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Abstract
The optical helicity and the optical chirality are two quantities that are used to describe chiral
electromagnetic fields. In a monochromatic field, the two quantities are proportional to one
another, and the distinction between the two is therefore largely unimportant. However, in a
polychromatic field, no such proportionality holds. This paper explicitly examines both the
helicity and chirality densities in various polychromatic fields: the superposition of two circularly
polarised plane-waves of different frequencies, a chirped pulse of circularly polarised light, and
an ‘optical centrifuge’ consisting of two oppositely chirped circularly polarised beams of
opposite handedness. Even in the simplest case, there can be significant qualitative differences
between the two quantities—they may have opposite signs, or one may be zero while the other is
not. The origin of these differences lies in the different frequency scaling of the two quantities,
which is made relevant by the presence of multiple frequency components in the fields.
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(Some figures may appear in colour only in the online journal)

1. Introduction

If an electromagnetic field has a definite handedness, then it
can interact differently with the different enantiomeric forms
of chiral matter. In the study of chiral light–matter interac-
tions, it is useful to have some quantitative measure of the
chirality of an electromagnetic field, that in some way indi-
cates the expected size of such differential interactions. It was
proposed by Tang and Cohen [1] that a quantity, originally
introduced by Lipkin under the name ‘zilch’ [2], could serve
such a role, and this quantity is therefore often referred to as
the ‘optical chirality’. It is a pseudoscalar that is locally
conserved in the free field, and is defined by

c =  ´ +  ´


cE E B B
2

, 10 2( · · ) ( )

where E and B are the (real) electric and magnetic field
vectors. Tang and Cohen motivated the use of this density by

showing that the differential excitation rate for a small chiral
molecule in a monochromatic field is proportional to the
chirality density of the field in which it is immersed.

Another closely related quantity is the electromagnetic
helicity. Like the chirality, the helicity is locally conserved in
free space [3]. It is similar in form, but is defined in terms of
electromagnetic potentials, rather than the fields directly. The
helicity density is defined by [3–6]

m
m
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where A and C are divergenceless vector potentials defined
by ∇×A=B and ∇×C=−ò0E [7, 8]. The volume
integral of the helicity density is proportional to the difference
in the number of left- and right-handed circularly polarised
photons in the field [9], linking the concept to the particle
physics notion of helicity as the component of spin angular
momentum in the direction of propagation. The inclusion of
both the A and C potentials in the definition is important in
order to ensure that the helicity is locally conserved [3, 6].

The concepts of helicity and chirality have found use in
the analysis of a wide range of electrodynamics problems.
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These include the enhancement of differential scattering rates
for chiral molecules adsorbed on plasmonic nanostructures
[10], the conversion of orbital to spin optical angular
momentum in the far-field of a beam by scattering from a
nanoparticle in the beam’s focus [11], and general studies of
the propagation of light through dispersive or negative-index
media [12], to name only three examples. In these, and in many
other situations that the two measures are used to study, the
fields concerned are monochromatic and the distinction
between the two quantities is largely unimportant. However,
while both quantities are proportional to one another in
monochromatic fields, they are in general distinct—and the
conservation of each actually arises from a different symmetry
of the free electromagnetic field. The local conservation of
helicity is related by Noether’s theorem to the duality sym-
metry of the free-space Maxwell equations [3, 4, 13, 14]—the
invariance of the free space Maxwell equations under a mixing
between electric and magnetic fields [15]. The local con-
servation of chirality, on the other hand, is linked to the infi-

nitesimal symmetry transformation q¢ = +  ´ ¶
¶

A A
t

A( ),
with θ an infinitesimal parameter [16].

