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Abstract: Several nonlinear and anisotropic constitutive models have been proposed to describe the
biomechanical properties of soft tissues, and reliably estimating the unknown parameters in these
models using experimental data is an important step towards developing predictive capabilities.
However, the effect of parameter estimation technique on the resulting biomechanical parameters
remains under-analyzed. Standard off-the-shelf techniques can produce unreliable results where the
parameters are not uniquely identified and can vary with the initial guess. In this study, a thorough
analysis of parameter estimation techniques on the resulting properties for four multi-parameter
invariant-based constitutive models is presented. It was found that linear transformations have
no effect on parameter estimation for the presented cases, and nonlinear transforms are necessary
for any improvement. A distinct focus is put on the issue of non-convergence, and we propose
simple modifications that not only improve the speed of convergence but also avoid convergence
to a wrong solution. The proposed modifications are straightforward to implement and can avoid
severe problems in the biomechanical analysis. The results also show that including the fiber angle
as an unknown in the parameter estimation makes it extremely challenging, where almost all of
the formulations and models fail to converge to the true solution. Therefore, until this issue is
resolved, a non-mechanical—such as optical—technique for determining the fiber angle is required
in conjunction with the planar biaxial test for a robust biomechanical analysis.

Keywords: biomechanics; parameter estimation; nonlinear preconditioning; gradient-based
minimization; cirrus

1. Introduction

Characterizing the biomechanical properties of soft tissues remains a crucial starting point for
describing and predicting their behavior [1]. Different experimental techniques have been designed,
and several decades of research has produced a large amount of stress-strain data for different tissue
types, such as aorta [2], myocardium [3], and heart valves [4,5]. Unlike engineered materials, most of
these tissues exhibit highly nonlinear and anisotropic responses. In order to describe the wealth of
experimental data, different constitutive models have been developed, and nonlinearity and anisotropy
remain a hallmark of these models [6].

With the increasing complexity of the constitutive models for soft tissues, the number of associated
fitting parameters has also increased. The process of fitting these models to the experimental data,
also knowns as parameter estimation, is an important step [7]. It has been observed that reliably
estimating the parameters can be a challenge, especially as the number of unknown parameters
increase [8]. Moreover, due to the high nonlinearity and anisotropy, the parameters can become
correlated, and the experimental data may not be sufficient to uniquely identify them [9,10]. In fact,
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determining an optimum set of experiments required to uniquely and accurately estimate the model
parameters is an active area of research [11].

On the other hand, the effects of parameter estimation techniques on biomechanical characterization
remain under-analyzed. Generally, methods originally designed for estimating parameters in linear
and isotropic models are used as is, which can suffer from ill-conditioning and slow convergence
when applied to the highly nonlinear problems of tissue mechanics. More importantly, in many cases
the uniqueness of the estimated parameters cannot be tested, which may result in dubious outcomes.
Similarly, extensive research has been carried out in improving the conditioning of linear algorithms [12];
however, these techniques for linear problems may not benefit the nonlinear parameter estimation
common in biomechanics. Thus, there is a strong need for advancement in the area of nonlinear
parameter estimation to help resolve these issues.

Previously, using simplified analysis and elementary algebra arguments, modifications were
proposed to improve the biomechanical parameter estimation [13]. However, that study was focused
solely on the case with two unknowns, which has only one local minima. In other words, for
two parameters, the iterations always converged to the correct solution, and the improvement was
obtained in the speed of convergence. Moreover, one of the proposed modifications was to use
a logarithm of the measured stresses, which poses a problem if the stresses are negative. Thus, there is
a need to further develop these techniques that are more general and easily applicable.

The aim of this study is to thoroughly test novel techniques in the parameter estimation process
for multiple unknowns. To aid easy adaptation and wide applicability, the presented work is
restricted to only simple modifications that are straightforward to implement and focus on the
issue of non-convergence. In Section 2, details of the methods used are described: how artificial
experimental data is generated, which constitutive models are used, details of the algorithm used for
parameter estimation, and the transformations tested. In Section 3, results for each model and different
formulations are presented. At the end, in Section 4, the significance of the results, limitations and
possible future work are discussed before concluding in Section 5.

