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Abstract
A partially-honest individual is a person who follows the maxim, “Do not lie if you do
not have to”, to serve your material interest. By assuming that the mechanism designer
knows that there is at least one partially-honest individual in a society of n ≥ 3
individuals, a social choice rule that can be Nash implemented is termed partially-
honestly Nash implementable. The paper offers a complete characterization of the
(unanimous) social choice rules that are partially-honestlyNash implementable.When
all individuals are partially-honest, then any (unanimous) rule is partially-honestly
Nash implementable. An account of the welfare implications of partially-honest Nash
implementation is provided in a variety of environments.

Keywords Nash implementation · Pure strategy Nash equilibrium · Partial honesty ·
Condition μ∗(ii)

JEL Classification C72 · D71

We are grateful to Nicholas Yannelis and two referees of this journal for their thoughtful comments and
suggestions. The usual caveat applies.

B Michele Lombardi
michele.lombardi@glasgow.ac.uk

Naoki Yoshihara
nyoshihara@econs.umass.edu

1 Adam Smith Business School, University of Glasgow, Glasgow G12 8QQ, UK

2 Department of Economics and Statistics, University of Naples Federico II, Naples, Italy

3 Department of Economics, University of Massachusetts Amherst, 412 North Pleasant Street,
Amherst, MA 01002, USA

4 The Institute of Economic Research, Hitotsubashi University, Kunitachi, Tokyo 186-0004, Japan

5 School of Management, Kochi University of Technology, Kochi 782-8502, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00199-019-01233-4&domain=pdf


872 M. Lombardi, N. Yoshihara

1 Introduction

The implementation problem is the problem of designing a mechanism or game form
with the property that, for each state of the world, the equilibrium outcomes of the
mechanism played in that state coincide with the recommendations that a given social
choice rule (SCR) F would prescribe for that state. If that mechanism design exercise
can be accomplished, the SCR is said to be implementable. The fundamental paper on
implementation inNash equilibrium is thanks toMaskin (1999; circulated since 1977),
who proves that any SCR that can be Nash implemented satisfies a remarkably strong
invariance condition, now widely referred to as Maskin monotonicity. Moreover, he
shows that when the mechanism designer faces n ≥ 3 individuals, a SCR is Nash
implementable if it is Maskin monotonic and satisfies the condition of no veto-power,
subsequently, Maskin’s theorem.1

Since the introduction of Maskin’s theorem, economists have been interested in
understanding how to circumvent the limitations imposed by Maskin monotonicity
by exploring the possibilities offered by approximate (as opposed to exact) imple-
mentation (Matsushima 1988; Abreu and Sen 1991), as well as by implementation
in refinements of Nash equilibrium (Moore and Repullo 1988; Abreu and Sen 1990;
Palfrey and Srivastava 1991; Jackson 1992; Vartiainen 2007a) and by repeated imple-
mentation (Kalai and Ledyard 1998; Lee and Sabourian 2011; Mezzetti and Renou
2012). One additional way around those limitations is offered by implementation with
partially-honest individuals.

A partially-honest individual is an individualwho deceives themechanismdesigner
when the truth poses some obstacle to her material well-being. Thus, she does not
deceive when the truth is equally efficacious. Simply put, a partially-honest individual
is an individual who follows the maxim, “Do not lie if you do not have to”, to serve
your material interest.

In a general environment, a seminal paper on Nash implementation problems
involving partially-honest individuals is Dutta and Sen (2012), which shows that for
implementation problems involving n ≥ 3 individuals and inwhich there is at least one
partially-honest individual, the Nash implementability is assured by no veto-power.
No veto-powermeans that if an outcome is at the top of all but one agent’s ranking, then
it must be selected by the SCR. Similar positive results are uncovered in other envi-
ronments by Matsushima (2008a, b), Kartik and Tercieux (2012), Kartik et al. (2014),
Saporiti (2014), Ortner (2015) and Mukherjee et al. (2017). Thus, there are far fewer
limitations for Nash implementation when there are partially-honest individuals.2

1 Moore and Repullo (1990), Dutta and Sen (1991), Sjöström (1991) and Lombardi and Yoshihara (2013)
refined Maskin’s theorem by providing necessary and sufficient conditions for a SCR to be implementable
in (pure strategies) Nash equilibrium. For two recent excellent surveys on the subject of implementation,
see Jackson (2001) andMaskin and Sjöström (2002). For a concise and elegant collection of seminal results
on the subject of mechanism design, the reader should consult Dasgupta et al. (1979).
2 A pioneering work on the impact of decency constraints on Nash implementation problems is Corchón
and Herrero (2004). These authors propose restrictions on sets of strategies available to agents that depend
on the state of the world. They refer to these strategies as decent strategies and study Nash implementation
problems in them. For a particular formulation of decent strategies, they are also able to circumvent the
limitations imposed by Maskin monotonicity.
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A natural question, then, is: where do the exact boundaries of those limitations lie?
This question is relevant to test whether a SCR is Nash implementable or not in a
society with partially-honest individuals. Indeed, though the no veto-power condition
is trivially satisfied in economic environmentswith three ormore non-satiated agents, it
is not always an innocuous condition in other environments (aswe discuss below). This
means that Dutta and Sen’s (2012) result does not offer any guidance about the Nash
implementability of SCRs violating the no veto-power condition. The paper offers
this guidance by providing a complete characterization for Nash implementation with
partially-honest individuals when there are three or more individuals. Thus, it provides
the counterpart to Moore and Repullo’s (1990) conditions—which are summarized as
Condition μ by Moore and Repullo (1990)—for a many-person setting with partially-
honest individuals.

The necessary and sufficient conditions are derived by using the approach developed
by Moore and Repullo (1990). They are derived under the following informational
requirement: Although the mechanism designer knows that there are partially-honest
agents, he knows neither their identity nor how many agents are partially-honest. In
Sect. 3, we present the first part of our conditions, which is namedCondition μ∗(ii). To
understand its content, suppose that F can be Nash implemented with partially-honest
individuals. Suppose that x belongs to F(θ). Then, there exists an equilibrium of the
implementing mechanism that induces x under the state θ . Condition μ∗(ii) identifies
situations when a deviation from the equilibrium under θ is not followed by further
deviations when the state changes from θ to θ ′. Let us suppose that the deviation of
agent i from the equilibrium under θ results into an outcome y. Moreover, suppose that
we know that y is θ ′-maximal for agent i over the range of outcomes that i can generate
by deviating from the equilibrium under θ , and that y is θ ′-maximal in the range of the
implementing mechanism for every other individual. Let us distinguish two situations.
(a) If we know that agent i has deviated to a strategy that is truthful at the new state θ ′
and he is the unique partially-honest agent in society, then y must be an equilibrium
under θ ′. (b) If we know that θ ′ = θ , that agent i is not a partially-honest individual
and that every partially-honest individual is playing a truthful strategy under the new
state θ ′, then y must be an equilibrium under θ ′. Note that since Condition μ∗(ii)
applies to situations in which not all agents are partially-honest, this condition does
not have any bite when all agents are partially-honest and the mechanism designer
knows this. A more detailed discussion about Condition μ∗(ii) is provided in Sect. 3.

Condition μ∗(ii) is reasonably weak (albeit somewhat complex). From Dutta and
Sen’s (2012) work, we know that no veto-power is sufficient for Nash implementation
with partially-honest individuals.However, our condition ismuchweaker than no veto-
power. This is important because no veto-power is not always a weak requirement,
such as in bargaining environments and in marriage problems. Moreover, Condition
μ∗ (ii) does not include any Maskin monotonicity-type conditions. Remarkably, we
have found that when there are three or more individuals, and when the admissible
domain of SCRs is restricted to that of unanimous ones, then Condition μ∗(ii) is not
only necessary but is also sufficient for any unanimous SCR to be Nash implemented
(Theorem 1). A SCR is said to be unanimous if it satisfies the following property: if
every agent prefers x to anyother outcome in state θ , then x ∈ F (θ). For the sufficiency
part, a constructive proof is provided. Indeed, we construct amechanism inwhich each
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participant chooses the information about a state as part of her strategy choice and in
which a participant’s play is honest if she plays a strategy choice which is veracious
in its state announcement component.3 Theorem 2 shows that every unanimous SCR
is implementable when all agents are partially-honest and the mechanism designer
knows this.

By means of Condition μ∗(ii), we can easily check what SCR is implementable
within the domain of unanimous SCRs. For instance, in the coalitional game environ-
ment, we show that the core solution is not Nash implementable with partially-honest
individuals when themechanism designer knows the coalitional function of the games,
who, however, does not know the prevailing state. As we already noted, we also show
that every unanimous SCR is Nash implementable in a society in which all individuals
are partially-honest and the designer knows it. This means that the core solution is
Nash implementable when all individuals are partially-honest. These examples clarify
that the common assumption in the present literature on implementation problems
with partial honesty that the designer knows that all individuals are partially-honest is
not innocuous.

Finally, we also analyze interesting and well-known SCRs in bargaining environ-
ments as well as in marriage problems. Indeed, we show that the Nash bargaining
solution and the man-optimal-stable solution are partially-honestly Nash imple-
mentable. Note that each of these SCRs is unanimous. However, they both violate
the no veto-power condition.

The remainder of this paper is divided into 4 sections. Section 2 sets out the theoret-
ical framework and outlines the basic model. Section 3 completely characterizes the
class of Nash implementable SCRs satisfying the unanimity condition and assesses
its implications in a variety of environments. Section 4 offers a brief discussion of the
second part of the necessary and sufficient conditions for Nash implementation with
partially-honest individuals in connection with the implementability of the egalitarian
bargaining solution.4 Section 5 concludes. Appendix includes proofs not in the main
body.

2 Preliminaries

2.1 Basic framework

We consider a finite set of individuals indexed by i ∈ N = {1, . . . , n}, which we will
refer to as a society. The set of outcomes available to individuals is X . The information
held by the individuals is summarized in the concept of a state, which is a complete
description of the variable characterizing theworld.Write� for the domain of possible
states, with θ as a typical state. In the usual fashion, individual i’s preferences in state
θ are given by a complete and transitive binary relation, subsequently an ordering,

3 We construct a canonical mechanism, which is subject to standard criticisms (see, Jackson (1992; 2001),
for discussion). The usual counterargument to these criticisms is that general results need to rely on canonical
mechanisms (see, again Jackson (1992), for a discussion).
4 We have provided only a short discussion for the sake of brevity. However, a detailed analysis is provided
in Lombardi and Yoshihara (2019).

123



Partially-honest Nash implementation: a full… 875

Ri (θ) over the set X . The corresponding strict and indifference relations are denoted
by Pi (θ) and Ii (θ), respectively. The statement x Ri (θ) y means that individual i
judges x to be at least as good as y. The statement x Pi (θ) y means that individual i
judges x better than y. Finally, the statement x Ii (θ) y means that individual i judges
x and y as equally good, that is, she is indifferent between them.

We assume that the mechanism designer does not know the true state, that there is
complete information among the individuals in N and that the mechanism designer
knows the preference domain consistent with the domain �. We shall sometimes
identify states with preference profiles.

The goal of the mechanism designer is to implement a SCR F , which is a corre-
spondence F : � � X such that F (θ) is non-empty for every θ ∈ �. We shall refer
to x ∈ F (θ) as an F-optimal outcome at θ . The image or range of the SCR F is the
set F (�) ≡ {x ∈ X |x ∈ F (θ) for some θ ∈ �}.

Given that individuals will have to be given the necessary incentives to reveal the
state truthfully, the mechanism designer delegates the choice to individuals according

to a mechanism � ≡
(∏

i∈N
Mi , g

)
, where Mi is the strategy space of individual i

and g : M → X , the outcome function, assigns to every strategy profile m ∈ M ≡∏
i∈N

Mi a unique outcome in X . The strategy profile m−i is obtained from m by
omitting the i th component, that is, m−i = (m1, . . . , mi−1, mi+1, . . . , mn), and we
identify (mi , m−i ) with m.

2.2 Intrinsic preferences for honesty

An individual who has an intrinsic preference for truth-telling can be thought of as
an individual who is torn by a fundamental conflict between her deeply and ingrained
propensity to respond to material incentives and the desire to think of herself as an
honest person. In this paper, the theoretical construct of the balancing act between
those contradictory desires is based on two ideas.

First, the pair (�, θ) acts as a “ context” for individuals’ conflicts. The reason for
this is that an individual who has an intrinsic preference for honesty can categorize her
strategy choices as truthful or untruthful relative to the state θ and the mechanism �

designed by the mechanism designer to govern the communication with individuals.
That categorization can be captured by the following notion of truth-telling correspon-
dence:

Definition 1 For each � and each individual i ∈ N , individual i’s truth-telling corre-
spondence is a (non-empty) correspondence T �

i : � � Mi such that, for each θ ∈ �,
T �

i (θ) ⊆ Mi . Strategy choices in T �
i (θ)will be referred to as truthful strategy choices

for θ .

What messages can be regarded as truthful ones depends on the message space Mi

specified by �. For instance, if � is a canonical mechanism where Mi = � × X × N
for each individual i , then agent i’s truth-telling corresponding T � can be defined by
T �

i (θ) = {θ}× X × N for each state θ ∈ �.5 This means that a message is truthful if

5 Even within the class of canonical mechanisms, there are different ways in which one can define the
truth-telling correspondence—see Lombardi and Yoshihara (2018).
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it is truthful in its state announcement component. Indeed, Dutta and Sen (2012) used
this type of truth-telling correspondence in their characterization result. It is impor-
tant to emphasize that Condition μ∗(ii) is a necessary condition for implementation
with partially-honest individuals for every notion of truth-telling. Like Dutta and Sen
(2012), our sufficiency result is derived by assuming that T �

i (θ) = {θ} × X × N for
each state θ ∈ � and each individual i ∈ N .