This paper examines how even simple examples of
polychromatic fields expose the differences between the chir-
ality and the helicity. First, we examine the case of two co-
propagating circularly polarised plane waves, of opposite
handedness and different frequencies, and find that the helicity
and chirality do not agree in sign. We then examine the posi-
tions of the maxima of helicity and chirality in a chirped cir-
cularly polarised pulse, showing that each is slightly displaced
from the intensity maximum of the pulse in opposite directions.
Finally, we consider the fields of an ‘optical centrifuge’,
formed by two co-propagating circularly polarised pulses of
opposite handedness, one positively and one negatively
chirped [17]. Here, we find both features: that the measures
disagree in sign, as for the unchirped plane waves, and that the
helicity and chirality have different time dependencies, as for
the chirped pulses. In all of the cases considered, the differ-
ences between the two measures of handedness can be
understood by considering a frequency decomposition of the
field, and the different frequency scaling of the measures.

2. Helicity and chirality in a superposition of two
plane waves

Perhaps the simplest case in which the polychromatic nature
of an electromagnetic field can cause differences between the
helicity and the chirality is a superposition of two co-propa-
gating circularly polarised plane waves, of opposite handed-
ness and different frequencies. This situation is considered in
[6], and below a more detailed discussion is given.

For definiteness, let us consider the complex electric and
magnetic fields given by

= + + -w h w h- -E e i E e iE x y x y , 3i i
0 01 2( ) ( ) ( )

= - + + +w h w h- -E

c
e i

E

c
e iB x y x y , 4i i0 01 2( ) ( ) ( )

where E0 is the peak electric field amplitude of each plane
wave, x and y are unit vectors and η≡t−z/c. This
electromagnetic field is a superposition of a right-handed
plane wave with frequency ω1, and a left-handed wave with
frequency ω2. If the two frequencies are fairly close to one
another, then the result can be viewed as a linearly polarised
wave of frequency w w+

2
1 2( ) , with the plane of polarisation

slowly rotating at a frequency w w-
2

1 2( ) . In this sense, it is like
the static limit of the optical centrifuge discussed in [17]—in
our case, the rotation does not accelerate.

As we are considering the free field, we may choose a
gauge in which the scalar potential is 0, and use the rela-
tionships = -¶

¶
E

t

A and = - ¶
¶

B
c t

C1

0
2 to obtain the following

choices for A and C1
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The helicity density of the combined field can then be
written

w w
h w w= - + +h E

1 1
1 cos . 70 0

2

1 2
1 2

⎛
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The chirality density, by contrast, is given by

c w w h w w= - + +
 E

c
1 cos . 80 0

2

1 2 1 2( )( ( )) ( )

We observe that the helicity and chirality densities have
similar forms but opposite signs: if the frequency of the right-
handed wave is higher than that of the left-, then the helicity is
negative and the chirality positive, and vice versa when ω2>ω1.

The reason for this can be seen intuitively by considering
the relationship between the helicity density, chirality density
and energy density in a single circularly polarised plane wave.
The ratio of helicity density to energy density in a circularly
polarised wave of frequency ω is given by [4]

w
= 

h

u

1
, 9( )

where h is the helicity density, u is the energy density and the
positive and negative signs refer to right- and left-handed waves,
respectively. This relationship is clearly compatible with the
notion that a circularly polarised photon carries a helicity of ±ÿ.
The ratio of chirality density to energy density is

c w
= 

u c
, 10( )

which corresponds to a chirality of  w
c

2

per photon.

1 We have also chosen a gauge in which A and C are everywhere
divergence-free. A judicious choice of gauge is important when discussing a
local helicity density, as the local helicity density is an explicitly gauge-
dependent quantity. However, only the divergence-free parts of A and C
contribute to the total helicity [4] (and the total helicity is thus gauge-
independent), so it is natural to define the local helicity density using
divergence-free potentials.
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The origin of the difference in sign between the measures
lies in this different frequency scaling—increasing the fre-
quency, while keeping the energy density constant, decreases
the helicity but increases the chirality density of a circularly
polarised wave, and so the wave which makes the dominant
contribution in the two-wave superposition is different for the
two measures. Another way of putting this is that plane-waves
of fixed energy density contain more photons if they are of
lower frequency—and the helicity-per-photon is independent
of frequency, while the chirality-per-photon is not.

