edges? We wish to answer
correctly with high probability provided that either G has at
least M edges, or G has significantly fewer than M edges,
namely at most γM edges with γ = 1/(23k+1k2k logk n).

Suppose we can solve this problem probabilistically,
perhaps outputting Yes with probability at least 1/50 if
e(G) ≥ M (which we call completeness) and outputting
Yes with probability at most 1/100 if e(G) ≤ γM (which
we call soundness). We then apply probability amplification
to substantially reduce the failure probability, and use binary
search to find the least M such that our output is Yes — with
high probability, this will approximate e(G) when our input
k-hypergraph is k-partite. We then generalise our algorithm
from k-partite inputs to arbitrary inputs using random colour-
coding. These parts of the algorithm are fairly standard, so

in this section we will only sketch our solution to the gap-
problem.

Let G be a k-partite k-hypergraph with vertex classes
X1, . . . , Xk, and for simplicity suppose n = |V (G)| is a
power of two. The basic idea of the algorithm is to randomly
remove vertices from G to form a new graph H in such a
way that each edge survives with probability roughly 1/M ,
and then query the coloured independence oracle and output
Yes if and only if at least one edge remains. If G has at
most γM edges, then a union bound implies we are likely
to output No (soundness); if G has at least M edges, then in
expectation at least one edge survives the removal, so we hope
to output Yes (completeness). Unfortunately, the number of
edges remaining in H need not be concentrated around its
expectation— for example, if every edge of G is incident to
a single vertex v — so we must be very careful if this hope is
to be realised.

Suppose for the moment that k = 2, so that G is a
bipartite graph with vertex classes X1 and X2. Then we will
form X ′1 ⊆ X1 by including each vertex independently with
some probability p1, and X ′2 ⊆ X2 by including each vertex
independently with some probability p2. Each edge survives
with probability p1p2, so we require p1p2 ≤ 1/M to ensure
soundness. To ensure completeness, we would then like to
choose p1 and p2 such that G[X ′1, X

′
2] is likely to contain an

edge whenever e(G) ≥M .
To see that such a pair (p1, p2) exists, we first partition

the vertices in X1 according to their degree: For 1 ≤ d ≤
log n, let Xd

1 be the set of vertices v with 2d−1 ≤ d(v) < 2d.
By the pigeonhole principle, there exists some D such that
XD

1 is incident to at least e(G)/ log n edges. We take p1 =
2D/M and p2 = 1/2D. We certainly have p1p2 ≤ 1/M .
Suppose e(G) ≥ M . Since XD

1 is incident to at least
e(G)/ log n edges, we have |XD

1 | ≥ M/2D log n, so with
reasonable probability X ′1 contains a vertex v1 ∈ XD

1 . Then
v1 has degree roughly 2D in X2, so again with reasonable
probability X ′2 contains a vertex adjacent to it.

There is one remaining obstacle: Since we only have
coloured oracle access to G, we do not know what D is!
Fortunately, since there are only O(log n) possibilities, we
can simply try them all in turn, and output Yes if any one of
them yields a pair X ′1, X

′
2 such that G[X ′1, X

′
2] contains an

edge. (It is not hard to tune the parameters so that this doesn’t
affect soundness.) This is essentially the argument used by
Beame et al. [6].

When we try to generalise this approach to k-
hypergraphs, we hit a problem. For illustration, take k = 3
and suppose e(G) ≥ M . Then we wish to guess a vector
(p1, p2, p3) such that p1p2p3 ≤ 1/M and, with reasonable
probability, G[X ′1, X

′
2, X

′
3] contains an edge. As in the k = 2

case, we can guess an integer 0 ≤ D ≤ 2 log n such that a
large proportion of G’s edges are incident to a vertex in X1

of degree roughly 2D. Also, if we take p1 = 2D/M then it
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is reasonably likely that X ′1 will contain a vertex of degree
roughly 2D, say v1. But we cannot iterate this process — the
structure of G[v1, X2, X3], and hence the “correct” value of
p2, depends very heavily on v1. So for example, when we
test the two guesses (2D/M, 1/2D, 1) and (2D/M, 1, 1/2D),
we wish to ensure that the value of v1 is the same in each test.
This is the reason for step (C1) in the following algorithm;
it is important that we do not choose new random subsets of
X1, . . . , Xk independently with each iteration of step (C2).