2. Methods

2.1. Problem Setup

In order to make this study relevant to experimental situations, planar biaxial test protocols—both
displacement controlled (DC) and force controlled (FC)—are used. Strain/stress ratios of 0:1, 1:1,
and 1:0 in the x– and y–directions are applied. Although, in practice, five or seven stress-strain ratios
are used, as using more data is expected to improve the accuracy of the fitted model. That is true
when there is noise present in the data and/or the model is not perfect. However, in this study the
experimental data is assumed to be noiseless and perfect, which makes the parameter estimation
easier and theoretically only two stress-strain ratios are required to estimate all the parameters
uniquely. Lastly, shear stresses and deformations are neglected, and plane stress and incompressibility
assumptions are used. Thus, only two stress-strain relations remain relevant.

In the DC case, the inputs are stretch ratios λx and λy, and the outputs are Cauchy stresses σxx and
σyy. Inversely, in the FC case, the inputs are Cauchy stresses σxx and σyy, and the outputs are stretch
ratios λx and λy. The maximum axial stretch applied is 1.1225, while the maximum normal stress
applied is 130 kPa. The material parameters are assumed to be homogeneous everywhere, and hence
for the DC case, the input-output relation is analytical. Moreover, even for the FC case, an iterative
solver based on the Powell hybrid method [14] is used to calculate stretch ratios from the stresses. Thus,
no finite element simulations are required, which helps keep the computational expenses reasonable.

2.2. Constitutive Models

Standard notations in large deformation mechanics are adopted [15]: F is the deformation gradient,
C = F>F is the right Cauchy-Green deformation tensor, and I1 = tr (C) is the first invariant of C.
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Due to incompressibility, the Jacobian of the deformation J = det F is constrained to be unity J = 1. If
the fiber direction is denoted by a direction vector M, the stretch along the fiber is defined by the fourth
invariant of C: I4 = M ·CM. For planar tissues with in-plane fibers aligned at an angle θ to the x-axis
and normal direction parallel to the z-axis, the fiber direction can be written as M = [cos(θ), sin(θ), 0]>.

The Cauchy stress tensor is σ, which is derived from the strain energy density Ψ as

σ = 2F · ∂Ψ
∂C
· F> − pI, (1)

where I is the identity tensor and p is the hydrostatic pressure acting as a Lagrange multiplier to
enforce incompressibility. To define the stress-strain relationship, the following four constitutive
models popular in the biomechanics community are used; however, different symbols are used for the
material parameters than the literature for consistency across the models in this study.

2.2.1. Gasser-Ogden-Holzapfel (GOH) Model

The GOH model defines the strain energy density function as [16]

Ψ (C) =
c1

2c2

(
eQ − 1

)
+

c0

2
(I1 − 3) , (2)

where
Q = c2 [c3 I1 + (1− 3c3)I4 − 1]2 . (3)

The first term is the contribution of fibrous tissue, whereas the second term is assumed to be due to
isotropic matrix. cJ (J = 0, 1, 2) are material parameters, and the dispersion parameter c3 ∈ [0, 1/3] and
the fiber angle c4 ≡ θ ∈ [0, π] are the structural parameters. Thus, GOH model has a total of M = 5
constitutive parameters.

2.2.2. Humphrey Model

Humphrey and Yin proposed the following strain energy density function for soft tissues [17]

Ψ (C) =
c1

c2

[
ec2(I1−3) − 1

]
+

c3

c4

[
ec4(
√

I4−1)
2
− 1
]

. (4)

Here, cJ (J = 1, 2, 3, 4) are material parameters, and the fiber angle c5 ≡ θ ∈ [0, π] is the structural
parameter. Since there is no neo-Hookean term with parameter c0, the Humphrey model also has
M = 5 constitutive parameters.

