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Abstract

Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the
sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels
and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total
variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined
automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization.
Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of
complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion
data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the
advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for
fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings
suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates
results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders
high resolution (16162.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context.
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Introduction

Diffusion weighted imaging (DWI) has become one of the most

important methods in magnetic resonance imaging (MRI) to study

structural characteristics of cerebral white matter (WM) [1]. DWI

provides the basis for diffusion tensor imaging (DTI) that enables

the derivation of various parameters such as fractional anisotropy

(FA), trace or apparent diffusion coefficient mapping which have

been shown to have a high clinical impact in stroke [2],

Alzheimer’s disease [3] and multiple sclerosis [4]. Furthermore

different methods have been developed to visualize the orientation

of fiber bundles such as deterministic tractography (DT) [5,6] and

probabilistic tractography (PT) [7–9]. The widespread applications

of these techniques to the field of neuroscience include

fundamental psychological studies about individual differences of

white matter architecture [10], structural connectivity [11],

investigation of structural white matter changes in neurodegener-

ative diseases [12–14], pre-surgical mapping [15] and much more.

The most widely utilized method to acquire DWI data is based

on diffusion weighted single-shot echo planar imaging (ss-EPI) MR

pulse sequences. These sequences are fast but limited in spatial

resolution due to the need of acquiring the entire k-space in a

single readout shot. To overcome this limitation, there have been a

number of developments in MR pulse design that enable the

acquisition of high-resolution, diffusion-weighted images with

reduced susceptibility artifact and low sensitivity to motion-

induced phase error. One such development is 2D navigator-

corrected, readout-segmented EPI (rs-EPI) with 2D-navigator-

based reacquisition [16,17]. This technique improved the original

rs-EPI method [18] by adding 2D non-linear phase correction [19]

and navigator-based reacquisition, based on previous work with

1D navigators [20]. The technique achieves a low level of

susceptibility artifact by allowing a very short echo spacing in the

EPI echo train and the artifact is further reduced by combining the

technique with parallel imaging using GRAPPA [21]. Despite the

undisputed merits of this novel technique, [22–26], providing

DWI data with a possible resolution below one millimeter, the

applicability of this method suffers from long scan times necessary

for acceptable signal to noise ratio (SNR).
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One common approach to improving SNR in medical imaging

is denoising the data by means of regularization. Many attempts

have been made to regularize ss-EPI data based on the

regularization of the DWIs [27], regularization of the diffusion

tensor [28–31] or spectral regularization of the tensor’s eigenval-

ues and eigenvectors [32]. Given the fact, that scan time reduction

is not a crucial task in ss-EPI DWI, the focus of this technique has

been the improvement of image homogeneity.

However, one of the most challenging tasks in medical image

denoising is to avoid smoothing and hence suppressing essential

anatomical details. Several approaches based on partial differential

equations (PDE) have been proposed to regularize noisy data

whilst preserving discontinuities. One of the most prominent

methods to address this problem is the total variation method (TV)

introduced by Rudin, Osher and Fatemi usually referred to as the

ROF model [33]. TV regularization based on the assumption of

piece-wise constant signals has successfully shown to have an

outstanding ability to denoise images whilst preserving edges. In

recent years, a lots of research efforts has been put into study and

further development of the ROF model [34–36] and apply TV

regularization to scalar images, vector images [37] such as color

images and even tensor valued images, including diffusion tensor

images [28–30,38]. An algorithm that has raised attention in

image restoration because of its simplicity, robustness and

calculating speed has been proposed by Chambolle et al. [39].

We took advantage of this algorithm that was originally proposed

for scalar valued data and extended this specific method to tensor

valued data in order to regularize the entire diffusion tensor.

