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Composition of physiologically
important fatty acids in great tits
differs between urban and rural
populations on a seasonal basis
Martin N. Andersson, Hong-Lei Wang, Andreas Nord †, Pablo Salmón and

Caroline Isaksson*

Department of Biology, Lund University, Lund, Sweden

Fatty acids (FA) have crucial functions in animals, affecting e.g., inflammatory responses,

thermoregulation, and cell membrane fluidity. Diet and ambient temperature affect

animals’ FA composition, which, in turn, may influence these physiological processes.

Great tits (Parus major)—common in both urban and rural habitats—are mainly

granivorous during winter and insectivorous during summer. These diets show

pronounced differences in FA composition. Such variation has context-dependent

effects on physiology, because the thermal environment, food availability, and levels of

pro-inflammatory environmental stressors differ between urban and rural areas. Thus,

we investigated how great tit plasma FA composition varied between urban and rural

habitats and across seasons. Eight FAs differed between urban and rural birds. Among

these, arachidonic acid [omega (ω)-6 polyunsaturated FA] with thermoregulatory and

pro-inflammatory properties was more abundant in urban than rural birds in winter,

whereas ω-3 FAs with anti-inflammatory properties were more abundant in rural birds.

The difference in pro- and anti-inflammatory FAs suggest that the negative health effects

that urban birds suffer from being exposed to higher levels of pollutants might be

enhanced by an elevated inflammatory response. Eight FAs differed between winter and

summer birds. This variation reflected the diet change: FAs common in seeds, e.g.,

oleic- and linoleic acid, were present in higher amounts in winter birds, whereas ω-3

polyunsaturated FAs that are common in caterpillars were more abundant in summer

birds. Overall, a larger seasonal variation was seen among the urban birds. This study is

the first to reveal a difference in FA composition between urban and rural populations

for all animals studied to date. Future experiments should unravel the physiological

implications of this variation, and ultimately, link its effects to fitness of animals with

different physiological and dietary requirements in urban and rural environments.
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Introduction

Urbanization is a global concern for the health and persistence of
many wild animal populations. Apart from the major problems
of habitat loss and fragmentation, urbanization is associated
with a number of other factors that threaten wildlife, including
higher pollution levels and predation by pets (Marzluff et al.,
2001; Isaksson, 2015). In addition, there are also enticements that
lure animals into the urban habitats, such as high availability
of anthropogenic food sources and higher temperatures. Thus,
animals that enter an urban habitat might gain some immediate
benefits, however, the urban inhabitants might suffer in the long
run from reduced health, survival and/or lifetime reproductive
output. In temperate regions, food availability and environmental
temperature are two factors with great impact on animal survival
during the cold winter months. What is perhaps less known is
the impact of diet and ambient temperature on the fatty acid
(FA) composition of animal tissues, which is important for a
wide range of physiological processes including oxidative stress,
inflammation, thermoregulation, exercise performance, and cell
membrane fluidity (Hazel, 1995; Larsson et al., 2004; Pierce et al.,
2005; Ben-Hamo et al., 2011; Hulbert and Abbott, 2012). These
physiological processes, in turn, are affected by or regulated in
response to extrinsic stressors, such as pollutant levels, pathogen
infections, and temperature, which all vary on both temporal
(e.g., between seasons) and spatial (e.g., between urban and rural
habitats) scales (Tinoco, 1982; Hulbert and Else, 1999; Larsson
et al., 2004; McWilliams et al., 2004; Cherian et al., 2009; Hulbert
and Abbott, 2012). Thus, variation in FA composition is likely to
affect animal populations differently, depending on both season
and the degree of urbanization. In addition, by studying variation
in animal FA content across habitats and seasons, we can gain
insights into variation in animals’ diets and pinpoint individual
FAs that might constrain or facilitate any context-dependent
physiological responses to the environment.

Birds and other animals that live in urban areas have higher
oxidative stress and inflammation, as compared to animals in
rural habitats (Isaksson, 2010, 2015). This difference has largely
been explained by the higher pollution levels in urban areas
(e.g., Han and Naeher, 2006; Stroh et al., 2007). However,
the potential contribution of fatty acid nutrition to oxidative
stress and inflammation has largely been neglected. In particular,
a high dietary intake of omega-6 polyunsaturated FAs (ω-6
PUFAs) relative to omega-3 polyunsaturated FAs (ω-3 PUFAs)
(i.e., ω-6/ω-3) increases inflammatory responses and oxidative
stress via production of eicosanoids and reactive oxygen species,
respectively (Larsson et al., 2004; Cherian, 2007; Gomes et al.,
2012). Thus, a high intake of ω-6 PUFAs in urban environments
might further enhance the already high levels of oxidative stress
caused by inhalation of pollutants (Isaksson et al., 2005; Isaksson,
2010, 2015). Moreover, anthropogenic winter feeding of birds
with seeds and nuts with a high content of the monounsaturated
FA (MUFA) oleic acid and the ω-6 PUFA linoleic acid (Beare-
Rogers et al., 2001; Becker, 2008), is common across northern
temperate latitudes. The density of such anthropogenic food
sources is obviously higher in habitats with more human
settlements than in e.g., rural forests (Robb et al., 2008). Despite

the detrimental effect of poor diet in urban habitats, no study has
investigated potential differences in FA profiles between urban
and rural bird populations, only the total levels of free fatty acids
and triglycerides in plasma (Fokidis et al., 2011; Davies et al.,
2013).