2.2.3. Lee–Sacks Model

Lee et al. proposed the following constitutive model for valve tissue [9]:

Ψ (C) =
c0

2
(I1 − 3) +

c1

2

(
c4ec2(I1−3)2

+ (1− c4)ec3(I4−1)2
− 1
)

. (5)

Here, cJ (J = 0, 1, 2, 3) are the material parameters, and the fiber angle c5 ≡ θ ∈ [0, π] and c4 ∈ [0, 1]
are the structural parameters. Thus, Lee–Sacks model has M = 6 constitutive parameters.

2.2.4. May-Newman Model

May-Newman and Yin proposed the following strain energy density to define the biomechanical
properties of mitral valve tissue [18]

Ψ (C) = c1

(
eQ − 1

)
+

c0

2
(I1 − 3) , (6)
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where
Q = c2 (I1 − 3)2 + c3

(√
I4 − 1

)4
. (7)

Here, cJ (J = 0, 1, 2, 3) are material parameters, and the fiber angle c4 ≡ θ ∈ [0, π] is the structural
parameter. Thus, May-Newman model has a total of M = 5 constitutive parameters.

2.3. Parameter Estimation Algorithm

A general parameter estimation problem for planar biaxial tissues is the following: given the
“measured” values of stresses and stretches and a chosen constitutive model, determine the associated
constitutive parameters c = {c0, c1, . . . , cM}. The experimental input is denoted as xi and output as ȳi,
i = 1, . . . , n where n is the number of experimental data points. In the DC case, input xi =

[
λi

xx, λi
yy

]
are

the stretches and output ȳi =
[
σi

xx, σi
yy

]
are the stresses, whereas in the FC case, input xi =

[
σi

xx, σi
yy

]
are the stresses and output ȳi =

[
λi

xx, λi
yy

]
are the stretches. The deviation of the chosen model from

the measured output is defined as the residual

ri(c) = 〈m(xi; c), ȳi〉, (8)

where m is the input–output function derived using the chosen constitutive model and then evaluated
at xi input and chosen c parameter values. The residual operator 〈· , ·〉 needs to be chosen appropriately.
A commonly used option is the uniformly weighted difference

rU
i = m(xi; c)− ȳi. (9)

In [13], a “log-norm” was proposed which decreased the nonlinearity and improved the convergence.
However, logarithm has a drawback that it cannot be applied to negative values. It should be noted
that taking a log has the effect of assigning lower weights to higher values. In other words, log(y1)−
log(y2) = log(y1/y2). Inspired by this observation, an alternative residual is tested: a non-uniformly
weighted difference

rN
i =

m(xi; c)
ȳi

− 1. (10)

While using Equation (10), one must exclude points with measured zero values. In practice, this
is easily implemented since exactly zero output is uncommon for anisotropic tissues (except in the
load-free reference configuration, which is trivially satisfied by all models and can be simply discarded).
Lastly, an objective function is defined (also called the Loss function in literature), as simply the square
summation of the residual:

F (c) :=
1
2

n

∑
i=1

(ri · ri). (11)

In order to determine the parameters, a minimization problem is formulated to estimate the
parameters cJ :

c̄ = arg min
c
F (c). (12)

The minimization problem is solved using the Gauss-Newton algorithm with a backtracking line
search [19]. Details are provided in Algorithm 1.

Since the parameter space size grows exponentially with the number of parameters, it becomes
prohibitively expensive to systematically span the space for more than three parameters. Therefore,
Latin Hypercube Sampling (LHS) is used to generate 300 samples from the parameter space (see Table 1
for the parameter ranges used). LHS has the advantage of generating uniformly spaced combinations
of the parameters while keeping the parameter values random. Using each LHS sample Ck

(k = 1, . . . , 300), artificial “measurements” are generated as ȳi = m(xi, Ck). Thus, the “true” parameter
values are known, and the estimated results can be compared against them. Since nonlinear parameter
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estimation depends strongly on the initial guess, all other samples Cl ∀l 6= k are used as the initial
guesses c0 for the parameter estimation algorithm. Thus, for each test, 300× 299 = 89,700 minimization
simulations are computed. Finally, the histogram of the fraction of cases versus iterations taken to
converge are plotted. To test the convergence, the final parameter values are compared with the
true parameter values, and the error is calculated. Since the fiber angle θ is cyclic with a period
of π, the value of cos2(θ) is compared instead. The non-converged cases are subcategorized into
“Unconverged” (U) and “Misconverged” (M): U being the runs that were unable to converge in
maximum number of iterations and M being the ones where minimization converged, however, to
wrong parameter values.