The regularization parameter that determines the amount of

regularization is usually constant assuming the same noise level

over the entire image. This assumption is not valid in MRI given

that the SNR depends on the distance to the coil surface due to its

coil sensitivity [40] and the noise level across the image is

modulated by physiology, g-factor in parallel imaging and

normalization procedures. Considering the fact that the entire

diffusion tensor was regularized in our proposed method, a

corresponding noise tensor was evaluated for spatially dependent

regularization. The information about the spatial noise distribu-

tion for each diffusion tensor element was generated by extracting

the noise from DWI data and projecting the noise into the

diffusion tensor subspace. Once the spatial noise information for

the diffusion tensor was available, an automatic adaption of the

spatially varying regularization parameter was possible because the

noise level, incorporated in the cost-function to be minimized,

determined the stopping criteria. The noise extraction from DWI

data was realized using independent component analysis (ICA), a

multivariate method to separate different signal contributions

according to their statistical properties.

Originally, ICA was proposed to solve the blind source

separation problem (BSS) that aims to decompose a mixed signal

into several statistically independent components and belongs to

the wide class of unsupervised learning algorithms. The basic

linear ICA model supposes that a measured signal is a weighted

linear sum of underlying independent components (ICs). These

signal components can be separated without a priori knowledge

about the sources by maximizing the statistical independence for

the estimated components. Several algorithms with different

theoretical bases have been developed to solve the BSS problem

by means of ICA [41,42]. Common approaches are based on

higher-order statistics for measuring the signal’s non-Gaussianity

and second-order statistics for exploring sources with temporal

structures or non-stationary properties. However, in MRI ICA has

been applied for separating activation patterns from fMRI

measurements [43], correction of vascular signal contribution in

dynamic susceptibility MRI (DSC-MRI) [44–46], enhancing the

contrast of gray and white matter [47], assessment of cerebral

blood perfusion from dynamic contrast enhanced MRI (DCE-

MRI) [48], application to diffusion tensor imaging [49] and to

other fields of MRI [50–52].

In this work we show that the proposed regularization

significantly improves tractography of high-resolution DWI data

with low SNR due to short acquisition time. The novel

regularization algorithm applied to the diffusion tensor has two

attractive features. Firstly, an automatic calculation of the

regularization parameter was performed by using the noise

information from DWI data making our approach user indepen-

dent. Secondly, given the fact that the SNR is spatially nonuniform

distributed due to the spatial dependence of the coil sensitivity, the

regularization was forced to vary spatially. The noise distribution

required for this procedure was extracted from DWI data by

means of complex independent component analysis. Tractography

was performed for a software phantom and for high resolution

in vivo data to study the performance of our proposed regular-

ization algorithm. Tractography relevant parameters such as

Mean Length (ML), Track Count (TC), Volume (V), and Voxel

Count (VC) were evaluated and compared for DWI measurements

from one average, two averages, three averages, and for one

average with applied regularization respectively.

Materials and Methods

1.1 MRI-Measurements
DWI data from two healthy volunteers were acquired using a rs-

EPI sequence with the following parameters: TR = 5600 ms,

TE = 70 ms, FOV = 240 mm, resolution = 16162.5 mm3, slic-

es = 38, b = 1000 s/mm2, diffusion directions = 12, number of

shots (or readout segments) = 11, EPI echo spacing = 0.34 ms,

acquisition time = 48 min, averages = 3, GRAPPA acceleration

factor R = 3. For further processing, data sets from one, two and

three averages were evaluated separately. The regularization of

the diffusion tensor was applied only on the data from the first

average (acquisition time = 16 min). All measurements were

carried out on a MAGNETOM 3 T Tim Trio system (Siemens

AG, Healthcare Sector, Erlangen, Germany) using a 32 channel

head coil. The volunteers gave written informed consent and the

study was approved by the local ethics committee of the Medical

University of Graz.

1.2 Preprocessing
To correct for geometrical distortions eddy current correction

was performed using FMRIB’s Diffusion Toolbox (FDT v2.0) a

part of the FMRIB Software Library (FSL v4.1). Afterwards,

segmentation of the brain was carried out using the Brain

Extraction Tool (BET v2.1) that is also included in FSL.