Second, in modeling intrinsic preferences for honesty, we endorse the notion of
partially-honest individuals introduced by Dutta and Sen (2012). First, a partially-
honest individual is an individual who responds primarily to material incentives.
Second, she strictly prefers to tell the truthwhenever lying has no effect on hermaterial
well-being. That behavioral choice of a partially-honest individual can be modeled by
extending an individual’s ordering over X to an ordering over the strategy space M
because individual’s preference between being truthful and being untruthful is con-
tingent upon announcements made by other individuals as well as the outcome(s)
obtained from them. By following standard conventions of orderings, write ��,θ

i for
individual i’s ordering over M in state θ whenever she is confronted with the mecha-
nism �. Formally, our notion of a partially-honest individual is as follows:

Definition 2 For each �, individual i ∈ N is partially-honest if for all θ ∈ � individ-
ual i’s intrinsic preference for honesty ��,θ

i on M satisfies the following properties:
for all m−i and all mi , m′

i ∈ Mi it holds that:

(i) If mi ∈ T �
i (θ), m′

i /∈ T �
i (θ) and g (m) Ri (θ) g

(
m′

i , m−i
)
, then m 	�,θ

i(
m′

i , m−i
)
.

(ii) In all other cases, m ��,θ
i

(
m′

i , m−i
)
if and only if g (m) Ri (θ) g

(
m′

i , m−i
)
.

An intrinsic preference for honesty of individual i is captured by the first part
of the above definition, in that, for a given mechanism � and state θ , individual i
strictly prefers the strategy profile (mi , m−i ) to

(
m′

i , m−i
)
provided that the outcome

g (mi , m−i ) is at least as good as g
(
m′

i , m−i
)
according to her ordering Ri (θ) and

that mi is truthful for θ and m′
i is not truthful for θ .

If individual i is not partially-honest, this individual cares for her material well-
being associated with outcomes of the mechanism and nothing else. Then, individual
i’s ordering over M is just the transposition into space M of individual i’s relative
ranking of outcomes: m ��,θ

i m′ ⇐⇒ g (m) Ri (θ) g
(
m′) for all m, m′ ∈ M .

2.3 Implementation problems

In formalizing the mechanism designer’s problem with partially-honest individuals,
we first introduce an informational assumption and discuss its implications for our
analysis. It is:

Assumption 1 There exists at least one partially-honest individual in the society N .

Thus, in our setting, the mechanism designer does not know the true state and,
moreover, he knows neither the identity (or identities) nor the number of the partially-
honest individual(s). Indeed, themechanismdesigner cannot exclude anymember(s) of
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society frombeing partially-honest purely on the basis ofAssumption 1. Therefore, the
following considerations are in order from the viewpoint of the mechanism designer.

An environment is described by two parameters, (θ, H): a state θ and a conceivable
set of partially-honest individuals H . We denote by H a typical conceivable set of
partially-honest individuals in N , with h as a typical element, and by H the class of
conceivable sets of partially-honest individuals.

A mechanism � and an environment (θ, H) induce a strategic game
(
�,��,θ,H

)
,

where:
��,θ,H ≡

(
��,θ

i

)
i∈N

is a profile of orderings over the strategy space M as formulated in Definition 2.
Specifically, ��,θ

i is individual i’s ordering over M as formulated in Definition 2 if
individual i is in H , whereas it is the individual i’s ordering over M defined as the
transposition into M of individual i’s ordering over X if individual i is not in H .

A (pure strategy) Nash equilibrium of the strategic game
(
�,��,θ,H

)
is a strategy

profile m such that for all i ∈ N , it holds that

m ��,θ
i

(
m′

i , m−i
)
, for all m′

i ∈ Mi .

Write N E
(
�,��,θ H

)
for the set of Nash equilibrium strategies of the strategic game(

�,��,θ,H
)
and N A

(
�,��,θ,H

)
for its corresponding set of Nash equilibrium out-

comes.
The following definition is to formulate the designer’s Nash implementation prob-

lem involving partially-honest individuals.

Definition 3 Let Assumption 1 hold. A mechanism � partially-honestly Nash imple-
ments the SCR F : � � X provided that for all θ ∈ � there exists a truth-telling
correspondence T �

i (θ) as formulated in Definition 1 for every i ∈ N and, moreover,
it holds that

F (θ) = N A
(
�,��,θ,H

)
, for every pair (θ, H) ∈ � × H.

If such a mechanism exists, F is said to be partially-honestly Nash implementable.

The objective of the mechanism designer is thus to design a mechanism whose
Nash equilibrium outcomes coincide with F (θ) for each state θ as well as each set
H . Note that there is no distinction between the above formulation and the standard
Nash implementation problem as long as Assumption 1 is discarded.

3 The characterization theorem for unanimous SCRs

In this section, we provide a full characterization of the class of unanimous SCRs that
are partially-honestly Nash implementable:

Definition 4 The SCR F : � � X satisfies unanimity provided that for all θ ∈ �

and all x ∈ X if x Ri (θ) y for all i ∈ N and all y ∈ X , then x ∈ F (θ). A SCR that
satisfies this property is said to be a unanimous SCR.
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In other words, it states that if an outcome is at the top of the preferences of all
individuals, then it should be selected by the SCR. Unanimity is a property satisfied,
for example, by the Pareto rule and, in the market contexts, by the rule which selects
all core allocations.

We introduce belowConditionμ∗(ii),which is necessary and sufficient for partially-
honest implementation of unanimous SCRs in many-individual settings. Before doing
it, let us introduce Condition μ for the sake of completeness and clarity. Moore and
Repullo (1990) show that, for a society with more than two agents, Condition μ is
the necessary and sufficient condition for any SCR to be Nash implementable. Let us
formalize it as follows. Given a state θ , an individual i , a set of outcomes A ⊆ X
and an outcome x ∈ X , the indifference set of Ri (θ) at x ∈ X restricted to A
is Ii (θ, x, A) = {

x ′ ∈ A|x Ii (θ) x ′}; the weak lower contour set of Ri (θ) at x is
Li (θ, x) = {x ′ ∈ X |x Ri (θ) x ′}; and the strict lower contour set of Ri (θ) at x is
SLi (θ, x) = {x ′ ∈ X |x Pi (θ) x ′}. Therefore:
Condition μ. There exists a set Y ⊆ X ; moreover, for all θ ∈ � and all x ∈ F (θ),
there is a profile of sets (C� (θ, x))�∈N such that x ∈ C� (θ, x) ⊆ L� (θ, x) ∩ Y for all
� ∈ N ; finally, for all θ ′ ∈ �, the following Conditions (i)-(iii) are satisfied:

(i) if C� (θ, x) ⊆ L�

(
θ ′, x

)
for all � ∈ N , then x ∈ F

(
θ ′);

(ii) for each i ∈ N , if y ∈ Ci (θ, x) ⊆ Li
(
θ ′, y

)
and Y ⊆ L�

(
θ ′, y

)
for all

� ∈ N\ {i}, then y ∈ F
(
θ ′);

(iii) if y ∈ Y ⊆ L�

(
θ ′, y

)
for all � ∈ N , then y ∈ F

(
θ ′).6

Condition μ(i) is equivalent to Maskin monotonicity, while Conditions μ(ii) and
μ(iii) are weaker versions of no veto-power. Note that Conditions μ(iii) is satisfied
by any unanimous SCR— to see it, let consider Y = X . Also, note that Condition μ

requires the existence of the set Y as well as the existence of the set Ci (θ, x) for each
triplet (i, x, θ) with x ∈ F (θ).

Let us formalize Condition μ∗(ii) as follows.

Definition 5 The SCR F : � � X satisfies Condition μ∗(ii) if there exists Y ⊆ X
such that F (�) ⊆ Y and such that the following statements hold: For every (i, θ, x) ∈
N × � × Y with x ∈ F (θ), there exists a set Ci (θ, x) ⊆ Y with x ∈ Ci (θ, x) ⊆
Li (θ, x), such that for every pair

(
θ ′, H

) ∈ � × H we have:

(1) (a) There exists a non-empty set Si
(
θ ′; x, θ

)
such that Si

(
θ ′; x, θ

) ⊆ Ci (θ, x).
(b) For all h ∈ H , if θ = θ ′ and x /∈ Sh

(
θ ′; x, θ

)
, then Sh

(
θ ′; x, θ

) ⊆
SLh (θ, x).

(2) If y ∈ Ci (θ, x) ⊆ Li
(
θ ′, y

)
, Y ⊆ L j

(
θ ′, y

)
for all j ∈ N\ {i}, and y /∈ F

(
θ ′),

then:

(a) if H = {i}, then the intersection Si
(
θ ′; x, θ

) ∩ Ii
(
θ ′, y, Y

)
is not empty and

y /∈ Si
(
θ ′; x, θ

)
.

(b) if i /∈ H and θ = θ ′, then x /∈ S j
(
θ ′; x, θ

)
for some j ∈ H .

6 We refer to the condition that requires only one of the conditions (i)–(iii) in Condition μ as Conditions
μ(i)–μ(iii) respectively. Note that Condition μ implies Conditions μ(i)–μ (iii), but the converse is not true.
We use similar conventions below.
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LikeConditionμ, Conditionμ∗(ii) requires the existence ofY and (Ci (θ, x))i∈N as
well. Their interpretation is offered byMoore andRepullo (1990). The set Y represents
the range of the mechanism by which a given SCR F is Nash implementable. The
set Ci (θ, x) represents individual i’s attainable set when the equilibrium outcome
x ∈ F (θ) is selected by the outcome function. In contrast to Condition μ, part (1)(a)
of Condition μ∗(ii) also requires the existence of a set Si

(
θ ′; x, θ

) ⊆ Ci (θ, x) for
every quadruplet

(
i, x, θ, θ ′) with x ∈ F (θ).

Let us present our condition from the viewpoint of necessity. To this end, suppose
that F is partially-honestly implementable by amechanism� . Suppose that x ∈ F (θ).
Then, there exists a Nash equilibrium strategy profile m such that g (m) = x .
Let us define Ci (θ, x) by Ci (θ, x) = g (Mi , m−i ) ≡ {

g
(
m′

i , m−i
) |m′

i ∈ Mi
}
,

which represents the set of outcomes that individual i can generate by varying
her own strategy, keeping the other individuals’ equilibrium strategy choices fixed
at m−i . Let us define the set Si

(
θ ′; x, θ

)
by Si

(
θ ′; x, θ

) = g
(
T �

i

(
θ ′) , m−i

) ≡{
g

(
m′

i , m−i
) |m′

i ∈ T �
i

(
θ ′)}, which represents the set of outcomes that this individ-

ual can attain by playing truthful strategy choices for θ ′ when the state moves from θ

to θ ′, keeping the other individuals’ equilibrium strategy choices fixed at m−i . Given
this definition of Si

(
θ ′; x, θ

)
, we refer to elements of Si

(
θ ′; x, θ

)
as truthful outcomes

for individual i at the state θ ′ when the state moves from θ to θ ′ and x ∈ F (θ).
Part (1)(b) of Condition μ∗(ii) follows the reasoning that if x ∈ F (θ) but x is

not a truthful outcome for the partially-honest individual h ∈ H at this θ—that is,
x = g (m) /∈ Sh (θ; x, θ) = g

(
T �

i (θ) , m−i
)
, then, in order to keep m as a Nash

equilibrium strategy profile at θ it must be the case that x is strictly preferred by agent
h to any truthful outcome in Sh (θ; x, θ) according to her ordering Rh (θ).

For part (2) of Condition μ∗(ii), suppose that the state moves from θ to θ ′, that
agent i’s attainable outcome y = g

(
m′

i , m−i
) ∈ Ci (θ, x) is Ri

(
θ ′)-maximal in the

set Ci (θ, x) and that y is also R j
(
θ ′)-maximal for any other individual j 
= i in the

set Y = g (M) ≡ {g (m̄) |m̄ ∈ M}. Also, suppose that y /∈ F
(
θ ′). One can now see

that only a partially-honest individual h can find it profitable to unilaterally deviate
from

(
m′

i , m−i
)
—if no agent has incentive to unilaterally deviate, then y ∈ F

(
θ ′), by

the implementability, which is a contradiction.
Part (2)(a) specifies that if only individual i can find a unilateral profitable deviation

from
(
m′

i , m−i
)
, then the outcome y = g

(
m′

i , m−i
)
is not a truthful outcome for i at

θ ′—that is, y /∈ Si
(
θ ′; x, θ

) = g
(
T �

i

(
θ ′) , m−i

)
. In addition, part (2)(a) also requires

that individual i needs to find a truthful outcome z = g
(
m′′

i , m−i
) ∈ Si

(
θ ′; x, θ

) =
g

(
T �

i

(
θ ′) , m−i

)
that is equally good to y according to her ordering Ri

(
θ ′) in order

to have a unilateral non-material profitable deviation—that is, z ∈ Si
(
θ ′; x, θ

) ∩
Ii

(
θ ′, y, Y

)
.