Algorithm 1: Parameter estimation using Gauss-Newton method with backtracking line search.

Data: Observed data y and initial guess c0, MAXITER = 30, TOL = 10−10, δ = 10−5

Result: Parameters that fit the model y to observed data y by minimizing the functional
F (c) = 1

2 r · r (11) with the chosen residual (9) or (10)
initialization c← c0;
ITER← 0;
do

Calculate the fitting model y(c) and its derivatives J = ∂r(c)/∂c using central finite
difference ;

Calculate the search direction and step ∆c by solving J>J∆c = J>r ;
Perform line search as follows (backtracking):
while (∆F = F (c)−F (c + ∆c) < 0) or (calculation of y(c + ∆c) failed ) do

∆c← ∆c/2
end
∆F = F (c)−F (c + ∆c);
c← c + ∆c;
ITER← ITER + 1;

while (∆F > TOL) and (ITER < MAXITER) and (max |∆c| > δ) ;

Table 1. Summary of the models used and the ranges of associated parameters. GOH =
Gasser-Ogden-Holzapfel model.

Model c0 c1 c2 c3 c4 c5

GOH Equation (2) 0 to 100 kPa 5 to 100 kPa 20 to 100 0 to 0.3 0 to π −
Humphrey Equation (4) − 5 to 100 kPa 1 to 100 5 to 100 kPa 1 to 100 0 to π
Lee–Sacks Equation (5) 0 to 100 kPa 5 to 100 kPa 1 to 100 1 to 100 0 to 1 0 to π

May-Newman Equation (6) 0 to 100 kPa 5 to 100 kPa 1 to 100 1 to 1000 0 to π −

2.4. Parameter Transformations

The aim is to study the effect of transforming parameter space from c to ĉ = Γ(c) on the
minimization. As the first step, linear parameter transformation is tested, and, in general, a linear
transformation can be written as ĉ = Pc, where P is a constant matrix. A natural simple linear
transformation is rescaling the parameters

ĉ = [η1c1, . . . , ηMcM] , (13)

so that the derivative of the residual ∂F/∂ĉJ are of the same order. That is,

ηJ =
n

∑
i=1

ri
∂ri
∂cJ

(14)
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calculated from the previous iteration. It should be noted that this rescaling transformation is
equivalent to the well-established Jacobi preconditioner [12].

Next, nonlinear transformations are tested. As shown in [13], taking a log of the parameter c1, i.e.,
ĉ1 = log(c1) was shown to accelerate the convergence for estimating two unknown parameters. To test
if this holds true for different models and multiple parameters, the following transformation is used

[ĉ1, ĉ2, ĉ3, . . . ] = [log(c1), c2, c3, . . . ] . (15)

Since the model by Humphrey (4) has sum of two exponential terms, an equivalent transformation
is tested

[ĉ1, ĉ2, ĉ3, ĉ4] = [log(c1), c2, log(c3), c4] . (16)

Using each transformation, the number of unknown parameters are gradually increased and their
effect on convergence is tested. Lastly, Zhang et al. [20] proposed the following transformation:

[ĉ1, ĉ2, ĉ3, . . . ] =
[
c1eQmax(c), c2, c3, . . .

]
, (17)

where Qmax(c) is maximum value of the exponent over all applied inputs. Although this is not a simple
transformation to implement, for comparison purposes, models with a single exponential term are
tested for the DC case.

3. Results

Using linear transformation, there is no effect on the minimization process for any cases (results
skipped for brevity). This is not surprising since the number of unknowns in this case is always
less than six, which means that the Hessian matrix—even if it has a high condition number—can be
inverted with high precision. Thus, the linear transformation has no effect on the presented problem,
but it may improve the estimation for heterogeneous problem or while using an algorithm like the
steepest-descent where the Hessian is not inverted. Henceforth, only the nonlinear transformations
are focused on for different models described in the previous section.