1.3 Independent Component Analysis
ICA was performed on each slice of DWI data for all 12

directions with diffusion sensitizing gradients (b = 1000 s/mm2),

based on the data from the first out of three averages. The

algorithm used in this work, referred to as ‘‘complex ICA by

entropy bound minimization’’ (complex ICA-EBM), is based on

the principle of maximum entropy and applies a line search

optimization procedure using a projected conjugate gradient [53].

An implementation of this algorithm in MATLAB software (The

Mathworks, Inc., Natick, MA), is available at: http://mlsp.umbc.

edu/ica_ebm.html. As a result of this transformation a series of 12

independent components was obtained (IC1, IC2, …, IC12) in

which the first six components contain information about tissue

Regularized High-Resolution DTI
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and diffusion in six independent directions and six components

contain noise (see figure 1). By setting the noise components (IC7–

IC12) to zero and inverting the ICA transformation, a denoised

DWI series was obtained, denoted as/with i = 1,…, N the number

of diffusion encoding directions. In a second step, the ICs

containing information about tissue and diffusion (IC1–IC6) were

set to zero prior to the ICA back transformation, to achieve a DWI

corresponding noise series denoted as Snoise,i again, with i = 1,…,

N the number of diffusion encoding directions. Both, the denoised

DWI data and the corresponding noise data were used to evaluate

the diffusion tensor and a corresponding noise tensor.

1.4 Evaluation of the Diffusion Tensor and the Noise
Tensor

The signal intensity S in DWI and the diffusion tensor D are

related through the Stejskal-Tanner equation [54,55] as given by

Si~S0
: exp {bgT

i Dgi

� �
ð1Þ

where S0 is the signal without diffusion gradient (b = 0 s/mm2), g is

the diffusion encoding unit vector and b the diffusion weighting.

The superscript T denotes the vector transpose and i = 1,…, N the

number of diffusion encoding directions respectively. We followed

the most widely used method to estimate the diffusion tensor,

solving the linear least square (LLS) problem by minimizing the

objective function:
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is the encoding gradient design matrix and

D̂D~ DxxDxyDxzDyyDyzDzz

� �T ð5Þ

is a vector representation of the diffusion tensor. The solution to

the LLS problem is given by:

D̂D~ BT B
� �{1

BT y: ð6Þ

With this, the diffusion tensor D̂DICA was evaluated from the

denoised DWI data SICA,i that served as input for Eq. [3].

yICA~ In
SICA,1

S0

� �
,:::,In

SICA,N

S0

� �	 
T

ð7Þ

From the DWI corresponding noise series Snoise,i a noise tensor

D̂Dnoise was evaluated using Eq. [6] with a modification of Eq. [3]

given by

Figure 1. Twelve independent components obtained by means of ICA from 12 DWI directions. The components IC1–IC6 (upper row)
contain information about tissue microstructure and directed diffusion, the components IC7–IC12 (lower row) contain noise information. Images are
scaled equally and displayed in inverted view.
doi:10.1371/journal.pone.0074156.g001
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ynoise~ Snoise,1 ,:::, Snoise,N½ �T ð8Þ

Given the fact that the noise was projected into the same

subspace as the diffusion tensor, D̂Dnoise provides spatial information

about the noise distribution in D̂DICA. This spatial information was

incorporated into the regularization process in order to apply a

spatially varying regularization of D̂DICA.

1.5 Spatial Total Variation Regularization
The ROF model introduced by Rudin et al. [33] aims to

minimize the Total Variation of u and is defined by the following

variational model:

min
u

ð
V

D+uDdVz
l

2

ð
V

u{fð Þ2dV


 �
ð9Þ

where V is the image domain, f is the noisy image, u is the sought

solution and the parameter l controls the strength of regulariza-

tion. A simple and efficient algorithm that solves the dual

formulation of the ROF model [34] has been proposed by [39].