Part (2)(b) specifies that if θ = θ ′ and individual i is not a partially-honest
individual—that is, i /∈ H , then it cannot be that the deviant partially-honest indi-
vidual h ∈ H plays a truthful strategy choice at m—that is, x /∈ Sh

(
θ ′; x, θ

)
. Indeed,

if mh ∈ T �
h (θ) for each h ∈ H , no partially-honest individual can find a profitable

unilateral deviation in order to eliminate y from the set of Nash equilibrium outcomes
at θ = θ ′.
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Condition μ implies Condition μ∗(ii). It is clear that Condition μ(ii) implies part
(2) of Condition μ∗(ii). Then, we are left to show that part (1) of Condition μ∗(ii) is
satisfied as well. To see it, let us define

(
Si

(
θ ′; x, θ

))
i∈N ≡ (Ci (θ, x))i∈N for every

θ, θ ′ ∈ � and every x ∈ F (θ). Therefore, Condition μ implies Condition μ∗(ii).
We are now ready to present our characterization result for unanimous SCRs. How-

ever, before stating it, we assume that the structure of the family H satisfies the
following specification:

Assumption 2 The familyH has as elements all non-empty subsets of the set N .

This requirement is consistent with, and a natural extension of Assumption 1 since
the mechanism designer cannot exclude any member(s) of the society from being
partially-honest purely on the basis of that assumption. Indeed, this assumption is the
natural consequence of Assumption 1. The characterization theorem can be stated as
follows:

Theorem 1 Let n ≥ 3. Suppose that Assumptions 1–2 hold. The unanimous SCR
F : � � X satisfies Condition μ∗(ii) if and only if it is partially-honestly Nash
implementable.

Proof See Appendix A. ��
We make several remarks below regarding Theorem 1.

Remark 1 The “if” part of the theorem continues to hold if Assumption 2 is replaced
with the requirement that the family H contains N or it is closed under union. H is
closed under union when the following property holds: If H is an element of H and
if H ′ is another of its elements, then the union of these sets is also an element of H.
Clearly, these specifications areweaker thanAssumption2.Moreover, the specification
that H is closed under union has an obvious expansion-consistency interpretation: If
the mechanism designer views H as a conceivable set of partially-honest individuals
and he also views H ′ as another conceivable set, then there is no reason for him to
exclude their union from H purely on the basis of Assumption 1. The specification
thatH contains N is the minimal restriction on the familyH that allows part (1)(b) of
Condition μ∗(ii) to still be a necessary condition for partially-honest implementation.
The reason is that to assure it we need to be able to select a strategy profile m that
generates the F -optimal outcome x at θ as a Nash equilibrium outcome for this θ and
for a set of partially-honest individuals N which contains all elements of the family
H, that is, H ⊆ N for every H ∈ H. This is because if N is an element of the family
H, then the strategy profile m supporting the F-optimal x at the state θ as a Nash
equilibrium of

(
�,��,θ,N

)
is also a Nash equilibrium of

(
�,��,θ,H

)
for every other

allowable set H . This allows us to show that part (1)(b) of Condition μ∗(ii) applies
to whatever conceivable set of partially-honest individuals.

Remark 2 Condition μ∗(ii) is a necessary condition for partially-honest Nash imple-
mentation when n ≥ 2 and when the family H is closed under union or it contains
N .
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Remark 3 The “only if” part of the theorem continues to hold if Assumption 2 is
replaced with the requirement that the family H includes all singletons of the set N .
This is because if m is a Nash equilibrium of some strategic game

(
�,��,θ,H

)
and if

individual i’s strategy choice mi is a truthful one for the state θ , then this m is also a
Nash equilibrium of the strategic game

(
�,��,θ,{i}) provided that the singleton {i} is

an element of H.

Common to the literature of implementation with partially-honest individuals is
also the requirement that every member of society has a taste for honesty, as per
Matsushima (2008b), Dutta and Sen (2012), Saporiti (2014) and Mukherjee et al.
(2017). Thus, if we follow these authors and confine our analysis to this case, we have
the following characterization theorem as well:

Theorem 2 Let n ≥ 3 and let all individuals in N be partially-honest. Then, every
unanimous SCR F : � � X is partially-honestly Nash implementable.

Proof It follows from the proof of Theorem 1, with the observation that in this case
H = {N } and no Nash equilibrium strategy profile can fall into Rule 2.2 as well as into
Rule 2.3 of the constructed mechanism. Indeed, when H = {N }, every unanimous
SCR satisfies Condition μ∗ (ii) under the specification that the set Y = X and that
Si

(
θ ′; x, θ

) = Ci (θ, x) = Li (θ, x) for every quadruplet
(
i, θ, θ ′, x

)
such that x is

an F-optimal outcome at θ .7 ��
In the following subsections, we propose several settings in which Theorem 1 is

applied.

3.1 Applications to coalitional games

This subsection presents the core solution, which is the main set solution used for
coalitional games, and it shows that this solution is not partially-honestly Nash imple-
mentable. It is well known that this solution is not Maskin monotonic and it violates
the condition of no veto-power.

A coalitional game is a quadruplet (N , X , θ;υ) such that:

• N is a finite set of individuals. A subset S of N is called a coalition. The class of
all non-empty coalitions is denoted by P (N ).

• X is a set of outcomes.
• θ is a state in �.
• υ : P (N ) → 2X is a function associating every element of class P (N ) with a
subset of the set X , where 2X is a family that has as elements all subsets of X .
This function is called the coalitional function of the game. υ (S) specifies the set
of outcomes for which coalition S has the power to move to.8

Let (N , X , θ;υ) be a coalitional game. An outcome x ∈ X is weakly blocked by a
coalition S ∈ P (N ) if there is an outcome y ∈ υ (S) such that y R j (θ) x for every
member j of S, with y Pj (θ) x for at least one of its members.

7 Note that part (2) of Condition μ∗(ii) is satisfied vacuously in the case in which H = {N }.
8 υ (S) = ∅ means that coalition S does not have any power.
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Definition 6 The core solution of a coalitional game (N , X , θ;υ), denoted by C, is
the collection of all outcomes that are not weakly blocked by any coalition S,

C (θ) ≡
{

x ∈ X |for every S ∈ P (N ) and y ∈ υ (S) : x Pj (θ) y for some j ∈ S, or
x R j (θ) y for all j ∈ S

}
.

The following claim establishes the failure of partially-honestlyNash implementing
the core solution when the mechanism designer knows what is feasible for every
element of P (N ), that is, he knows the coalitional function, and he does not know the
true state.9

Claim 1 Let n ≥ 3. Let Assumption 2 be given. Then, the core solution does not satisfy
Condition μ∗(ii).

Proof Let the premises hold. Assume, to the contrary, that the core solution satisfies
Condition μ∗(ii).

Since the core solution is unanimous, Y = X as per Sjöström (1991), and so Y
contains the range of C.

Suppose that there are three individuals and two states θ and θ ′. Individuals’ pref-
erences are represented in the table below:

θ θ ′

1 2 3 1 2 3

y, z x w y w, x, y, z w, x, y, z
x w, y, z x, z x
w y w, z

where, as usual, a
b for individual i means that she strictly prefers a to b, while a, b

means that this i is indifferent between a and b. Suppose that the coalitional function
is defined as follows:

υ ({1, 2}) = {x, z} , υ ({1, 3}) = {w, y} , υ ({2, 3}) = {w, z} ,

υ (N ) = X and υ (S) = ∅ for every other S ∈ P (N ) .

In the coalitional game (N , X , θ;υ), the core solution contains only the outcome
x . To see this, note that w is weakly blocked by coalition {1, 2} (via outcome x), and
that y and z are both weakly blocked by coalition {2, 3} (via outcome w). However,
in the coalitional game

(
N , X , θ ′;υ

)
, the core solution contains only the outcome y

since every other outcome is weakly blocked by coalition {1, 3}.
SinceC (θ) = {x}, Conditionμ∗(ii) implies that there exists (Ci (θ, x))i∈N such that

x ∈ Ci (θ, x) ⊆ Li (θ, x) for each i ∈ N . Since L1
(
θ ′, x

) = {x, w, z} ⊇ L1 (θ, x) =
{x, w}, it follows that x ∈ C1 (θ, x) ⊆ L1 (θ, x) ⊆ L1

(
θ ′, x

)
. Since L2

(
θ ′, x

) =
Y = L3

(
θ ′, x

)
and since x /∈ C (

θ ′), part (2)(a) of Condition μ∗ (ii) implies for
H = {1} that x /∈ S1

(
θ ′; x, θ

)
and that the intersection S1

(
θ ′; x, θ

) ∩ I1
(
θ ′, x, Y

)
is

9 The following claim holds if Assumption 2 is replaced with the assumption that H contains N and
singletons.
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not empty.10 However, since x /∈ S1
(
θ ′; x, θ

)
and since I1

(
θ ′, x, Y

) = {x}, it follows
that the intersection S1

(
θ ′; x, θ

) ∩ I1
(
θ ′, x, Y

)
is empty, which is a contradiction.

We have proved the claim by assuming that n = 3. The proof will be identical
for n > 3: just endow individual k > 3 with the same preferences of individual 3
considered above and just change the coalitional function as follows: υ ({1, 3}) =
υ ({1, k}) and υ ({2, 3}) = υ ({2, k}). ��

Claim 1 still holds when Assumption 2 is replaced with the assumption that the
familyH includes all singletons. As noted above in Remark 2, Conditionμ∗(ii) is also
a necessary condition for implementation when n = 2. By a reasoning like that used
in the above claim, one can also show that the core solution violates Condition μ∗ (ii)
when n = 2.11

3.2 Applications tomarriage problems

This subsection presents the basicmodel ofmatchingmen towomen and shows that the
man-optimal stable solution can be successfully partially-honestlyNash implemented.
This result is in contrast to the literature onNash implementation ofmatching solutions
where no proper sub-solution of the stable solution is Nash implementable in the class
of marriage games with singles—as per Kara and Sönmez (1996)—and where no
single-valued sub-solution of the stable solution is Nash implementable in the class
of pure marriage games, where being single is not a feasible choice or it is always the
last choice of every individual—as per Tadenuma and Toda (1998).

A marriage problem is a quadruplet (M, W , θ,M) such that:

• M is a finite non-empty set of men, with m as a typical element.
• W is a finite non-empty set of women, with w as a typical element.

10 Recall that Ii
(
θ ′, x, Y

) = {
x ′ ∈ Y |x Ii

(
θ ′) x ′}.

11 To see this, suppose that there are two individuals and two states θ and θ ′. Individuals’ preferences are
represented in the table below:

θ θ ′

1 2 1 2

y z y x, y, z
x x x
z y z

Suppose that the coalitional function is defined as follows:

υ ({1, 2}) = X and υ (S) = ∅ for every other S ∈ P (N ) .

In the coalitional game (N , X , θ;υ), the core solution contains only the outcome x . In addition, in the
coalitional game

(
N , X , θ ′;υ

)
, the core solution contains only the outcome y. Thus, as in the above claim,

x ∈ C (θ) but x /∈ C (
θ ′) and, moreover, L1 (θ, x) = L1

(
θ ′, x

)
and X ⊆ L2

(
θ ′, x

)
. Since the singleton

{1} is an element of the family H, one can now easily check that the core solution violates part (2)(a) of
Condition μ∗(ii) under the specification that Y = X . The reason is that there cannot exist any outcome
z 
= x in the set L1 (θ, x) such that individual 1 is indifferent between this z and x according to her ordering
R1

(
θ ′).
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• θ is a state such that (i) every man m ∈ M’s preferences are represented by a linear
ordering Pm (θ) over the set W ∪ {m} and (ii) every woman w ∈ W ’s preferences
are represented by a linear ordering Pw (θ) over the set M ∪ {w}.

• M is a collection of all matchings, with μ as a typical element. μ : M ∪ W →
M ∪ W is a bijective function matching every individual i ∈ M ∪ W either with
a partner of the opposite sex or with herself. If an individual i is matched with
herself, we say that this i is single under μ.

Let (M, W , θ,M) be a marriage problem. Every man m ∈ M’s preferences over
the set W ∪ {m} in the state θ can be extended to an ordering over the collection M
in the following way:

μRm (θ) μ′ ⇔ either μ (m) Pm (θ) μ′ (m) or μ (m) = μ′ (m) , for every μ, μ′ ∈ M.

Likewise, this can be done for every woman w ∈ W .
Let (M, W , θ,M) be a marriage problem. A matching μ is individually rational

in state θ if no individual i ∈ M ∪ W prefers strictly being single to being matched
with the partner assigned by the matching μ; that is, for every individual i , either
μ (i) Pi (θ) i or μ (i) = i . Furthermore, a matching μ is blocked in state θ if there
are two individuals m and w of the opposite sex who would each prefer strictly to be
matched with the other rather than with the partner assigned by the matching μ; that
is, there is a pair (m, w) such that

wPm (θ) μ (m) and m Pw (θ) μ (w) .

A matching μ is stable in state θ if it is individually rational and unblocked in state
θ . A matching μ is man-optimal stable in state θ if it is the best stable matching
from the perspective of all the men; that is, m is stable in state θ and for every man
m ∈ M , μRm (θ) μ′ for every other stable matching μ′ in state θ . The man-optimal
stable matching in state θ is denoted by μθ .

Definition 7 The man-optimal stable solution of a marriage problem (M, W , θ,M),
denoted by OM , is a function associating the state θ with its man-optimal stable
matching μθ ,

OM (θ) ≡ {
μθ

}
, for every θ ∈ �.