3.1. GOH Model

For the DC case with GOH model (2), as the first check, only two parameters, c1 and c2, are
estimated while keeping other parameters fixed. Both the log transformation (15) and non-uniformly
weighted residual (10) show faster convergence compared to the standard uniform weighted residual
and no transformation (Figure 1a). Furthermore, the algorithm is able to find true parameters for all
runs and formulations.

If the number of unknowns is increased to include c0 and c3 (but keep the fiber angle θ fixed),
using the standard formulation (uniform weighted residual and no transformation), there are a small
fraction of cases that either do not converge or converge to the wrong solution (Figure 1b). These
cases are reduced to almost none when using the log transformation (15) and non-uniformly weighted
residual (10). This is an important improvement in addition to faster convergence.

Furthermore, if the fiber angle θ is also treated as an unknown, the number of unconverged and
misconverged runs increases dramatically, and only less than a third of the runs converge to the true
parameter values (Figure 1c). Although, the log transformation (15) and non-uniformly weighted
residual (10) improve the situation slightly, there still remains a large number of non-converged runs.
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Figure 1. Iterations required using different formulations for GOH model (2) displacement controlled
(DC) case when (a) only c1 and c2 are unknown, (b) all parameters except the angle θ are unknown,
and (c) all parameters are unknown.

The standard formulation (uniformly weighted residual and original parameters) and the best
formulation so far (non-uniformly weighted residual and log(c1) transformation) are compared with
the one proposed by Zhang et al. [20] (Figure 2). Results show that Zhang’s transformation helps
improve the convergence compared to the standard formulation; however, its performance is sub-par
to the one proposed here—both for two and four unknown parameters.
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Figure 2. Iterations required using different formulations for the GOH (2) model DC case when (a) only
c1 and c2 are unknown and (b) all parameters except the angle θ are unknown.

For the FC case with the GOH model (2), as a start, only two parameters, c1 and c2, are estimated
and all other parameters are fixed. Results show that all the cases are converged, and that using a log
transformation improves the convergence speed (Figure 3a). However, compared to the DC case, no
appreciable difference is found by using the non-uniformly weighted residual (10) in this case.

As the number of unknowns is increased to include c0 and c3, the behavior remains similar
(Figure 3b). The log transformation helps the algorithm by making the convergence faster and
decreasing the number of non-converged runs. However, there is no effect of the non-uniformly
weighted residuals. If the fiber angle θ is also an unknown, similar to the DC case, the parameter
estimation becomes extremely difficult, and only a small fraction of the runs converge (Figure 3c).
There is only a small improvement by using the log transformation and non-uniformly weighted
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residuals. It should be noted that using Zhang’s formulation (17) for the FC case is problematic because
the strain is unknown and finding the maximum value of the exponent will be expensive. Since no
improvement was found in the DC case, the formulation by Zhang is omitted for the FC case.
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Figure 3. Iterations required using different formulations for the GOH (2) model force controlled (FC)
case when (a) only c1 and c2 are unknown, (b) all parameters except the angle θ are unknown, and
(c) all parameters are unknown.

For the DC case with standard formulation (uniform weighted residual and no transformation)
and Humphrey’s model (4) with fiber angle θ fixed, there is a significant fraction of runs that are either
unconverged or misconverged (Figure 4a). This is caused by the interaction of two exponential terms
in the model. By using the log-log transform (16), the situation improves slightly. Furthermore, if the
non-uniformly weighted residual (10) is also used, all of the cases converge. Thus, there is an enormous
difference in convergence properties by using the transform and non-uniform weighting.

3.2. Humphrey Model

If the fiber angle also needs to be determined, the number of converged runs reduces substantially
(Figure 4b). The misconverged simulations are reduced to almost none when the log transform is used;
however, the number of unconverged cases increase. Thus, overall the total number of non-converged
runs remains approximately the same, with only a slight improvement in the convergence using the log
transformation (16). Since Humphrey’s model has two exponential terms, there is no simple method
to find the maximum exponent for each term, and thus the formulation by Zhang et al. (17) is omitted.



