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assignment, but also a range of other problems path splits further need to consider node cost uncertainties leading to the notion of 
hyperpaths. We discuss the problem of finding optimal hyperpaths under non-additive link cost conditions assuming a cost vector 
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stage solution approach. In the first stage we test whether the optimal hyperpath can be obtained by backward search. If this is 
not the case, we propose a so called “selective hyperpath generation” among hyperpaths to a (small) number of active critical 
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1. Introduction 

Non-additivity of cost functions along paths in a transport network is an issue for a range of applications. Energy 
efficiency might depend on driven distance. Regulations such as rest-times for truck drivers or delivery time 
windows might introduce step functions in the cost function if certain distances/travel times are exceeded. With 
GNSS road pricing also non-additivities might be introduced to support or discourage long distance trips. Gabriel 
and Bernstein (1997) provide a general discussion on the need for non-additive costs in traffic assignment and Chen 
and Nie (2013) extend this.  As noted also in Han and Lo (2004), an application where non-linear costs are arguably 
most common are public transport fares. In most systems the traveler has to pay a fee to enter the system plus 
additional zone or distance depending fares. In case of distance-depending fares these are usually degressive in that 
the marginal fare per distance is decreasing. Combinations of flat, zonal and distance-depending fares plus additional 
features such as peak-hour surcharges are further common practice. To clarify, we are interested in this paper in 
cases where the fare is not predetermined by the origin and destination but depends on the actual path chosen. In 
Japan many fare structures comply with this criteria. Furthermore, besides fares, we might argue that congestion 
aspects, again particular transit congestion, also fulfill our problem description. Travelers on crowded trains often do 
not mind standing for one or a few stops but would make a significant effort to avoid having to stand over longer 
distances. In this case, and in opposite to the fare case, we would expect the cost function to be disproportionally 
ascending with distance though.    

In case travelers can be assigned to single paths, non-additivity might be dealt with in an exact manner and 
network loading is fairly straightforward. However, in case the network is large and one has to consider that 
travelers en-route react to delays by changing their route, non-additivity forms an important challenge as we will 
illustrate and discuss in this paper. Considering uncertainty in path choice due to potential delays has led to the 
concept of hyperpaths where travelers’ choices at nodes as to which link to take from an attractive set are determined 
by the order in which events (such as arrival of buses or trains) are unfolding. Specifically for transit applications 
this concept has led to a large body of literature on frequency-based assignment with consideration of passenger 
strategies. Similarly, the idea of hyperpath-based route choice has been applied to road network assignment (Bell, 
2009; Bell et al, 2012; Ma and Fukuda, 2016) where hyperpaths might be obtained due to “random” link choices 
depending on, for example, which exiting link has a green traffic signal at the time a traveler arrives at a junction. 

Furthermore, frequency-based transit assignment models are still the main tool to obtain line loads in large scale 
networks. Especially if one wants to test line load sensitivities to changes in fare distance levels or consider the 
aforementioned non-additive congestion effects, improved frequency-based assignment methods are required. This 
motivates this paper, though in the work present here we emphasize the general application of our approach to 
hyperpath-based traffic or transit assignment without paying attention to transit-specific issues such as walking 
between platforms, dwell times or capacity constraints.  

The remainder of this paper is organized as follows. The next section will review related literature. In Section 3 
we introduce our fairly extensive notation before Section 4 defines the problem we address more formally. We then 
illustrate the resulting assignment problem and classify three types of hyperpath searches depending on the fare 
structures in Section 5. Section 6 then lays the foundation for our solution approach that is presented in Section 7. 
Section 8 illustrates the approach with a case study before Section 9 concludes the paper and discusses extensions 
required for practical applications.  

2. Literature on (hyperpath-based) assignment with non-linear link costs 

A range of literature on non-additive costs has considered obtaining path costs as given and looked at equilibrium 
assignment approaches focusing on convergence issues given that convexity of costs might not be guaranteed  
(Wong et al, 2001; Han and Lo, 2004). Recently, within transit assignment, Chin et al (2016) also looked at 
equilibrium assignment with non-additive costs. Their focus has been further on policy implications by illustrating 
the impact of non-linear fares on revenue and ridership with a Toronto case study. 

Our focus is the step before assignment, that is the determination of the optimal hyperpaths themselves for which 
there is much less literature. Finding a single shortest path in a network with one cost criteria does not constitute a 
significant problem as additivity of costs is not a criteria for a range of algorithms (Ahuja et al, 1993). A set of 
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literature has been looking though at multicriteria optimal paths with non-additive cost (Tsaggouris and Zaroligas, 
2004). A fairly recent noteworthy contribution is the work of Chen and Nie (2013). They obtain shortest paths in a 
network where the path (not hyperpath) costs consist of two elements, one of which might be continuous, non-
additive. Path costs are transformed into discrete, additive subproblems. They then develop an algorithm to obtain 
efficient path set frontiers considering the two objectives.  In contrast, in our problem we consider generalized costs 
combining travel time, waiting time and non-additive, discrete fares into a single cost. Furthermore, as noted, we aim 
to consider passengers choosing hyperpaths and not being restricted to single paths. 

Frequency based transit assignment considering hyperpaths has significantly advanced over the past four decades. 
Since the seminal work of Spiess and Florian (1989) as well as Nguyen and Pallatino (1988) strategy and hyperpath-
based approaches have been widely used. Further, a number of approaches have been proposed to treat issues such 
as on-board congestion, capacity problems or the effect of real-time information (for a summary see Gentile and 
Noekel, 2016). Various approaches are used by commercial software to approximate the effect of complex fare 
structures with frequency-based assignment. For example, base-fares to enter the system and zone-based fares can be 
modelled by adding costs to particular links in the network (see e.g. VISUM user notes in PTV (2013)). 

However, problems to model general non-linear link cost structures remain and contributions to solve such issues 
are still fairly sparse. Most closely related to our problem are the publications by Lo et al. (2003) and Constantin and 
Florian (2015). The former paper proposed a “state-augmented” multi-modal (SAM) network description for 
network assignment. The central idea is to consider as part of the link specific fares which modes have already been 
taken so that travelers are in different “states”. The approach is taken up by Constantin and Florian (2015) in an 
extension to strategy-based transit assignment in which user costs can vary along a trip according to a set of pre-
defined ‘transit journey levels’. They apply the state-augmented approach to the Puget Sound regional network with 
scenarios where travelers have to pay reduced fares for a bus if they transfer from a previous bus. They illustrate that 
the approach can be efficiently implemented into existing software. The limitation of the state-augmented approach 
is that the fare is independent of the (mode specific) path travelled and that only a fixed, usually low, number of fare 
stages can be modelled.  

We emphasize that the journey level approach has been developed to overcome the issue of non-additive transfer 
fares whereas the approach proposed here addresses generally non-additivity of distance-based link costs. A 
principal difference between the two approaches is that the state-augmented network introduces the definition of 
multiple nodes for each “state”, so that the classic search for optimal strategies becomes feasible again whereas the 
approach proposed here does not modify the network but requires additional operations to ensure the optimal 
hyperpath has been found. We note though that the approaches are complementary so that taken together one can 
model a wide range of link cost structures. 

3. Notation 

Let us define following network and link specific variables.  
 

: Set of nodes in the network 
: Set of links in the network with a   

 Headnode and tailnode of link a respectively  
:       Sets of origins and destinations with  and   

 
To complete the description of the network further following data are required. 

 
  : travel time of link  with  

:  maximum delay, frequency of link a. Assume  as in Bell (2009). 
 : vector describing the link cost (fare) structure; the first entry describes the base cost for a journey (e.g. 

terminal charge), the second entry the cost of the 1st link, the third of the 2nd link and the nth entry describes 
the additional marginal cost of traversing all links including and after the n-1th link. 

 
We assume throughout this paper that travel time and delays are already converted into a common generalised 

4 S. Maadi and J.-D.Schmöcker/ Transportation Research Procedia 00 (2017) 000–000 

cost unit. 
 

We require multiple definitions of hyperpaths depending on how these are obtained and whether they are 
destination and/or origin specific. We utilise accents to distinguish these hyperpaths, in particular arrows for 
backward search and “selective hyperpath generation”. 
 
��: Set of all destination specific hyperpaths obtained with backward search by considering minimum fare and 

with ��� ∈ �� and � ∈ �     
��: Set of all optimal origin and destination specific hyperpaths with ���� ∈ �� and � ∈ �� � ∈ � 
����, ����:      Sets of origin and destination specific hyperpaths obtained with backward search and selective hyperpath 

generation with ����� ∈ ����,	����� ∈ ����  and � ∈ �� � ∈ �       
 
In line with this notation for hyperpath sets we further introduce hyperpath specific node costs.  
 
