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SARNAK’S SATURATION PROBLEM FOR COMPLETE

INTERSECTIONS

by

D. Schindler & E. Sofos

Abstract. — We study almost prime solutions of systems of Diophantine equations in the Birch

setting. Previous work shows that there exist integer solutions of size B with each component

having no prime divisors below B1{u, where u “ c0n3{2, n is the number of variables and c0 is

a constant depending on the degree and the number of equations. We improve the polynomial

growth n3{2 to the logarithmic plog nqplog log nq´1. Our main new ingredients are the general-

isation of the Brüdern–Fouvry vector sieve in any dimension and the incorporation of smooth

weights into the Davenport–Birch version of the circle method.
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1. Introduction

Let f1, . . . , fR P Zrx1, . . . , xns be forms of degree d and write f “ pf1, . . . , fRq. We consider
the affine variety defined by

Vf : fipx1, . . . , xnq “ 0, 1 ď i ď R. (1.1)

We are interested in Sarnak’s saturation problem, that is to find a Zariski-dense set of integer
zeros px1, . . . , xnq P Vf pZq where each xi is either a prime or has a small number of prime
divisors. Recent work of Cook and Magyar [CM14] is concerned with finding prime solutions
to the Diophantine system fpxq “ s for s P ZR, i.e. solutions for which every variable xi

is a prime number. They succeed in establishing a local to global principle, including an
asymptotic formula, via the circle method if the Birch rank Bpfq, that will be defined at the
beginning of §2), satisfies Bpfq ě χpR, dq for some function χpR, dq which only depends on
the degree d and the number of polynomials R. However, the value of χpR, dq, as it would

http://arxiv.org/abs/1705.09133v3


2 D. SCHINDLER & E. SOFOS

result from the current proof in [CM14], is expected to be tower exponential in d and R. For
systems of quadratic forms one has

χpR, 2q ď 22CR2

.

For more general systems we do not have any explicit upper bounds on this function.
It is therefore natural to ask whether one can find an explicit condition which ensures the

existence of a Zariski dense set of integer solutions with all coordinates being almost prime;
this is usually referred to as Sarnak’s saturation problem. Let Ωpmq denote the number of
prime factors of m counted with multiplicity. Almost primes have zero density in the integers
owing to the generalised prime number theorem: for each fixed integer k ě 1 we have

1

x
7
!
m P N X r1, xs : Ωpmq ď k

)
„

plog log xqk´1

pk ´ 1q! log x
, as x Ñ 8.

The fact that one seeks solutions in thin subsets of integers places problems of this type
in a higher level of difficulty than studying the number of all integer solutions in expanding
regions. Yamagishi [Yam] showed the existence of infinitely many integer solutions in the case
R “ 1 and for large n, with every solution having exactly 2 prime factors. This corresponds
to taking k “ 2 in the asymptotic above.

In this paper we are interested in a harder question than that of almost primes, namely
in finding solutions within sets that have asymptotically zero density compared to the set of
almost primes. Let P´pmq denote the least prime divisor of a positive integer m ‰ 1 and

define P´p1q :“ 1. Integers m with P´pmq ě m1{u for some u ą 1 are almost primes, however
their density is arbitrarily smaller in comparison. Indeed, by Buchstab’s theorem [Buc37]
one has the following for all fixed k P Ně2 and u P Rą1,

7
 
m P N X r1, xs : P´pmq ě x1{u

(

7
 
m P N X r1, xs : Ωpmq ď k

( „
pk ´ 1q!uwpuq

plog log xqk´1
Îk,u

1

plog log xqk´1
, as x Ñ 8,

where wpuq is the Buchstab function. Progress on the saturation problem within this thinner
set of solutions was recently made by Magyar and Titichetrakun [MT16]. They managed
to treat systems of equations where the number of variables is the same as in Birch’s work
[Bir62], i.e. assuming that the Birch rank exceeds RpR ` 1qpd ´ 1q2d´1. They proved lower
bounds of the correct order of magnitude regarding the number of integer solutions with each
coordinate xi satisfying P´p|xi|q ě |xi|

1{u, where u is any constant in the range

u ě 28n3{2dpd ` 1qR2pR ` 1qpR ` 2q. (1.2)

The ultimate goal of showing that all variables xi can simultaneously be prime corresponds
to the value u ą 2 ´ ǫ for some ǫ ą 0, hence any result decreasing the admissible value for u
in (1.2) is an equivalent reformulation of progress towards this goal. Our aim in this paper is
to decrease the admissible value for u when the degree and the number of equations is fixed
so as to have at most logarithmic growth in terms of n rather than polynomial.

1.1. Summary of our results. — In order to prove quantitative or qualitative results for
the system of equations (1.1) one typically needs n to be sufficiently large in terms of d and R
and the singular locus of Vf . Thus, for example, the Hasse principle is known for non-singular
cubic hypersurfaces when n ě 9 (Hooley [Hoo88]), for non-singular quartics when n ě 40
(Hanselmann [Han12]) and for non-singular quintics in at least n ě 101 variables (Browning
and Prendiville [BP14]). One may expect that the dependence of (1.2) on n should decrease
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when n increases; we are not able to provide a bound that is independent of n but we shall
provide a bound that depends logarithmically on n rather than polynomially. For this we shall
use the vector sieve of Brüdern and Fouvry to show that for fixed d,R one can improve (1.2)
to

u Ï
log n

log log n
.