Bioengineering 2019, 6, 100 9 of 16

0.1

0.3

0.5

F
ra

ct
io

n
of

ca
se

s

(a) c1, c3

log(c1), log(c3)

rU residual

rN residual

1 10 20 30 U M

Iterations to converge

0.1

0.3

0.5

F
ra

ct
io

n
of

ca
se

s

(b)

Figure 4. Iterations required using different formulations for the Humphrey model (4) DC case when
(a) all parameters except the fiber angle θ are unknown and (b) all parameters are unknown.

A similar behavior for the FC case is found; when the fiber angle θ is fixed, the parameter
estimation is successful for all runs. However, there is no appreciable improvement by using
either the log transform or the non-uniformly weighted residual (Figure 5a). If the fiber angle θ

is included as an unknown, it becomes challenging to estimate the parameters irrespective of the
method used (Figure 5b). Although using non-uniformly weighted residual leads to a decrease in the
number of misconverged runs, it also leads to an increase in the unconverged runs with only a slight
increase in the number of converged runs.
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Figure 5. Iterations required using different formulations for the Humphrey model (4) FC case when
(a) all parameters except the fiber angle θ are unknown and (b) all parameters are unknown.

3.3. Lee–Sacks Model

In Lee–Sacks model (5), when only two parameters, c1 and c2, are estimated with the DC case, all
of the runs converge irrespective of the formulation (Figure 6a). Using log transformation on c1 helps
speed up the convergence, while using the non-uniformly weighted residual (10) has a limited effect.

If all parameters except the fiber angle θ are estimated, the uniformly weighted residual leads
to a large number of unconverged and misconverged runs (Figure 6b). However, changing the
residual to non-uniformly weighted one (10) helps improve the situation. When the fiber angle is also
estimated, similar to previous two models, a large number of unconverged and misconverged runs
are obtained (Figure 6c). However, unlike the previous models, there is only a limited improvement
when the residual is changed or the log transformation is used. Similar to the Humphrey’s model,
Less–Sacks model also has two exponential terms, however, with only one parameter c1 in front. Thus,
it is not clear how to implement the transformation proposed by Zhang et al. (17).
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Figure 6. Iterations required using different formulations for the Lee–Sacks model DC case when
(a) only c1 and c2 are unknown, (b) all parameters except the fiber angle θ are unknown, and (c) all
parameters are unknown.

In the FC case with Lee–Sacks model, only two parameters, c1 and c2, can be reliably estimated
using the standard formulation (Figure 7a). Using the log transformation and non-uniformly weighted
residual speeds up the convergence. Furthermore, there is a small number of misconverged runs with
only two unknowns using the standard formulation, which disappear when the log transformation is
used. However, when the unknown parameters include other parameters, almost none of the FC runs
are converged (Figure 7b,c). This happens irrespective of fiber angle θ being fixed or unknown and the
choice formulation.
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Figure 7. Iterations required using different formulations for the Lee–Sacks model FC case when
(a) only c1 and c2 are unknown, (b) all parameters except the fiber angle θ are unknown, and (c) all
parameters are unknown.

3.4. May-Newman Model

Two parameters c1 and c2 in the May-Newman model (6) can be estimated using the DC setup
and any of the formulations (Figure 8a). Using the log transformation and non-uniformly weighted
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residual helps improve the convergence speed. If the number of unknown parameters is expanded to
include others, except the fiber angle, most of the runs converge to the correct solution (Figure 8b).
The number of non-converged runs becomes lower if the log transformation and/or the non-uniformly
weighted residual are used. However, the convergence speed is largely unaffected by the change
in formulation.
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Figure 8. Iterations required using different formulations for the May-Newman model DC case when
(a) only c1 and c2 are unknown, (b) all parameters except the fiber angle θ are unknown, and (c) all
parameters are unknown.

When the fiber angle θ is included as an unknown, the same issue as other models appears
where less than a third of the simulations converge to the correct solution (Figure 8c). By using the
non-uniformly weighted residual, this problem is mitigated to some extent, although not completely.
Furthermore, both the log transformation and non-uniformly weighted residual help reduce the
iterations required to converge.