����	:   cost of reaching node � with backward search by considering the lower bound link cost from specific 

origins with � ∈ �, � ∈ � 
���� : final optimal origin and destination specific cost with � ∈ �, � ∈ � 
���		:  optimal origin and destination specific cost	with selective hyperpath generation with � ∈ �, � ∈ � 
������ �����  : cost of reaching node � by “moving forward” and backward search with hyperpath specific costs with � ∈

�, � ∈ � 
 

As we will explain we require a combination of backward search and hyperpath generation. In order to limit the 
need for the latter additional search sets of fixed cost nodes and critical nodes are introduced. Among critical nodes 
we further distinguish “active” and “passive” ones, but for notational simplicity we avoid distinguishing our node 
sets further. 

 
Θ��,	�̅�:    Set of all critical nodes and fixed nodes from origin � with � ∈ � and  ��� ∈ Θ��, �̅� ∈ Θ�� 
Λ��,	�̅�:     Set of all critical links and all fixed cost links from origin � with � ∈ � and  ��� ∈ Λ��, �̅� ∈ Λ�� 
 

A key aspect of our approach is to obtain the “travel history depending” link specific fares. For this we require 
the transformation of the information of the fare vector into link specific fares and a “shift operator” as we will 
explain in Section 6.   
 
Γ : shift operator on node fare probabilities  
����  vectors of size |�| with elements ����� denoting the probability of using k-1 fare link stages from origin � 

until node � on hyperpath � 
���� : expected marginal fare of link � when travelling from origin � on hyperpath � with � ∈ �	���	�	 ∈ � 
 

The uncertain, potential (or feared if interpreted as a game as in Schmöcker et al, 2009) link delays are causing 
the hyperpath problem, that is if there is no uncertainty the hyperpath collapses to a single optimal path. To consider 
the node uncertainties (waiting times) and resulting split probabilities for the different paths within a hyperpath we 
introduce below additional notation. 
 
��� : sum of frequencies (inverse maximum link delays) for attractive links exiting node	� with � ∈ � 
���� : sum of frequencies (inverse maximum link delays) for attractive links exiting node	� given destination � 

with � ∈ � 
��� : sum of frequencies (inverse maximum link delays) for attractive links entering node	� with � ∈ � 
����  probability of using link � when travelling from � on hyperpath � 
����  probability of using node � when travelling from � on hyperpath � 
����  probability of using node �	when travelling from � to � 
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��: Set of all optimal origin and destination specific hyperpaths with ���� ∈ �� and � ∈ �� � ∈ � 
����, ����:      Sets of origin and destination specific hyperpaths obtained with backward search and selective hyperpath 

generation with ����� ∈ ����,	����� ∈ ����  and � ∈ �� � ∈ �       
 
In line with this notation for hyperpath sets we further introduce hyperpath specific node costs.  
 
����	:   cost of reaching node � with backward search by considering the lower bound link cost from specific 
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������ �����  : cost of reaching node � by “moving forward” and backward search with hyperpath specific costs with � ∈
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As we will explain we require a combination of backward search and hyperpath generation. In order to limit the 
need for the latter additional search sets of fixed cost nodes and critical nodes are introduced. Among critical nodes 
we further distinguish “active” and “passive” ones, but for notational simplicity we avoid distinguishing our node 
sets further. 

 
Θ��,	�̅�:    Set of all critical nodes and fixed nodes from origin � with � ∈ � and  ��� ∈ Θ��, �̅� ∈ Θ�� 
Λ��,	�̅�:     Set of all critical links and all fixed cost links from origin � with � ∈ � and  ��� ∈ Λ��, �̅� ∈ Λ�� 
 

A key aspect of our approach is to obtain the “travel history depending” link specific fares. For this we require 
the transformation of the information of the fare vector into link specific fares and a “shift operator” as we will 
explain in Section 6.   
 
Γ : shift operator on node fare probabilities  
����  vectors of size |�| with elements ����� denoting the probability of using k-1 fare link stages from origin � 

until node � on hyperpath � 
���� : expected marginal fare of link � when travelling from origin � on hyperpath � with � ∈ �	���	�	 ∈ � 
 

The uncertain, potential (or feared if interpreted as a game as in Schmöcker et al, 2009) link delays are causing 
the hyperpath problem, that is if there is no uncertainty the hyperpath collapses to a single optimal path. To consider 
the node uncertainties (waiting times) and resulting split probabilities for the different paths within a hyperpath we 
introduce below additional notation. 
 
��� : sum of frequencies (inverse maximum link delays) for attractive links exiting node	� with � ∈ � 
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with � ∈ � 
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The backward arrow above  is added to highlight the fact that we consider delays when waiting at a node to be 
served by one of the attractive outgoing links from the present node as in backward oriented hyperpath search. In the 
appendix we introduce in addition  considering delays for incoming links as in Bell (2009) and discuss that the 
resulting hyperpaths need to be interpreted different.  

 
Above notation is required for obtaining hyperpaths, the focus of this paper. In addition, for completeness, for 

network loading we define: 
 
V: demand matrix of size  with   
v: link flow vector 

4. Problem definition 

We consider a link cost structure that can be described with an F vector. The first entry denotes the fixed cost for 
entering the network. The second entry the cost for traversing the first link, the third the cost for traversing the 2nd 
link and so on. The last vector entry describes the cost for traversing link n-1 as well as all subsequent links. E.g. 

 denotes a cost structure where the traveler has to pay a base charge of 10 units, a cost of 5 units for 
the first link, a cost of 3 units for the second link and a cost of 2 units for all subsequent links. As in this example, 
and noted in the introduction, we would expect that the marginal link cost is decreasing the longer the journey if we 
consider fares, but this might not be true if we consider congestion problems. We assume this kind of link number 
based cost structure to approximate non-additive distance-based cost structures. Note that long links in a network can 
always be divided into a series of links of equal length so that link numbers can approximate distance better. Further, 
considering specifically transit fares, we note that in some cities there are tickets that directly depend on the number 
of stops to be travelled. In Berlin, for example, there are short distance tickets for traveling three stops on Metro 
and/or Urban rail with transfer or six stops on bus or tram without transfer, that can be represented as a three-element 
fare structure based on our fare structure assumption.  

To illustrate the problem consider below Figure 1 where D is the destination. The figure illustrates that the 
classic optimal strategy approach where optimal destination specific “hyperpath trees” cannot be used as the costs 
for Links 3,4 and 5 depend on the “past”, i.e. how many links have been traversed before. Furthermore, even for a 
single origin-destination specific hyperpath, different costs for the same link might be required as is the case for 
Link 5 from C to D for travelers from A.  Travelers on path {A,C,D} will be charged 3 units on the link (C,D) 
whereas travelers on path {A,B,C,D} will be charged 2 units on the same link. We therefore require obtaining 
hyperpath-specific expected link costs for some links. One might consider that origin-specific, i.e. forward-oriented 
hyperpath searches, as in the “hyperstar” approach discussed in Bell et al (2012) for dynamic traffic assignment 
could be used as a starting point to overcome this issue, but the non-intuitive interpretation of such forward-oriented 
hyperpaths means we pursue in the following a different solution approach. We discuss problems with origin-
specific hyperpaths further in Appendix A. 

 

 

Fig. 1. Problem illustration for Braess network with F= (10,5,3,2). Entry links to the network where travelers are charged 10 units are omitted. 
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5. Cost Structure Types 

The problem illustrated in Figure 1 can hence lead to different optimal hyperpaths. That is, in cost structures with 
marginally decreasing fares, travelers can trade-of expected travel time increases with lower link costs. Clearly the 
problem becomes more important the larger the jumps in discounts for longer journeys are. 

We can distinguish three types of scenarios (Table 1). In the first case, we obtain the same hyperpath in the 
network with considering fixed link costs and hyperpath specific link costs. In the second case, the hyperpath 
changes after assigning costs but the Bellman principle still holds. In other words, the strategy of taking detours for 
the sake of saving costs further downstream does not pay off and hence in Figure 2 the optimal (hyper-)path from an 
origin O to a node A is the optimal hyperpath independent as to whether node A itself is the destination or if a node 
B is the destination for which the optimal hyperpath includes traversing A. This property might though not always 
hold so that there are potentially different optimal hyperpaths to an intermediate node depending on what the final 
destination is. This is the third case in Table 1. 

 

Table 1. Cost structure types 

 Hyperpath Bellman principle Solution method (Section 8) 
Type 1 Does not change Holds Stage 1 only 
Type 2 Changes Holds Stages 1 and 2 Type 3 Changes Does not hold 

 
The following example on a four link network where  denotes an additional fixed link cost (travel time) and  

the headway (or potential delay on a road link) illustrates the three cases. O is the origin and B and C the two 
destinations. Table 2 shows that for the cost structure F = (0,5,3,2) we will find the same hyperpaths for both 
destinations compared to the case without F, so that this cost structure and OD pairs can be classified as Type 1. In 
case of F= (0,20,12,10) instead the hyperpath changes compared to the without F. It is important though that the 
hyperpath changes for both (all) destinations so that the Bellman principle still holds. 