Furthermore, since average ambient temperatures generally
are higher in cities (Oke, 1973; Hu and Brunsell, 2015),
habitat-specific differences in anthropogenic winter feeding
might also have habitat-specific physiological consequences,
because both oleic acid and arachidonic acid—biosynthesized
from linoleic acid (Larsson et al., 2004)—play important roles
in thermoregulation (Lerner et al., 1972; Ben-Hamo et al.,
2011). For instance, the content of oleic acid in the liver
was negatively correlated to body temperature during fasting-
induced rest-phase hypothermia in Japanese quail, Coturnix
japonica (Ben-Hamo et al., 2011). Thus, a high content of
oleic acid during winter might allow birds to save more energy
by maintaining a lower body temperature during rest-phase
hypothermia (though this might be associated with other costs;
e.g., Nord et al., 2011, 2013), although the higher ambient
temperature in urban environments lowers the energy cost for
thermoregulation.

Apart from the differences in diet and ambient temperatures
between urban and rural habitats, the seasonal differences in
these two parameters are even greater for many species in
temperate regions. Indeed, seasonal variation in FA composition
has been found in the tissues of several bird species (Barnett,
1970; Palokangas and Vihko, 1972; Conway et al., 1994; Egeler
and Williams, 2000; Pierce and McWilliams, 2005), and the FA
content of ingested food items affects the FA composition of the
birds (Austin, 1993; Crespo and Esteve-Garcia, 2001; Pierce et al.,
2004; Ben-Hamo et al., 2011; but see West and Meng, 1968).
In addition to diet, seasonal variation in birds’ FA composition
might be influenced by selective mobilization of FAs (Raclot,
2003). This occurs to a great extent in e.g., migratory birds
to meet context-dependent physiological demands (Price et al.,
2008).

Ambient temperature also influences the FA composition
of animal tissues. For instance, the ratio of saturated fatty
acids (SFA) to unsaturated FAs in cell membranes is often
reduced in response to decreasing ambient temperature in
order to maintain membrane fluidity, a mechanism known as
“homeoviscous adaptation” (Sinensky, 1974; Hazel, 1995). This
mechanism is used by ectothermic vertebrates (Cossins and
Macdonald, 1989; Hazel, 1995), but might also be important for
birds (see Ben-Hamo et al., 2011, 2013 , and references therein)
where many species are temporally heterothermic (known as
daily torpor or rest-phase hypothermia) during the inactive
part of the day in cold ambient conditions (Haftorn, 1972;
McKechnie and Lovegrove, 2002; Schleucher, 2004; Nord et al.,
2009, 2013; Seebacher et al., 2010). In support of this hypothesis,
the proportion of SFA in depot fat increased with ambient
temperature from 4 to 30◦C in starlings (Sturnus vulgaris) and
rock partridges (Alectoris chucar), irrespective of diet (Yom-Tov
and Tietz, 1978). In addition, ambient temperature alters the
proportion of individual FAs in birds, including both SFAs and
unsaturated FAs (Balnave, 1973; Ben-Hamo et al., 2013). Still, the
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independent effects of seasonal variation in ambient temperature
and co-occurring seasonal differences in diet composition on
birds’ FA composition have hitherto been difficult to disentangle
in natural populations.

To shed light on habitat differences in FA composition in
relation to urbanization, and the extent to which any such
differences vary between seasons, we measured FA composition
in urban and rural populations of great tits (Parus major
Linnaeus 1758) during both winter and summer. This species
is an appropriate model for these research questions, because it
is common in both urban and rural areas across its European
range, and regularly visits bird feeders. Moreover, great tits show
a pronounced seasonal change in diet, with seeds (high oleic-
and linoleic acid content; Table 1) being the main food source
during winter, and caterpillars (rich in the ω-3 PUFA α-linolenic
acid, αLNA, due to leaf feeding; Table 1) being the staple food
item during late spring to early summer (Perrins, 1991; Gosler,
1993). It was previously shown that great tits living in habitats
with low or high caterpillar abundance show marked differences
in FA composition of blood plasma (Isaksson et al., 2015). In the
present study, we also analyzed FAs in plasma, using sensitive
gas chromatography/mass spectrometry. This tissue requires less
invasive sampling and its FA composition more strongly reflects
dietary intake of FAs as compared to other tissues (Hulbert and
Abbott, 2012).

We hypothesized that the plasma FA composition of great tits
would vary between urban and rural habitats, and across seasons
due to differences in diet composition and ambient temperature.
In relation to seasonal variation, we predicted that (i) winter
birds would have higher relative levels of oleic- and linoleic acid
that are abundant in seeds. We also predicted that (ii) summer
birds would have higher relative levels of ω-3 PUFAs, i.e., αLNA

that is abundant in caterpillars, as well as eicosapentaenoic acid
(EPA), docosapentaenoic acid (DPA), and docosahexaenoic acid
(DHA) that can be biosynthesized from αLNA (Larsson et al.,
2004). Due to the seasonal diet change we also predicted (iii) that
the physiologically important ratio between total ω-6 PUFAs and
total ω-3 PUFAs would be lower in summer birds than in winter
birds. Due to seasonal temperature differences, we predicted that
(iv) the proportion of total SFA would be lower in birds in winter
than in summer.

Due to possible habitat-related differences in diet and
temperature we predicted that (v) the FA composition would
differ between birds from the urban and rural habitat during
a specific season, and (vi) that this variation would lead to
differences in the extent of the seasonal variation in plasma FA
levels between birds from these two habitat types. In other words,
we expected to find a statistical “habitat × season” interaction in
great tit FA composition.