The following result shows that this solution is partially-honestly Nash imple-
mentable when the mechanism designer does not know the true state. We refer to
(M, W ,�,M) as a class of marriage problems, with (M, W , θ,M) as typical mar-
riage problem.Note that theman-optimal stable solutiondoes not satisfy noveto-power
(see, for instance, Kara and Sönmez 1996; Table I, p. 437).

Proposition 1 Let (M, W ,�,M) be a class of marriage problems with |M ∪ W | ≥ 3.
Let Assumptions 1–2 be given. Then, the man-optimal stable solution is partially-
honestly Nash implementable.

Proof Let the premises hold. In the context of matching problems, the set X coincides
with the collectionM, and N is the set M ∪ W . We show that the man-optimal stable
solution satisfies Condition μ∗(ii) with respect to Y = X .

123



Partially-honest Nash implementation: a full… 885

Since the man-optimal stable solution is unanimous, we can set Y = X as per
Sjöström (1991), and so Y contains the range of OM . In addition, for every triplet(
i, θ, θ ′), let

Ci
(
θ, μθ

) ≡ Li
(
θ, μθ

)
and Si

(
θ ′;μθ , θ

) ≡ Ci
(
θ, μθ

)
.

One can check that for every state θ , it holds thatμθ ∈ Ci
(
θ, μθ

) ⊆ Li
(
θ, μθ

) ⊆ Y
for every individual i . Moreover, for every triplet

(
i, θ, θ ′), one can also check that the

set Si
(
θ ′;μθ , θ

)
is non-empty and thatOM

(
θ ′) ∈ Si

(
θ ′;μθ , θ

)
if θ ′ = θ , establishing

part (1) of Condition μ∗(ii). Finally, let us show that the man-optimal stable solution
satisfies part (2) of Condition μ∗(ii).

For every quadruplet
(
i, θ, θ ′, μ

)
with μ ∈ Ci

(
θ, μθ

)
, suppose that Ci

(
θ, μθ

) ⊆
Li

(
θ ′, μ

)
and that Y ⊆ L j

(
θ ′, μ

)
for every individual j 
= i . By construction, the

man-optimal stable solution satisfies part (2) of Condition μ∗ (ii) if we show that μ is
the man-optimal matching in state θ ′; that is, μ = μθ ′

.
Assume, to the contrary, that μ 
= μθ ′

. Note that the matching μ is stable in state
θ ′. So, by Theorem 2.13 in Roth and Sotomayor (1990; p. 33), which is due to Knuth
(1976), it follows that μθ ′

Rm
(
θ ′)μ for every man m ∈ M and that μRw

(
θ ′)μθ ′

for
every woman w ∈ W . From this and the fact that the matching μ is also R j

(
θ ′)-

maximal for every individual j 
= i in the set Y , it follows that μ ( j) = μθ ′
( j) if

individual j is a man. Therefore, it must be the case that individual i is a man and
the mate of the man i under μθ ′

differs from that under μ, that is, μ (i) 
= μθ ′
(i);

otherwise, μ = μθ ′
, which is a contradiction.

Since μ (i) 
= μθ ′
(i) and since, moreover, μθ ′

Ri
(
θ ′)μ, it follows from the defini-

tion of Ri
(
θ ′) that μθ ′

Pi
(
θ ′) μ. From this and the fact that the matching μ is stable

in state θ ′, we have that the man i must be matched with a partner of the opposite
sex under μθ ′

; that is, μθ ′
(i) = w. Moreover, it must be the case that the mate of

the woman w under μθ ′
differs from that under μ, that is, μ (w) 
= μθ ′

(w) = i ;
otherwise, the man i is matched with the same mate under μ and under μθ ′

, which
contradicts that μ (i) 
= μθ ′

(i).
Sinceμ (w) 
= μθ ′

(w) = i and the matchingμ is Rw

(
θ ′)-maximal in the set Y for

the womanw and since, moreover,μθ ′
is stable in state θ ′, it follows thatμPw

(
θ ′)μθ ′

and that the mate of the woman w under μ is a man m 
= i . However, since the
matching μ is Rm

(
θ ′)-maximal in the set Y for the man m 
= i and since, moreover,

μθ ′
Rm

(
θ ′)μ, it must be the case that the man m is matched with the same woman w

under μ and under μθ ′
, that is, μ (m) = μθ ′

(m) = w. This implies that the woman
w is matched with the same mate under μ and under μθ ′

, that is, μ (w) = μθ ′
(w),

which is a contradiction. Thus, we conclude that μ = μθ ′
.

Since the man-optimal stable solution satisfies Condition μ∗(ii) with respect to
Y ⊆ X , Theorem1 implies that this solution is partially-honestlyNash implementable.

��
3.3 Applications to bargaining games

Last but not least, we look at the Nash implementability of the Nash (bargaining) solu-
tion. In the classical cooperative bargaining theory, initiated in Nash (1950), a number
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of individuals face the task of finding a unanimous agreement over the (expected)
utility allocations resulting from the lotteries over a set of physical objects. The Nash
solution, due to Nash (1950), selects the utility allocation that maximizes the prod-
uct of the utilities over the feasible utility allocations. This allocation is now widely
referred to as the Nash point.

The normative evaluation of the Nash solution is thus done entirely in utility space,
based on the expected utility functions of the individuals. On the other hand, the objec-
tive of the abstract theory of Nash implementation is to help a uninformed mechanism
designer to Nash implement outcomes satisfying certain desirable welfare criteria.
This means that the shape of the utility space is unknown to the mechanism designer.
One way to get these two classic areas of study closer has recently been suggested by
Vartiainen (2007b) in the canonical cake sharing setting, which we follow in this last
application.

We consider a situation where individuals bargain over the partition of one unit of a
perfectly divisible commodity. Additionally, we assume that at each state every indi-
vidual’s preference over the set of possible agreements is represented by a continuous
and increasing expected utility function. With these specifications, and when lotteries
are feasible, every state generates a classic (non-empty, convex, compact and com-
prehensive) utility space. We thus require that the Nash solution associates, with each
state, the set of all lotteries that generate the Nash point of the utility space generated
by the state.

When both individuals and the mechanism designer know the size of the com-
modity and the space of lotteries but only individuals know the prevailing state, it is
shown that the Nash solution can be Nash implemented in a setting with partially-
honest individuals, though it violates the condition of no veto-power. This is a rather
significant permissive result because several attempts have been made to give a non-
cooperative foundation to the Nash solution since Nash (1953). With the exception
of Naeve (1999), 12 reconstructions of the Nash point as an equilibrium point of a
mechanism are based on refinements of Nash equilibrium as solution concepts. See,
e.g., Howard (1992) and Miyagawa (2002).13

Formally, we assume that the set of possible divisions—allocations—of one unit
of a perfectly divisible commodity among the n individuals is given by A ≡ {a ∈
R

n+ | ∑n
i=1 ai ≤ 1}, with a as a typical allocation and with ai as a typical fraction

obtained by individual i at a. This set A is kept fixed throughout. In addition, we take
the complete waste of the commodity as the disagreement point d = 0, which will
also be the origin of the individual utilities.

A bargaining game is a triplet (N ,�, θ) such that:

• N is a finite set of individuals, with n ≥ 2.
• � is the set of outcomes, which consists of all probability measures on the Borel

σ -algebra of the space A, with p as a typical element.

12 In a variant of the model of Serrano (1997), Naeve (1999) shows that the Nash bargaining solution
can be Nash implemented. However, this could be purchased at the cost of a strong domain restriction of
individuals’ preferences. For instance, the set of states cannot take the structure of the Cartesian product of
allowable independent characteristics for individuals (see Naeve 1999; p. 24).
13 Moulin (1984) constructs a mechanism that implements the so-called Kalai–Smorodinsky bargaining
solution in subgame perfect Nash equilibrium.
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• θ is a state in �, at which every individual j’s preferences over [0, 1] are identi-
fied by a continuous and monotonic von Neumann-Morgenstern ordering.14 Thus,
individual j’s preferences in state θ can be represented by a continuous, increasing
and von Neumann-Morgenstern utility function u j (·; θ) : [0, 1] → R such that
individual j’s expected utility of a probability measure p in � is:

U j (p; θ) ≡
∫

A

u j
(
a j ; θ

)
dp (a) , for every p ∈ �.

In addition, this utility function is uniquely determined up to a positive affine
transformation.15 Therefore, for the sake of simplicity, we also assume that
u j (0; θ) = 0 and that u j (1; θ) = 1 in state θ .

Write (N ,�,�) for the class of bargaining games, with (N ,�, θ) as a typical
element, where the set � consists of all representations of continuous and monotonic
orderings over [0, 1] that are consistent with the von Neumann-Morgenstern axioms;
that is, the domain � is unrestricted. To save writing, write U (p; θ) for the utility
allocation (U1 (p; θ) , . . . , U1 (p; θ)) generated by the outcome p in state θ .

Let (N ,�, θ) be a bargaining game. Define the utility possibility set associated
with this bargaining game as:

U (�; θ) ≡
{(

U j (p; θ)
)

j∈N |p ∈ �
}
,

which is a non-empty, compact and convex set in R
n .16 In addition, since the utility

functions representing individuals’ preferences are increasing, this setU (�; θ) is also
comprehensive, which amounts to free disposal of utility.17

As already noted in Vartiainen (2007b), for every non-empty, convex and compact
subset S ofR

n+ there is a bargaining game (N ,�, θ) in the family (N ,�,�) for which
the utility possibility set U (�; θ) is S; that is, U (�; θ) = S. Therefore, in the actual
setting, every element of the class of standard bargaining problems in R

n+ is the image
of some element of the family {U (�; θ)}θ∈� of utility possibility sets generated by the
class (N ,�,�) of bargaining games; that is, there is an onto function from the family
{U (�; θ)}θ∈� of utility possibility sets to the class of standard bargaining problems
in R

n+. Indeed, from the welfaristic viewpoint, that is, from the point of view where
only utility allocations matter, these two classes are basically equivalent.

14 An ordering R j (θ) on [0, 1] is monotonic if a j ≥ b j �⇒ a j R j (θ) b j , for every a j , b j ∈ [0, 1].
15 A function v : [0, 1] → R is a positive affine transformation of u j (·; θ) if there exists a positive real
number β > 0 and a real number γ such that v

(
a j

) = βu j
(
a j ; θ

) + γ , for every a j ∈ [0, 1].
16 Its convexity follows from the Lyapunov’s theorem for nonatomic vector measures, whereas its com-
pactness follows from the fact the set U (�; θ) is the image of the compact set � under the profile of
continuous functions U (·; θ) ≡ (

U j (·; θ)
)

j∈N (in the topology of weak convergence).
17 In symbols, a non-empty set S ⊆ R

n is said to be comprehensive if x ∈ S and 0 ≤ y ≤ x together
imply y ∈ S, where it is understood that for every two n-dimensional Euclidean vectors a and b, a ≥ b
means that ai ≥ bi for every individual i , a > b means that a 
= b and ai ≥ bi for every individual i .
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Definition 8 The Nash solution of a bargaining game (N ,�, θ), denoted by ν, is the
collection of all outcomes p and q of � that generate the same utility allocations
U (p; θ) = U (q; θ) and that maximize the product of utilities over the utility possi-
bility set U (�, θ),

ν (θ) ≡ argmax
m∈�

⎧
⎨
⎩

∏
j∈N

U j (m; θ) |U (m; θ) ∈ U (�; θ)

⎫
⎬
⎭ .

Thus, this solution is derived under the so-called welfaristic assumption: The solu-
tion depends only on the Nash property of the utility allocations.

Since the Nash solution is a risk sensitive bargaining solution, it follows from
Vartiainen (2007b; Corollary 1, p. 343) that this solution fails Maskin monotonicity.18

The following claim establishes that the Nash solution does not satisfy the no veto-
power condition either: In the abstractArroviandomain, the conditionofno veto-power
says that if an outcome is at the top of the preferences of all individuals but possibly one,
then it should be chosen irrespective of the preferences of the remaining individual:
that individual cannot veto it.

Claim 2 Let n = 3. Then, the Nash solution does not satisfy the condition of no
veto-power.19

Proof Since this solution is unanimous, we can set X = � as per Sjöström (1991).
Assume, to the contrary, that theNash solution satisfies the condition of no veto-power.

Suppose that there are three individuals and a state θ , at which each individual
j’s ordering over the interval [0, 1] is represented by the following utility func-
tion: u j

(
a j ; θ

) = min
{
a j , 0.5

}
for every a j ∈ [0, 1] and every j = 1, 2, and

u3 (a3; θ) = a3 for every a3 ∈ [0, 1]. Therefore, the triplet (N ,�, θ) is a bar-
gaining game with a utility possibility set U (�; θ), which is equal to the convex
three-dimensional polyhedron with vertices at the following elements of the space A:

a0 ≡ (0, 0, 0) , a1 ≡ (0.5, 0, 0) , a2 ≡ (0.5, 0.5, 0) ,

a3 ≡ (0, 0.5, 0) and a4 ≡ (0, 0, 1) .

By abuse of notation, write a for the degenerate probability measure in � that picks
the allocation a in A with certainty.