The results using Zhang’s transformation [20] are compared with the proposed formulations
(Figure 9). Similar to the results for the GOH model, this transformation helps improve the convergence
compared to the standard formulation. However, the improvement is less than that using the
formulation proposed here.
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Figure 9. Iterations required using different formulations for the May-Newman (6) model DC case
when (a) only c1 and c2 are unknown and (b) all parameters except the angle θ are unknown.
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Using the FC setup with May-Newman model, the convergence behavior is similar to other
models. When only two parameters c1 and c2 are estimated, all runs converge (Figure 10a). In this
case, the convergence speed is improved when the log transformation is used, but is unaffected by
the residual choice. When all the parameters except the fiber angle θ are estimated, some simulations
do not converge (Figure 10b). The number of misconverged runs is reduced slightly by using the log
transformation, whereas using the non-uniformly weighted residual has a slight negative effect on the
convergence. Lastly, when the fiber angle θ is also an unknowns, all the formulations suffer from poor
convergence (Figure10c). Only a small fraction of runs converge, and the choice of formulation has
a negligible effect.
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Figure 10. Iterations required using different formulations for the May-Newman model FC case when
(a) only c1 and c2 are unknown, (b) all parameters except the fiber angle θ are unknown, and (c) all
parameters are unknown.

4. Discussion

4.1. Nonlinear Preconditioning

Linear transformation was found to have no effect on the convergence behavior. This is because
the number of unknowns is small, and the tissue is assumed to be homogeneous. Thus, the Hessian
matrix can be inverted accurately, and therefore linear preconditioners have no advantage for the
presented problem. This is an important characteristic of biomechanical problems: the challenges
are different from other engineering fields, which necessitates different solutions. The nonlinear
transformation proposed here acts as a nonlinear preconditioner, which is a relatively under-explored
area [21]. The improvements found in this study will motivate further work along these lines to
improve the biomechanical parameter estimation and, therefore, analysis.

4.2. Replacing c1 with eĉ1

Across almost all models and cases, using a log transform of c1 led to improvement in the
parameter estimation. For many cases, it not only improved the convergence speed, but also helped
decrease the fraction on non-converged simulations. It should be noted that taking a log of c1 while
parameter estimation is equivalent to replacing c1 with eĉ1 in the constitutive models. As noted in [13],
this not only helps reduce the nonlinearity but also enforces the constraint c1 > 0. Interestingly, not
only this transform helped improve the DC cases, but it also helped improve the FC cases, albeit to a
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lesser extent. The improvements obtained are all the more impressive considering the minute nature
of this change and its implementational simplicity.

4.3. Weighted Residual

Interestingly, the effect of non-uniformly weighted residual was similar to that of the “log”-norm
proposed in [13]. It helped improve the parameter estimation for almost all DC cases, but did not have
an appreciable—positive or negative—effect on the FC cases. The advantage of this approach over
“log”-norm is that it can be used for both positive and negative values. Moreover, the non-uniformly
weighted residual is already used in some optimization problems. However, this is the first time it
is being compared with the uniformly weighted residual for biomechanical parameter estimation.
The approach can be implemented easily and the results show a clear advantage over uniformly
weighted residual.

4.4. Adding Fiber Angle as an Unknown

It was not surprising that increasing the number of unknown parameters made their estimation
more challenging for all models and cases. However, the most striking differences were observed
when fiber angle was added to the unknown list; the fraction of converged results reduced drastically
compared to when the fiber angle was considered as a known fixed value. More importantly, the use
of log transform or non-uniformly weighted residual had an extremely limited effect when fiber angle
was being estimated. Until this issue is resolved, the most practical approach may be to determine
the fiber angle using other techniques, such as histology [22] or light scattering[23], and consider it
as a fixed unknown during biomechanical parameter estimation. Using optical techniques, it may
be possible to estimate the fiber dispersion, as well (c3 in GOH model and c4 in Lee–Sacks model).
Not surprisingly, this will make the parameter estimation easier (Figure 11); however, the advantages
of the log transform and non-uniformly weighted residual remain.
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Figure 11. Iterations required using different formulations for (a) the GOH model DC case when all
parameters except fiber angle θ and dispersion c3 are unknown, (b) the Lee–Sacks model when all
parameters except the fiber angle θ and dispersion c4 are unknown.