Materials and Methods

Bird Populations and Sampling
Fieldwork was performed in the province of Scania in southern
Sweden during 2013. The urban birds were caught at four
different locations within the city limits of Malmö, the largest city
in southernmost Sweden with approximately 300,000 inhabitants
(study areas centered around 55◦ 35′ N, 12◦ 59′ E). The sites were
small to large city parks with established nest box populations of
great tits. The parks were characterized by a mixture of conifer
(Pinus, Picea, and Larix spp.) and deciduous trees (mainly Betula,
Fagus, and Quercus spp.), along with open managed grassland
and the urban influences of paved roads and buildings. A satellite
image of the urban sites is provided in Supplementary Figure 1,

TABLE 1 | Classification and average relative abundance [% of total fatty acid (FA) content] of major fatty acids in common great tit food items.

Trivial name (abbrev.) C:D Class Relative abundance [%]

Caterpillars1,a Spiders1,b Sun flower seeds2

Oleic acid 18:1n-9 MUFA 25 22 45c

α-Linolenic acid (αLNA) 18:3n-3 ω-3 PUFA 30 6 0.2

Eicosapentaenoic acid (EPA) 20:5n-3 ω-3 PUFA ND 4 ND

Docosapentaenoic acid (DPA) 22:5n-3 ω-3 PUFA ND ND ND

Docosahexaenoic acid (DHA) 22:6n-3 ω-3 PUFA ND ND ND

Linoleic acid 18:2n-6 ω-6 PUFA 13 22 40c

Arachidonic acid 20:4n-6 ω-6 PUFA ND 1 ND

Total SFA SFA 31 37 9

Total MUFA MUFA 26 27 46

Total ω-3 ω-3 PUFA 31 10 0.2

Total ω-6 ω-6 PUFA 14 23 40

ω-6/ ω-3 0.45 2.3 200

The most relevant FAs in relation to great tit summer and winter diets are highlighted in bold.

Abbreviations: C:D, carbon atoms:double bond number and position (i.e., xn-y); MUFA, monounsaturated fatty acid; ω-3 PUFA, omega-3 (n-3) polyunsaturated fatty acid; ω-6 PUFA,

omega-6 (n-6) polyunsaturated fatty acid; SFA, saturated fatty acid; ND, not detected.
aAverage values of five spp. of Lepidoptera caterpillars (n = 11 individuals).
bAverage values of two spider spp. (n = 2 individuals).
cRelative content of oleic acid and linoleic acid varies considerably between sunflower varieties (see also Warner et al., 2003).

References: Data from 1 Isaksson et al. (2015); 2 Beare-Rogers et al. (2001), rounded values.
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along with an estimation of urbanization i.e., the scores of relative
cover of buildings, vegetation and paved surfaces of an area of 1×
1 km (according to Seress et al., 2014). Rural birds were caught at
three different locations between 42 and 54 km E to NE of Malmö
(study areas centered around 55◦ 40′ N, 13◦ 31′ E). The rural
areas were sparsely inhabited by humans (<5 inhabitants per
km2), and comprised of either farmland interspersed by smaller
mixed-stand forests (2 sites) or larger continuously forested areas
(1 site), largely dominated by the same tree species as the urban
parks, though a bias toward conifers (mainly Pinus sylvestris) in
the larger forested site. The different rural sites were chosen to
capture the heterogeneity of different rural habitats inhabited by
great tits. Similar to the urban habitat, satellite images of the rural
sites are provided in Supplementary Figure 2 and the level of
urbanization estimated. Sampling was conducted in two bouts:
winter (14-Feb-2013–28-March-2013) and summer (26-May-
2013–09-June-2013). The average ambient daily temperature
during winter sampling was −1.0◦C in the rural habitat and
0.3◦C in the urban habitat. During summer the average daily
ambient temperature was 14.1◦C in the rural habitat and 15.6◦C
in the urban habitat (urban weather station: Malmö/centrum,
rural station: Sjöbo/Björka; Freiholtz, 2013)1. Thus, urban areas
were on average 1.3◦C or 1.5◦C warmer than rural areas during
winter and summer, respectively.

During winter, great tits were caught with mist nets (nurban =
35, nrural = 31; in total 29 males and 37 females), and during
summer, birds were caught in nest boxes whilst feeding nestlings
(nurban = 30, nrural =30; in total 29 males and 31 females). All
birds were individually ringed, measured (tarsus length, body
mass), and sexed according to plumage characteristics (Svensson,
1992). Within 5min after capture we collected a 110µl blood
sample from the jugular vein with a heparinized syringe and kept
it on ice until centrifugation (1800 rpm for 10min) 0–1 h later.
All samples were stored at−80◦C until biochemical analyses.

Fatty Acid Extraction and Gas
Chromatography/Mass Spectrometry (GC/MS)
Analysis
A total lipid extraction of 5µl plasma was performed for 1 h at
room temperature using 50µl chloroform:methanol (2:1 v/v).
The solvent was then evaporated under a gentle N2 stream,
and the concentrated lipid extracts were subjected to base
methanolysis to convert fatty-acyl moieties into corresponding
methyl esters. In this step, 100µl KOH/methanol (0.5 M) was
added to the extracts and the reaction allowed to proceed for 1 h
at 40◦C, after which 100µl HCl/methanol was added to terminate
the reaction. Resulting fatty acid methyl esters (FAME) were then
extracted in 300µl re-distilled n-hexane. The hexane extract was
washed twice with 200µl H2O and then dried over anhydrous
sodium sulfate. Finally, extracts were concentrated under N2 to
80–100µl before GC/MS analysis.