Algorithm VerifyGuess(G,M,X1, . . . , Xk).
Input: G is an n-vertex k-hypergraph to which
VerifyGuess has (only) coloured oracle access. n
and M are positive powers of two, and X1, . . . , Xk ⊆
V (G) are disjoint.
Behaviour: Let pout = (8k log n)−k, and let γ =
pout/2(k log n)k.
Completeness: If e(G[X1, . . . , Xk]) ≥ M , then
P(VerifyGuess outputs Yes) ≥ pout.
Soundness: If e(G[X1, . . . , Xk]) < γM , then
P(VerifyGuess outputs Yes) ≤ pout/2.

(C1) For each i ∈ [k] and each 0 ≤ j ≤ k log n, con-
struct a subset Yi,j of Xi by including each vertex
independently with probability 1/2j . Construct
the finite set A of all tuples (a1, . . . , ak) with 0 ≤
a1, . . . , ak ≤ k log n and a1 + · · ·+ ak ≥ logM .

(C2) For each tuple (a1, . . . , ak) ∈ A: If
cINDG(Y1,a1 , . . . , Yk,ak) = 0, then halt and out-
put Yes.

(C3) We have not halted yet, but do so now and output
No.

In the full version, we formalise the above sketch to prove
that VerifyGuess behaves correctly, and use it to prove
Lemma 11. It is not hard to show that VerifyGuess runs
in time O(k3kn log2k+2 n) and requires O(k3k log2k+2 n)
oracle queries.

5 Approximately uniform sampling
In this section we sketch the proof of Theorem 2 from
Theorem 1. Suppose for the moment that we are given an
exact counting algorithm Count(G) which, given coloured
oracle access to an n-vertex k-hypergraph G, returns e(G).
The standard approach for reducing sampling to counting,
as used in [32], would essentially be to choose an arbitrary
vertex v ∈ V (G), and then to include v in the output
edge with probability Count(G − v)/Count(G). If v is

not included, then update G 7→ G − v; if v is included,
then update G to the (k − 1)-hypergraph with vertex set
G − v and edge set {e \ {v} : v ∈ e ∈ E(G)}. Then
repeat the process until we have a k-element output edge.
This approach has two problems in our setting. First, our
problems are not self-reducible in this sense; in general, we
cannot efficiently simulate the coloured independence oracle
of the (k − 1)-hypergraph described above. And second,
in general this approach requires Ω(n) invocations of the
coloured independence oracle, which is far more than the
statement of Theorem 2 allows.

Suppose for simplicity that n and k are both powers of
two. Then our approach is as follows. Let X1 = V (G).
We sample a uniformly-random size-(n/2) subset X ⊂
V (G). With probability Count(G[X])/Count(G[X1]), we
“accept” this set and let X2 = X . Otherwise, we “reject” it
and resample X , repeating the process until we have chosen
X2. This is an example of rejection sampling (see e.g.
Florescu [20, Proposition 3.3]), so for all size-(n/2) sets
X ⊂ V (G), the probability that X2 = X is proportional to
e(G[X]). Moreover, one can show that O(2k) samples are
required in expectation before accepting a set X2. We then
repeat the process to find a size-(n/4) set X3 ⊂ V (G) such
that P(X3 = X) is proportional to e(G[X3]), and so on until
reaching a size-k set Xlogn−log k+1. By our invariant that
P(Xr = X) is proportional to e(G[Xr]) for all r, this set will
be a uniformly-chosen edge. The running time and oracle
usage of our algorithm is then dominated by our O(2k log n)
calls to Count.

Of course, Theorem 1 does not actually give us an exact
counting algorithm Count(G), but an approximate counting
algorithm Count(G, ε, δ) whose output has relative error ε
and which fails with probability δ; in particular, Count may
output zero when the correct answer is non-zero or vice versa.
This makes the analysis more technical, in ways we defer to
the full version, but the idea remains the same.
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