This is not the case for F = (0,50,30,2) so that this cost structure has to be classified as Type 3. The optimal 
hyperpath to B consists of the link (O,B) only, whereas the optimal hyperpath to C includes both paths to B. In 
words, the detour via A pays off for travelers to C as it reduces the costs from B to C more than the additional costs 
for possibly travelling via A. The larger the marginal differences between costs on the n-1th and nth link, the more 
likely the cost structure is of Type 3.  

 
 

 
 

 
 
 

 
 
 

 
 

 
Fig.2 Four link network example   
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Link 5 from C to D for travelers from A.  Travelers on path {A,C,D} will be charged 3 units on the link (C,D) 
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hyperpath-specific expected link costs for some links. One might consider that origin-specific, i.e. forward-oriented 
hyperpath searches, as in the “hyperstar” approach discussed in Bell et al (2012) for dynamic traffic assignment 
could be used as a starting point to overcome this issue, but the non-intuitive interpretation of such forward-oriented 
hyperpaths means we pursue in the following a different solution approach. We discuss problems with origin-
specific hyperpaths further in Appendix A. 
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5. Cost Structure Types 

The problem illustrated in Figure 1 can hence lead to different optimal hyperpaths. That is, in cost structures with 
marginally decreasing fares, travelers can trade-of expected travel time increases with lower link costs. Clearly the 
problem becomes more important the larger the jumps in discounts for longer journeys are. 

We can distinguish three types of scenarios (Table 1). In the first case, we obtain the same hyperpath in the 
network with considering fixed link costs and hyperpath specific link costs. In the second case, the hyperpath 
changes after assigning costs but the Bellman principle still holds. In other words, the strategy of taking detours for 
the sake of saving costs further downstream does not pay off and hence in Figure 2 the optimal (hyper-)path from an 
origin O to a node A is the optimal hyperpath independent as to whether node A itself is the destination or if a node 
B is the destination for which the optimal hyperpath includes traversing A. This property might though not always 
hold so that there are potentially different optimal hyperpaths to an intermediate node depending on what the final 
destination is. This is the third case in Table 1. 
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destinations. Table 2 shows that for the cost structure F = (0,5,3,2) we will find the same hyperpaths for both 
destinations compared to the case without F, so that this cost structure and OD pairs can be classified as Type 1. In 
case of F= (0,20,12,10) instead the hyperpath changes compared to the without F. It is important though that the 
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This is not the case for F = (0,50,30,2) so that this cost structure has to be classified as Type 3. The optimal 
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Table 2. Illustration of different optimal hyperpath types 

 
 

6. Obtaining Hyperpath Costs 

In order to calculate the hyperpath depending expected link costs, we have to find origin specific link and node 
choice probabilities. This section will explain how we derive these utilising our afore introduced concept of the three 
hyperpath types. 

6.1. Link and node choice probabilities  

In line with previous literature on hyperpath search, but now origin depending, for every � � �, we obtain link 
choice probabilities as in (1), where �� is the frequency of link � if we consider a transit context.  
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∑ ���	�������	�
 ,  �� � �                                                                                                                               (1) 

 
We also utilise ��� which is defined with the difference that the denominator sums over all �� � ���. Using the 

hyperpath specific link probabilities ���� or the probabilities ��� we can then also recursively obtain hyperpath node 
choice probabilities as in (2) or node choice probabilities ��� if we consider all links attractive. 
 

����=∑ ����a�����	� ����, �� � �, �� � �                                                                                                             (2) 
 
6.2. Expected link costs  

 
The vector ���� is used as a record of the travel history. Our definition as in (3) obtains the expected cost stage of 

the traveler considering the cost stage of the upstream nodes weighted by the probability of traversing those. The 
equation utilises the shift operator as in (4) which “shifts” the link cost one stage further.  
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 O --> B O --> C 

O-B 
Only 

O-A-B only both paths O-B-C only O-A-B-C 
only 

both paths 

No F F = (0,0,0,0) 25 25 20 40 40 35 

Type 1 F = (0,5,3,2) 30 33 26.5 48 50 44 
Type 2 F = (0,20,12,10) 45 57 46 70 82 71 

Type 3 F = (0,50,30,2) 75 105 85 120 122 116 

8 S. Maadi and J.-D.Schmöcker/ Transportation Research Procedia 00 (2017) 000–000 

We emphasise the difference of our � vector definition to journey stages as in the SAM network. In the SAM 
approach journey stages consider that a traveler has already used specific modes (or possibly links), whereas the 
history vector considers generally the number of links traversed. This is required for our problem of considering 
(mode-independent) non-additive costs. 

The shift operator is used to describe the link cost of the link exiting a node � . For example if ���� ���� �.�� �.�� �.�� this denotes that the traveler has reached node � with a probability of 0.5 directly from the origin, 
with a probability of 0.2 by using exactly two links and that there is a probability of 0.3 that the traveler has used 
three or more links to reach node �. With Γ������ � ��� �� �.�� �.�� the next link downstream from � will then be 
charged with a 0.5 probability the link cost associated with the 2nd link after the origin and with a 0.5 chance the link 
cost associated for links after the 2nd link.     

Having defined Γ  and ����  we can now obtain the expected link cost with (5) for all links and all origin 
depending hyperpaths. Similar to (1) and (2) we will also utilise  ��� as the link cost when all links are considered 
attractive. 
 

���� � � � Γ������� �� ∈ �	                                                                                                                           (5) 
 

 
6.3. Critical nodes and links 
 

Following our definitions, ��� � ��� ���� �� indicates that a traveler originating from r will certainly take a path to 
node i consisting of two links and not consider (or not have the option to take) shorter or longer paths. Therefore, 
there is no uncertainty regarding the cost of downstream links from � for travelers from r. For some nodes and links 
in the network we can further define certain link costs prior to determining any hyperpath. In Figure 2, for example, 
��� � ��� �� �� �� is given by the network structure. We define all such nodes with deterministic, pre-determinable 
costs as fixed nodes θ�� ∈ Θ�� and their outgoing links as fixed links	λ�� ∈ Λ��. In Figure 2, all downstream links and 
nodes from Node C, the furthest critical node from the origin, are fixed and costs can be assigned before finding the 
optimal hyperpath. 

In contrast, Node B in Figure 2 is not a fixed node since some travelers can reach it directly from the origin and 
some of them can reach Node B by using exactly two links. Let us define these kind of nodes as critical nodes ��� ∈
��� and links with critical nodes as tail nodes we define accordingly as critical links ��� ∈ Λ��.  To improve the runtime 
of the algorithm presented subsequently, we further distinguish critical nodes as to whether they are “passive 
critical” or “active critical” for a specific origin. The former means that though the node is critical, no further search 
is required as the optimal hyperpath from the origin to the node has already been found. We explain the idea of 
active versus passive critical nodes in more detail in Section 7.3 after introducing the main structure of our solution 
algorithm. 

 
6.4. Selective hyperpath generation  
 

In case the cost structure might be of Type 3, a selective enumeration between origins and its critical nodes 
cannot be avoided. This computational expensive search is to be avoided as much as possible so that distinguishing 
active and passive critical nodes is important.  Only for active critical nodes numeration of hyperpaths has to be 
performed and, as our case study will show, only a small proportion of nodes are active critical. Furthermore, we 
limit our search to reasonable hyperpaths that include elementary paths with a length of maximal the cost structure 
size. For our test networks, we found that this heuristics always finds the optimal hyperpaths. Combining these 
ideas, we refer to this search that finds the optimal hyperpath by comparing the costs of a limited number of 
hyperpaths as “selective hyperpath generation”. 

7. Two-Stage Solution Approach 

We are now ready to define a 2-stage algorithm for finding optimal hyperpaths. In Section 7.1 we provide an 
overview to the algorithm and in Sections 7.2 and 7.3 we provide a detailed explanation and justification. In the 
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Table 2. Illustration of different optimal hyperpath types 
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We emphasise the difference of our � vector definition to journey stages as in the SAM network. In the SAM 
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overview, we include information on the maximum complexity of each step. 
 

7.1. Overview 
	
Initialisation of node costs, ����, ��� and working sets � ← ∅, �� ← ∅. 
 
Stage 1: Backward search and extracting ODs not of Type 1  

Step 1-1(��|�|	|�| log|�|�):    Obtain hyperpath ���, its costs ��� and their subsets ����and ����, considering for all 
links their lower cost limit, ∀� � � 

Step 1-2(��|�|	|�|�): Obtain ���� � � � ������� � following Section 7.2 ∀� � ���;  and set ���� �
min(��	, ∀� � � � h���,	∀� � � , ∀� � � 

Step 1-3(��|�|	|�| log|�|�):    Obtain optimal hyperpath (�����) and its cost ����� considering link costs ���,	if  ���� 
=  ����� then ���� ← �����, ���� ← �����, else 	� ← � �	���, ���	, ∀� � �, ∀� � � 

Step 1-4(��|�|	|�|�):  If  �	���� � 0	, ∀� � �, then �� ← �� �	��� ,	∀� � �  
 
Stage 2: Selective hyperpath generation and backward search for Type 2 and 3 ODs 

Step 2-1(��|�|	|�|�) :     Obtain 	��	by moving forward , ∀� � �� 
Step 2-2(��|�|	|�|�) :     Classify nodes into fixed, passive and active critical based on 	��	as well as 

results of optimal hyperpaths obtained in Stage 1, ∀� � �� 
Step 2-3(see note below):     Obtain optimal hyperpaths h�����  and its costs u���  for critical nodes � � ���  from 

origin � . For active critical nodes use selective hyperpath generation. For 
passive critical nodes use optimal hyperpaths obtained in Stage 1. For all critical 
nodes  ����� ← ���� , ����� ← ������  , ∀� � ��and  ��, ��� � �. 