This constitutes a major improvement over (1.2) and it applies to almost all situations in the
Birch setting, see Theorem 1.1. This is the main result in this paper.

As an additional result we shall provide an improvement in all situations in the Birch
setting, however, this will not be of logarithmic nature. Namely, using the Rosser–Iwaniec
sieve we shall prove that one can take u Ï n in all of the remaining cases, see Theorem 1.5,
while, in some situations covered by Theorem 1.5 but not by Theorem 1.1 we shall show via
the weighted sieve that there are many integer zeros px1, . . . , xnq where the total number of
prime factors of |x1 ¨ ¨ ¨ xn| is Î n log n, while at the same time every prime factor of each |xi|
is at least |xi|

α for some 0 ă α ă 1 independent of x, see Theorem 1.6.

1.2. The vector sieve in arbitrary dimension. — The vector sieve was brought into
light by Brüdern and Fouvry [BF94] to show that for all sufficiently large positive integers
N satisfying N ” 4 pmod 24q the Lagrange equation

N “ x2
1 ` x2

2 ` x2
3 ` x2

4

has many solutions x P N4 with each xi being indivisible by any prime of size at most N1{u

with u ě 68.86. Problems of type Waring–Goldbach become less hard the more variables
are available and the expectation is that one can take each xi to be a prime for N as above-
this is still open while the case of representations by 5 squares of primes was settled by
Hua [Hua38]. The vector sieve was later used to make improvements on the admissible
value for u in Lagrange’s equation by Heath-Brown and Tolev [HBT03], Tolev [Tol03] and
Cai [Cai10], as well as in other sieving problems ([BF96], [BB05], [HBL16]).

The main idea of the vector sieve is to use a combinatorial inequality that replaces the usual
lower bound sieve by a linear combination of products of sieving functions each of dimension
1, one of the advantages being an improvement over the admissible value for u. There are
other applications of the vector sieve in the literature but to our knowledge it has not been
applied for sieves of arbitrarily large sieve dimension (the reader is referred to the book of
Friedlander and Iwaniec [FI10] for the terminology).

Let us now proceed to the statement of our main theorem. Denoting the p-adic units by
Zˆ

p we will always make the assumption that

f “ 0 has non-singular solutions in p0, 1qn and in pZˆ
p qn for every prime p. (1.3)

We shall define the quantity K “ Kpfq in (2.1) using the notion of the Birch rank Bpfq. Let

Υ :“
dBpfq

pd ´ 1q2d´1

´
d ´

1

R

¯
`R, (1.4)

as well as

θ1 :“ min
!1

ρ
,
ǫ1,1 ´ dR

ǫ1,2 ` ǫ1,3
,
ǫ2,1 ´ dR

ǫ2,2 ` ǫ2,3
,
ǫ3,1 ´ dR

ǫ3,2 ` ǫ3,3

)
, (1.5)

where

ρ :“ 4RpR ` 1qd

ˆ
1 `

d

2Rpd ´ 1q ` 1
`

3Rd

3Rpd ´ 1q ` 1

˙
(1.6)
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and the vectors pǫi,1, ǫi,2, ǫi,3q are defined as the columns of the following matrix,

ǫ :“

»
——–

Rd` 1{2 K
pK´RpR`1qpd´1qq

4RpR`1qd `Rd

Rd` 1{2 K
dpK´R2pd´1qq

2Rpd´1q `R `K ` 2dK
d´1 ´Rd

0 0 max
 
0, K´RpR`1qpd´1q

4RpR`1qd ´R ´K `Rd
(

fi
ffiffifl . (1.7)

Here follows the main result of our paper.

Theorem 1.1. — There exists a positive absolute constant c0 such that whenever the forms
f1, . . . , fR P Zrx1, . . . , xns of degree d ě 2 satisfy (1.3) and

Bpfq ą max
 
2d´1pd´ 1qRpR ` 1q, 2d´1pd ´ 1qR2 ` pR ` 1qpΥ ` 1q, 2d´1pd2 ´ 1qR2

(
,

then we have for all large enough B ě 1,

7
!

x P pp0, Bs X Nqn : fpxq “ 0, P´px1 ¨ ¨ ¨ xnq ą B
θ1 log log n

c0 log n

)
Ï

Bn´Rd

plogBqn
,

where the constant θ1 satisfies θ1 Ïd,R 1.

This provides a lower bound logP´px1 ¨ ¨ ¨ xnq{ logB in terms of n that vanishes logarith-
mically slow as n Ñ `8, which constitutes a large improvement over the previously best
known result that gave a polynomial decay [MT16]. The proof of Theorem 1.1 will be given
in §6. A crucial input for the sieving arguments will be a general version of Birch’s theorem
that we shall prove in §2, see Theorem 2.1. Note that a similar result for one quadratic form
is proved in work of Browning and Loughran [BL, Theorem 4.1], whereas our result aims
at general complete intersections. More importantly, Theorem 2.1 allows situations where
congruence conditions are imposed to every integer coordinate with a different moduli for
every coordinate, while in their result one is only allowed to consider the same moduli for
every coordinate. This extra feature will be of central importance for the vector sieve.