Furthermore, an automatic update of the regularization parameter

l is suggested if the noise, given by the variance s, is known. In

every iteration step the adaption of l follows the rule:

lnz1~lns= f {uk k ð10Þ

A generalization of the Total Variation seminorm for scalar-

valued data TV u½ �~
Ð
V D+uDdV was given by [37] for vector

valued data and was extended to matrix valued data by [30]. The

Total Variation norm of a matrix D[R3|R3 is defined as:

TV D½ �~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TV Dxx½ �2z2TV Dxy

� �2
z2TV Dxz½ �2zTV Dyy

� �2
z2TV Dxz½ �2zTV Dzz½ �2

q ð11Þ

For the spatial regularization of the diffusion tensor, the

regularization parameter l[R was replaced by a regularization

tensor L[R3|R3. With this and Eq. [9] the modified objective

function to be minimized is given by:

min
D

ð
V

D+~DDDdVz
1

2

ð
V

L ~DD{D̂DICA

� �2

dV


 �
ð12Þ

where ~DD is the sought regularized diffusion tensor and V the tensor

space. The noise distribution of the diffusion tensor is given by the

estimated noise tensor D̂Dnoise. For the automatic update of the

regularization tensor a noise variance tensor S was estimated by

averaging the variance in a 565 pixel moving window for all

elements of D̂Dnoise. This transforms Eq. [10] to the tensorial update

rule:

Lnz1~
Ln Sk k

D̂DICA{~DD
�� �� ð13Þ

The initialization of L is given by L1~S. All calculations were

performed using MATLAB software (The Mathworks, Inc.,

Natick, MA). A schematic overview of the algorithm is given in

figure 2.

1.6 Software Phantom
In order to create a noise-free gold standard for tractography, a

software phantom was constructed corresponding to the dimen-

sion of the in vivo data using MATLAB software (The Mathworks,

Inc., Natick, MA). This software phantom constructed in the

tensor subspace included fibers in all three spatial directions.

Subsequently noise from ten different measurements was added to

the phantom to study regularization properties. To ensure that the

added noise is comparable to noise from in vivo data, DWI

measurements were performed on a homogenous water phantom

in order to obtain the noise information by means of ICA. Scan

parameters were kept constant for the water phantom and for

in vivo measurements. The noise tensor was evaluated and added

to the software phantom.

1.7 Tractography
For both, the software phantom and in vivo data, tractography

was carried out using Diffusion Toolkit (Ruopeng Wang, Van J.

Wedeen, Athinoula A., Martinos Center for Biomedical Imaging,

Figure 2. Schematic overview of the adaptive spatially varying
regularization algorithm. Si denotes the diffusion-weighted images,
IC the independent components decomposed by ICA, SICA,i are the
denoised diffusion-weighted images with the corresponding noise

images Snoise,i D̂DICA is the diffusion tensor with the corresponding noise

tensor D̂Dnoise, evaluated using the Stejskal-Tanner equation (ST). The
noise variance tensor S was estimated by averaging the variance in a
565 pixel moving window (SD). L denotes the regularization tensor to

estimate the sought regularized diffusion tensor ~DD.
doi:10.1371/journal.pone.0074156.g002
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Massachusetts General Hospital, Boston, MA) in which the

regularized and native tensors served as input data. Fiber tracts

were visualized using TrackVis software (Ruopeng Wang, Van J.

Wedeen, Athinoula A., Martinos Center for Biomedical Imaging,

Massachusetts General Hospital, Boston, MA). For the software

phantom the (i) noise free data, (ii) the noisy data and (iii) the noisy

data with regularization have been analyzed with respect to the

parameters Mean Length, Track Count, Volume and Voxel

Count obtained from TrackVis Software. The same parameters

were evaluated for in vivo data from two subjects for the entire

brain. For assessing tractography parameters from measurements

acquired within 16 min (rs-EPI1) all three data sets were evaluated

separately (1, 2, 3) and parameters were averaged afterwards.