The superposition that we have been considering consists
of two waves with the same energy, and hence the same peak
E-field amplitude. In a sense, it is this requirement that causes
the different sized helicity contributions from the two waves
—if we had instead formed a superposition of two plane
waves with the same number of photons in each, then we
would find the helicities from each the two individual waves
equal and opposite, and the cycle-averaged helicity of the
superposition would be zero.

In general, if the peak E-field amplitude is allowed to
differ between the two waves, then in place of a linear
polarisation with a rotating plane one obtains an elliptical
polarisation with a rotating major axis. Changing the relative
amplitudes will change both the helicity and chirality of the
superposition, and it is possible to select amplitudes such that
they have the same sign as one another, or such that the
average helicity or chirality are zero. The expressions for the
helicity and chirality densities when the two plane waves have
amplitudes E1 and E2 are given by

w w w w
h w w= - + - +h

E E
E E

1 1
cos ,

11
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We see that the average helicity is equal to zero if

w w
=

E E
, 131

2

1

2
2

2
( )

while the average chirality is equal to zero if

w w=E E . 141
2

1 2
2

2 ( )

We note in passing that the conditions for changes in sign of
helicity and chirality are not the same as those for which the
handedness of the ‘elliptical polarisation’ changes (this is
governed by which is larger of E1 and E2), nor do they cor-
respond to changes of the sense of rotation of the major axis
(which is governed by which is larger of ω1 and ω2). We note
also that while certain amplitude scalings can make either the
helicity or chirality separately zero, the only way to have both
simultaneously zero is to have both ω1=ω2 and E1=E2,
which corresponds to ordinary linear polarisation. Figure 1
shows the path traced by electric field vector in the x−y plane
for some example field scalings.

3. The maxima of helicity and chirality in a chirped
pulse

Another situation in which the different frequency scaling of
helicity and chirality can cause a qualitative difference
between the two measures is the case of a chirped circularly
polarised pulse. The electric and magnetic fields of a pulse
with a linear frequency chirp can be written [18]

h= + w h h- +E i f eE x y , 15i b
0 0

2( ) ( ) ( )( )

h= - + w h h- +E

c
i f eB x y , 16i b0 0

2( ) ( ) ( )( )

where b is a parameter that determines the rate of the chirp,
and f (η) is a function determining the envelope of the pulse.
Here, we will consider a Gaussian envelope of the form

h = - h

s

-

f e
a 2

2 2( )
( )

, with a and σ the central position and standard
deviation of the envelope. Note that the expressions for a
linear frequency chirp given here are somewhat artificial, as a
real linear chirp will extend over only a relatively narrow

Figure 1. Illustrative plots showing the path traced by the electric field vector in the x−y plane at a point of fixed z, when two plane-waves are
coherently superposed as described in the text. (a) The field given in (3), where both plane waves are of equal strength. (b) An example
scaling where the average helicity is zero, and (c) where the average chirality is zero. For each of the figures, we use the somewhat
impractical frequency relationship w w=1

5
6 2, so that the rotation is fast enough that the polarisation can clearly be seen.
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spectral range, fixed by the bandwidth of the laser that pro-
duces the pulse. It must therefore be borne in mind that for
these fields to be physically reasonable, a and σ will be such
that the region of the pulse (in physical space) with appreci-
able field strengths is appropriately narrow, and far from the
point at which the instantaneous frequency becomes negative.

The chirality density of the pulse is given by

c h w= +- h

s

- E

c
e b2 . 170 0

2

0
a 2

2 ( ) ( )
( )

Rather than being proportional to the frequency, as in the case
of an unchirped plane wave, we see that it is proportional to
the instantaneous frequency, ωinst(η)=2bη+ω0. By differ-
entiating with respect to η, we find that the maximum chirality
density occurs at

h
w w s

=
- + + +

c
ba ba b

b

2 2 8

4
. 180 0

2 2 2

max

( )
( )

Note that the quadratic which results from differentiating the
chirality density has two roots, but we choose the higher one,
as the lower root corresponds to a local minimum in the
unphysical region of negative instantaneous frequency.
The maximum energy density occurs at the maximum of the
envelope, a, and so the difference between the two is equal to

h
w w s

- =
- + + + +

c a
ba ba b

b

2 2 8

4
.