The FAME extracts were analyzed with an Agilent 5975 mass
spectrometer coupled to an Agilent 6890 GC with an HP-88
capillary column [(88%-Cyanopropy)aryl-polysiloxane; 30 m,
0.25mm id, df 0.20µm; Agilent]. The oven temperature was set

1Freiholtz, E. (2013). Available online at: http://www.temperatur.nu

to 80◦C for 1min, then increased by 10◦C/min to 230◦C and
held for 20min. Helium was used as carrier gas at a constant
flow of 1ml/min. Nineteen FAMEs in plasma samples could be
identified by comparing mass spectra and retention times with
those of synthetic standards (Supelco 37-Component FAMEMix,
Sigma-Aldrich).

Data Analysis
The abundance of each FA was normalized into proportion of
total FA by dividing the peak area with the sum of the peak
areas of all FAs in each individual. Statistical analyses were
performed on the nine FAs that had an average within-individual
relative content above 1% of the total FA content during at least
one of the seasons (as in e.g., Ben-Hamo et al., 2013; Isaksson
et al., 2015). All analyses were performed with general linear
models (GLM) using IBM SPSS Statistics v21. The proportion
of each FA was logit-transformed, i.e., log(y/[1-y]), prior to
analyses according to recommendations for proportional data in
Warton and Hui (2011), and then analyzed independently. The
proportions of total SFA were analyzed in the same way. The
total ω-6/total ω-3 PUFA ratio was analyzed based on log10-
transformed values. Factors included in all models were: “season”
(winter or summer), “habitat” (rural or urban), and “sex” (male
or female). Body condition (residuals from a regression between
body mass and tarsus length of all individuals in the study) was
included as a covariate, because it has been shown to correlate
with the relative abundance of some FAs in great tits (Isaksson
et al., 2015). Since there are several different indexes of body
condition, we also ran the statistical models using the scaled
mass index (Peig and Green, 2009) with outcomes showing
nearly identical F and p-values for all predictor variables. This
result indicated the robustness of our models using the residual
body condition index. Interactions included in all models were
“season × habitat” and “body condition × season.” Hence, all
models contained the same set of predictor variables to facilitate
comparison of habitat-related and seasonal variation of different
FAs. We also analyzed FA proportions from the two seasons
separately (using factorial GLM) when the season × habitat
interaction was significant (i.e., for αLNA, EPA, arachidonic acid,
palmitic acid, and stearic acid). Variation in body condition
across seasons and habitats was analyzed with factorial GLM
with season and habitat, and their interaction, as factors. Only
significant (p < 0.05) factors and interactions from the models
are reported in the Results.

Results

Relative FA Abundance and Variation
In total, 19 FAs could be identified and quantified in all 126
samples (nurban,winter = 35, nrural,winter = 31, nurban,summer =

30, nrural,summer = 30), of which nine FAs had average relative
proportions >1% of total FA during at least one of the seasons
(indicated below in italics). The 19 FAs included four SFAs
(myristic- [14:0], palmitic- [16:0], stearic- [18:0], and arachidic
acid [20:0]), four MUFAs (palmitoleic- [16:1n-7], oleic- [18:1n-
9], cis-vaccenic- [18:1n-7], and eicosenoic acid [20:1n-9]), four
ω-3 PUFAs (αLNA [18:3n-3], EPA [20:5n-3], DPA [22:5n-3],
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and DHA [22:6n-3]), six ω-6 PUFAs (linoleic- [18:2n-6], gamma
(γ)-linolenic- [18:3n-6], eicosadienoic- [20:2n-6], dihomo-γ-
linolenic- [20:3n-6], arachidonic- [20:4n-6], and adrenic acid
[22:4n-6]), and one ω-9 PUFA (mead acid [20:3n-9]). The
five most abundant FAs in all samples were oleic-, linoleic-,
arachidonic-, palmitic-, and stearic acid, which all ranged from
11 to 26 % of the total FA content across seasons and habitats.
The most abundant ω-3 PUFAs were αLNA and EPA during
summer (3–5%), and DHA during winter (1%). Eight FAs (oleic-,
linoleic-, αLNA, EPA, DPA, arachidonic-, palmitic-, and stearic
acid) differed significantly between winter and summer (see
below). Another, largely overlapping, set of eight FAs (linoleic-,
αLNA, EPA, DPA, DHA, arachidonic-, palmitic-, and stearic
acid) differed between the urban and rural habitat, during
one or both of the seasons. In addition, four FAs (oleic-,
arachidonic-, stearic acid, and DHA) were either positively
or negatively related to body condition, and three of these
relationships differed between seasons (i.e., “season × body
condition” interaction). The relative abundance of all other FAs
showed no association with body condition. Body condition was
significantly higher during winter than during summer across
habitats [F(1, 118) = 81.3, p < 0.001]. However, the seasonal
variation in body condition differed between urban and rural
birds [season × habitat interaction: F(1, 118) = 22.5, p < 0.001;
Figure 1]. Specifically, body condition was the highest among the
urban winter birds, but lowest among the urban summer birds
(Figure 1).

Monounsaturated Fatty Acids
Of the four identified MUFAs, statistical analysis was performed
on the most abundant one, oleic acid. The proportion of oleic

FIGURE 1 | Body condition (i.e., the residuals from a regression

between body mass and tarsus length) of great tits in urban and rural

habitats during winter and summer (Ntotal = 126). Significant effects from

the model are indicated by the p-values. However, due to the significant

season × habitat interaction, body condition of birds from the two habitats was

also analyzed separately for each season, and significant differences between

habitats within a season are indicated by asterisks (**p < 0.01; ***p < 0.001).

acid was significantly lower in summer than in winter birds
[F(1, 119) = 4.11, p = 0.045], but did not differ between rural
and urban birds (Figure 2). Furthermore, the proportion of oleic
acid showed a positive relationship with body condition in the
winter birds, but not in the summer birds [body condition ×

season interaction: F(1, 119) = 10.93, p = 0.001; Figure 3A].