In the bargaining game (N ,�, θ), the utility allocation generated by the probability
measure a2 in state θ is U

(
a2; θ

) ≡ (0.5, 0.5, 0), which is an element of U (�; θ).
Since the probability measure a2 is an outcome for which U j (·; θ) attains its largest
value over the set X for individual j = 1, 2, no veto-power implies that this outcome
is an element of the Nash solution at θ , that is, a2 ∈ ν (θ). By definition of the Nash

18 A bargaining solution is risk sensitive when an increase in one’s opponent’s risk aversion is advantageous
to other bargainers. For a recent study on the effects on bargaining solutions when bargainers become more
risk averse and when they become more uncertainty averse, see Driesen et al. (2015).
19 If expected utility functions representing individuals’ preferences are strictly increasing, it follows from
the result of Dutta and Sen (2012) that the Nash solution is Nash implementable with partially-honest
individuals.
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solution, thismeans that the degenerate lotterya2 maximize the product of utilities over
the utility possibility set U (�, θ). Note that the Nash product of the utility allocation
of the degenerated lottery a2 is zero.

To derive a contradiction of the definition of theNash solution, observe that, by con-
struction, theNash solution is not empty for the bargaining game (N ,�, θ).Moreover,
let us consider the probability measure p′ ∈ � defined by

p′ (a) =

⎧
⎪⎨
⎪⎩

1
2 if a = a2

1
2 if a = a4

0 otherwise

.

One can see that this probability measure generates a utility allocation equal to
U

(
p′; θ

) = (0.25, 0.25, 0.5), and so its Nash product is larger than zero, which
is a contradiction. ��

In contrast with the above negative results, the Nash solution is partially-honestly
Nash implementable when there are n ≥ 3 individuals:

Proposition 2 Let (N ,�,�) be a class of bargaining games with n ≥ 3. Let Assump-
tion 1 and Assumption 2 be given. Then, the Nash solution is partially-honestly Nash
implementable.

Proof Let the premises hold. In the context of bargaining games, the set X coincides
with the space �. We show that the Nash solution satisfies Condition μ∗(ii) with
respect to Y = X . A typical Nash-optimal outcome at state θ is denoted by pθ .

Since this solution is unanimous, we can set Y = X as per Sjöström (1991), and so
Y contains the range of ν. In addition, let

Ci
(
θ, pθ

) ≡ Li
(
θ, pθ

)
and Si

(
θ; pθ , θ

) ≡ ν (θ) , for every pair (i, θ) ∈ N ×�.

One can check that for every state θ , it holds that pθ ∈ Ci
(
θ, pθ

) ⊆ Li
(
θ, pθ

) ⊆ Y
for every individual i . Moreover, one can also check that pθ ∈ Si

(
θ; pθ , θ

)
, establish-

ing part (1) of Condition μ∗(ii) when θ ′ = θ . Next, let us show that the Nash solution
satisfies part (2) of Condition μ∗(ii) when θ ′ = θ . We do it by showing that the out-
come q is a Nash-optimal outcome at state θ provided that this q ∈ Li

(
θ, pθ

)
is an

outcome for whichUi (·; θ) attains its largest value on the set Li
(
θ, pθ

)
for some indi-

vidual i and that this q is also an outcome for which U j (·; θ) attains its largest value
on the set Y for every other individual j . To see this, note that Ui

(
pθ ; θ

) = Ui (q; θ)

and that U j (q; θ) ≥ U j
(

pθ ; θ
)
for every individual j 
= i . By the efficiency of the

Nash solution, it must be the case that U j (q; θ) = U j
(

pθ ; θ
)
for every individual

j 
= i . Thus, by the definition of the Nash solution it follows that q is an element of
ν (θ), as was to be shown. In summary, the Nash solution satisfies Condition μ∗(ii)
when θ ′ = θ .20

20 The Pareto optimal set of � at θ is:

P (θ) ≡ {q ∈ �| there is no p ∈ � : U (p; θ) > U (q; θ)} , for every θ ∈ �.
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We next turn to deal with the case where θ 
= θ ′. Let us then first provide a
construction of the set Si

(
θ ′; pθ , θ

)
for every individual i when θ 
= θ ′. To this end,

for every triplet
(
i, θ, θ ′) with θ 
= θ ′, define the set Si

(
θ ′; pθ , θ

)
as follows:

• For all q ∈ Y , if q ∈ Ci
(
θ, pθ

) ⊆ Li
(
θ ′, q

)
and Y ⊆ L j

(
θ ′, q

)
for every other

individual j and if q /∈ ν
(
θ ′), then:

Si
(
θ ′; pθ , θ

) ≡ {
r ∈ Ci

(
θ, pθ

) |Ui
(
r; θ ′) = Ui

(
q; θ ′) and U j

(
r; θ ′)

= 0 for every j 
= i} .

• In all other cases, Si
(
θ ′; pθ , θ

) ≡ Ci
(
θ, pθ

)
.

Firstly, suppose that the premises of part (2)(a) of Condition μ∗ (ii) never apply
to outcomes in Ci

(
θ, pθ

)
. Then, Si

(
θ ′; pθ , θ

)
coincides with the non-empty set

Ci
(
θ, xθ

)
, which shows that part (1)(a) as well as part (2)(a) of Condition μ∗ (ii)

are satisfied for this i .
Secondly, suppose that the premises of part (2)(a) of the condition apply to at least

one outcome q ∈ Ci
(
θ, pθ

)
. Then, to satisfy part (2)(a) of Conditionμ∗(ii) we need to

have that this q is not an element of Si
(
θ ′; pθ , θ

)
and, moreover, that the intersection

Si
(
θ ′; pθ , θ

) ∩ Ii
(
θ ′, q, Y

)
is not empty. This is the case by construction of the set

Si
(
θ ′; pθ , θ

)
provided that this set is not empty. Indeed, if the set Si

(
θ ′; pθ , θ

)
is not

empty, then Condition μ∗ (ii) is satisfied because there would exist an outcome r in
Si

(
θ ′; pθ , θ

)
such that the expected utility of individual i at r and at q in state θ ′ is the

same, that is,Ui
(
r; θ ′) = Ui

(
q; θ ′), establishing that the intersection Si

(
θ ′; pθ , θ

)∩
Ii

(
θ ′, q, Y

)
is not empty, as well as because every element of Si

(
θ ′; pθ , θ

)
is an

outcome of Ci
(
θ, pθ

)
which results in a zero expected utility in state θ ′ for every

individual j 
= i , establishing that the outcome q cannot be an element of this
Si

(
θ ′; pθ , θ

)
.

Thus, to show that the set Si
(
θ ′; pθ , θ

)
is not empty, it suffices to show that this

set is not empty for every triplet
(
i, θ, θ ′) for which the premises of part (2)(a) of

Condition μ∗(ii) apply to some q ∈ Ci
(
θ, pθ

)
. To this end, take any of these triplets

and denote it by
(
i, θ, θ ′).

Given that the utility allocation which assigns Ui
(
q; θ ′) to individual i and zero

to every other individual j is an element of the utility possibility set U
(
�; θ ′), it

follows from this that there is a probability measure s in�which generates this utility
allocation. From the available ones, let r denote the one for which it also holds that
Ui (q; θ) = Ui (r; θ). This r exists because the space of outcomes � consists of all
probability measures on the Borel σ -algebra of the space A. Thus, this r is an element
of Ci

(
θ, pθ

)
for which it holds that Ui

(
q; θ ′) = Ui

(
r; θ ′) and that U j

(
r; θ ′) = 0

for every individual j 
= i , establishing that the set Si
(
θ ′; pθ , θ

)
is not empty. ��

The Nash solution is efficient since ν (θ) ⊆ P (θ) for every θ ∈ �.
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4 A full characterization: a brief discussion of the necessary
conditions

The characterization results presented above are limited to the class of unanimous
SCRs. However, some interesting SCRs are not unanimous: a typical example of such
a SCR is the egalitarian bargaining solution. In the standard Nash implementation
theory, as Moore and Repullo’s (1990) Condition μ(iii) states—see page 9 for a def-
inition of Condition μ(iii), a SCR F must be unanimous with respect to a subset Y
of X , with F (�) ⊆ Y , if it is Nash implementable. Unfortunately, this condition is
not a necessary one for partially-honest Nash implementation. Thus, we establish a
new necessary condition, called Condition μ∗(iii), which is sufficient for partially-
honest Nash implementation when combined with Condition μ∗(ii) and with another
necessary condition, named Conditionμ∗(i). The conditions we have obtained are rea-
sonably weak, albeit somewhat complex. For this reason, in this section, we provide
an intuition of these conditions by focusing on the implementability of the egalitarian
bargaining solution. A complete discussion of the full characterization is presented in
Lombardi and Yoshihara (2019).

Consider the set of allocations A ≡ {a ∈ R
n+ | ∑n

i=1 ai ≤ 1} as inSect. 3.3.Assume
that each agent is endowed with the class of the standard continuous, increasing, and
concave utility functions defined over [0, 1]. Then, as in Sect. 3.3, for each state θ , one
bargaining problem is specified by a utility possibility set U (θ). As the egalitarian
bargaining solution is non-unanimous, we can specify a bargaining problem in which
a unanimously best outcome does not support the egalitarian solution.

Consider a three-individual society and a bargaining problem in state θ which
is defined by the comprehensive hull of a utility allocation (1, 1, 2), U (θ) =
comp {(1, 1, 2)}. Thus, one can easily see that the utility allocation (1, 1, 2) is unani-
mously most preferred, which is derived from an outcome x ∈ X in state θ , whereas
the allocation (1, 1, 1) is the egalitarian utility allocation in state θ . Suppose that
Assumptions 1–2 hold. Under such a bargaining problem, and given that x does not
generate the egalitarian utility allocation but it generates the utility allocation (1, 1, 2),
Condition μ∗(iii) requires that, for each potential partially-honest individual i , that is,
for each {i} ∈ H, there exists an outcome, y(i), which is indifferent to the unanimously
best outcome x for i . For instance, if i = 1, then the utility allocation corresponding to
the outcome y(1) should be (1, 0, 0).21 This is the case because for any implementing
mechanism and for any message profile m supporting x /∈ F (θ) as an outcome of
the outcome function, individual i’s play mi is not a truthful strategy choice, that is,
m /∈ T �

i (θ), and this individual has non-material incentives to play a truthful strategy
choice m′

i ∈ T �
i (θ) such that g

(
m′

i , m−i
) = y(i). This requirement applies to each

individual i , by our Assumption 2.
This is one of the requirements of Condition μ∗(iii). However, this part of the con-

dition open the following problem: What outcome should be selected by the outcome
function when the outcome y(i) is not a top outcome according to each agent’s ranking
andwhen it does not generate the egalitarian utility allocation? The other requirements
of Condition μ∗(iii) provide an answer to this question. They do so by requiring for

21 By the definition of the bargaining problem as a utility possibility set, such an outcome indeed exists.
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each H ∈ H, the existence of a common truthful feasible outcome, which is char-
acterized by the fact that every partially-honest individual in H is playing a truthful
strategy choice. Moreover, each of these requirements of Condition μ∗(iii) states that
if the specified common truthful outcome is a Nash equilibrium with partially-honest
individuals at θ , then it generates the egalitarian utility allocation.

A full characterization of the class of SCRs that are partially-honestly Nash imple-
mentable is obtained by requiring that F jointly satisfies Condition μ∗(iii), Condition
μ∗(ii) and another condition, named Condition μ∗(i). Condition μ∗(i) is our third
necessary condition, which is a weak variant of Maskin monotonicity. Though from
Theorem 1 and fromDutta and Sen (2012)’s Theorem, we know that no monotonicity-
type condition is necessary for Nash implementation of unanimous SCRs, a weak
variant of Maskin monotonicity is required to obtain our characterization result of
non-unanimous SCRs.

5 Conclusions

Themain practical aim of adopting an axiomatic approach to implementation theory is
to distinguish between implementable and non-implementable SCRs. Drawing from
the recent literature on implementation with partially-honest individuals, this paper
identifies necessary and sufficient conditions for the Nash implementation of unani-
mous SCRs in amany-person settingwith partially-honest individuals. The application
of the necessary and sufficient conditions to test the implementability is relatively easy
in many problems, as discussed in Sects. 3.1, 3.2, and 3.3. Existing literature on the
subject has thus far offered only sufficient conditions in a variety of environments.

In an environment in which knowledge is dispersed, how individuals will interact
with the mechanism designer is a natural starting point when it comes to Nash imple-
ment a SCR. A particular kind of communication is, as we have done in this paper, to
ask participants to report the entire state of the world. There is, however, no reason to
restrict attention to such schemes.

On this issue, Lombardi and Yoshihara (2018) have recently identified conditions
for Nash implementation with partially-honest individuals which, if satisfied, send
us back to the limitations imposed by Maskin’s theorem. In terms of mechanisms,
these conditions basically result in the impossibility to structure the communication
in a way that does not allow the mechanism designer to elicit enough information
of individuals’ characteristics from the partially-honest participants. For instance, the
limitations of Maskin’s theorem remain valid when participants are asked to report
only their own characteristics.