Step 2-4 ���	|�|��	:   For fixed links, obtain	��� and	���� ← ���,	 and for critical links, obtain	��� based 
on ������  in increasing order of u���� , then set 	����		. 

Step 2-5(��|�|	|�| log|�|�):   Obtain OD specific hyperpath �����  by backward search,	∀��, �� � �, If a link 
with tailnode r is found as part of the optimal hyperpath then finish backward 
search.    

            
Stage 3: Loading 

 Stage 3-1(��|�|	|�|�) :   Assign demand according to optimal hyperpath ����,	∀� � � and ∀� � � 
 

For all steps with the exception of 2-3 we can provide in above the maximum runtime complexity. The runtime of 
Step 2-3 depends on the number of active critical nodes, the size of ��, as well as number of selective hyperpath 
generations to be performed. These aspects in turn will depend on the network structure and the cost structure F, so 
that we can not provide a general upper limit. 
 
7.2. Discussion and details of Initialization and Stage 1 
 

In the initialization step at first the node costs are initialized for the backward search to 	���� � 	����� ← �		∀�	 � � �
���	� ���� � ����� ← 0.  For all origin nodes we further initialise ��� � 1  and the travel history to “zero links” as 
in	���� ← �1,0, …0��	. To track OD pairs and origins for which the hyperpath is changing due to the cost structure 
we further introduce the sets � and �� which are initially empty, � ← ∅, �� ← ∅. � ← �, � ← �. 

In Step 1-1 we then apply the well-known “optimal strategies” algorithm for obtaining hyperpaths that fit the 
assumption of (1) and assuming fixed hyperpath-independent link costs. For brevity, we omit details and refer the 
reader to Spiess and Florian (1989). It can be shown that the problem in fact can be formulated also as a linear 
program and hence be solved fast. We apply the algorithm considering the minimum cost for each link as a lower 
bound. 

We then want to check if optimal hyperpaths �� differ from ���� when applying the true link costs. For this we 
firstly obtain the hyperpath specific costs in Step 1-2. The cost is obtained by moving forward using the hyperpaths 
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obtained in Step 1-1 (��). The details of Step 1-2 are below.  
 

Step 1-2-1:  Set node � as an origin and node � as a destination, �� ∈ �, �� ∈ � 
Step 1-2-2:  Obtain ���� by Eq. 1, �� ∈ h��� and � ← h��� 
Step 1-2-3:  Select � ∈ � with minimum  ������� � ������ � �� , Set �	 ← 	� � ��� 
Step 1-2-4:  Update cost of head node ��   
 If ������ � � then � ← � else ← ����� ������  , ������ ← �	�	���������� ����

������ ��� ,    ����� ← ����� +�� 

Step 1-2-5:  Update �����  and	����� 	by Eq. 2 and 3 for �� ∈ h��� 
Step 1-2-6:  If �=Ø	then go to next step else go to Step 1-2-2 
Step 1-2-7:  Set	���� � � � ������� � ,�� ∈ ���, and ���� � ���(��, �� ∈ � � ���� 
 

In Step 1-3 the backward search with the updated link costs is then repeated. The algorithm resembles the one in 
Spiess and Florian (1989) with the addition of 1-3-6 which tests if hyperpaths have changed and collects the ones for 
which it has:  
 

Step 1-3-0:  Set � ← �  
Step 1-3-1:  Set node � as an origin and node s as a destination, �� ∈ �, �� ∈ � 
Step 1-3-2:  Select � ∈ � with minimum  ������� � ������ � �� � ���� , Set �	 ← 	� � ��� 
Step 1-3-3:  Check if � should be added to ����; if ������ � �������  then ����� ← ����� � ���  
Step 1-3-4:  Update cost of tail node �� 

 If ������ � � then � ← � else ← ����� ������  , ������ ← �	�	���������� ���������
������ 	�	�� ,    ����� ← ����� +�� 

Step 1-3-5:  If �=Ø	then go to next step else go to step 1-3-1 
Step 1-3-6:  If  ���� =  ����� then ���� ← �����, ���� ← �����, else	� ← ��	���, ���	, �� ∈ �, �� ∈ � 
 

We can proof that for hyperpaths not in M the optimal hyperpath has been found and these OD pairs do not need to 
be revisited.  
   
Lemma 1: If ���� =  ����� then the optimal hyperpath has been obtained. 
 

Proof of Lemma 1.  In Step 1-1, we consider the least cost for each link and obtain ���	� � 	�����. Then, in 
Step 1-2, we assign costs based on  ����. If then in Step 1-3 we reach the same hyperpath, this means that 
we have  ���	� � ��� � 	�����. Thus, the final optimal hyperpath has been obtained since adding costs to the 
(optimal) hyperpath but not to other hyperpaths has not altered the optimal hyperpath. Adding costs to 
alternative hyperpaths will only widen the gap between the optimal one and alternative ones.  

 
Step 1-4 then further creates a set of origins for which the hyperpath to at least one destination has changed. We 

require this set in order to understand for which origins selective hyperpath generation to active critical nodes cannot 
be avoided.  
 
7.3. Discussion and details of stage 2 
 

In order to find possible critical nodes (active and passive), Step 2-1 obtains the vector 	��  for the largest 
possible hyperpath, that is assuming all links might be attractive. The details of this step are as follows: 
 

Step 2-1-0:  Set � ← �; ����� ← �	��	 ∈ � � ���	, ����� ← 0, �� ∈ � 
Step 2-1-1:  Set node � as an origin, �� ∈ �� 
Step 2-1-2:  obtain ��� by Eq. 1, �� ∈ � 
Step 2-1-3:  Select � ∈ � with minimum  ������� � ������ � �� , Set �	 ← 	� � ��� 
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overview, we include information on the maximum complexity of each step. 
 

7.1. Overview 
	
Initialisation of node costs, ����, ��� and working sets � ← ∅, �� ← ∅. 
 
Stage 1: Backward search and extracting ODs not of Type 1  

Step 1-1(��|�|	|�| log|�|�):    Obtain hyperpath ���, its costs ��� and their subsets ����and ����, considering for all 
links their lower cost limit, ∀� � � 

Step 1-2(��|�|	|�|�): Obtain ���� � � � ������� � following Section 7.2 ∀� � ���;  and set ���� �
min(��	, ∀� � � � h���,	∀� � � , ∀� � � 

Step 1-3(��|�|	|�| log|�|�):    Obtain optimal hyperpath (�����) and its cost ����� considering link costs ���,	if  ���� 
=  ����� then ���� ← �����, ���� ← �����, else 	� ← � �	���, ���	, ∀� � �, ∀� � � 

Step 1-4(��|�|	|�|�):  If  �	���� � 0	, ∀� � �, then �� ← �� �	��� ,	∀� � �  
 
Stage 2: Selective hyperpath generation and backward search for Type 2 and 3 ODs 

Step 2-1(��|�|	|�|�) :     Obtain 	��	by moving forward , ∀� � �� 
Step 2-2(��|�|	|�|�) :     Classify nodes into fixed, passive and active critical based on 	��	as well as 

results of optimal hyperpaths obtained in Stage 1, ∀� � �� 
Step 2-3(see note below):     Obtain optimal hyperpaths h�����  and its costs u���  for critical nodes � � ���  from 

origin � . For active critical nodes use selective hyperpath generation. For 
passive critical nodes use optimal hyperpaths obtained in Stage 1. For all critical 
nodes  ����� ← ���� , ����� ← ������  , ∀� � ��and  ��, ��� � �. 

Step 2-4 ���	|�|��	:   For fixed links, obtain	��� and	���� ← ���,	 and for critical links, obtain	��� based 
on ������  in increasing order of u���� , then set 	����		. 

Step 2-5(��|�|	|�| log|�|�):   Obtain OD specific hyperpath �����  by backward search,	∀��, �� � �, If a link 
with tailnode r is found as part of the optimal hyperpath then finish backward 
search.    

            
Stage 3: Loading 

 Stage 3-1(��|�|	|�|�) :   Assign demand according to optimal hyperpath ����,	∀� � � and ∀� � � 
 

For all steps with the exception of 2-3 we can provide in above the maximum runtime complexity. The runtime of 
Step 2-3 depends on the number of active critical nodes, the size of ��, as well as number of selective hyperpath 
generations to be performed. These aspects in turn will depend on the network structure and the cost structure F, so 
that we can not provide a general upper limit. 
 