Omega-3 Polyunsaturated Fatty Acids
In general, the proportions of the ω-3 PUFAs were low during
winter, but up to 30-fold higher during summer. The proportion
of the strictly dietary αLNA was significantly higher in birds
during summer than during winter [F(1, 119) = 394.9, p < 0.001].
This seasonal increase in αLNAwas higher in urban birds [season
× habitat interaction: F(1, 119) = 8.54, p = 0.004; Figure 4A].
Subsequent analyses of the two seasons separately showed that
the proportion of αLNA in the rural birds was higher than in the
urban birds only during winter (Figure 4A).

The proportion of EPA showed a strong seasonal variation
[F(1, 119) = 487.1, p < 0.001], with summer birds having higher
amounts of this FA than winter birds (Figure 4B). In addition,
rural birds had a higher proportion of EPA compared to urban
birds across seasons [F(1, 119) = 33.56, p < 0.001]. However,
while rural birds had higher plasma levels of EPA during both
seasons (Figure 4B), the seasonal variation in EPA content was
still larger in urban birds [season× habitat interaction: F(1, 119) =
6.43, p = 0.013; Figure 4B].

The proportion of DPA was significantly higher in birds
during summer than during winter [F(1, 119) = 522.3, p < 0.001],
and also higher in rural birds across seasons [F(1, 119) = 4.26,
p = 0.041; Figure 4C].

In contrast to the three other ω-3 PUFAs, the proportion
of DHA only tended to differ between seasons (p = 0.057;

FIGURE 2 | The proportion of the mono-unsaturated fatty acid (MUFA)

oleic acid in great tit blood plasma during winter and summer in birds

from urban and rural habitats (Ntotal = 126). The significant “season”

effect from the model is indicated by the p-value.
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FIGURE 3 | The relationship between body condition (i.e., the

residuals from a regression between body mass and tarsus

length) and fatty acid (FA) proportions in great tit blood

plasma during winter and summer (Ntotal = 126). (A) Oleic acid,

(B) docosahexaenoic acid (DHA), (C) arachidonic acid, and (D)

stearic acid. Untransformed data are plotted, whereas the statistics

and reported p-values are based on logit-transformed proportions (for

details, see Materials and Methods). Only significant p-values for main

model effects and individual regressions are shown (all p-values for

non-significant regressions >> 0.05). The relative FA abundances

reported here also underlie the mean values presented in Figure 2

(oleic acid), Figures 4D,F (DHA and arachidonic acid), and

Figure 6C (stearic acid). Note that the Y-axis scale differs between

figure panels.

Figure 4D), but was significantly higher in urban compared to
rural birds [F(1, 119) =13.14, p < 0.001] especially in summer
(Figure 4D). DHA also showed a negative relationship with
body condition [F(1, 119) = 24.12, p < 0.001], suggesting
that birds in higher condition had lower relative amounts of
this FA than did birds in lower condition during both seasons
(Figure 3B).

Omega-6 Polyunsaturated Fatty Acids
Two of the ω-6 PUFAs, linoleic- and arachidonic acid, showed
relative abundances above 1%. The proportion of the essential
linoleic acid was significantly higher in the rural birds as
compared to the urban birds [F(1, 119) = 11.90, p < 0.001], and

higher in birds during winter than during summer [F(1,119) =

37.84, p < 0.001; Figure 4E].
The proportion of arachidonic acid was significantly higher

in birds during winter than during summer [F(1,119) =

140.6, p < 0.001], but this seasonal variation was habitat-
dependent [season × habitat interaction: F(1,119) = 24.56,
p < 0.001]. Specifically, the proportion of arachidonic
acid was significantly higher in urban compared to rural
birds during winter, but not during summer. Thus, the
seasonal variation in arachidonic acid content was larger in
the urban birds (Figure 4F). Furthermore, the proportion of
arachidonic acid was negatively related to body condition,
but this relationship was present only during winter [body
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FIGURE 4 | The proportion of ω-3 and ω-6 polyunsaturated fatty

acids (PUFA) in blood plasma from urban and rural great tits

during winter and summer (Ntotal = 126). (A) α-Linolenic acid

(αLNA), (B) eicosapentaenoic acid (EPA), (C) docosapentaenoic acid

(DPA), (D) docosahexaenoic acid (DHA), (E) linoleic acid, and (F)

arachidonic acid. Significant effects from the models are indicated

by the p-values. When the season × habitat interaction was

significant, fatty acid (FA) proportions of birds from the two habitats

were also analyzed separately for each season, and significant

differences between habitats within a season are indicated by

asterisks (*p < 0.05; **p < 0.01; ***p < 0.001). Note that the Y-axis

scale differs between figure panels.
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condition × season interaction: F(1, 119) = 11.93, p < 0.001;
Figure 3C].

Ratio between Omega-6 and Omega-3
Polyunsaturated Fatty Acids
We also analyzed the physiologically important ratio between
total ω-6 (the sum of linoleic-, arachidonic-, γ-linolenic-,
eicosadienoic-, dihomo-γ-linolenic-, and adrenic acid) and total
ω-3 (the sum of αLNA, EPA, DPA, and DHA) PUFAs. This
analysis showed that the ratio of total ω-6/total ω-3 did not
differ between urban and rural birds, but was significantly higher
during winter than during summer [F(1,119) = 675.6, p <

0.001]. This result was explained by a seasonal decrease in ω-6
PUFAs (mainly the abundant linoleic- and arachidonic acid) and
a simultaneous increase in total ω-3 PUFAs (Figure 5).