However, this does not mean that there are not mechanisms that resemble real-life
mechanisms and that, at the same time, allow us to escape the limitations imposed
by Maskin monotonicity in a setting with partially-honest individuals. One of these
mechanisms is represented by the price-quantity mechanism [studied, for example, in
Dutta et al. (1995), Sjöström (1996) and Saijo et al. (1996)], in which each individual
chooses prices of commodities as well as a consumption bundle as her strategy choice.
This is so because the announcement of prices serves the purpose to acquire some local
information about individuals’ indifference curves, such as the common marginal rate
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of substitution at an efficient allocation. Indeed, we now know that theWalrasian solu-
tion is Nash implementable in a many-person setting with partially-honest individuals
by this type of market mechanism (see Lombardi and Yoshihara 2017).22

Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1989) and Jackson
(1991) have shown that Maskin’s theorem can be generalized to Bayesian envi-
ronments. A necessary condition for Bayesian Nash implementation is Bayesian
monotonicity. In a Bayesian environment involving at least three individuals, Bayesian
monotonicity combinedwith no veto-power is sufficient for BayesianNash implemen-
tation provided that a necessary condition called closure and the Bayesian incentive
compatibility condition are satisfied (Jackson 1991). Korpela (2014) studies Bayesian
Nash implementation and provides sufficient conditions for implementation in a set-
tingwith partially-honest participants. This characterization result shows thatBayesian
monotonicity becomes redundant in this environment, and so there are far fewer lim-
itations for Bayesian Nash implementation when individuals have a taste for honesty.
As yet, where the exact boundaries of those limitations lay for Bayesian environments
is far from known. This subject is left for future research.

The same remark applies to implementation models based on the assumption that
agents are maximin expected utility maximizers (Gilboa and Schmeidler 1989). Under
this assumption, Guo andYannelis (2018) are the first to study (full) implementation of
social choice sets in essentially Bayesian Nash equilibrium with ambiguous beliefs,
named implementation in ambiguous equilibrium. Echoing the results in Bayesian
environments, Guo and Yannelis (2018) show that ambiguous incentive compati-
bility, ambiguous monotonicity and closure are necessary and almost sufficient for
implementing any social choice set as ambiguous equilibria.23 One would expect that
ambiguous monotonicity would become redundant when individuals have intrinsic
preferences for honesty. Again, this subject is left for future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Proof of Theorem 1

Let the premises hold. Suppose that SCR F : � � X satisfies unanimity.
Let us first show that F satisfies Condition μ∗(ii) with respect to Y ⊆ X if it is

partially-honestly Nash implemented by the mechanism � = (M, g). Let � be the
mechanism that partially-honestly Nash implements F . Then, T �

i

(
θ̄
) 
= ∅ for every

22 The provided characterization does not rely on any sort of “tail-chasing” construction.
23 In particular, in a private values model in which agents have Wald-type maximin preferences, they also
show that the set of all ambiguous Pareto efficient and individually rational social choice functions in an
economy are implementable as an ambiguous equilibrium. This result extends that of de Castro et al. (2017)
to full implementation and social choice sets. Another extension of de Castro et al. (2017)’s result can be
found in Liu (2016).
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pair
(
i, θ̄

) ∈ N × � and, moreover, it holds that

F
(
θ̄
) = N A

(
�,��,θ̄,H̄

)
, for every pair

(
θ̄ , H̄

) ∈ � × H.

Let
Y = {z ∈ X |g (m) = z for some m ∈ M}.

Thus, Y contains the range of F .
For what follows, fix any pair (x, θ) ∈ Y × � with x ∈ F (θ).
Given that N ∈ H by Assumption 2, there exists m such that g (m) = x and that

m ∈ N E
(
�,��,θ,N

)
. Thus, for every i ∈ N , let

Ci (θ, x) = g (Mi , m−i ) . (A1)

Clearly, x ∈ Ci (θ, x) ⊆ Li (θ, x) and Ci (θ, x) ⊆ Y . For what follows, fix also any
pair

(
θ ′, H

) ∈ � × H.
Given that g (m) = x and m ∈ N E

(
�,��,θ,N

)
, define Si

(
θ ′; x, θ

)
as follows:

Si
(
θ ′; x, θ

) = g
(
T �

i

(
θ ′) , m−i

)
. (A2)

Clearly, Si
(
θ ′; x, θ

) 
= ∅ and, moreover, Si
(
θ ′; x, θ

) ⊆ Ci (θ, x), establishing part
(1)(a) of Condition μ∗(ii).

Next, we show that F satisfies part (1)(b) of Condition μ∗ (ii). Take any h ∈ H
and suppose that θ ′ = θ . Also, suppose that x /∈ Sh

(
θ ′; x, θ

)
. It follows that mh /∈

T �
h (θ). Suppose that there exists z ∈ Sh

(
θ ′; x, θ

)
such that z Rh

(
θ ′) x . Given that

z ∈ Sh
(
θ ′; x, θ

)
, it follows that there exists m′

h ∈ T � (θ) such that g
(
m′

h, m−h
) = z.

Thus,
(
m′

h, m−h
) 	�,θ

h m, which contradicts that m ∈ N E
(
�,��,θ,N

)
. We thus

conclude that x Ph (θ) z for all z ∈ Sh (θ; x, θ).
Finally, we show that F satisfies part (2) of Condition μ∗ (ii). Fix any pair (i, y) ∈

N × Ci (θ, x). Then, given that g (m) = x and m ∈ N E
(
�,��,θ,N

)
, it follows that

g
(
m′

i , m−i
) = y for some m′

i ∈ Mi . To economize on notation, we write m′ for(
m′

i , m−i
)
.

Suppose thatCi (θ, x) ⊆ Li
(
θ ′, y

)
and thatY ⊆ L j

(
θ ′, y

)
for all j 
= i .Moreover,

suppose that y /∈ F
(
θ ′). By the partially-honest Nash implementability of F , we have

that m′ /∈ N E
(
�,��,θ ′,H

)
. Given that g

(
Mk, m′−k

) ⊆ Lk
(
θ ′, y

)
for every k ∈ N ,

only a partially-honest individual h ∈ H can find it profitable to unilaterally deviate
from m′. Thus, it is the case that m′

h /∈ T �
h

(
θ ′) and that there is m′′

h ∈ T �
h

(
θ ′) such

that g
(
T �

h

(
θ ′) , m′−h

) ∩ Ih
(
θ ′, y, Y

) 
= ∅.
This shows that the intersection

Si
(
θ ′; x, θ

) ⋂
Ii

(
θ ′, y, Y

)
(A3)

is not empty if H = {i}. Suppose that H = {i}. If g
(
m′′

i , m′−i

) = y, then y ∈
N A

(
�,��,θ ′,H

)
, which contradicts that y /∈ F

(
θ ′). Thus, when H = {i}, we have
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that y /∈ Si
(
θ ′; x, θ

)
and that the intersection in (A3) is not empty, establishing part

(2)(a) of Condition μ∗(ii).
Finally, let us show that F satisfies part (2)(b) of Condition μ∗(ii) as well. Thus,

suppose that i /∈ H and that θ ′ = θ . This implies that the deviant h ∈ H is such
that i 
= h. Recall that for this h it holds that m′

h = mh /∈ T �
h

(
θ ′). Since g (m) = x

and m ∈ N E
(
�,��,θ,H

)
, it holds that individual h cannot break it via any unilateral

deviation.24

Assume, to the contrary, that x ∈ S j
(
θ ′; x, θ

)
for all j ∈ H . Then, individualh ∈ H

identified above can find a strategy choice m̂h ∈ T �
h

(
θ ′) such that g

(
m̂h, m−h

) = x .
Since m′

h = mh /∈ T �
h

(
θ ′), it follows that m̂h 
= mh and so individual h can break

the strategy profile m from being a Nash equilibrium of
(
�,��,θ,H

)
, which is a

contradiction. Thus, it is the case that x /∈ S j
(
θ ′; x, θ

)
for some individual j ∈ H ,

establishing part (2)(b) of Condition μ∗(ii).
In what follows, we show that F is partially-honestly Nash implementable if it

satisfies Condition μ∗(ii) with respect to Y ⊆ X . Note that Y = X because F satisfies
unanimity. To this end, suppose that F satisfies Condition μ∗(ii) with respect to X .

Let us construct a mechanism which will partially-honestly Nash implement F .
First, agent i’s strategy choice space is defined by

Mi = (� ∪ �) × X × N ,

where� is a non-empty set such that its intersection with� is empty and that there is a
bijection φ from� to�. This bijection is to make a code φ (θ) to send the information
of each state θ , rather than its direct message θ . Thus, individual i’s strategy consists
of an outcome in X , an element of the set � ∪ � and an individual index k ∈ N . A
typical strategy played by individual i is denoted by mi = (

mi1, xi , ki
)
with mi1 as

a typical element of � ∪ �. The strategy choice space of individuals is the product
space M = ∏

i∈N Mi , with m as a typical strategy profile.
For every pair

(
θ̄ , x

) ∈ � × X with x ∈ F
(
θ̄
)
, define individual p’s set σp

(
θ̄ , x

)
as follows:

σp
(
θ̄ , x

) =
⎧⎨
⎩

{
φ

(
θ̄
)} × {x} × N

if ∃q ∈ N\ {p} such that x ∈ Sq
(
θ̄; x, θ̄

)
& x /∈ S j

(
θ̄; x, θ̄

)
(∀ j ∈ N\ {q}) ;{

θ̄
} × {x} × N otherwise.

Write σ
(
θ̄ , x

)
for a typical profile of sets, that is, σ

(
θ̄ , x

) = (
σp

(
θ̄ , x

))
p∈N ; andwrite

σp1
(
θ̄ , x

)
for a typical first coordinate of the set σp

(
θ̄ , x

)
. As F satisfies Condition

μ∗ (ii), we can always specify a profile σ
(
θ̄ , x

)
corresponding to each pair

(
θ̄ , x

) ∈
� × X with x ∈ F

(
θ̄
)
. Indeed, for any of such pairs, the corresponding profile(

Sp
(
θ̄; x, θ̄

))
p∈N is specified by part (1)(a) of Condition μ∗ (ii). Then, given this

profile
(
Sp

(
θ̄; x, θ̄

))
p∈N , we can specify the profile σ

(
θ̄ , x

)
in the following manner:

if there exists a unique individualq ∈ N such that x ∈ Sq
(
θ̄; x, θ̄

)
and x /∈ S j

(
θ̄; x, θ̄

)

24 Observe that m ∈ N E
(
�,��,θ,H

)
given that m ∈ N E

(
�,��,θ,N

)
and that H ⊆ N .
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for any other individual j 
= q, then σq
(
θ̄ , x

) = {
θ̄
} × {x} × N and σ j

(
θ̄ , x

) ={
φ

(
θ̄
)} × {x} × N for any j 
= q; otherwise, σp

(
θ̄ , x

) = {
θ̄
} × {x} × N for any

individual p ∈ N . Such a specification of σ
(
θ̄ , x

)
will be used in the construction of

the outcome function—see below.When agent p plays a strategy m p ∈ σp
(
θ̄ , x

)
such

that m p1 = φ
(
θ̄
)
, our interpretation is that this agent is reporting the state θ̄ indirectly

via φ. The reason is that φ is a bijection φ from � to �.
By means of the profile σ

(
θ̄ , x

)
, let us introduce the notion of consistent strategy

profile with respect to each pair
(
θ̄ , x

) ∈ � × X with x ∈ F
(
θ̄
)
as follows.

Definition 9 For every pair
(
θ̄ , x

) ∈ � × X with x ∈ F
(
θ̄
)
and every strategy profile

m ∈ M ,

(a) m is consistent with σ
(
θ̄ , x

)
if mi ∈ σi

(
θ̄ , x

)
for every individual i ∈ N .

(b) m is quasi-consistent with σ
(
θ̄ , x

)
ifmi /∈ σi

(
θ̄ , x

)
for one and only one individual

i ∈ N .

In words, m is consistent with σ
(
θ̄ , x

)
when every individual i is playing one of the

strategies specified by σi
(
θ̄ , x

)
. m is quasi-consistent with σ

(
θ̄ , x

)
if there exists only

one agent i who is playing a strategy that is not included in σi
(
θ̄ , x

)
.

The outcome function g of the mechanism is defined by the following three rules:
Rule 1: If m is consistent with σ

(
θ̄ , x

)
, then g (m) = x .

Rule 2: If m is quasi-consistent with σ
(
θ̄ , x

)
and mi = (

mi1, xi , ki
)

/∈ σi
(
θ̄ , x

)
for

some i ∈ N , then we can have three cases:

1. If mi1 = θ i = θ̄ ∈ σi1
(
θ̄ , x

)
or mi1 = φ

(
θ i

) = φ
(
θ̄
)
, then g (m) = x .

2. If mi1 = θ i 
= θ̄ or mi1 = φ
(
θ i

) 
= φ
(
θ̄
)
, then given that θ i = (

φ−1 ◦ φ
) (

θ i
)
:

(a) g (m) = xi if xi ∈ Si
(
θ i ; x, θ̄

)
; (b) g (m) = xi if xi ∈ Ci

(
θ̄ , x

) \Si
(
θ i ; x, θ̄

)
and Si

(
θ i ; x, θ̄

) ⊆ SLi
(
θ i , xi

)
; (c) g (m) = y if xi ∈ Ci

(
θ̄ , x

) \Si
(
θ i ; x, θ̄

)
and y ∈ Si

(
θ i ; x, θ̄

) ∩ Ii
(
θ i , xi , X

)
; (d) otherwise, g (m) = z for some z ∈

Si
(
θ i ; x, θ̄

)
.

3. If mi1 = θ i = θ̄ /∈ σi1
(
θ̄ , x

)
, then: (a) g (m) = xi if xi ∈ Si

(
θ i ; x, θ̄

)
; (b)

otherwise, g (m) = z for some z ∈ Si
(
θ i ; x, θ̄

)
.