Similarly, for measurements acquired within 32 min (rs-EPI2)

three combinations of two averaged data sets were used (1+2, 2+3,

1+3). For assessing tractography parameters from measurements

obtained within 48 min (rs-EPI3), all three data sets were averaged

(1+2+3). The evaluation of parameters from regularized data (rs-

EPI1,reg) based on rs-EPI1 was again performed separately. The

angle threshold was fixed to 45u for the tractography analysis for

all data.

Results

Exemplarily, the gain of spatial resolution in rs-EPI compared

to standard ss-EPI scan with a resolution of 2.562.562.5 mm3 is

demonstrated in figure 3. Small structures such as the fornix which

can hardly be visualized in the conventional low resolution scan

can be accessed by high resolution rs-EPI.

Visual inspection of the tractography for the noise-free software

phantom, the noisy phantom and the regularized noisy phantom

showed that the proposed processing of the diffusion tensor

improved the homogeneity of fiber orientation (see figure 4). This

observation was quantitatively confirmed when evaluating the

tractography parameters Mean Length, Track Count, Volume

and Voxel Count (table 1) revealing that values for the noisy

regularized phantom are close to values obtained from the noise

free software phantom.

Consistent with the phantom results, for subject #1 the

tractographic evaluation for in the vivo diffusion data revealed

an increase in ML, TC, V, and VC as a function of number of

averages (rs-EPI1,rs-EPI2,rs-EPI3) for the entire brain (see

figure 5). For subject #2 we observed an increase in ML, TC,

V, and VC given in that rs-EPI1,rs-EPI2 but no further

improvement for rs-EPI3. Overall the regularized data (rs-EPI1,reg)

showed the highest values for the evaluated parameters. Visually,

an increase in fiber length and fiber density can be observed when

comparing fiber tracts from one average with fiber tracts from

three averages and with fiber tracts from the regularized data,

respectively (see figure 6).

As expected, the ICA-EMB algorithm decomposed the images

from 12 diffusion directions into six independent components

containing information about tissue and diffusion, and six

components representing noise (see figure 1). No additional

component was observed confirming that the geometrical distor-

tion correction was successful. The computing time for the ICA

decomposition was about 70 minutes for all 38 slices (IntelH
CoreTM i7-2600 CPU, 3.4 GHz, 8 GB RAM).

The noise, extracted from the DWI data by means of ICA, was

projected into the tensor subspace. Figure 7 shows the standard

deviation of the noise for the elements Sxx and Sxy. Due to the

spatial inhomogeneity of the noise, modulated by physiology, g-

factor in parallel imaging and normalization procedures, the

standard deviation of the noise is higher in central regions of the

brain compared to peripheral regions additionally highlighting the

necessity of a spatially varying regularization. The standard

deviation of the noise tensor served as a weighting factor for

evaluating a spatially varying regularization tensor L. In every

iteration step L was updated according to Eq. [13]. Figure 7

exemplarily shows the evolution of the regularization parameter

for two different regions, resulting in a higher regularization

parameter for ROI 1 and a lower regularization parameter for

ROI 2. The denoising properties of the regularization process are

demonstrated in figure 8 for the individual diffusion tensor

elements DxxDxyDxzDyyDyzDzz

� �
for the un-regularized data

from one average and for the regularized data. In figure 9, FA

maps are displayed for data from one average (a), one average with

denoised DWI data (b), three averages (c) and one average with

regularization (d).

Discussion

In recent years, the increase in spatial resolution in diffusion-

weighted imaging has gained attention in the scientific community

since the usefulness of tractography has been demonstrated for

many applications from psychological sciences to presurgical

mapping. While technical developments enhancing the spatial

resolution, such as ultra-high-field scanners or strong gradient

systems, are limited to a few sites, developments in MR pulse

sequence design can easily be adopted on clinical scanners. rs-EPI

makes it possible to acquire high-resolution DWI data, but at the

cost of scan time and SNR. To make this technique more

applicable in a clinical setup, a method for scan time reduction has

been implemented recently by omitting readout segments on one

side of k-space and using Partial-Fourier reconstruction [56].