7.2. Discussion and details of Initialization and Stage 1 
 

In the initialization step at first the node costs are initialized for the backward search to 	���� � 	����� ← �		∀�	 � � �
���	� ���� � ����� ← 0.  For all origin nodes we further initialise ��� � 1  and the travel history to “zero links” as 
in	���� ← �1,0, …0��	. To track OD pairs and origins for which the hyperpath is changing due to the cost structure 
we further introduce the sets � and �� which are initially empty, � ← ∅, �� ← ∅. � ← �, � ← �. 

In Step 1-1 we then apply the well-known “optimal strategies” algorithm for obtaining hyperpaths that fit the 
assumption of (1) and assuming fixed hyperpath-independent link costs. For brevity, we omit details and refer the 
reader to Spiess and Florian (1989). It can be shown that the problem in fact can be formulated also as a linear 
program and hence be solved fast. We apply the algorithm considering the minimum cost for each link as a lower 
bound. 

We then want to check if optimal hyperpaths �� differ from ���� when applying the true link costs. For this we 
firstly obtain the hyperpath specific costs in Step 1-2. The cost is obtained by moving forward using the hyperpaths 
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obtained in Step 1-1 (��). The details of Step 1-2 are below.  
 

Step 1-2-1:  Set node � as an origin and node � as a destination, �� ∈ �, �� ∈ � 
Step 1-2-2:  Obtain ���� by Eq. 1, �� ∈ h��� and � ← h��� 
Step 1-2-3:  Select � ∈ � with minimum  ������� � ������ � �� , Set �	 ← 	� � ��� 
Step 1-2-4:  Update cost of head node ��   
 If ������ � � then � ← � else ← ����� ������  , ������ ← �	�	���������� ����

������ ��� ,    ����� ← ����� +�� 

Step 1-2-5:  Update �����  and	����� 	by Eq. 2 and 3 for �� ∈ h��� 
Step 1-2-6:  If �=Ø	then go to next step else go to Step 1-2-2 
Step 1-2-7:  Set	���� � � � ������� � ,�� ∈ ���, and ���� � ���(��, �� ∈ � � ���� 
 

In Step 1-3 the backward search with the updated link costs is then repeated. The algorithm resembles the one in 
Spiess and Florian (1989) with the addition of 1-3-6 which tests if hyperpaths have changed and collects the ones for 
which it has:  
 

Step 1-3-0:  Set � ← �  
Step 1-3-1:  Set node � as an origin and node s as a destination, �� ∈ �, �� ∈ � 
Step 1-3-2:  Select � ∈ � with minimum  ������� � ������ � �� � ���� , Set �	 ← 	� � ��� 
Step 1-3-3:  Check if � should be added to ����; if ������ � �������  then ����� ← ����� � ���  
Step 1-3-4:  Update cost of tail node �� 

 If ������ � � then � ← � else ← ����� ������  , ������ ← �	�	���������� ���������
������ 	�	�� ,    ����� ← ����� +�� 

Step 1-3-5:  If �=Ø	then go to next step else go to step 1-3-1 
Step 1-3-6:  If  ���� =  ����� then ���� ← �����, ���� ← �����, else	� ← ��	���, ���	, �� ∈ �, �� ∈ � 
 

We can proof that for hyperpaths not in M the optimal hyperpath has been found and these OD pairs do not need to 
be revisited.  
   
Lemma 1: If ���� =  ����� then the optimal hyperpath has been obtained. 
 

Proof of Lemma 1.  In Step 1-1, we consider the least cost for each link and obtain ���	� � 	�����. Then, in 
Step 1-2, we assign costs based on  ����. If then in Step 1-3 we reach the same hyperpath, this means that 
we have  ���	� � ��� � 	�����. Thus, the final optimal hyperpath has been obtained since adding costs to the 
(optimal) hyperpath but not to other hyperpaths has not altered the optimal hyperpath. Adding costs to 
alternative hyperpaths will only widen the gap between the optimal one and alternative ones.  

 
Step 1-4 then further creates a set of origins for which the hyperpath to at least one destination has changed. We 

require this set in order to understand for which origins selective hyperpath generation to active critical nodes cannot 
be avoided.  
 
7.3. Discussion and details of stage 2 
 

In order to find possible critical nodes (active and passive), Step 2-1 obtains the vector 	��  for the largest 
possible hyperpath, that is assuming all links might be attractive. The details of this step are as follows: 
 

Step 2-1-0:  Set � ← �; ����� ← �	��	 ∈ � � ���	, ����� ← 0, �� ∈ � 
Step 2-1-1:  Set node � as an origin, �� ∈ �� 
Step 2-1-2:  obtain ��� by Eq. 1, �� ∈ � 
Step 2-1-3:  Select � ∈ � with minimum  ������� � ������ � �� , Set �	 ← 	� � ��� 
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Step 2-1-4:  Update cost of head node ��   
 If ������ � � then � ← � else ← ����� ������  , ������ ← �	�	���������� ����

������ ��� ,    ����� ← ����� +�� 

Step 2-1-5:  Update ����  and	���� 	by Eqs. 2 and 3 for �� ∈ I 
Step 2-1-6:  If �	= Ø	then go to next step else go to Step 2-1-3 
 

Having obtained 	�� we can now obtain fixed and critical nodes in Step 2-2: 
 

Step 2-2-1:  Define the set of critical nodes � ∈ 	��� as those with more than one non-zero entry in the 
���  vector. Further distinguish active and passive critical nodes considering whether i 
��, �� ∈ ��. Define fixed nodes ��� as all others so that ��� � ��� � 	I, ∀� ∈ �� 

  
Step 2-2-2:  Define possible critical links � ∈ ��� with tail node � as those where with more than one 

non-zero entry in vector Γ����� and fixed links Λ�� that Λ�� � Λ�� � 	�, ∀� ∈ �� 
 

Following our distinction of fixed, active and passive critical nodes selective hyperpath generation is only 
required between origins and active critical nodes. Active and passive critical nodes are distinguished in 2-2-1 
utilising the results of Stage 1: A node i might be critical en-route from r to another, further away destination j, but if 
node i is the destination this OD pair r to i can be of Type 1, so that in fact the optimal hyperpath r to i has been 
obtained in Stage 1. Such a node i is called a passive critical node, whereas critical nodes en-route from r to j for 
which the optimal hyperpath has not been found in Stage 1 are referred to as active critical. 

We note that according to our definition of the cost vector we tend to have critical nodes only within a limited 
range from the origin. In other words, the size of the network to be searched does not depend on the network size but 
on the size of structure vector F. This feature is important to allow applicability to large scale networks. We will 
illustrate this in the subsequent case study. For the origin depending active critical nodes we now perform selective 
hyperpath generation to obtain the optimal hyperpath. To the best of our knowledge no alternative formulations 
appears to provide us successfully with our desired destination oriented hyperpaths with origin depending costs. 
Hyperpaths for passive critical nodes are assigned based on optimal hyperpaths from Stage 1.  
 

Step 2-3-1:  Check hyperpaths obtained by “selective hyperpath generation” between origin �  and 
active critical nodes � ∈ 	��� and select optimal one ������  with minimum ���� . 	∀r ∈ ��	 

Step 2-3-2:  Store hyperpath from selective hyperpath generation ������   and its cost ����  as the final OD 
hyperpath ����� 	and cost u����  for rΘ�,∀r ∈ ��. 

 
The remaining two steps are now combining the link costs obtained from critical nodes and the ones form the fixed 
nodes. In Step 2-4 we firstly obtain the corrected (final) link costs for all links and optimal hyperpaths. Below steps 
are repeated ∀��, �� ∈ �.  
 

Step 2-4-0:  Set �� ← ∅ 
Step 2-4-1:  Set node � as an origin and node � as destination  
Step 2-4-2:  If	� ∈ �̅�, then set	��� � � � Γ����� and	���� ← ���, ∀	a ∈ Λ�� 
Step 2-4-3:  Obtain �����  by using the iterative process of Steps 1-2-2 to 1-2-6 but based on ������  

between origin � and all possible critical nodes Θ�� and �� ← Θ��, ∀� ∈ M� 
Step 2-4-4:  Select ��� ∈ �� with minimum ����  , Set ��	 ← 	�� � �����,  
Step 2-4-5:  Update ���� � � � Γ �����	������� , � ∈ ������ , ∀a ∈ ���   
Step 2-4-6:  If ��	= Ø	then go to Step 2-5 else return to Step 2-4-4 
 

We can now obtain the OD specific hyperpaths ����� by backward search,	∀��, �� ∈ M, so that we have obtained 
all optimal hyperpaths.  
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Step 2-5-1:  Set node � as an origin and node � as destination   
Step 2-5-2:  Obtain ����� and its cost �����	by iterating Steps 1-3-2 to 1-3-5 for origin � and destination � 

by backward search and if � � 	 ��� �� is found as next link in Step 1-3-2 then backward 
search can be terminated.  

Step 2-5-3:   Set ���� ← ������ ���� ← �����  and consider next OD pair. 
 