Rule 3: Otherwise, a modulo game is played: divide the sum
∑

i∈N ki by n and
identify the remainder, which can be either 0, 1, . . ., or n − 1. The individual having
the same index of the remainder is declared the winner of the game and the alternative
implemented is the one she selects, with the convention that the winner is individual
n if the remainder is 0.
Note that in Rule 2–3, mi1 = θ i = θ̄ /∈ σi1

(
θ̄ , x

)
implies that there exists one

and only one individual q 
= i such that x ∈ Sq
(
θ̄; x, θ̄

)
and x /∈ S j

(
θ̄; x, θ̄

)
for

every j ∈ N\ {q}. In contrast, in Rule 2–1, if mi1 = θ̄ ∈ σi1
(
θ̄ , x

)
, then there

can be three cases: i is the unique individual who has x ∈ Si
(
θ̄; x, θ̄

)
and x /∈

S j
(
θ̄; x, θ̄

)
for every j ∈ N\ {i}; there are at least two individuals p and q such that

x ∈ Sp
(
θ̄; x, θ̄

) ∩ Sq
(
θ̄; x, θ̄

)
; or x /∈ Sp

(
θ̄; x, θ̄

)
holds for any individual p.

By the above definitions, we have that � ≡ (M, g) is a mechanism. To paraphrase
this mechanism:
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• Rule 1 corresponds to the case in which individuals play a message profile m that
is consistent with σ

(
θ̄ , x

)
. Therefore, given our interpretation of φ

(
θ̄
)
, this rule

applies if each individual i plays a strategymi ∈ σi
(
θ̄ , x

)
viawhich she announces

θ̄ as a state and x ∈ F
(
θ̄
)
as an outcome.

• Rule 2 applies to situations where the message profile reported by agents is quasi-
consistent with σ

(
θ̄ , x

)
. Then, all but one agent make the same announcement

about the state θ̄ and the outcome x ∈ F
(
θ̄
)
, and some individual i make an

announcement mi such that mi /∈ σi
(
θ̄ , x

)
. In that case, our outcome function

distinguishes three cases.
The outcome is x if all individuals make the same announcement about the state–
see Rule 2.1.
Rule 2.2 applies to cases in which agent i’s announcement about the state is dif-
ferent from that reported by all other agents. In this case, the outcome is the xi

announced by agent i if either xi is a truthful outcome according to the state
announced by agent i–that is, xi ∈ Si

(
θ i ; x, θ̄

)
, or xi is not a truthful out-

come according to agent i’s announcement but it is an attainable outcome–that
is, xi ∈ Ci

(
θ̄ , x

) \Si
(
θ i ; x, θ̄

)
—and xi is better than any other truthful outcome

in Si
(
θ i ; x, θ̄

)
—see parts (a)-(b) of Rule 2.2. The outcome is y if xi is not a truth-

ful outcome according to agent i’s announcement but it is an attainable outcome,
and if this y is a truthful outcome according to the state announced by agent i and it
is as good as xi according to the ordering corresponding to the state announced by
agent i—see parts (c) of Rule 2.2. The outcome is z ∈ Si

(
θ i ; x, θ̄

)
if the outcome

announced by agent i , xi , is not an attainable outcome, that is, xi /∈ Ci
(
θ̄ , x

)
—see

part (d) of Rule 2.2.
Rule 2.3 applies to cases in which all individuals make the same announce-
ment about the state and agent i’s announcement about the state is such that
mi1 = θ i = θ̄ /∈ σi1

(
θ̄ , x

)
. In this case, the outcome is the xi announced by

agent i if xi is a truthful outcome according to the state announced by agent i .
Otherwise, the outcome is z for some z ∈ Si

(
θ i ; x, θ̄

)
.

• Rule 3 applies the remaining announcements that do not fall under Rule 1 or Rule
2. The outcome is the alternative announced by the winner of the modulo game.

We show that this� partially-honestly implements F . For every individual i , define
the truth-telling correspondence as follows:

T �
i

(
θ̄
) = {

θ̄
} × X × N , for every state θ̄ ∈ �.

It is clear that the truth-telling correspondence is not empty, as required byDefinition 3.
Thus, we are left to show that

F
(
θ̄
) = N A

(
�,��,θ̄,H̄

)
, for every pair

(
θ̄ , H̄

) ∈ � × H.

To this end, fix any pair (θ, H) ∈ � × H.
Let us first show that if x ∈ F (θ), then there is a strategy profile m ∈

N E
(
�,��,θ,H

)
with g (m) = x .
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Suppose that x ∈ F (θ). Given that the profile σ (θ, x) is well defined, take any
strategy profile m that is consistent with σ (θ, x). Thus, m falls into Rule 1 and x =
g (m). We claim that m ∈ N E

(
�,��,θ,H

)
.

To see this, first observe that any deviation of j will get her to an outcome in
C j (θ, x) by Rule 2, and so g

(
M j , m− j

) ⊆ C j (θ, x). Since C j (θ, x) ⊆ L j (θ, x),
such deviations are not profitable if j /∈ H . To see that such deviations are also not
profitable for j ∈ H , we proceed according to whether σ j1 (θ, x) = {θ} or not.

Suppose that σ j1 (θ, x) = {θ} . Then, given that m j ∈ T �
j (θ), there is no uni-

lateral profitable deviation for this j ∈ H . Suppose that σ j1 (θ, x) = {φ (θ)}. Then,
m j /∈ T �

j (θ), and, moreover, x /∈ S j (θ; x, θ), by definition of σ j (θ, x). Note that by
definition of Rule 2.3 any deviation to a truthful strategy choice for θ by this j will
result in outcomes of S j (θ; x, θ). Since part (1)(b) of Condition μ∗(ii) implies that
S j (θ; x, θ) ⊆ SL j (θ, x), there is no unilateral profitable deviation for this j .

In summary, j’s deviations from m are not profitable, and so m ∈ N E
(
�,��,θ,H

)
,

as we sought.
For the converse, suppose that m ∈ N E

(
�,��,θ,H

)
. We show that g (m) ∈ F (θ).

To obtain a contradiction, we suppose that g (m) /∈ F (θ). We proceed by cases.
Case 1 m falls into Rule 3

Given the richness of the strategy space, we see that X ⊆ g
(
M j , m− j

)
for every

j . Since m ∈ N E
(
�,��,θ,H

)
, it follows that X ⊆ L j (θ, g (m)) for every j . Given

that the SCR F is unanimous, g (m) ∈ F (θ), which is a contradiction.
Case 2 m falls into Rule 1

Then, g (m) = x . Note that Condition μ∗(ii) implies that x ∈ C j
(
θ̄ , x

)
for each

j ∈ N . If θ = θ̄ , there is an immediate contradiction. We thus suppose that θ 
= θ̄ . It
follows that mh /∈ T �

h (θ) for every h ∈ H . Fix any h ∈ H . Suppose that there exists
y ∈ Sh

(
θ; x, θ̄

)
such that y Ih (θ) x . This agent can change mh into m′

h = (
θ, y, kh

)
.

Then, by part (a) of Rule 2.2, g
(
m−h, m′

h

) = y, yielding a contradiction. Since m
is a Nash equilibrium at

(
�,��,θ,H

)
and since agent h can obtain any outcome in

Sh
(
θ; x, θ̄

)
by part ( a) of Rule 2.2, it follows that x Ph (θ) y for all y ∈ Sh

(
θ; x, θ̄

)
.

By changing mh into m′
h = (

θ, x, kh
)
, this agent obtains g

(
m−h, m′

h

) = x , by part
(b) of Rule 2.2, given that x ∈ Ch

(
θ̄ , x

) \Sh
(
θ; x, θ̄

)
and Sh

(
θ; x, θ̄

) ⊆ SLh (θ, x).
Since m′

h = (
θ, x, kh

) ∈ T �
h (θ) and mh /∈ T �

h (θ), and since h is a partially-honest

agent, we have that
(
m′

h, m−h
) 	�,θ

h m, which contradicts that m ∈ N E
(
�,��,θ,H

)
.

Case 3 m falls into Rule 2.1
Then, g (m) = x . Note that Condition μ∗(ii) implies that x ∈ C j

(
θ̄ , x

)
for each

j ∈ N . Again, if θ = θ̄ , there is an immediate contradiction. We thus suppose that
θ 
= θ̄ . We show that m /∈ N E

(
�,��,θ,H

)
, which is a contradiction. Since θ 
= θ̄ , it

follows that mh /∈ T �
h (θ) for every h ∈ H . Fix any h ∈ H .

Suppose that h = i . This i can change mi into m′
i = (

θ, x, ki
) ∈ T �

i (θ) so
as to induce either part (a), part (b), or part (c) of Rule 2.2. If

(
m′

i , m−i
)
induces

part ( a), then x ∈ Si
(
θ; x, θ̄

)
and g

(
m′

i , m−i
) = x . If

(
m′

i , m−i
)
induces part

(b), then Si
(
θ; x, θ̄

) ⊆ SLi (θ, x) and g
(
m′

i , m−i
) = x . Finally, if

(
m′

i , m−i
)

induces part (c), then x ∈ Ci
(
θ̄ , x

) \Si
(
θ; x, θ̄

)
and there exists y ∈ Si

(
θ; x, θ̄

)
such that y Ii (θ) x , which results in g

(
m′

i , m−i
) = y. Thus, in either case, we
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have that g
(
m′

i , m−i
)

Ii (θ) x . Since mi /∈ T �
i (θ) and m′

i ∈ T �
i (θ), it follows that(

m′
i , m−i

) 	�,θ
i m, which contradicts that m ∈ N E

(
�,��,θ,H

)
.

Suppose that h 
= i . This h can change mh into m′
h = (

θ, x, kh
) ∈ T �

h (θ) so as
to induce Rule 3. To attain x , h has only to adjust kh so as to win the modulo game.
Since mh /∈ T �

h (θ) and m′
h ∈ T �

h (θ), it follows that
(
m′

h, m−h
) 	�,θ

h m, which is a
contradiction.
Case 4 m falls into Rule 2.3

Then, g (m) ∈ Si
(
θ i ; x, θ̄

)
. Given that in this case it must hold that mi /∈ σi

(
θ̄ , x

)
and that mi1 = θ i = θ̄ /∈ σi1

(
θ̄ , x

)
, it follows from the definition of the profile

σ
(
θ̄ , x

)
and the fact that m falls into Rule 2.3 that x ∈ Sq

(
θ̄; x, θ̄

)
for one and only

one individual q 
= i ,25 and so g (m) 
= x . We proceed according to whether θ = θ̄

or not.
Sub-case 4.1 θ = θ i = θ̄

Observe that x /∈ Si (θ; x, θ) given that θ̄ /∈ σi1
(
θ̄ , x

)
. Suppose that i ∈ H .

Given that i can attain x by inducing Rule 1, we have that x ∈ g (Mi , m−i ). Given
that m ∈ N E

(
�,��,θ,H

)
, it also holds that g (m) Ri (θ) x . However, since x ∈

Ci (θ, x) ⊆ Li (θ, x) and, moreover, g (m) ∈ Si (θ; x, θ) ⊆ Ci (θ, x), it follows that
x Ii (θ) g (m), which contradicts part (1)(b) of Condition μ∗ (ii). Therefore, it must be
the case that i /∈ H .

Suppose that H\ {q} 
= ∅. Then, take any h ∈ H\ {q}. Note thatmh /∈ T �
h (θ) given

that σh1 (θ, x) = {φ (θ)}. This h can change mh into m′
h = (

θ, g (m) , kh
) ∈ T �

h (θ)

so as to induce Rule 3. To attain g (m), h has only to adjust kh so as to win the
modulo game.Thus,

(
m′

h, m−h
) 	�,θ

h m, which contradicts thatm ∈ N E
(
�,��,θ,H

)
.

Otherwise, let H\ {q} = ∅. Given that H 
= ∅ and that i /∈ H , we are left to consider
the case where H = {q}. Recall that x ∈ Sq (θ; x, θ) for one and only one individual
q 
= i .

Let us show that X ⊆ L j (θ, g (m)) for every j 
= i . To this end, take any z ∈ X\ {x}
and any j 
= i . By changing m j into m′

j = (
φ (θ) , z, k j

)
, j can induce Rule 3. To

attain z, this j has only to adjust k j so as to win the modulo game. To attain x , j has
only to adjust k j so as to allow k ∈ N\ {i, j} to win the modulo game. Thus, we have
that X ⊆ g

(
M j , m− j

)
and so X ⊆ L j (θ, g (m)) given that m ∈ N E

(
�,��,θ,H

)
, as

was to be shown.
Next, let us show thatCi (θ, x) ⊆ Li (θ, g (m)). To attain x , i can changemi into any

strategy choice in σi (θ, x) and induce Rule 1. Thus, x ∈ g (Mi , m−i ). Since g (m) ∈
Ci (θ, x) andCi (θ, x) ⊆ Li (θ, x) and, moreover, sincem ∈ N E

(
�,��,θ,H

)
, we see

that x Ii (θ) g (m). By transitivity, it follows fromCi (θ, x) ⊆ Li (θ, x) thatCi (θ, x) ⊆
Li (θ, g (m)).