An inspection of the argument at the end of §6 shows that we can take c0 “ 3 in Theorem 1.1
when the number of variables n is sufficiently large. For s P Rą2 let 0 ă fpsq ď 1 ď F psq
be the sieve functions associated to the linear Rosser–Iwaniec sieve, defined for example
in [Iwa80], which satisfy F psq, fpsq “ 1 ` Ops´sq. One can improve the lower bound for

logP´px1 ¨ ¨ ¨ xnq{ logB given by Theorem 1.1 by replacing the term c0 log n
log log n

by any value

s ą 2 that satisfies

F psqn ă
´

1 `
1

n´ 1

¯
fpsq.

A special case of Theorem 1.1 is the case of non-singular hypersurfaces.

Corollary 1.2. — There exists a positive absolute constant c1 such that whenever f is an
integer non-singular form of degree d ě 5 in more than 2d´1pd2 ´ 1q variables that fulfils (1.3)
then the following estimate holds for all large enough B ě 1,

7
!

x P pp0, Bs X Nqn : fpxq “ 0, P´px1 ¨ ¨ ¨ xnq ą B
c1 log log n

d log n

)
Ï

Bn´d

plogBqn
.

Our results require a few more variables than in the Birch setting, which for non-singular
hypersurfaces requires n ą 2dpd´ 1q. The reason for this is rooted to the way that the vector
sieve works: in introducing n linear sieving functions in place of a single n-dimensional lower
bound sieve the technique requires that we have a good control on the independency of the
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events that a large prime p divides several coordinates of an integer zero, this is related to
the function δ that will be studied in §3. The Birch assumption

Bpfq ą 2d´1pd ´ 1qRpR ` 1q

does not always allow a good bound for δ, however a slightly stronger geometric assumption
will be shown to be sufficient via a version of Weyl’s inequality that is uniform in the coef-
ficients of the underlying polynomials. It must be noted that the work of Yamagishi [Yam,
Th.1.3] only applies to smooth hypersurfaces in n ą 8dp4d ´ 2q variables, which ought to be
compared with the assumption n ą 2d´1pd2 ´ 1q of Corollary 1.2

1.3. Applications to the saturation problem. — One further advantage of Theorem 2.1
is that it allows the use of any smooth weight with compact support. We can therefore
establish a version of Theorem 1.1 where one counts solutions near an arbitrary non-singular
point in Vf pRq. This allows to settle Sarnak’s problem for the complete intersections under
consideration. To phrase our result we first need the following definition. Each x P Pn´1pQq
can be written uniquely up to sign in the form x “ r˘xs, where x “ px1, . . . , xnq P Zn and
gcdpx1, . . . , xnq “ 1. We can then define the function L : Pn´1pQq Ñ Rě0 through

L pxq :“ max
1ďiďn
xi‰0

max

"
log |xi|

log p
: p is a prime dividing xi

*
.

Thus L pxq ď u holds for some x “ r˘px1, . . . , xnqs P Pn´1pQq and u P Rě0 if and only if

xi ‰ 0 ñ P´p|xi|q ě |xi|
1{u.

Definition 1.3 (Level of saturation). — Assume that X Ă Pn´1 is a variety defined over
Q. The level of saturation of X is the infimum of all real non-negative numbers u such that

tx P XpQq : L pxq ď uu

is Zariski dense in X.

Note that in this definition the level of saturation is allowed to be infinite, for example if
XpQq is not Zariski dense. Recalling the definition of the number of prime divisors ΩPn´1pQqpxq

of a rational point x P Pn´1pQq in the paragraph before [SW17, Def.1.1], we observe that ifś
i xi ‰ 0 then

ΩPn´1pQqpxq ď nL pxq.

Therefore, according to [SW17, Def.1.1], if X has a finite level of saturation then it has a
finite saturation number. Therefore one could perceive Definition 1.3 as a refinement of the
standard notion of saturation.

Theorem 1.4. — There exists a positive absolute constant c0 such that whenever the forms
f1, . . . , fR P Zrx1, . . . , xns of degree d ě 2 satisfy (1.3) and

Bpfq ą max
 
2d´1pd ´ 1qRpR ` 1q, 2d´1pd ´ 1qR2 ` pR ` 1qpΥ ` 1q, 2d´1pd2 ´ 1qR2

(

and the complete intersection in Pn´1 that is defined through

Vf : f1 “ f2 “ ¨ ¨ ¨ “ fR “ 0

is geometrically irreducible then Vf has finite level of saturation. In addition, the level of
saturation is at most

c0 log n

θ1 log log n
,



6 D. SCHINDLER & E. SOFOS

where the constant θ1 satisfies θ1 Ïd,R 1.

1.4. Results via the Rosser–Iwaniec sieve. — We next provide an almost prime result
that covers all situations in the Birch setting, thus completing the treatment of the cases not
covered by Theorem 1.1. This will provide a lower bound for logP´px1 ¨ ¨ ¨ xnq{ logB that is
worse than the one in Theorem 1.1 but still better than (1.2); this is due to the strength of
the level of distribution result implied by Theorem 2.1.

Theorem 1.5. — For any forms f1, . . . , fR P Zrx1, . . . , xns of degree d ě 2 satisfying (1.3)
and K ą RpR ` 1qpd ´ 1q we have for all large enough B ě 1,

7
!

x P pp0, Bs X Nqn : fpxq “ 0, P´px1 ¨ ¨ ¨ xnq ą B
θ1

3.75n

)
Ï

Bn´Rd

plogBqn
,

where θ1 is given in (1.5) and satisfies θ1 Ïd,R 1.