Saturated Fatty Acids
The proportion of total SFA (the sum of myristic-, palmitic-,
stearic-, and arachidic acid) was significantly higher in birds
during summer than during winter [F(1, 119) = 144.9, p < 0.001],
and also significantly higher in urban compared to rural birds
[F(1, 119) = 14.48, p < 0.001; Figure 6A].

Palmitic- and stearic acid were two of the most abundant of all
FAs. These SFAs showed different patterns of variation between
seasons and habitats. Across habitats, the relative amount of
palmitic acid was significantly higher in summer than in winter
[F(1, 119) = 786.0, p < 0.001; Figure 6B]. However, seasonal
variation in palmitic acid content differed depending on habitat
[season × habitat interaction: F(1, 119) = 27.28, p < 0.001].
Specifically, rural birds had a higher relative amount of this SFA
than urban birds during winter, whereas the opposite pattern was
found during summer (Figure 6B). Thus, the seasonal variation
in palmitic acid was larger for the urban birds.

In contrast, the proportion of stearic acid was significantly
higher in birds during winter than during summer [F(1, 119) =

128.8, p < 0.001], and in urban compared to rural birds
[F(1, 119) = 6.59, p = 0.012]. As for palmitic acid, the seasonal
variation in stearic acid differed between the two habitats [season
× habitat interaction: F(1, 119) = 7.05, p = 0.009], with urban
birds having higher levels of stearic acid than rural birds only
during winter (Figure 6C). Accordingly, the seasonal variation in
stearic acid was larger in urban birds. The proportion of stearic
acid was negatively related to body condition, but only during
winter [body condition × season interaction: F(1, 119) = 9.28,
p = 0.003; Figure 3D].

Discussion

This is the first study to investigate seasonal variation in FA
composition in animals from an urbanization perspective. To this
end, we demonstrate that most FAs with known physiological
functions differ in relative abundance in great tit plasma between
birds from urban and rural habitats and on a seasonal basis. We
discuss these findings in relation to our predictions concerning
seasonality (i–iv) and habitat differences (v–vi), and conclude
by discussing the physiological implications of the observed
variation and give directions for future experiments.

Seasonal Variation (Predictions I–IV)
The relative amount of eight of the nine analyzed FAs in great
tit blood plasma differed between seasons in both urban and
rural habitats. In accordance with our first prediction (i), birds
sampled during winter had higher relative amounts of oleic-
and linoleic acid, which are abundant in their main winter food
(seeds and nuts, Beare-Rogers et al., 2001; Table 1). In particular,
the large seasonal variation in plasma levels of linoleic acid is

FIGURE 5 | The within-individual ratio between total ω-6 and total ω-3

polyunsaturated fatty acids in blood plasma from urban and rural

great tits during winter and summer (left panel). The significant

“season” effect from the model is indicated by the p-value. Right panel lists

the population-level proportions of total ω-6 and total ω-3 polyunsaturated

fatty acids, respectively (Ntotal = 126).
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FIGURE 6 | The proportion of saturated fatty acids (SFA) in great tit

blood plasma sampled during winter and summer in the urban and

rural habitats (Ntotal = 126). (A) Total SFA (i.e., the sum of myristic-,

palmitic-, stearic-, and arachidic acid), (B) palmitic acid, and (C) stearic acid.

(Continued)

FIGURE 6 | Continued

Significant effects from the models are indicated by the p-values. In case of

significant season × habitat interactions, fatty acid (FA) proportions of birds

from the two habitats were also analyzed separately for each season, and

significant differences between habitats within a season are indicated by

asterisks (*p < 0.05; **p < 0.01; ***p < 0.001). Note that the Y-axis scale

differs between figure panels.

likely to be explained by dietary intake because this FA cannot
be biosynthesized (Larsson et al., 2004). In addition, we found
a higher relative content of arachidonic acid in winter, which
is likely a result of biosynthesis from linoleic acid (Sprecher,
2002), possibly induced by the lower ambient temperature in
this season (Ben-Hamo et al., 2013). This hypothesis is in line
with the observation that the arachidonic acid level in muscles
of C. japonica increased after birds were fed a diet devoid of
arachidonic acid, but rich in linoleic acid (Ben-Hamo et al., 2011).

During late spring to early summer, great tits feed mainly
on caterpillars (Perrins, 1991), which contain a high content of
the ω-3 PUFA αLNA (Table 1). Therefore, we predicted (ii) that
the relative plasma levels of αLNA, and the longer-chained ω-
3 PUFAs that are biosynthesized from αLNA (Sprecher, 2002),
would be the highest in summer. In line with this prediction,
the relative amounts of three ω-3 PUFAs (αLNA, EPA, and
DPA) were much higher during summer than during winter
in both urban and rural birds. The higher relative content
of the essential αLNA is likely to directly reflect intake from
food, whereas the increased levels of EPA and DPA might be
explained both by food intake and biosynthesis (Larsson et al.,
2004).

The ratio between total ω-6 and ω-3 PUFAs is important
for animals because these PUFAs have different capacities to
enhance oxidative stress and opposing effects on inflammatory
responses. For instance, ω-6 PUFAs are used in the biosynthesis
of pro-inflammatory eicosanoids, whereasω-3 PUFAs are used in
the production of anti-inflammatory eicosanoids (Larsson et al.,
2004; Cherian, 2007). We predicted (iii) that the total ω-6/ω-
3 ratio would be higher in plasma during winter than during
summer, because caterpillars have a much lower ω-6/ω-3 ratio
than seeds (Table 1). Accordingly, we found a ten-fold decrease
in this ratio from winter to summer, which likely is due to the
dietary change.