Since X ⊆ L j (θ, g (m)) for every j 
= i and Ci (θ, x) ⊆ Li (θ, g (m)) and since,
moreover, H = {q} and g (m) /∈ F (θ), part (2)(b) of Condition μ∗(ii) implies that
x /∈ Sq (θ; x, θ), which is a contradiction.
Sub-case 4.2 θ 
= θ i = θ̄

We show that m /∈ N E
(
�,��,θ,H

)
. Note that mh /∈ T �

h (θ) for every h ∈
H . Fix any h ∈ H . Suppose that h = i . This i can change mi into m′

i =
25 If q = i , then σi1

(
θ̄ , x

) = {
θ̄
}
, which is not the case.
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(
θ, g (m) , ki

) ∈ T �
i (θ) so as to induce Rule 2.2 and to obtain g

(
m′

i , m−i
)
such that

g
(
m′

i , m−i
)

Ii (θ) g (m).26 Therefore,
(
m′

i , m−i
) 	�,θ

i m, yielding a contradiction.
Thus, suppose that h 
= i . This h can change mh into m′

h = (
θ, g (m) , kh

) ∈ T �
h (θ)

so as to induce Rule 3. To attain g (m), h has only to adjust kh so as to win the modulo
game. Again,

(
m′

h, m−h
) 	�,θ

h m, which is a contradiction.
Case 5 m falls into Rule 2.2

Let us show that X ⊆ L j (θ, g (m)) for every j 
= i . To this end, take any z ∈ X\ {x}
and any j 
= i . By changing m j into m′

j = (
φ (θ) , z, k j

)
, j can induce Rule 3. To

attain z, this j has only to adjust k j so as to win the modulo game. To attain x , j has
only to adjust k j so as to allow k ∈ N\ {i, j} to win the modulo game. Thus, we have
that X ⊆ g

(
M j , m− j

)
and so X ⊆ L j (θ, g (m)) given that m ∈ N E

(
�,��,θ,H

)
.

Since the choice of j is arbitrary, we have that X ⊆ L j (θ, g (m)) for each j 
= i .
Next, let us show that Ci

(
θ̄ , x

) ⊆ Li (θ, g (m)). To attain x , i can change mi into
m′

i ∈ σi
(
θ̄ , x

)
and induce Rule 1. Thus, x ∈ g (Mi , m−i ). Let us proceed according

to whether θ = θ̄ or not.
Suppose that θ = θ̄ . Since g (m) ∈ Ci

(
θ̄ , x

)
and Ci

(
θ̄ , x

) ⊆ Li
(
θ̄ , x

)
and,

moreover, since m ∈ N E
(
�,��,θ,H

)
, we see that x Ii (θ) g (m). By transitivity, it

follows from Ci (θ, x) ⊆ Li (θ, x) that Ci (θ, x) ⊆ Li (θ, g (m)).
Suppose thus that θ 
= θ̄ . By changing mi into m′

i = (
φ (θ) , zi , ki

)
with zi ∈

Si
(
θ; x, θ̄

)
, i can induce part (a) of Rule 2.2 and obtain this zi . It follows that i

can also attain any outcome in Si
(
θ; x, θ̄

)
, establishing that Si

(
θ; x, θ̄

) ∪ {x} ⊆
Li (θ, g (m)). Assume, to the contrary, that there exists w ∈ Ci

(
θ̄ , x

) \Si
(
θ; x, θ̄

)
such that wPi (θ) g (m). By transitivity, we see that Si

(
θ; x, θ̄

) ∪ {x} ⊆ SLi (θ, w).
Individual i can change mi into m′

i = (
φ (θ) ,w, ki

)
so as to obtain g

(
m′

i , m−i
) = w

by part (b) of Rule 2.2, which contradicts that m ∈ N E
(
�,��,θ,H

)
. Thus, we

conclude that Ci
(
θ̄ , x

) ⊆ Li (θ, g (m)).

(+) Suppose that σh1
(
θ̄ , x

) = {
φ

(
θ̄
)}

for some h ∈ H\ {i} if the set H 
= {i}. Then,
mh /∈ T �

h (θ). By changing mh into m′
h = (

θ, g (m) , kh
) ∈ T �

h (θ), h can induce
Rule 3. To attain g (m), this h has only to adjust kh so as to win the modulo game.
It follows that

(
m′

h, m−h
) 	�,θ

h m, which contradicts that m ∈ N E
(
�,��,θ,H

)
.

Therefore, it must be the case that σh1
(
θ̄ , x

) = {
θ̄
}
for every h ∈ H\ {i} if the set

H 
= {i}.
We distinguish the following cases: (1) i /∈ H , (2) H = {i} and (3) i ∈ H and

H ∩ (N\ {i}) 
= ∅.
Sub-case 5.1 i /∈ H

Suppose that θ̄ 
= θ . Then, mh /∈ T �
h (θ) for each h ∈ H . Fix any h. The contra-

diction that m /∈ N E
(
�,��,θ,H

)
follows from the argument used above in (+). Thus,

in what follows, we assume that θ̄ = θ . We distinguish whether x ∈ Sh (θ; x, θ) for
some h ∈ H or not.

26 Note that if g (m) /∈ Si
(
θ; x, θ̄

)
and there does not exist any outcome y ∈ Ci

(
θ̄ , x

)
such that y ∈

Si
(
θ; x, θ̄

) ∩ Ii (θ, g (m) , Y ), then by part (b) of Rule 2.2 it follows that g
(
m′

i , m−i
) = g (m).
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Suppose that x ∈ Sh (θ; x, θ) for some h ∈ H . By Assumption 2, {h} ∈ H holds.
Then, since m ∈ N E

(
�,��,θ,H

)
, it follows that m ∈ N E

(
�,��,θ,{h}).27 Since

g (m) ∈ Ci (θ, x) ⊆ Li (θ, g (m)) and X ⊆ L j (θ, g (m)) for every j 
= i and since,
moreover, x ∈ Sh (θ; x, θ) and {h} ∈ H, part (2)(b) of Condition μ∗(ii) implies that
g (m) ∈ F (θ), which is a contradiction.

Suppose that x /∈ Sh (θ; x, θ) for every h ∈ H . Since H 
= {i}, it follows from
(+) that σh1 (θ, x) = {θ} for every h ∈ H . This implies that mh ∈ T �

h (θ) for every
h ∈ H . Suppose that x ∈ Sp (θ; x, θ) for some p ∈ N\H with p 
= i . Since
g (m) ∈ Ci (θ, x) ⊆ Li (θ, g (m)) and X ⊆ L j (θ, g (m)) for every j 
= i and since,
moreover, x ∈ Sp (θ; x, θ) and {p} ∈ H, part (2)(b) of Condition μ∗(ii) implies
that g (m) ∈ F (θ), which is a contradiction. Therefore, we have established that
x /∈ S j (θ; x, θ) for every j 
= i . Furthermore, given that H 
= ∅ and that i /∈ H
and given that mh ∈ T �

h (θ) for every h ∈ H , it cannot be that x ∈ Sq (θ; x, θ)

for one and only one individual q = i . It follows that x /∈ Si (θ; x, θ). By Assump-
tion 2, it also holds that {i} ∈ H. Since θ̄ = θ , part (1)(b) of Condition μ∗(ii)
implies that Si (θ; x, θ) ⊆ SLi (θ, x) for i when {i} ∈ H is considered. Now,
since g (m) ∈ Ci (θ, x) ⊆ Li (θ, x) and since x ∈ Ci (θ, x) ⊆ Li (θ, g (m)), it
follows that x Ii (θ) g (m), and so Si (θ; x, θ) ⊆ SLi (θ, g (m)), by transitivity. How-
ever, since g (m) ∈ Ci (θ, x) ⊆ Li (θ, g (m)) and X ⊆ L j (θ, g (m)) for every
j 
= i and since, moreover, {i} ∈ H and g (m) /∈ F (θ), part (2)(a) of Condi-
tion μ∗(ii) implies that Si (θ; x, θ) ∩ Ii (θ, g (m) , X) 
= ∅, which contradicts that
Si (θ; x, θ) ⊆ SLi (θ, g (m)).
Sub-case 5.2 H = {i}

Then, mi ∈ T �
i (θ). To see this, assume, to the contrary, that mi /∈ T �

i (θ). We
proceed according to whether σi1

(
θ̄ , x

) = {θ} or not.
Suppose that σi1

(
θ̄ , x

) = {θ}. Then, θ = θ̄ . To attain x , i can change mi into m′
i =(

θ, x, ki
) ∈ T �

i (θ) and induce Rule 1. Since H = {i}, it follows that (m′
i , m−i

) 	�,θ
i

m, which contradicts that m ∈ N E
(
�,��,θ,H

)
.

Suppose that σi1
(
θ̄ , x

) 
= {θ}. We proceed according to whether θ = θ̄ or not.
Suppose that θ 
= θ̄ . Then, by changing mi into m′

i = (
θ, g (m) , ki

) ∈ T �
i (θ), i can

induce Rule 2.2. Since g
(
m′

i , m−i
)

Ii (θ) g (m), it follows that
(
m′

i , m−i
) 	�,θ

i m,
which contradicts that m ∈ N E

(
�,��,θ,H

)
. Suppose that θ = θ̄ . Then, σi1

(
θ̄ , x

) ={
φ

(
θ̄
)}

given that σi1
(
θ̄ , x

) 
= {θ}, and so it must be the case that x ∈ Sq
(
θ̄; x, θ

)
for one and only one individual q 
= i and, consequently, that σp1

(
θ̄ , x

) = {
φ

(
θ̄
)}

for every p 
= q.28 Since g (m) ∈ Ci (θ, x) ⊆ Li (θ, g (m)) and X ⊆ L j (θ, g (m))

for every j 
= i and since, moreover, g (m) /∈ F (θ), part (2)(a) of Condition μ∗(ii)
implies for {i} = H that g (m) /∈ Si (θ; x, θ) and that there is z ∈ Si (θ; x, θ) ∩
Ii (θ, g (m) , X). Thus, by changing mi into m′

i = (
θ, z, ki

) ∈ T �
i (θ), i can induce

27 Note that if m p is a best reply to m−p in
(
�,��,θ,H

)
where p ∈ H , then m p is still a best reply

to m−p in
(
�,��,θ,H ′)

where p /∈ H ′ and H ′
� H . Therefore, m ∈ N E

(
�,��,θ,H

)
implies m ∈

N E
(
�,��,θ,

{
h′})

for every h′ ∈ H .

28 Again, if q = i , then σi1
(
θ̄ , x

) = {
θ̄
}
, which is not the case.
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Rule 2.3 and obtain g
(
m′

i , m−i
) = z, which contradicts that m ∈ N E

(
�,��,θ,H

)
.

We conclude that mi ∈ T �
i (θ).

Since g (m) ∈ Ci
(
θ̄ , x

) ⊆ Li (θ, g (m)) and X ⊆ L j (θ, g (m)) for every j 
= i
and since, moreover, either g (m) ∈ Si

(
θ; x, θ̄

)
or Si

(
θ; x, θ̄

) ⊆ SLi (θ, g (m)), part
(2)(a) of Condition μ∗(ii) implies that g (m) ∈ F (θ), which is a contradiction.
Sub-case 5.3 i ∈ H and H ∩ (N\ {i}) 
= ∅

Then, from the same arguments used for Sub-case 5.1, one can see that θ̄ = θ .
It also follows from (+) that σh1 (θ, x) = {θ} for every h ∈ H\ {i}, and so mh ∈
T �

h (θ) for every h ∈ H\ {i}. Note that mi /∈ T �
i (θ) given that mi1 = θ i 
= θ or

mi1 = φ
(
θ i

) 
= φ (θ). Also, note that given that g (m) ∈ Ci (θ, x) ⊆ Li (θ, x) and
that Ci (θ, x) ⊆ Li (θ, g (m)) we have that g (m) Ii (θ) x . We proceed according to
whether σi1 (θ, x) = {θ} or not.

Suppose thatσi1 (θ, x) = {θ}. Then, by changingmi intom′
i = (

θ, x, ki
) ∈ T �

i (θ),
i can induce Rule 1 and obtain g

(
m′

i , m−i
) = x . Given that g (m) Ii (θ) x , it follows

that
(
m′

i , m−i
) 	�,θ

i m, which contradicts that m ∈ N E
(
�,��,θ,H

)
.

Suppose thatσi1 (θ, x) 
= {θ}. Thus,σi1 (θ, x) = {φ (θ)}, and so there exists exactly
one q 
= i such that x ∈ Sq (θ; x, θ) and, consequently, σp1 (θ, x) = {φ (θ)} for every
p 
= q. Given that i ∈ H and H ∩ (N\ {i}) 
= ∅ and given that mh ∈ T �

h (θ) for
every h ∈ H\ {i}, it needs to be the case that H = {q, i} —otherwise, mh /∈ T �

h (θ)

for every h ∈ H\ {i, q}, which is a contradiction.
Since x /∈ Sq (θ; x, θ), part (1)(b) of Condition μ∗(ii) implies that Si (θ; x, θ) ⊆

SLi (θ, x). Furthermore, given that g (m) Ii (θ) x , it also follows from transitivity
that Si (θ; x, θ) ⊆ SLi (θ, g (m)). Since m ∈ N E

(
�,��,θ,H

)
, and since, moreover,

Assumption 2 holds, m ∈ N E
(
�,��,θ,{i}). Since the premises of part (2)(a) of

Condition μ∗(ii) are met, we have that Si (θ; x, θ) ∩ Ii (θ, g (m) , X) 
= ∅, which is
a contradiction. ��
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