1.5. Results via the weighted sieve. — Theorem 1.5 supplies a polynomially fast con-
vergence to zero for logP´px1 ¨ ¨ ¨ xnq{ logB with respect to n. This is slightly undesired,
thus we shall provide a complementary result that furnishes many integer zeros satisfying a
bound of similar quality for logP´px1 ¨ ¨ ¨ xnq{ logB with the additional desired property that
x1 ¨ ¨ ¨ xn has few prime factors. This will be implemented via the weighted sieve. We choose
to include this result here because along the proof we shall provide a potentially useful refor-
mulation of the weighted sieve given in the book of Diamond and Halberstam [DH08]. This
reformulation allows the incorporation of further weights and will be given in Theorem 4.4.

Define

u2 :“ pn´Rdq max

#
p2ǫi,2 ´ 1q

ǫi,1 ´Rd
: 1 ď i ď 3

+
, (1.8)

pu :“ max
!
u2, 1{θ1, 2pn ´Rdqρ

)
, pv :“

ncn ´ 1

θ1 ´ 1{pu, (1.9)

where cn is a sequence that satisfies limnÑ`8 cn “ 2.44 . . .. We furthermore let

r0 :“
npu

n´Rd
´ 1 ` n

´
1 `

pu
pv cn

¯
log

pv
pu ´ n

´
1 ´

pu
pv
¯
. (1.10)

Theorem 1.6. — For any forms f1, . . . , fR P Zrx1, . . . , xns of degree d ě 2 satisfying (1.3)
and Bpfq ą maxtpd´ 1qRpR` 1q2d´1, pd2 ´ 1qR2d´1, pd´ 1qR22d´1 ` 2pR` 1qu we have for
all r1 ą r0 and all large enough B ě 1,

7
!

x P pp0, Bs X Nqn : fpxq “ 0, P´px1 ¨ ¨ ¨ xnq ą B1{pv,Ωpx1 ¨ ¨ ¨ xnq ď r1

)
Ï

Bn´Rd

plogBqn
,

where pv “ Od,Rpnq and r0 “ Od,Rpn log nq.

A simple consequence of Theorem 1.1 is that it provides many integer zeros x with

Ωpx1 ¨ ¨ ¨ xnq Î
n log n

log log n
,

which constitutes an asymptotic saving compared to the estimate

Ωpx1 ¨ ¨ ¨ xnq Î n log n

supplied by Theorem 1.6. This is surely surprising to those familiar with the weighted sieve
and its applications to higher dimensional sieve problems. The reason that the vector sieve
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gives a better saturation number here is the strong level of distribution supplied by Theo-
rem 2.1, which is a result of using smooth weights. Indeed, Theorem 2.1 allows to estimate
asymptotically the number of integer solutions of fpxq “ 0 subject to divisibility conditions
of the form ki|xi for x in a region having the shape x P Br´1, 1sn and vectors k P Nn of size

|k| ď B1{s, where s ą 1 depends on d and R but not on n. Such a level of distribution is
usually not available in other problems related to the weighted sieve.

Notation. — We shall reserve the symbol νpmq for the counting function of distinct prime
factors of a positive integer m. For vectors x P Rn, n P N, we shall reserve the symbols
|x| and |x|1 for the supremum and the ℓ1 norm respectively. For vectors k,x P Nn we shall
abbreviate the simultaneous conditions ki|xi by k|x. Similarly we write k ď x or k ă x or
|k| ď x for the simultaneous conditions ki ď xi (resp. ki ă xi and |ki| ď xi) for 1 ď i ď n.
We shall furthermore find it convenient to introduce the notation

rk :“ k1 ¨ ¨ ¨ kn,

as well as

xkxy “ pk1x1, . . . , knxnq.

For q P N, z P C we shall write

eqpzq :“ e
2πiz

q and epzq :“ e2πiz .

The letter ǫ will refer to an arbitrarily small positive fixed constant and to ease the notation
we shall not record the dependence of the implied constant in the Î and Op¨q notation. The
letter w will be reserved to denote certain weight functions that will be considered constant
throughout our work, thus we shall not record the dependence of the implied constant in the
Î and Op¨q notation. Throughout our work the forms f are considered to be constant, thus
each implied constant in the Î and Op¨q notation will depend on the coefficients of f , d, n, z0

and W , where the constants z0,W are functions of f whose meaning will become clear in due
course. Any extra dependencies will be specified by the use of a subscript.

Acknowledgements: We would like to thank Prof. T. D. Browning and Dr. S. Yamagishi
for their comments on an earlier version of this paper, as well as the anonymous referee for
numerous helpful comments that have clarified the exposition considerably. The first author
is supported by a NWO grant 016.Veni.173.016.

2. A version of Birch’s theorem with lopsided boxes and smooth weights

In our applications of sieve methods it will be important to be able to count integer zeros
of fpxq “ 0 such that each integer coordinate xi is divisible by a fixed integer ki ď |xi|. A
change of variables makes clear that a version of Birch’s theorem with lopsided boxes and
with uniformity of the error term in the coefficients of the polynomials is sufficient. One can
do this without smooth weights however the resulting error terms will give a weak level of
distribution for our sieve applications. We shall instead use smooth weights and as a result
we shall later be able to take ki much closer to the size of xi.

We now proceed to describe the version of Birch’s theorem that we shall need. Assume
that we are given any finite collection of polynomials

gi P Zrx1, . . . , xns, 1 ď i ď R,
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denote the homogeneous part of gi by g6
i and assume that there exists d P Ně2 such that

1 ď i ď R ñ degpg6
i q “ d.