A strong correlation between FA levels in animal plasma
and FA levels of ingested food has previously been established
(Hulbert and Abbott, 2012). However, although the seasonal
differences in plasma FA abundance mostly correlated well with
the abundance of the FAs in the winter- or summer diet of great
tits in the present study, we cannot rule out the possibility that
selective mobilization of FAs also contributes to the variation
(Raclot, 2003; Price et al., 2008, 2013). Selective mobilization
might occur to meet different physiological demands, such
as thermoregulation during winter and reproduction during
summer. Future experiments should address the relative
contribution of dietary intake and FA mobilization on blood
plasma FA composition, and whether the seasonal variation in FA
composition has any effect on the above-mentioned physiological
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processes. In addition, although previous studies on other species
have shown that the FA composition of membrane phospholipids
in organs also is affected by diet (Von Schacky et al., 1985; Abbott
et al., 2010; Ben-Hamo et al., 2011), phospholipid composition
appears less responsive to dietary change as compared to the
composition of triglycerides in the plasma (Hulbert and Abbott,
2012). Thus, future studies on the great tit are needed to
investigate the correlations between plasma and phospholipid FA
composition of organs in order to better understand how the
physiological processes are affected by the dietary differences of
the study species.

Ambient temperature also affects animals’ FA composition.
In response to decreased ambient temperature, ectotherms
incorporate a lower proportion of SFAs and a higher proportion
of long-chained PUFAs into their cell membranes to achieve
constant membrane fluidity (Sinensky, 1974; Cossins and
Macdonald, 1989; Hazel, 1995). Because great tits sometimes
lower their body temperature during cold nights (Haftorn, 1972;
Nord et al., 2013), we predicted (iv) that the proportion of
total SFA in blood plasma would be lower in birds during
winter than during summer, assuming that plasma SFA levels
also are altered in response to changes in ambient temperature.
Our results follow this prediction. Similarly, a lower proportion
of SFA in depot fat during winter has been found in several
passerine species, including great tits (West and Meng, 1968;
Barnett, 1970; Palokangas and Vihko, 1972), suggesting that this
is a general phenomenon in birds. In addition to the change
in total SFA, Balnave (1973) showed that the ratio between
palmitic- and stearic acid increases with ambient temperature in
chicken (Gallus g. domesticus). This pattern fits our observation
of seasonal trends in the relative abundance of these FAs, and
those of Palokangas and Vihko (1972) on seasonal changes in
great tit fat depot composition. Unfortunately, Palokangas and
Vihko (1972) only analyzed C16 and C18 FAs, making it difficult
to further compare the seasonal FA variation in great tit fat tissue
(Palokangas and Vihko, 1972) with that in blood plasma (this
study). However, while the seasonal differences in SFA levels
follows our predictions regarding effects of ambient temperature,
we cannot rule out any influence of the diet change (which co-
varies with ambient temperature) or selective mobilization of
certain FAs due to seasonally different physiological demands.

Variation between Urban and Rural Habitats
(Predictions V and VI)
While Fokidis et al. (2011) and Davies et al. (2013) found
no significant differences in total levels of plasma triglycerides
or free fatty acids, respectively, between urban and dessert
populations of two species of passerines, our study revealed
that the FA composition differed significantly between urban
and rural populations of great tits. In line with our prediction
(v), eight of the nine FAs differed between urban and rural
birds during both, or one, of the seasons. The relative content
of the essential linoleic acid was higher in the rural birds
across seasons. This may be explained by a higher diversity or
availability of natural seeds that are rich in this particular FA
in the rural environment, possibly in combination with seeds
from agricultural storages that urban birds do not have access to.

However, given that urban birds have access to different seeds at
feeding tables during winter, this result was somewhat surprising.
In winter, the ω-3 PUFAs αLNA, EPA, and DPA were more
abundant in rural birds, whereas the urban birds had a higher
relative abundance of the ω-6 PUFA arachidonic acid. This
indicates that the rural birds incorporated more insect prey (e.g.,
overwintering moth larvae or pupae) in their winter diet than did
urban birds (cf. Isaksson et al., 2015), whereas urban birds either
up-regulated biosynthesis or mobilization of arachidonic acid to
a larger extent, or received it from a dietary source (e.g., spiders;
Table 1).

During summer, rural birds had higher relative amounts of
EPA than urban birds, while the opposite pattern was found for
DHA. Because EPA andDHA are inter-convertible (Larsson et al.,
2004), this might reflect habitat-specific biosynthetic regulation
of these two FAs. In addition, DHA was negatively related to
body condition, which was the lowest in summer, especially
in the urban habitat. Potential implications of this relationship
and the habitat-specific differences in EPA and DHA content
remain to be elucidated. Since αLNA, which is obtained mainly
from caterpillars, did not differ between urban and rural birds
in the summer, it is unlikely that the habitat differences in
EPA and DHA would be due to a difference in caterpillar
phenology.