Another approach to increase the spatial resolution entitles

ZOOPPA is based on scanning only a restricted field of view in

combination with partially parallel acquisition [57]. In this paper,

a complementary strategy has been presented, in which a

regularization of the entire diffusion tensor is used to overcome

the limitations of poor SNR at short scan times.

To test the performance of our regularization algorithm, we

constructed a software phantom with fibers of specified lengths

and known directions serving as a gold standard. For in vivo

conditions the creation of a gold standard is only possible to a

limited extent. Even though extended scan time due to the

sampling of more averages results in more reliable DTI data, long

scan times imply motion artifacts inherently limiting the data

quality. Specifically our data show that the improvement when

measuring 48 min is moderate compared to measurements

obtained within 32 min (subject #1) or even slightly worse

(subject #2). Hence, a gold standard cannot be created by

prolonging the scan time ad infinitum. Despite these difficulties in

comparing the tractography from the regularized data with a gold

standard, a trend of increasing fiber density can be observed in the

data from three averages suggesting that tractography results from

the regularization process are plausible with respect to the

anatomical structures underlying the diffusion measurements. It

has to be noted, that of course data measured in 48 minutes

contain more reliable information than measurements obtained in

16 minutes making tracking more robust to tracking errors. To

what extent the regularization algorithm influences tracking errors

positively or negatively can only be answered by comparison with

the anatomy, a topic which remains under investigation for all

tractographic algorithms. It also has to be mentioned, that

anisotropic voxel are not ideal for fiber-tracking. For the sake of

full brain coverage anisotropic voxel must be accepted to obtain

data in a feasible time and are often used in clinical practice.

Regularized High-Resolution DTI
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However, in this work we have shown for a software phantom

and for high resolution in vivo data that our approach of

regularizing the entire diffusion tensor is able to improve DTI-

based tractography. For both, the phantom and in vivo data sets

the mean fiber length is higher for the regularized data compared

to the un-regularized data. This confirms that discontinuities in the

main diffusion tensor direction, which account for stopping a fiber

tract along its path, are corrected successfully. Related parameters

such as Mean Length, Track Count, Voxel Count and Volume

also show higher values for the regularized data compared to the

un-regularized case. Specifically, for in vivo data these findings

suggest that tractography results evaluated from regularized

diffusion tensor data based on one measurement (first out of three

averages) produce results more comparable to tractography results

obtained from measurements with prolonged scan time. This

significant 3-fold reduction of scan time makes rs-EPI DWI more

applicable in a clinical context.

Our proposed method has two novel features. Firstly, the

regularization parameter is evaluated automatically by being

updated at every iteration step of the optimization algorithm,

making the method user independent. The choice of the

regularization parameter is crucial in denoising by means of

regularization since it determines the trade-off between denoising

and smoothing. In most regularization algorithms this value is

chosen more or less arbitrarily, validated by visual inspection and

is therefore always a subjective choice. In general, a prerequisite

for the adoption of the regularization parameter is that the noise

level for the data to be regularized has to be determined, which

was carried out by means of ICA in this work. We directly

calculated the noise distribution from the DWI data and thus

eliminating the need of additional scans. Secondly, the regular-

ization parameter varies spatially accounting for variations in SNR

due to the spatial dependence of the coil sensitivity. Given the fact

that the homogeneity of the coil sensitivity decreases with an

increase of the number of coil elements this effect should not be

neglected [40]. Specifically, when using head coils with 32

elements or more a constant regularization parameter will lead

to over-regularization in cortical regions and to under-regulariza-

tion in deep brain regions. Since spatially varying noise is not a

central issue in most image processing applications this problem is

Figure 3. Comparison of FA maps from conventional ss-EPI data (a) with a resolution of 2.562.562.5 mm3 with high resolution rs-
EPI data (b) with a resolution of 16162.5 mm3. Small structures such as the fornix (marked by the arrow) or branches in peripheral regions can
hardly be seen in conventional DTI scans with limited resolution but can be clearly identified in high resolution rs-EPI.
doi:10.1371/journal.pone.0074156.g003