The Birch rank, denoted by Bpg6q, is defined as the codimension of the affine variety in Cn

which is given by

rank

˜˜
Bg6

i pxq

Bxj

¸

1ďiďR,1ďjďn

¸
ă R.

We set

K :“ 2´pd´1q
Bpg6q. (2.1)

Let us fix any smooth compactly supported weight function w : R Ñ Rě0 with the property
supppwq Ă r´2, 2s. For P “ pP1, . . . , Pnq P pRě1qn we denote

rP :“
nź

i“1

Pi, Pmax :“ max
1ďiďn

Pi and Pmin :“ min
1ďiďn

Pi

and fix an element z P r´1, 1sn. Our aim is to find an asymptotic formula for the counting
function

NwpPq :“
ÿ

yPZn

gpyq“0

nź

i“1

w

ˆ
yi

Pi
´ zi

˙
.

Birch’s influential work [Bir62] treated the case where w is replaced by the characteristic
function of a finite interval and

K ą RpR ` 1qpd ´ 1q, Pmin “ Pmax.

For our applications of sieving methods a result that is uniform in the size of each Pi as well
as the coefficients of each gi is required. For h P Crx1, . . . , xns we denote by }h} the maximum
of the absolute values of its coefficients and for h1, . . . , hR P Crx1, . . . , xns we let

}h} :“ maxt}hi} : 1 ď i ď Ru.

Theorem 2.1. — Let gi, w, z, Pi be as above, assume that K ą RpR ` 1qpd ´ 1q and

Pmax

Pmin
ă }g}

´ 1
2Rpd´1q`1 }g6}´ 3R

3Rpd´1q`1P
1

4RpR`1qd
max . (2.2)

Then one has for each ǫ ą 0,

NwpPq ´ SJw ÎrP pPmax{PminqR P´Rd´1{2
max ` rP1`ǫ pPmax{PminqK P´K

max

`}g6}
2K
d´1

´R}g}
K´R2pd´1q

2Rpd´1q rP1`ǫ pPmax{PminqR`K P
´Rd´ K´RpR`1qpd´1q

4RpR`1qd
max ,

where the implied constant depends at most on ǫ ą 0. Here S and Jω are the usual circle
method singular series and singular integral and are defined in (2.6) and (2.7) respectively.

Our sole aim in this section is to establish Theorem 2.2. All implied constants may depend
on n,R, d but not on the coefficients of the polynomials gipyq, 1 ď i ď n. We start by
introducing the exponential sum

Swpαq :“
ÿ

yPZn

nź

i“1

w

ˆ
yi

Pi
´ zi

˙
epα ¨ gpyqq,
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where we use the vector notation α ¨ gpyq “
řR

i“1 αigipyq. By orthogonality we now have

NwpPq “

ż

r0,1sR

Swpαq dα.

We shall follow Birch’s approach [Bir62] to approximate NwpPq. Our first step is to produce

a Weyl type inequality for Swpαq. Recall that g6
i pyq are homogeneous polynomials of degree

d, which can be written as

g
6
i pyq “ d!

ÿ

1ďj1,...,jdďn

g
piq
j1,...,jd

yj1
. . . yjd

,

with symmetric coefficients gj1,...,jd
(i.e. such that gj1,...,jd

“ gσpj1q,...,σpjdq for a permutation σ
of the indices). We associate its multilinear forms

Φipy
p1q, . . . ,ypdqq “ d!

ÿ

1ďj1,...,jdďn

g
piq
j1,...,jd

y
p1q
j1
. . . y

pdq
jd
,

and set

Φpyp1q, . . . ,ypdqq :“
Rÿ

i“1

αiΦipy
p1q, . . . ,ypdqq.

Lemma 2.2. — With the notation above we have

|Swpαq|2
d´1

rP2d´1
Î rP´d

ÿ

´2Păhp1qă2P

. . .
ÿ

´2Păhpd´1qă2P

nź

i“1

min
!
Pi, }Φphp1q, . . . ,hpd´1q, epiqq}´1

)

Proof. — For wpxq a weight function and h P R we introduce the notation

whpxq “ wpx ` hqwpxq.

Moreover, for h1, . . . , hm P R, we iteratively define

wh1,...,hm “ wh1,...,hm´1
px` hmqwh1,...,hm´1

pxq.

The same Weyl differencing process as in the proof of Lemma 3.3 (in particular equation
(3.5)) in [BP14] or in Lemma 2.1 in [Bir62] leads to

|Swpαq|2
d´1

rP2d´1
Î rP´d

ÿ

´2Păhp1qă2P

. . .
ÿ

´2Păhpd´1qă2P

|Swphp1q, . . . ,hpd´1q,αq|,

where

Swphp1q, . . . ,hpd´1q,αq “

ÿ

yPZn

#
nź

i“1

w
h

p1q
i

{Pi,...,h
pd´1q
i

{Pi

ˆ
yi

Pi
´ zi

˙+
e

˜
Rÿ

i“1

αiΦiph
p1q, . . . ,hpd´1q,yq ` cphp1q, . . . ,hpd´1qq

¸
,

with integers cphp1q, . . . ,hpd´1qq independent of y. Hence

|Swphp1q, . . . ,hpd´1q,αq| “ |
ÿ

yPZn

#
nź

i“1

w
h

p1q
i

{Pi,...,h
pd´1q
i

{Pi

ˆ
yi

Pi
´ zi

˙+
e
´

Φphp1q, . . . ,hpd´1q,yq
¯

|.