Interestingly, the proportion of total SFA was higher in
urban than rural birds, especially during summer. The average
ambient temperature in the urban study site was around 1.5◦C
higher than that in the rural site during both seasons. It is,
however, questionable if this small temperature difference
underlies the difference in total SFA between habitats. It is
also uncertain if such a small difference in average ambient
temperature is important for homeoviscous adaptation in a
species that exhibits relatively shallow hypothermia. However,
the reported average ambient temperatures are measured
by weather stations under standardized conditions and,
thus, might not accurately predict the actual temperature
differences that birds from the two habitats experience.
Temperature variation between habitats might be larger,
given that many of the rural birds live within dense forests
with little sunlight coming through, and urban birds may
find shelters during winter that are warmer than the average
ambient temperatures. Another, perhaps more plausible,
explanation is habitat-related differences in SFA content of diets
(Table 1).

Finally, we predicted (vi) that the extent of any seasonal FA
variation would differ between urban and rural birds due to
habitat-related differences in diet and temperature. In line with
this, the relative plasma content of all the five FAs that showed
significant season × habitat interactions differed the most
between seasons in urban birds. This suggests that ecological
factors, such as food availability and diversity, might be more
seasonally variable in urban habitats.

Implications for Physiology, Health, and Future
Experiments
In line with previous work (e.g., Barnett, 1970; Conway et al.,
1994; Egeler and Williams, 2000; Pierce and McWilliams, 2005;
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Isaksson et al., 2015), we have shown that the FA composition of
birds varies between habitats and seasons. We suggest that this
variation, to a large extent, is explained by differences in natural
and anthropogenic food sources and ambient temperature. Due
to the multiple context-dependent physiological effects of FA
nutrition (Hulbert and Abbott, 2012), such differences, and
perhaps especially those that are non-natural (i.e., occur for
anthropogenic reasons), might have a larger impact on urban
birds and other animals than previously acknowledged (Orell,
1989; Chamberlain et al., 2009; Harrison et al., 2010; Plummer
et al., 2013).

For example, oleic acid and arachidonic acid—the latter
synthesized from the dietary linoleic acid- have been shown to
affect animals’ thermoregulatory physiology. Oleic- and linoleic
acid are the two dominating FAs in seeds provided by humans,
such as sunflower seeds. In C. japonica, the liver content of
oleic acid decreased, whereas liver arachidonic acid content
increased, in response to decreased ambient temperature, thus
suggesting a role for these FAs in cold acclimation (Ben-Hamo
et al., 2013). In line with this, C. japonica with a higher
content of oleic acid in the liver and a lower content of
arachidonic acid in skeletal muscle reduced body temperature
more during fasting-induced rest-phase hypothermia (Ben-
Hamo et al., 2011). Interestingly, we found that the proportions
of oleic- and arachidonic acid in plasma were positively and
negatively related, respectively, to birds’ body condition in winter,
i.e., when thermoregulation is energetically more demanding.
This might suggest that birds in higher condition might be
more capable of increasing the depth of rest-phase hypothermia,
thereby achieving a more energetically efficient thermoregulation
than birds in lower condition. However, Nord et al. (2011)
found that high-condition individuals of the closely related blue
tit (Cyanistes caeruleus) maintained a higher nocturnal body
temperature than did low-condition individuals in the wild, and
birds with ad lib. food availability did not enter hypothermia
at all when maintained in outdoor enclosures (Nord et al.,
2009). These opposing observations in combination with the
associations found in the present study suggest that the two
FAs affect fasting-induced and natural hypothermic responses
differently. Another complicating factor is that we measured
body condition when birds were caught in the morning,
which might not reflect the body condition during the night
when hypothermia takes place. An alternative interpretation
for our results is that individuals might be in high condition
because their oleic- and arachidonic acid composition improves
thermoregulatory performance, which in turn allows for fat
reserve retention. Thus, future studies need to experimentally
address the effect of dietary oleic- and arachidonic acid levels on
body condition and body temperature regulation in temperate
zone birds.

Another result with potential health implications is the higher
relative abundance of the pro-inflammatory arachidonic acid
in urban birds in winter (along with their lower levels of
anti-inflammatory ω-3 PUFAs). Because urban birds generally
are more exposed to antigens such as pollutants and certain
pathogens (e.g., Salmonella and Mycoplasma) (Bradley and
Altizer, 2007), an arachidonic acid-mediated inflammatory

response could enhance the negative health effects of such
antigens (Isaksson, 2015). Importantly, the negative relationship
between the proportion of arachidonic acid and body condition
suggests that birds in low condition might not only be
constrained by reduced thermoregulatory capacity, but could also
be more susceptible to any negative effects of a pro-inflammatory
response. Finally, the strong seasonal effect on the total ω-6/ω-3
ratio in both habitats suggests that winter birds overall are more
sensitive than summer birds to the effects of pro-inflammatory
antigens, such as nitrogen oxides and particulate matter from
traffic fumes, perhaps especially since birds in winter might
have reduced antibody-mediated immunocompetence (Svensson
et al., 1998; Nord et al., 2014).

In conclusion, this study reveals large differences in great tit
plasma FA composition between urban and rural populations
and between winter and summer. Most of this variation seems
to follow our predictions about habitat-related and seasonal
differences in diet composition (although the change in diet co-
varied with ambient temperature). We suggest that it is likely that
feeding from human-provided food affects the FA composition
also of other bird and animal species that occupy cities; thus
the implications of our results extend beyond the study species
and the avian taxon. Many of the FAs we identified in great
tit blood plasma play crucial roles in evolutionarily conserved
physiological processes with links to animal nutrition and
survival. Accordingly, any possible interactive effects between
seasonal changes in FA composition and other urban stressors
should be taken into consideration in future studies on the
consequences of urbanization for wildlife. Future studies should
also compare FA composition between different populations
within urban and rural habitats in order to better quantify the
effect of urbanization per se in comparison to FA variation due to
within-urban or within-rural habitat heterogeneity.
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