Credibility theory-based available transfer capability assessment

Zheng, Y., Yang, J. , Hu, Z., Zhou, M. and Li, G. (2015) Credibility theory-based available transfer capability assessment. Energies, 8(6), pp. 6059-6078. (doi: 10.3390/en8066059)

201586.pdf - Published Version
Available under License Creative Commons Attribution.



Since the development of large scale power grid interconnections and power markets, research on available transfer capability (ATC) has attracted great attention. The challenges for accurate assessment of ATC originate from the numerous uncertainties in electricity generation, transmission, distribution and utilization sectors. Power system uncertainties can be mainly described as two types: randomness and fuzziness. However, the traditional transmission reliability margin (TRM) approach only considers randomness. Based on credibility theory, this paper firstly built models of generators, transmission lines and loads according to their features of both randomness and fuzziness. Then a random fuzzy simulation is applied, along with a novel method proposed for ATC assessment, in which both randomness and fuzziness are considered. The bootstrap method and multi-core parallel computing technique are introduced to enhance the processing speed. By implementing simulation for the IEEE-30-bus system and a real-life system located in Northwest China, the viability of the models and the proposed method is verified.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Yang, Dr Jin
Authors: Zheng, Y., Yang, J., Hu, Z., Zhou, M., and Li, G.
College/School:College of Science and Engineering > School of Engineering > Systems Power and Energy
Journal Name:Energies
ISSN (Online):1996-1073
Published Online:18 June 2015
Copyright Holders:Copyright © 2015 The Authors
First Published:First published in Energies 8(8): 6059-6078
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record