The estimate

Swphp1q, . . . ,hpd´1q,αq Î
nź

i“1

min
!
Pi, }Φphp1q, . . . ,hpd´1q, epiqq}´1

)
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can then be obtained via partial summation.

We define the counting function

Mpα,Pq :“ 7t´2P ď hpiq ď 2P, 1 ď i ď d´ 1 : }Φphp1q, . . . ,hpd´1q, epjqq} ă P´1
j @1 ď j ď nu.

As Lemma 3.2 is deduced from Lemma 3.1 in [Dav59] we obtain the following lemma.

Lemma 2.3. — One has

|Swpαq|2
d´1

Î rP2d´1´d`1`ǫMpα,Pq.

Next we need a version of Lemma 12.6 in [Dav05] which is modified for lopsided boxes.

Lemma 2.4. — Let L1, . . . , Ln be symmetric linear forms given by Li “ γi1u1 ` . . .` γinun

for 1 ď i ď n, i.e. such that γij “ γji for 1 ď i, j ď n. Let a1, . . . , an ą 1 be real numbers.
We denote by NpZq the number of integers solutions u1, . . . , u2n of the system of inequalities

|ui| ă aiZ, 1 ď i ď n, |Li ´ un`i| ă a´1
i Z, 1 ď i ď n.

Then for 0 ă Z1 ď Z2 ď 1 we have

NpZ2q

NpZ1q
Î

ˆ
Z2

Z1

˙n

.

Proof. — Let Λ be the 2n-dimensional lattice defined by

xi “ a´1
i ui, 1 ď i ď n

xn`i “ aipγi1u1 ` . . . ` γinun ` un`iq, 1 ď i ď n.

As in the proof of Lemma 12.6 in [Dav05] we note that the inequalities describing NpZq are
equivalent to

|xi| ă Z, 1 ď i ď 2n,

for a point px1, . . . , x2nq in the lattice Λ. We identify the lattice Λ with its matrix

Λ “

¨
˚̊
˚̊
˚̊
˚̊
˝

a´1
1 . . . 0 0 . . . 0
...

...
...

...
0 . . . a´1

n 0 . . . 0
a1γ11 . . . a1γ1n a1 . . . 0

...
...

...
...

anγn1 . . . anγnn 0 . . . an

˛
‹‹‹‹‹‹‹‹‚

and we find that the adjoint lattice is given by

M “ pΛtq´1 “

¨
˚̊
˚̊
˚̊
˚̊
˝

a1 . . . 0 ´a1γ11 . . . ´a1γn1
...

...
...

...
0 . . . an ´anγ1n . . . ´anγnn

0 . . . 0 a´1
1 . . . 0

...
...

...
...

0 . . . 0 0 . . . a´1
n

˛
‹‹‹‹‹‹‹‹‚

.

Since γij “ γji for all 1 ď i, j ď n the two lattices Λ and M can be transformed into one
another by interchanging the order of x1, . . . , x2n and u1, . . . , u2n and changing signs at some
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variables. Hence they have the same successive minima. Now the proof of Lemma 12.6 in
[Dav05] applies to our situation and an identical argument concludes our proof.

We now apply Lemma 2.4 to the counting function Mpα,Pq. Let 0 ă θ ă 1 and set
Z “ P θ´1

max . We then obtain the following bound,

|Swpαq|2
d´1

Î
rP2d´1´d`1`ǫ

Zpd´1qn 7I ,

where I is defined by
!

pxp1q, . . . ,xpd´1qq P Zpd´1qn : |xpiq| ď ZP, }Φpxp1q, . . . ,xpd´1q, ejq} ă Zd´1P´1
j , @1 ď j ď n

)
.

We are now in a position to obtain a form of Weyl’s inequality for Swpαq (for a Weyl’s
inequality in a similar setting see for example Lemma 4.3 in [Bir62]). Let V ˚ be the affine
variety defined by

rank

˜
Bg6

i pxq

Bxj

¸

1ďiďR,1ďjďn

ă R,

and recall that

K “
n´ dimV ˚

2d´1
.

Lemma 2.5. — Assume that 0 ă θ ă 1. Then one has either
(i)

Swpαq Î rP1`ǫ

ˆ
Pmax

Pmin

˙K

P´θK
max ,

or
(ii) there are integers 1 ď q ď }g6}RP

Rpd´1qθ
max , and 0 ď a1, . . . , aR ă q with gcdpa, qq “ 1 and

|qαi ´ ai| ď }g6}R´1P´1
minP

´pd´1q`Rpd´1qθ
max , 1 ď i ď R.

Proof. — First assume that P θ´1
maxPmin ě 1. We start with the bound

|Swpαq|2
d´1

Î rP2d´1´d`1`ǫP p1´θqpd´1qn
max 7I .

Consider the affine variety Y Ă Anpd´1q given by

Y : rankpΦipx
p1q, . . . ,xpd´1q, ejqq1ďiďR,1ďjďn ă R.

We set

E :“ tpxp1q, . . . ,xpd´1qq P Znpd´1q X Y : |xpiq| ď P θ´1
maxP, @1 ď i ď d ´ 1u.

Now we distinguish two cases.