19

0 0
2 2 2

max

( ) ( )

( )

We thus see that the maximum of chirality occurs after the
maximum of energy. This makes intuitive sense, as the
instantaneous frequency of the chirped pulse is higher at later
times. This displacement is small: as typical examples of the
frequency, pulse envelope and strength of the chirp, we can
consider a pulse lasting around 50 ps, with an initial wave-
length of 800 nm and a final wavelength of 780 nm (these
values are chosen to be of comparable magnitude to those
used in existing optical centrifuge experiments [19]). This
would correspond to σ≈25 ps, b≈6.0×1023 s−2, and
2ba+ω0=2.38×1015 s−1, making the time between
maxima 0.16 ps2.

In order to write the helicity density of the pulse, we can
again obtain expressions for the vector potentials using the
relationships = -¶

¶
E

t

A and = - ¶
¶

B
c t

C1

0
2 . However, the

resulting indefinite integrals are quite cumbersome, and our
analysis can equally well proceed by making the following
approximations for the potentials:

w h
»

- +
+

w h h- - +
h
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i E e e
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, 20
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m w h
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+
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h
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 i E e e

b
C
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2

. 21
i b

0

0

0

0

a 2

2 2 0
2( ) ( )
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These are simply the vector potentials of a circularly polarised
plane-wave, but with the frequency in the denominator
replaced by the instantaneous frequency, and with the inclu-
sion of the appropriate frequency chirp and Gaussian envel-
ope. A more rigorous treatment, finding the exact potentials
by integrating (15) and (16), is sketched in the appendix.

To check that (20) and (21) are reasonable approxima-
tions, we may examine the electric and magnetic fields
derived from these potentials:

h
s w h w h

=-
¶
¶

» +

´ -
-
+

-
+

+

w h- +

t
E i e
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b

bi
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The first two terms in the square brackets are always much
less than 1, because of the optical frequencies in the
denominators, showing that these potentials are indeed good
approximations to the exact vector potentials.

The helicity calculated from these approximate vector
potentials is given by

h w
=

+
- h

s

-

h E e
b

1

2
, 240 0

2

0

a 2

2 ( )
( )

so the maximum helicity occurs at

h
w w s

=
- + + -ba ba b

b

2 2 8

4
, 25h

0 0
2 2 2

max

( )
( )

where again we have taken the higher root, as the lower one
corresponds to a region of negative instantaneous frequency.
The difference between the maxima of helicity and energy
density is then given by

h
w w s

- =
- + + + -

a
ba ba b

b

2 2 8

4
,

26

h
0 0

2 2 2

max

( ) ( )

( )

confirming that the maximum of helicity occurs slightly
before the maximum of energy. These results are illustrated in
figure 2, which shows the calculated energy, helicity and
chirality densities for a positive-helicity circularly polarised
plane wave pulse. The parameters used in the figure are are a
standard deviation of σ=0.2 ns, a central frequency of
ω0+2b a=2.15×1015 rad s−1, and a chirp strength of
b=5.6×1024 s−2, which have been chosen in order to
make the differences between the densities clearly visible.

2 A difference of this size would not be seen in the actual pulse generation
scheme used (for example) by [19]. They produce their chirped pulses
effectively by splitting in Fourier space a beam with a Gaussian frequency
distribution, and then delaying different frequency components. This means
that the resulting pulses do not have a symmetrical Gaussian envelope, but
are most intense initially, and decay as the chirp progresses.
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4. Helicity and chirality in an optical centrifuge

An optical centrifuge is a superposition of a left- and a right-
handed circularly polarised plane wave, as in section 1, but with
each wave linearly chirped—one chirped up and the other down.
This means that the frequency difference between the two waves
increases linearly with time—and so if the resulting superposition
is viewed as linear polarisation with a rotating plane of polar-
isation, the angular speed of this rotation increases at a constant
rate. These fields can be used to excite molecules to very high
rotational states, and even dissociate heavy molecules. The action
of an optical centrifuge in inducing molecular rotation can be
analysed classically, as in the original paper of Karczmarek et al
[17], or viewed quantum-mechanically as driving the molecules
up a successive ladder of rotational transitions [20, 21].