For completeness, we further add details of the network loading step. This step is the same as the network 
loading in Spiess and Florian (1989).  Below two steps are repeated for each OD pair with non zero demand.  
 

Step 3-1:  Set node � as an origin and node � as destination		  
Step 3-2:  For every link � � � in decreasing order of ( ����� � ��	 � ����), if � � � then ��= (��/����� ) 

��� and ��� ← ���+�� else ��� ← 0. 

8. Case study 

Numerical examples on a medium-size network are carried out to show the application of our proposed model 
and solution algorithm. To illustrate the general applicability of our approach we test it with the well-known Sioux 
falls network that is publically available from https://github.com/bstabler/TransportationNetworks and shown in Fig. 
3. To generate link travel time uncertainty (or waiting time in a transit context) and resulting hyperpaths we consider 
initially � � � times the free flow time as potential delay for each link. The larger the potential delay, in general the 
more complex the hyperpaths become as illustrated in Bell (2009).  

We firstly consider two different cost structures and obtain the hyperpaths for two specific OD pairs in the 
network. Numerical results are summarized in Tables 3 and 4. In the first column of Table 3 we set Node 20 as 
origin and Node 1 as destination. For the cost structure F = (0,20,12,10) we obtain the same hyperpath in Steps 1-1 
and 1-3 so that we can be certain that this is an OD pair of Type 1 where the hyperpath does not change and hence 
Stage 2 is not required.  

The rightmost column regarding OD pair 15-18 shows that the cost structure can change the type classification of 
as well as the hyperpath itself. This can be seen by considering that the optimal hyperpath from the origin to critical 
node 16 consists of just one path when considering that the traveler has as final destination Node 18 though it 
consists of two paths if Node 16 itself would be the destination (see Fig. 3). We specifically list the hyperpath to 
critical Node 16 in the table and the optimal hyperpath to show that Bellman’s principle does not hold. (Hyperpaths 
to other critical nodes not element of the final optimal hyperpath are for brevity excluded in the table in row ‘Step 2-
3’). We can therefore classify this OD pair for this cost structure as Type 3.  
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Step 2-1-4:  Update cost of head node ��   
 If ������ � � then � ← � else ← ����� ������  , ������ ← �	�	���������� ����

������ ��� ,    ����� ← ����� +�� 

Step 2-1-5:  Update ����  and	���� 	by Eqs. 2 and 3 for �� ∈ I 
Step 2-1-6:  If �	= Ø	then go to next step else go to Step 2-1-3 
 

Having obtained 	�� we can now obtain fixed and critical nodes in Step 2-2: 
 

Step 2-2-1:  Define the set of critical nodes � ∈ 	��� as those with more than one non-zero entry in the 
���  vector. Further distinguish active and passive critical nodes considering whether i 
��, �� ∈ ��. Define fixed nodes ��� as all others so that ��� � ��� � 	I, ∀� ∈ �� 

  
Step 2-2-2:  Define possible critical links � ∈ ��� with tail node � as those where with more than one 

non-zero entry in vector Γ����� and fixed links Λ�� that Λ�� � Λ�� � 	�, ∀� ∈ �� 
 

Following our distinction of fixed, active and passive critical nodes selective hyperpath generation is only 
required between origins and active critical nodes. Active and passive critical nodes are distinguished in 2-2-1 
utilising the results of Stage 1: A node i might be critical en-route from r to another, further away destination j, but if 
node i is the destination this OD pair r to i can be of Type 1, so that in fact the optimal hyperpath r to i has been 
obtained in Stage 1. Such a node i is called a passive critical node, whereas critical nodes en-route from r to j for 
which the optimal hyperpath has not been found in Stage 1 are referred to as active critical. 

We note that according to our definition of the cost vector we tend to have critical nodes only within a limited 
range from the origin. In other words, the size of the network to be searched does not depend on the network size but 
on the size of structure vector F. This feature is important to allow applicability to large scale networks. We will 
illustrate this in the subsequent case study. For the origin depending active critical nodes we now perform selective 
hyperpath generation to obtain the optimal hyperpath. To the best of our knowledge no alternative formulations 
appears to provide us successfully with our desired destination oriented hyperpaths with origin depending costs. 
Hyperpaths for passive critical nodes are assigned based on optimal hyperpaths from Stage 1.  
 

Step 2-3-1:  Check hyperpaths obtained by “selective hyperpath generation” between origin �  and 
active critical nodes � ∈ 	��� and select optimal one ������  with minimum ���� . 	∀r ∈ ��	 

Step 2-3-2:  Store hyperpath from selective hyperpath generation ������   and its cost ����  as the final OD 
hyperpath ����� 	and cost u����  for rΘ�,∀r ∈ ��. 

 
The remaining two steps are now combining the link costs obtained from critical nodes and the ones form the fixed 
nodes. In Step 2-4 we firstly obtain the corrected (final) link costs for all links and optimal hyperpaths. Below steps 
are repeated ∀��, �� ∈ �.  
 

Step 2-4-0:  Set �� ← ∅ 
Step 2-4-1:  Set node � as an origin and node � as destination  
Step 2-4-2:  If	� ∈ �̅�, then set	��� � � � Γ����� and	���� ← ���, ∀	a ∈ Λ�� 
Step 2-4-3:  Obtain �����  by using the iterative process of Steps 1-2-2 to 1-2-6 but based on ������  

between origin � and all possible critical nodes Θ�� and �� ← Θ��, ∀� ∈ M� 
Step 2-4-4:  Select ��� ∈ �� with minimum ����  , Set ��	 ← 	�� � �����,  
Step 2-4-5:  Update ���� � � � Γ �����	������� , � ∈ ������ , ∀a ∈ ���   
Step 2-4-6:  If ��	= Ø	then go to Step 2-5 else return to Step 2-4-4 
 

We can now obtain the OD specific hyperpaths ����� by backward search,	∀��, �� ∈ M, so that we have obtained 
all optimal hyperpaths.  
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Step 2-5-1:  Set node � as an origin and node � as destination   
Step 2-5-2:  Obtain ����� and its cost �����	by iterating Steps 1-3-2 to 1-3-5 for origin � and destination � 

by backward search and if � � 	 ��� �� is found as next link in Step 1-3-2 then backward 
search can be terminated.  

Step 2-5-3:   Set ���� ← ������ ���� ← �����  and consider next OD pair. 
 

For completeness, we further add details of the network loading step. This step is the same as the network 
loading in Spiess and Florian (1989).  Below two steps are repeated for each OD pair with non zero demand.  
 

Step 3-1:  Set node � as an origin and node � as destination		  
Step 3-2:  For every link � � � in decreasing order of ( ����� � ��	 � ����), if � � � then ��= (��/����� ) 

��� and ��� ← ���+�� else ��� ← 0. 

8. Case study 

Numerical examples on a medium-size network are carried out to show the application of our proposed model 
and solution algorithm. To illustrate the general applicability of our approach we test it with the well-known Sioux 
falls network that is publically available from https://github.com/bstabler/TransportationNetworks and shown in Fig. 
3. To generate link travel time uncertainty (or waiting time in a transit context) and resulting hyperpaths we consider 
initially � � � times the free flow time as potential delay for each link. The larger the potential delay, in general the 
more complex the hyperpaths become as illustrated in Bell (2009).  

We firstly consider two different cost structures and obtain the hyperpaths for two specific OD pairs in the 
network. Numerical results are summarized in Tables 3 and 4. In the first column of Table 3 we set Node 20 as 
origin and Node 1 as destination. For the cost structure F = (0,20,12,10) we obtain the same hyperpath in Steps 1-1 
and 1-3 so that we can be certain that this is an OD pair of Type 1 where the hyperpath does not change and hence 
Stage 2 is not required.  

The rightmost column regarding OD pair 15-18 shows that the cost structure can change the type classification of 
as well as the hyperpath itself. This can be seen by considering that the optimal hyperpath from the origin to critical 
node 16 consists of just one path when considering that the traveler has as final destination Node 18 though it 
consists of two paths if Node 16 itself would be the destination (see Fig. 3). We specifically list the hyperpath to 
critical Node 16 in the table and the optimal hyperpath to show that Bellman’s principle does not hold. (Hyperpaths 
to other critical nodes not element of the final optimal hyperpath are for brevity excluded in the table in row ‘Step 2-
3’). We can therefore classify this OD pair for this cost structure as Type 3.  
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Table 3. Hyperpaths for selected OD pairs with F = (0,20,12,10) 
 OD pair 

20-1 15-18 
Stage 1 

 
Step 1-1 �� (20,18,7,8,6,2,1) 

(20,21,24,13,12,3,1) 
(15,19,20,18) 
(15,22,20,18) 

      (15,19,17,16,18) 
Step 1-3 ���� (20,18,7,8,6,2,1) 

(20,21,24,13,12,3,1) 
(15,19,20,18) 
(15,22,20,18) 
(15,10,16,18) 

     (15,19,17,16,18) 
Comparing �� and ���� No change Changes 

Stage 2 
 

Step 2-3 h�����                             -              15-16:  
                       (15,10,16) 
                       (15,19,17,16)    

Step 2-5 ���� - (15,19,20,18) 
(15,22,20,18) 

     (15,19,17,16,18) 
Bellman principle Holds Holds 

Classification Type 1 Type 3 

 
In Table 4 we analyse the same OD pairs but with a different cost structure. In this revised cost structure travelers 

are charged more on the first two links they travel but only 2 units for any links after the second one.  For OD pair 
20-1 we now obtain different hyperpaths in Steps 1-1 (initial backward hyperpath search) and 1-3 (backward search 
with updated cost) so that Stage 2 is required. In Stage 2-5 we find that the optimal hyperpath remains identical to 
the one found in Table 3 as it collapses again to the two optimal paths (20,18,7,8,6,2,1) and (20,21,24,13,12,3,1). For 
the second OD pair, 15 to 18, we also obtain different hyperpaths after applying Stage 1 so that we need to continue 
by applying Stage 2. Selective hyperpath generation is applied between Node 15 and its active critical nodes. The 
OD pair remains of Type 3 since Bellman’s principle once again does not hold. 