Furthermore, the ultimate goal of this study is to have a robust technique that can estimate all the
parameters from in-vivo dataset, where inverse models are required [24–26]. Previously, in inverse
model developed for the aortic valve, fiber angles had a significant effect on the solution accuracy [10],
and therefore needed to be determined by other means. It should be noted that it may not be possible
to determine fiber angle separately for in-vivo inverse models. In such situations, determining
the population-averaged fiber architectures of native tissues would help make this possible [27,28].
In general, if the parameters can be split into separable subsets, where one subset of the parameters
can be estimated before fitting the rest of them and the fitting the second subset does not affect the first
one, the estimation process generally becomes easier and faster. However, this requires the two subsets
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must be theoretically separable. It should be noted that this is not the case for the tow region for
any of the models used in this study, as the stiffness of the exponential part is non-zero even at zero
deformation (F = I).

4.5. Displacement Controlled versus Force Controlled

The biaxial testing experimental protocols can be designed to be either displacement controlled
or force controlled. In literature, there is some discussion on the implementation difficulty of these
two approaches; however, there has been no study comparing them in terms of parameter estimation.
The results presented here demonstrate that the two approaches have different convergence properties.
For most of the problems, DC cases show better convergence than the FC cases. However, that is not
always true, especially when the fiber angles are considered as unknowns. Furthermore, estimating
parameters via FC setup requires solving the inverse of stress-strain relationship using an iterative
solver, which adds to the computational expense. Therefore, if there is a choice, a DC setup may be
easier from the parameter estimation point of view. However, to reliably estimate the fiber angle, FC
setup might prove superior.

4.6. Limitations and Future Work

In this study, the focus was limited to simple modifications that are easy to implement. Thus, only
a limited number of nonlinear transforms were tested, and those with a clear effect were presented.
Although one could develop other nonlinear transforms, there is no clear method to find good
candidates. This is especially important for determining the fiber angle, as an improvement is clearly
needed in that area to make the parameter estimation robust. Similarly, this analysis could be done
for newer models, such as one by Li et al. [29]. However, this model requires integration over a unit
sphere for every stress calculation, which makes it computationally unfeasible to solve approximately
90 thousand minimizations. On the other hand, applying Latin Hypercube Sampling approach
to Fung’s model [30] generates parameter sets with non-convex stress-strain relationship [31], and
convexity is difficult to impose in the sampling process.

Due to the high computational cost of this study, the measured data ȳ was assumed to be error-free
(either modeling or noise). This is a limitation since the presence of error is likely to increase the
chances of getting trapped in a local minima and increase the number of non-converged cases. Lastly,
it may be possible to apply data-mining techniques on the non-converged cases and obtain insight into
the non-convex nature of these parameter estimation problems. However, that is outside the scope of
this manuscript, and these directions will be pursued in the future.

5. Conclusions

The aim of this study was to thoroughly analyze the effect of parameter estimation technique
on biomechanical characterization of soft tissues using planar biaxial testing. Four invariant-based
constitutive for soft tissues were tested, each with their own set of five or six parameters. Because of
the large dimension of parameter space, Latin Hypercube Sampling approach was used to randomly
generate parameter sets. These parameters were used as “target” parameter values, as well as initial
guesses. It was found that small modifications of weighting the residual by experimental data and/or
taking a log of the parameter in front of the exponential can significantly improve the parameter
estimation process. The advantage was found not only in terms of convergence speed but also that
the proposed modifications reduce the possibility of estimating wrong parameter values by getting
stuck in a local minima. However, both the standard and modified formulations performed badly
when fiber angle was considered as an unknown. Hence, the results suggest that determining the
fiber angle using a non-mechanical test, as in, for example, an optical technique, can greatly help the
parameter estimation process. Although, this may not be practical for in-vivo situations, for which
further research is required to devise reliable parameter estimation techniques.
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