Because of this practical use, it seems worthwhile to
extend the reasoning of sections 1 and 2 to examine the net
helicity and chirality in such a field configuration. The fields
of an optical centrifuge are given by the real parts of

h= + + -w h h w h h- + - -E f i e i eE x y x y ,
27

i b i b
0 0

2
0

2( )[( ) ( ) ]
( )

( ) ( )

h= - + + +w h h w h h- + - -E

c
f i e i eB x y x y .

28

i b i b0 0
2

0
2( )[( ) ( ) ]

( )

( ) ( )

From these, it is straightforward to find the chirality density

c h w h= - h
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c
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8
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2

2
2

0
a 2

2 ( ) ( )
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To find the helicity density, it is most straightforward to
use the following approximations to the potentials, similar to
the approximations made in section 2

w h

w h

»
- +

+

+
- -

-

w h h

w h h

-
- +

- -

h

s

-

E e
i e

b

i e

b

A
x y

x y

2

2
, 30

i b

i b

0
0

0

a 2

2 2
0

2

0
2

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )

( )

( )

( )

m w h

w h

»
- -

+

+
-

-

w h h

w h h

-
- +

- -

h

s

-
E e

i e

b

i e

b

C
x y

x y

2

2
. 31

i b

i b

0

0
0

0

0

a 2

2 2
0

2

0
2

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )

( )

( )

( )

We then find, using = -
m
h A BRe Re1
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The energy density in the centrifuge is given by

w h= - h

s

-

u E e4 cos , 340
2

0
2

0
a 2

2 ( ) ( )
( )

so, as in section 2, we have the result that the helicity and the
chirality have opposite signs, with the chirality dominated by
the higher frequency wave and the helicity by the lower fre-
quency one. Due to the time-varying frequencies, the helicity
and chirality densities are no longer proportional to the energy
density—the ratios are

h
w h w h

=
-

+ -
h

u

cb

b b

2

2 2
, 35

0 0( )( )
( )

Figure 2. Calculated energy, chirality and helicity densities for a positive-helicity circularly polarised plane wave pulse, normalised so that each
has a maximum of 1. The parameters used are a standard deviation of σ=0.2 ns, a central frequency of ω0+2ba=2.15×1015 rad s−1, and a
chirp strength of b=5.6×1024 s−2. These parameters describe a pulse significantly longer and broader in frequency than the more realistic ones
discussed in the text, but are chosen to illustrate the behaviour.

3 It would also be possible to use =  ´ +
m
h A ARe Re1

2
0

0
⎜
⎛
⎝ [ ] · [ ]

 ´m


C CRe Re0

0 )[ ] · [ ] . One might argue that this is more self-consistent,
as here we consistently use the approximate potentials, rather than mixing
between exact fields and approximate potentials. If we do this, we obtain

w h w h
h w h

w h w h
w w h

=
-
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+
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-

-
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s
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cE e
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b b
b
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2
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2

2
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( ) ( )
( ) ( )
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The first term is the same as (33), and the second is much smaller, as it
contains the squares of the instantaneous frequencies in the denominator.
This question does not arise for the single chirped pulse considered in
section 3: both procedures lead identically to (24).
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c h
=

u

b

c

2
. 36

2
( )

Taking the ratio with the energy density in this way removes
the effect of the pulse envelope and the rapid oscillations at
ω0. This makes clear the main qualitative difference between
the measures—they have opposite signs, and different
dependences on the instantaneous frequencies of the two
beams.

5. Conclusion

This paper has examined the helicity and chirality densities in
various polychromatic fields, and shown how the poly-
chromaticity leads to significant differences between the two
measures. It is striking that the quantities, which both in a
sense indicate the ‘handedness’ of the field, may differ in sign
in even such simple cases. The easiest way to understand this
is that the frequency dependence of the two quantities can be
a decisive factor when multiple frequency components are
present, while in the monochromatic case it leads only to each
quantity being multiplied by a different constant.