(i) Assume that I Ă E . Then we bound the cardinality of E by dimension bounds. We

dissect the region given by the conditions that |xpiq| ď P θ´1
maxP into boxes where all the side

length are equal (at the boundaries we allow for overlapping boxes which will result in slight
overcounting) and of size P θ´1

maxPmin. The number of such boxes is bounded by

Î

˜
nź

i“1

Pi

Pmin

¸d´1

.
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On each of the boxes we apply a linear transformation to move the box to the origin. Then
we apply Theorem 3.1 in [Bro09]. Note that this bound is independent of the coefficients
of the variety (only depending on the dimension and degree) and hence uniform in the shift.
We obtain

7E Î

˜
nź

i“1

Pi

Pmin

¸d´1

pP θ´1
maxPminqdim Y .

By [Bir62, Lem.3.3] we have dim Y ď dimV ˚ ` pd´ 2qn, hence we obtain the bound

7E Î

˜
nź

i“1

Pi

Pmin

¸d´1

pP θ´1
maxPminqdim V ˚`pd´2qn.

Together with our assumption I Ă E we obtain

|Swpαq|2
d´1

Î rP2d´1`ǫP pθ´1qpdim V ˚`pd´2qnq
max P´pd´1qnpθ´1q

max P´n`dim V ˚

min

Î rP2d´1`ǫP p1´θqpn´dim V ˚q
max P´n`dim V ˚

min

Î rP2d´1`ǫP´θpn´dim V ˚q
max

ˆ
Pmax

Pmin

˙n´dim V ˚

.

This estimate gives option (i) in the statement of our lemma.

Next we assume that I zE ‰ ∅. Let pxp1q, . . . ,xpd´1qq be such a point in the difference set,
i.e.

rankpΦipx
p1q, . . . ,xpd´1q, ejqq1ďiďR,1ďjďn “ R.

With no loss of generality we assume that the leading R ˆR minor is of full rank, and set

q :“
ˇ̌
detpΦipx

p1q, . . . ,xpd´1q, ejqq1ďi,jďR

ˇ̌
.

Note that

q Î }g6}RPRpd´1qθ
max .

Moreover, we have the system of equations

Rÿ

i“1

αiΦipx
p1q, . . . ,xpd´1q, ejq “ raj ` δj , 1 ď j ď R,

with ra1, . . . ,raR integers and

|δj | Î P pθ´1qpd´1q
max P´1

j , 1 ď j ď n.

We now obtain (after changing θ by ǫ for ǫ arbitrarily small) as in the proof of [Bir62,
Lem.2.5] an approximation 1 ď a1, . . . , aR ď q to the real numbers αi of the quality

|qαi ´ ai| ď }g6}R´1P´1
minP

´pd´1q`Rpd´1qθ
max , 1 ď i ď R.

Note that alternative (i) in Lemma 2.5 trivially holds if P θ´1
maxPmin ď 1.

Next we come to the definition of the major arcs. Let 0 ă θ ă 1 and assume that

P θ´1
maxPmin ě 1. (2.3)

For q P N and 1 ď a1, . . . , aR ď q we define the major arc

Ma,qpθq :“ tα P r0, 1sR : |qαi ´ ai| ď }g6}R´1P´1
minP

´pd´1q`Rpd´1qθ
max , 1 ď i ď Ru.
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Moreover we define the major arcs Mpθq as the union

Mpθq “
ď

1ďqď}g6}RP
Rpd´1qθ
max

ď

1ďa1,...,aRďq
gcdpa,qq“1

Ma,qpθq

and set mpθq :“ r0, 1sRzMpθq.
A short calculation gives the following bound for the measure of the major arcs Mpθq.

Lemma 2.6. — Assume that 0 ă θ ă 1 such that (2.3) holds. Then one has

measpMpθqq Î }g6}R2

P´R
minP

´Rpd´1q`RpR`1qpd´1qθ
max .

We are now ready to provide an L1-bound for the exponential sum Swpαq over the minor
arcs, which is a modification of Lemma 4.4 in [Bir62] and proved in the very same way.

Lemma 2.7. — Let 0 ă θ ă 1 such that (2.3) holds. Assume that

K ą RpR ` 1qpd ´ 1q.

Then one has
ż

mpθq
|Swpαq| dα Î rP1`ǫ

ˆ
Pmax

Pmin

˙K

P´K
max` rP 1`ǫ}g6}R2

ˆ
Pmax

Pmin

˙R`K

P´Rd´pK´RpR`1qpd´1qqθ`ǫ
max ,

for ǫ ą 0 arbitrarily small.

For technical convenience we introduce the slightly larger major arcs

M
1
a,qpθq :“ tα P r0, 1sR : |qαi ´ ai| ď q}g6}R´1P´1

minP
´pd´1q`Rpd´1qθ
max , 1 ď i ď Ru,

and

M
1pθq “

ď

1ďqď}g6}RP
Rpd´1qθ
max

ď

1ďa1,...,aRďq
gcdpa,qq“1

M
1
a,qpθq.

We record that the major arcs M
1
a,qpθq are disjoint for θ small enough and that

measpM1pθqq Î }g6}2R2

P´R
minP

´Rpd´1q`p2R2`Rqpd´1qθ
max .

A minor modification of the proof of Lemma 4.1 in [Bir62] gives the following result.

Lemma 2.8. — Assume that

}g6}3R´1P´1
minP

´pd´1q`3Rpd´1qθ
max ă 1. (2.4)

Then for 1 ď q ď }g6}RP
Rpd´1qθ
max and 1 ď a1, . . . , aR ď q, gcdpa, qq “ 1 the major arcs M

1
a,qpθq

are disjoint.