In Fig. 4 we provide one more example for a different OD pair. We add this example to show that for some OD 
pairs the hyperpath can change significantly depending on the cost structure. In this example with a cost structure 
that includes a large reduction in marginal costs as in F = (0,50,30,2) we obtain a hyperpath consisting of numerous 
elementary paths whereas for a cost structure F = (0,20,12,10) the hyperpath consists of a single path.  
 
Table 4. Hyperpaths for selected OD pairs with F= (0,50,30,2) 

 OD pair 
20-1 15-18 

Stage 1 
  

Step 1-1 �� (20,18,7,8,6,2,1) 
(20,21,24,13,12,3,1) 

(15,19,20,18) 
(15,22,20,18) 

Step 1-3 ���� (20,22,23,24,13,12,3,1) 
(20,21,24,13,12,3,1) 

(20,22,21,24,13,12,3,1) 

(15,19,20,18) 
(15,10,16,18) 

Comparing �� and ���� Changes Changes 
Stage 2 

 
Step 2-3 h�����                20-7:  

                        (20,18,7) 
             15-16:  
                        (15,10,16) 
                        (15,10,17,16) 
                        (15,19,17,16) 

Step 2-5 ���� (20,18,7,8,6,2,1) 
(20,21,24,13,12,3,1) 

(15,19,20,18) 
(15,22,20,18) 

               (15,19,17,16,18) 
Bellman principle Holds Does not hold 

Classification Type 2 Type 3 
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Fig. 3. Illustration of changing hyperpath from origin 15 to node 16 depending on whether it is destination (left) or an intermediate node en-route 
to final destination 18 (right) 

 

 
 
 
 

 
 
 

 
 

 
 

 
 

 
 

       F= (0,20,12,10)                                                                                                     F= (0,50,30,2) 

Fig. 4. Illustration of different hyperpaths from origin 2 to destination 24 due to changes in the cost structure. 

Figure 5 is added to illustrate the concept of fixed, passive critical and active critical nodes. It shows the critical 
nodes of Node 15 for a cost structure consisting of four elements F= (0,50,30,2). The left figure illustrates that the 
eleven critical nodes form a “critical area” around the origin. For any links outside this area we can assign the cost 
independent of the hyperpath chosen.  

The right figure illustrates that among the 11 critical nodes, we have found for eight of these OD pairs (from 15 to 
its orange color critical nodes) the optimal hyperpath already in Stage 1. We classify these as passive critical so that 
only three active critical nodes remain for which we need to conduct our selective hyperpath generation. As all three 
nodes are fairly close to the origin there are only a limited number of reasonable hyperpaths so that our selective 
hyperpath generation is not computational expensive. Subsequently, costs can be assigned to the critical links in 
increasing expected cost order from the origin. Finally, a simple backward search can be applied to obtain the 
optimal hyperpath.   
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OD pair remains of Type 3 since Bellman’s principle once again does not hold. 

In Fig. 4 we provide one more example for a different OD pair. We add this example to show that for some OD 
pairs the hyperpath can change significantly depending on the cost structure. In this example with a cost structure 
that includes a large reduction in marginal costs as in F = (0,50,30,2) we obtain a hyperpath consisting of numerous 
elementary paths whereas for a cost structure F = (0,20,12,10) the hyperpath consists of a single path.  
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Fig. 3. Illustration of changing hyperpath from origin 15 to node 16 depending on whether it is destination (left) or an intermediate node en-route 
to final destination 18 (right) 
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Fig. 4. Illustration of different hyperpaths from origin 2 to destination 24 due to changes in the cost structure. 

Figure 5 is added to illustrate the concept of fixed, passive critical and active critical nodes. It shows the critical 
nodes of Node 15 for a cost structure consisting of four elements F= (0,50,30,2). The left figure illustrates that the 
eleven critical nodes form a “critical area” around the origin. For any links outside this area we can assign the cost 
independent of the hyperpath chosen.  

The right figure illustrates that among the 11 critical nodes, we have found for eight of these OD pairs (from 15 to 
its orange color critical nodes) the optimal hyperpath already in Stage 1. We classify these as passive critical so that 
only three active critical nodes remain for which we need to conduct our selective hyperpath generation. As all three 
nodes are fairly close to the origin there are only a limited number of reasonable hyperpaths so that our selective 
hyperpath generation is not computational expensive. Subsequently, costs can be assigned to the critical links in 
increasing expected cost order from the origin. Finally, a simple backward search can be applied to obtain the 
optimal hyperpath.   
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Fig. 5. Left: Critical (no color) and fixed (blue) nodes Right: Active critical (orange), passive critical (no color) nodes and critical links (red)  

Table 5 shows a summary of the network in terms of OD pair classification and run time for the above two cost 
structures as well as a more mildly nonlinear cost structure with . The code has been written in a standard 
Matlab R2011 application. In the case of F = (0,5,3,2) we find that for 98.4% of the OD pairs the optimal OD pair 
can be found without the need for Stage 2. This percentage does not decrease significantly if the overall cost per 
distance  increases but if the marginal differences in cost stages stays fairly constant as in F = (0,20,12,10). Only if 
there are big jumps in the cost stages as in F = (0,50,30,2) we observe a large reduction in Type 1 OD pairs and a 
corresponding increase in the need for selective hyperpath generation and hence an increase in run time.  
 
Table 5. Run time for different cost structures 

 
 Stage 1 Stage 2 Network 

Loading 
Total Run  

Time 
(sec) Type 1  

OD pairs   
Run Time 

(sec) 
Type 2&3  
OD pairs   

Run Time 
(sec) 

Run Time 
(sec) 

 F = (0,5,3,2) 98.4 13 1.7 2 <1 15 
F = (0,20,12,10) 95.3 12 4.7 6 <1 18 
F = (0,50,30,2) 41.3 13 58.7 62 <1 75 

 
Tables 6 and 7 illustrate results of additional tests. Table 6 shows that the runtime of our approach depends 

on the size of the cost structure vector with . The more cost levels the more potential critical nodes one might 
obtain and the more selective hyperpath generations have to be performed. Finally, Table 7 illustrates the potential 
delays as  times the free flow time and run time. More potential delays lead to more uncertainty resulting in more 
complex hyperpaths. Interestingly though more complex hyperpaths do not mean longer runtime, in fact we observe 
the contrary. We can explain this as follows: If  is larger more complex hyperpaths may be found in Step 1-3 and 
as a result more often the same hyperpaths are obtained in Step 1-4 when costs are modified. This is because costs 
become of relatively reduced importance for path choice with more delays. 
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Table 6. Run time for different number of cost distance levels 
 

 
 
 
 
 
 

 
 
 
Table 7. Run time for different potential delays with F= (0,50,30,2)  
 

 
 
 
 
 
 
 

 
 

9. Discussion and Conclusions 

In this paper we discussed the problem of finding optimal hyperpaths considering non-additivity of link costs. We 
discretize the non-additive part of the link cost function in that we consider that the link cost is based on the number 
of traversed links and develop a methodology that is based on “link cost stages” where a “history vector” describing 
the expected number of links traversed is defined that allows us to obtain the expected, hyperpath depending link 
costs. Such a link cost structure is similar to distance-based fare structures where fares depend not (only) on the 
origin and destination but the actual routes chosen. Such fare structures are currently applied in some cities and we 
suggest their spread might increase in future if pricing and GPS tracking of travelers will be more connected. As 
discussed in the introduction, we suggest that the problem this paper deals with has further applications also in 
logistics and other assignment problems. 

We illustrate that such cost structures can lead to violation of Bellman’s optimality principle which means that 
standard procedures to obtain optimal destination specific hyperpath trees are not feasible. Our solution approach 
therefore firstly derives a test to distinguish OD pairs for which this principle is not fulfilled. Our case study suggests 
that these are in general few. For these OD pairs we then develop a methodology that minimizes the need for 
expensive hyperpath enumeration. 