Table 1. Evaluated tractography parameters Mean Length (ML), Track Count (TC), Volume (V), and Voxel Count (VC) for the noise-
free phantom, the phantom with overlaid noise from ten measurements (mean 6 standard deviation) and the noisy phantom with
regularization (mean 6 standard deviation).

phantom without noise phantom with noise phantom with regularization

ML (mm) 135.5 22.261.7 132.567.8

TC (1) 55596 517436722 557016368

V (ml) 179.0 172.962.1 179.161.0

VC (1) 57290 555226145 573686112

doi:10.1371/journal.pone.0074156.t001
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often neglected. However, few methods exist to address this

problem by estimating the noise from the data to be regularized

[58]. Estimating the noise from an image to be regularized is not a

trivial task and remains an approximation. Due to the multivariate

nature of the DWI data, we could extract the noise by means of

ICA and provide the basis for spatially varying regularization of

the diffusion tensor after projecting the extracted noise into the

tensor subspace. The distribution of the noise in the tensor space

was evaluated using a sliding window including 565 pixels.

Although the window size is not a crucial parameter with regard to

Figure 4. Tractography from the software phantom without noise (a), from the phantom with overlaid noise (b) and from the noisy,
regularized phantom (c) demonstrating the improvement of fiber homogeneity due to regularization.
doi:10.1371/journal.pone.0074156.g004

Figure 5. Evaluation of tractography parameters Mean Length, Track Count, Volume and Voxel Count for rs-EPI data obtained from
one average (rs-EPI1), two averages (rs-EPI2), three averages (rs-EPI3) and from one average processed with the regularization
algorithm (rs-EPI1,reg) for the entire brain for both subjects. Please note that errorbars in rs-EPI1, rs-EPI2 and rs-EPI1,reg denote the standard
deviation due to the separate evaluation of all three measurements and their combination respectively.
doi:10.1371/journal.pone.0074156.g005
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the regularization outcome, it should be ensured that the window

captures sufficient data points for estimating a reliable statistical

distribution of the noise.

In the last decade, a multitude of algorithms have been

proposed to solve the BSS problem using ICA. An overview can be

found elsewhere [43]. Although the theoretical basis is different for

many algorithms, the results are comparable providing compo-

nents where the mutual statistical independence is maximized. We

applied three different algorithms (ICA-EMB [53], FastICA [59],

IM-ICA [41]) to DWI data and all of them separated tissue- and

diffusion-related components from noise components sufficiently.

The choice of using ICA-EMB in this work is motivated by the fact

that the evaluated ICs are sorted so that the first six components

represent tissue and diffusion related information. This is not a

priori the case for all ICA algorithms since a permutation operator

can always be applied to the basic ICA model, providing the same

results in a different order. If the independent components are not

sorted, the diffusion-related components or the noise-related

components have to be identified manually in order to separate

the tissue and diffusion signal from the noise signal. The number of

six tissue- and diffusion-related components decomposed by ICA is

independent from the number of diffusion sensitizing gradient

directions. This can be explained by the fact that a symmetric

tensor has six independent tensor elements and has been shown

stable for a different number of gradient directions in our

experiments.

It has to be noted that different ICA algorithms strongly vary in

their computational effort and convergence speed. If processing

speed is a crucial issue, the performance of different ICA

algorithms should be considered. In case of geometrical distortions

or motion artifacts additional independent components occur

beside the parenchyma, diffusion components and noise compo-

nents. Hence it is crucial to correct for these artifacts prior to

performing ICA.