This behaviour seems counter-intuitive if the helicity or
chirality densities are thought of, in some sense, as measures
of the ‘amount’ of handedness in an electromagnetic field.
However, there can be no single property that captures this
idea of handedness, as it is impossible in general to define a
quantitative measure of chirality which applies to all geo-
metrical systems. For any particular pseudoscalar measure
that might be supposed to indicate the ‘amount’ of chirality
associated with a configuration of points, there will exist
chiral configurations for which the measure is zero [22, 23].
This can be seen by considering that it is always possible to
smoothly deform a configuration into its enantiomer without
passing through an achiral configuration on the way. If the
measure is a continuous function of the positions of the
points, it must pass through a zero during this deformation,
and therefore assign a zero to a chiral configuration.

It is therefore clear that, in the absence of globally
satisfactory criteria, any quantification of chirality—of the
electromagnetic field, or otherwise—must be performed with
a view towards context and applications. In connection with
this, we may note that the helicity is more transparently
connected to physical quantities of the field, such as the spin
angular momentum and photon number, than the chirality [4].
Ultimately, the appropriateness of either of the measures
studied here as a description of a polychromatic light field
will depend on the extent to which they are found useful in
describing the interaction of the field with matter.
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Appendix. Exact expressions for the vector
potentials in a chirped pulse and an optical
centrifuge

When considering chirped circularly polarised pulses in the
body of the article, we made use of approximations to the
vector potentials, and avoided explicitly evaluating the inde-
finite integrals ò= - tA E d and ò= -c tC B d2 . Here we
show an analytical method of treating these integrals. The
integrals of (15) and (16) can be found using the standard
integral [24]
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ciated with the chirped circularly polarised pulse of (15) and
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Corresponding results can be found for the C potential,
and for down-chirped pulses or pulses of the opposite
handedness. From these expressions for the potentials
associated with chirped pulses, potentials corresponding to
the optical centrifuge can also be straightforwardly
obtained. Numerical values of the helicity density can be
found by taking the real part of the complex potentials,
using (for example) a series expansion for the complex error
functions as given in [24].

There is a slight complication: the helicity (unlike the
chirality) is non-local in the fields, in the sense that the helicity
density at a point depends not only on the E and B fields and
their derivatives at that point, but on the fields at other points as
well [3]. This means that behaviour associated with the
unphysical aspects of the infinite linear chirp is not necessarily
avoided by considering the helicity density only in regions of
physical interest. If the helicity density of the optical centrifuge
is formed directly from the real part of (38) and corresponding
results for the other waves and potentials, one finds rapid
oscillations superimposed on the expected helicity density,
which decrease in prominence when the envelope is reduced or
the centres of the pulses concerned are moved further from the
regions of negative instantaneous frequency.

Related to this is the fact that the A and C potentials are
only defined up to a constant. While one is at liberty to choose
any constant without affecting the physical fields, or the total
helicity density, the choice can substantially affect the local
density. This can be clearly seen if one considers calculating
the helicity density of a circularly polarised plane wave, but
adding a constant to the usually chosen A potential: one
would find rapid oscillation in the A·∇×A term, caused by
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the product of the oscillatory ∇×A and the added constant
in A.

For localised fields, this ambiguity is usually avoided by
choosing the constant such that the potentials vanish at large
distances (where the fields approach 0). However, the
expressions for the potentials given above do not approach 0
as η approaches¥ or-¥, as = ¥ xlim erf 1x ( ) when the
argument of x is strictly less than p

4
(as is always the case in

(39) with large η). Furthermore, no constant that can be added
that will make these potentials approach 0 at both positive and
negative ¥. This feature is connected with the unphysical
nature of an infinite linear frequency chirp.

The appropriate choice of constants to remove the rapid
oscillation are those that make the potentials of the up-chirped
pulse vanish at large positive times, and the potentials of the
down-chirped pulse vanish at large negative times. It must be
remembered that these are the large η limits in which the
expressions for the respective chirps are still physically sen-
sible, so it seems reasonable to be concerned with the beha-
viour of the potentials in these limits rather than the
complementary ones4.
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