In order to do so, we firstly utilize our assumption that the cost structure has a limited number of cost stages. This 
appears to us as reasonable given that maximum charges in cities are often limited which can be achieved if the last 
entry in F is set to zero. Even if maximum costs are not limited there might be only a relative low number of 
important jumps in the cost structure. Our analysis suggests that omitting small changes in the marginal costs is not 
likely to lead to significant errors in the hyperpath estimation. Secondly, for a (fairly large) number of nodes there 
are no (or no reasonable) multi-path hyperpaths from given origins so that resulting link costs can be uniquely 
determined before searching for the optimal hyperath.  

Both facts lead us to distinguish “fixed” nodes and links from “critical” ones. Among critical nodes we further 
distinguish active from passive critical ones and only for the former ones a selective enumeration is required.  We 
then develop an algorithm that combines backward search and a (very) selective generation of hyperpaths to active 
critical nodes to find the optimal hyperpaths.  

The runtime of our approach is almost independent of network size but instead depends on the size of the cost 
structure vector. This is a direct consequence of the cost vector being assumed to have a limited number of entries. 

Cost structure % Type 1 OD pairs   Run time (Sec) 

F = (0,5,3) 100 12 

F = (0,5,3,2) 98.4 13 

F = (0,5,3,2,1) 91.5 25 

F = (0,5,3,2,1,0.5) 82.6 165 

Potential delays  times the 
free flow time 

% Type 1 OD pairs   Run time (Sec) 

  1 34.9 83 

  3 46.7 77 

  5 58.3 52 

  7 68.7 44 
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standard procedures to obtain optimal destination specific hyperpath trees are not feasible. Our solution approach 
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that these are in general few. For these OD pairs we then develop a methodology that minimizes the need for 
expensive hyperpath enumeration. 
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We further show that if costs are less important compared to other network costs the run time of our approach 
reduces. 

We illustrate with a simple case study how the cost structure can influence the hyperpath of OD pairs. In general, 
with larger step changes in the cost structure violation of Bellman’s principle will become more frequent. Also, in 
general we expect with higher cost per distance levels (compared to travel time and waiting times) hyperpaths to be 
less complex and shorter paths to be preferred. We can therefore use the cost structure as a policy variable to shift 
travelers to avoid congested areas, e.g. in the network the long link 20-18 in the Sioux Falls network as it is only 
charged once. 

Clearly the link-number based cost structure considered in this paper is for many applications a simplification. 
We noted already that one might split long links into several links to generate networks with links of fairly equal 
length to avoid this issue. Alternatively, future work will consider advances where the elements of the cost vector 
will become a function of the link length. We also recognize that in general marginal link costs are often not defined 
identical for all origins (see for example the Hong Kong fare structure on p. 474 in Gentile and Noekel, 2016). We 
can cover these cases with our approach by defining several cost vectors F. Our approach would only fail if marginal 
costs per distance on different paths for the same OD pair differ. 

We further suggest that our idea of “critical nodes” as introduced here is a general one. We can also use this to 
model combinations of different link cost structures within different parts of the network. As an example in some 
transit networks there are flat fares within a certain area and a distance-based fare outside this area. In such cases 
critical nodes might be seen as the boarder nodes between the two areas. In line with our methodology the total fare 
within the flat fare area are known before obtaining the path cost for the remaining part of the journey which might 
be charged with a different fare structure (zonal or distance-based.)  

Finally, the idea of our “history vector” can be modified to account for different stages such as having traversed 
not a general number of links but specific links or modes a traveler has already travelled. This would allow also 
covering problems addressed in previous literature with the state augmented approach (Lo et al, 2003, Florian and 
Constantin, 2015) such as having to pay surcharges for e.g. express services or specific modes.  
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Appendix A. Note on Forward vs Backward Hyperpath search 

We note that an obvious solution to the history-vector problem would be forward-oriented hyperpath search as in 
Bell et al (2012). They propose an origin depending hyperpath in order to account for time-dependent link travel 
times. Similarly, forward search is also required in the problem at hand here as we need to consider the origin 
depending cost property. However, for route choice probabilities as well as for (transit) assignment purposes we 
prefer the backward hyperpath solution as it is easier to interpret. To explain the difference, we introduce ���� and ���� 
for forward and backward search respectively. In the former ��� � ∑ �������  , i.e. the sum of inverse maximum 
delays entering the nodes, whereas in the latter, ��� � ∑ �������  , i.e. the sum of inverse maximum delays exiting the 
nodes.  

Consider Figure 6 example with �� = 10 for all links where the hyperpath search and assignment on the left is 
carried out as in Spiess and Florian (1989) and as in Bell (2012) on the right. Node A is the origin and D the 
destination and let’s suppose link travel times so that all links are found to be attractive. The resulting hyperpaths 
must be interpreted differently according to the definition of �. Especially within a frequency based transit concept 
we consider the left hand side more intuitive though. For example, given that both services from the origin are 
attractive and that both services have the same frequency, it appears more reasonable to assume that the traveler will 
choose both services with the same likelihood, i.e. ��� � ��� � ���� 

Whereas Fig. 6 illustrates that for the same hyperpath we obtain different link choice probabilities, Fig. 7 shows 
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that in some cases we obtain different sets of attractive links with forward-oriented hyperpath searches even without 
consideration of costs. The reader can verify that applying the Spiess and Florian approach to this network one 
obtains an optimal hyperpath including all links, whereas applying “hyperstar” leads to a hyperpath without link BC. 

 
 

 

Fig. 6. Example of resulting hyperpaths with the “classic” Spiess and Florian approach (left) and Hyperstar (right) for Braess network assuming 
all links have a low frequency/large delay (here  = 10 for all links) and that all links are attractive. 

 
 

 
 
 
 
 
 
 
 
 

Fig. 7. Illustration of changing hyperpath depending on forward and backward search 
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We further show that if costs are less important compared to other network costs the run time of our approach 
reduces. 

We illustrate with a simple case study how the cost structure can influence the hyperpath of OD pairs. In general, 
with larger step changes in the cost structure violation of Bellman’s principle will become more frequent. Also, in 
general we expect with higher cost per distance levels (compared to travel time and waiting times) hyperpaths to be 
less complex and shorter paths to be preferred. We can therefore use the cost structure as a policy variable to shift 
travelers to avoid congested areas, e.g. in the network the long link 20-18 in the Sioux Falls network as it is only 
charged once. 

Clearly the link-number based cost structure considered in this paper is for many applications a simplification. 
We noted already that one might split long links into several links to generate networks with links of fairly equal 
length to avoid this issue. Alternatively, future work will consider advances where the elements of the cost vector 
will become a function of the link length. We also recognize that in general marginal link costs are often not defined 
identical for all origins (see for example the Hong Kong fare structure on p. 474 in Gentile and Noekel, 2016). We 
can cover these cases with our approach by defining several cost vectors F. Our approach would only fail if marginal 
costs per distance on different paths for the same OD pair differ. 

We further suggest that our idea of “critical nodes” as introduced here is a general one. We can also use this to 
model combinations of different link cost structures within different parts of the network. As an example in some 
transit networks there are flat fares within a certain area and a distance-based fare outside this area. In such cases 
critical nodes might be seen as the boarder nodes between the two areas. In line with our methodology the total fare 
within the flat fare area are known before obtaining the path cost for the remaining part of the journey which might 
be charged with a different fare structure (zonal or distance-based.)  

Finally, the idea of our “history vector” can be modified to account for different stages such as having traversed 
not a general number of links but specific links or modes a traveler has already travelled. This would allow also 
covering problems addressed in previous literature with the state augmented approach (Lo et al, 2003, Florian and 
Constantin, 2015) such as having to pay surcharges for e.g. express services or specific modes.  
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Appendix A. Note on Forward vs Backward Hyperpath search 

We note that an obvious solution to the history-vector problem would be forward-oriented hyperpath search as in 
Bell et al (2012). They propose an origin depending hyperpath in order to account for time-dependent link travel 
times. Similarly, forward search is also required in the problem at hand here as we need to consider the origin 
depending cost property. However, for route choice probabilities as well as for (transit) assignment purposes we 
prefer the backward hyperpath solution as it is easier to interpret. To explain the difference, we introduce ���� and ���� 
for forward and backward search respectively. In the former ��� � ∑ �������  , i.e. the sum of inverse maximum 
delays entering the nodes, whereas in the latter, ��� � ∑ �������  , i.e. the sum of inverse maximum delays exiting the 
nodes.  
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carried out as in Spiess and Florian (1989) and as in Bell (2012) on the right. Node A is the origin and D the 
destination and let’s suppose link travel times so that all links are found to be attractive. The resulting hyperpaths 
must be interpreted differently according to the definition of �. Especially within a frequency based transit concept 
we consider the left hand side more intuitive though. For example, given that both services from the origin are 
attractive and that both services have the same frequency, it appears more reasonable to assume that the traveler will 
choose both services with the same likelihood, i.e. ��� � ��� � ���� 
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