Figure 6. Fiber tracts through central slices: (x = 124) in sagittal view (first row), (y = 125) in coronal view (second row) and (z = 19) in
transversal view (third row). The first column shows data from one measurement (first out of three averages), the second column from three
averages and the third column from one measurement but after regularization. In certain regions, such as the center of the brain, the regularization
algorithm reveals structures that can be observed in data from three averages but not in data from one average.
doi:10.1371/journal.pone.0074156.g006
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Figure 7. Sxx and Sxy.show the standard deviation of the noise for two of six noise tensor elements D̂Dnoise,xx and D̂Dnoise,xy that serve as
input for Eq. [13]. The spatially varying regularization parameter was updated at each iteration step. This is shown for two regions of interest (ROI 1,
ROI 2) for the regularization tensor elements Lxx and Lxy.
doi:10.1371/journal.pone.0074156.g007

Figure 8. Diffusion tensor elements DxxDxyDxzDyyDyzDzz for one average (first row) and for one average regularized (second row).
Rows three and four show a magnified view from the region marked in the first image.
doi:10.1371/journal.pone.0074156.g008
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It has to be acknowledged that our method is only applicable to

DWI measurements with more than six diffusion directions.

Considering that ICA decomposes the DWI dataset into six

components containing parenchyma and diffusion information

and some components containing noise, it is obvious that more

than six diffusion directions are required. Although this can be

seen as a limitation of our method, most modern diffusion

sequences allow the acquisition of 12 or more directions of the

diffusion sensitizing gradient.

After the separation of tissue- and diffusion-related information

from noise by means of ICA, only the components containing

diffusion information were transformed back resulting in a

denoised set of DWI data (SICA,i). Using only the denoised DWI

data for diffusion tensor imaging led approximately to the same

result as that obtained from the original noisy DWI data (see

figure 9 a and b). This interesting observation shows that denoising

DWI data alone is not a successful strategy for improving diffusion

tensor based parameters and regularization of the diffusion tensor

itself is crucial. Considering Eq. [6] for solving the inverse problem

to evaluate the diffusion tensor, the multiplication BT y sums the

pixel values from the 12 dimensional DWI space in order to

perform a projection into the six dimensional tensor subspace.

This summation has a denoising effect and explains the limited

impact of using denoised DWI data for evaluating the diffusion

tensor.

From a physical point of view the diffusion tensor is positive

definite, meaning that the eigenvalues of the diffusion tensor must

be positive. It must be guaranteed that this physical restriction is

not violated after the regularization process and can be achieved

by replacing the negative eigenvalues with zero [60]. This method

has been shown to provide satisfying results compared with other

methods [61].

Currently, our regularization approach is applied separately to

each slice. Although a three-dimensional regularization seems to

be the natural choice for improving tractography in a three-

dimensional space, the realization is not trivial and some

limitations complicate the implementation. A 3D regularization

would enlarge the optimization problem by an additional

dimension, solving the problem in a 240624066638 space,

which would result in a dramatic increase in computational effort.

Furthermore the influence of the different resolutions for the in-

plane and slice directions would have to be considered. With these

points in mind, the feasibility of extending our algorithm to 3D is

currently being investigated.

Conclusions

In this work we introduced a novel regularization approach that

is applied to the diffusion tensor from high-resolution readout-

segmented DWI data. Using independent component analysis,

noise information was extracted from DWI data and included in

the regularization algorithm. Firstly, this allows an automatic

evaluation of the regularization parameter, making our method

user independent and secondly, it allows a spatially dependent

regularization, accounting for inhomogeneities in SNR due to

variances in coil sensitivity. Tractography and quantitative

parameters from in vivo data showed that regularizing the

diffusion tensor from DWI data measured in 16 minutes produces

results that are comparable with DWI measurements from three

averages obtained in 48 minutes. This significant reduction in scan

time may advance the applicability of high resolution DTI and

tractography in a clinical workflow.

Figure 9. FA map from data obtained using one measurement (first out of three averages) (a), FA map from the denoised set of DWI
data (SICA,i) (b) showing only marginal differences compared with (a), FA map from data obtained using three averages (c), FA map
from data obtained using one measurement (first out of three averages) with regularization (first row) (d). The second row shows
magnified views from the region marked in the first image.
doi:10.1371/journal.pone.0074156.g009
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