We now come to the major arc approximation of Swpαq. Let q P N and 1 ď a1, . . . , aR ď q.
We define the exponential sum

Sa,q :“
ÿ

y pmod qq
e

ˆ
a

q
¨ gpyq

˙

and the integral

Iwpγq :“

ż

Rn

epγ ¨ gpuqq
nź

i“1

w

ˆ
ui

Pi
´ zi

˙
du.
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Lemma 2.9. — Let q P N and 0 ď a1, . . . , aR ă q. Write α “ a{q ` β. Assume that
q ă PminP

´ε
max and

|β|qP d´1
max }g} ă P´ε

max.

Then one has the following approximation for any real N ě 1,

Swpαq “ q´nSa,qIwpβq `ON prPP´N
maxq.

Proof. — We recall the definition of the exponential sum Swpαq as

Swpαq “
ÿ

xPZn

nź

i“1

w

ˆ
xi

Pi
´ zi

˙
epα ¨ gpxqq.

We split the summation variables x into residue classes modulo q and obtain

Swpαq “
ÿ

y pmod qq
e

ˆ
a

q
¨ gpyq

˙ ÿ

wPZn

nź

i“1

w

ˆ
yi ` wiq

Pi
´ zi

˙
epβ ¨ gpy ` qwqq.

We now consider the inner sum for a fixed vector y modulo q. Let

ψpwq :“
nź

i“1

w

ˆ
yi ` wiq

Pi
´ zi

˙
epβ ¨ gpy ` qwqq.

We apply Euler–Maclaurin’s summation formula (see Theorem B.5 in [MV07]) of order κ̃
into each coordinate direction. If we choose κ̃ large enough depending only on ε, n and N we
obtain ÿ

wPZn

ψpwq “

ż

wPRn

ψpwq dw `ON prPP´N
maxq.

Note that all the boundary terms in Euler–Maclaurin’s summation formula vanish due to the
smooth weight function w. Since N was arbitrary we find after even enlarging κ̃ that

Swpαq “ Sa,q

ż

wPRn

ψpwq dw `ON prPP´N
maxq.

A variable substitution now gives the statement of the lemma.

Next we consider the singular integral. Note that in contrast to most approaches we
defined the integral Iwpγq with the inhomogeneous polynomials gpyq instead of taking their
homogenizations. We now replace gpyq by g6pyq in Iwpγq which will simplify the discussion
of absolute convergence. Define

I6
wpγq “

ż

Rn

epγ ¨ g6puqq
nź

i“1

w

ˆ
ui

Pi
´ zi

˙
du.

Lemma 2.10. — Assume that |z| ď 1. Then one has

Iwpγq ´ I6
wpγq Î rP|γ|}g}P d´1

max .

The proof of the lemma follows from directly comparing the integrands of the two integrals.
Under the assumptions of Lemma 2.9 we observe that

Swpαq “ q´nSa,qI
6
wpβq `ON prPP´N

maxq `OprP|β|}g}P d´1
max q.

We define the truncated singular series

SpQq :“
ÿ

qďQ

q´nSa,q,



SARNAK’S SATURATION PROBLEM FOR COMPLETE INTERSECTIONS 15

and the truncated singular integral

JwpQq :“

ż

|γ|ďQ

I6
wpγq dγ.

With these definitions we can write the major arc contribution in the following way.

Lemma 2.11. — Assume |z| ď Pmax and that (2.4) holds, as well as

maxt}g6}RPRpd´1qθ
max P´1

min, }g}}g6}2R´1P´1
minP

2Rpd´1qθ
max u ă P´ε

max. (2.5)

Then one hasż

M1pθq
Swpαq dα “S

´
}g6}RPRpd´1qθ

max

¯
Jwp}g6}R´1P´1

minP
´pd´1q`Rpd´1qθ
max q `ON prPP´N

maxq

`O
´

}g6}2R2`R}g}rPP´R´1
min P´Rpd´1q`p2R2`2Rqpd´1qθ

max

¯
,

for any real N ě 1.

Proof. — By Lemma 2.8 the major arcs are disjoint thus the proof follows from Lemma
2.9.

Next we aim to complete the singular series. We recall Lemma 2.2 from [vI17a] (see also
[vI17b, Section 2, Lemma 2.14]).

Lemma 2.12. — For any ε ą 0 one has

|Sa,q| Î }g6}K{pd´1qqn´K{Rpd´1q`ε.

We shall soon see that the truncated singular series SpQq is converging for Q Ñ 8, thus
we shall set

S “ lim
QÑ8

SpQq. (2.6)

Lemma 2.12 gives the following speed of convergence.

Lemma 2.13. — Assume that K ą Rpd ´ 1q. Then S is absolutely convergent. Moreover
one has

S ´ SpQq Î }g6}K{pd´1qQ1´K{Rpd´1q`ε,

for any ε ą 0 and |S| Î }g6}K{pd´1q.

In preparation for the proof of the absolute convergence of the singular integral, we note
the following lemma, which is a consequence of Lemma 2.5.

Lemma 2.14. — Assume that |α|3}g6}2P 2
minP

2pd´1q
max ă 1. Then one has

Swpαq Î rP1`ǫ

ˆ
Pmax

Pmin

˙K ´
|α|}g6}´R`1PminP

d´1
max

¯´K{Rpd´1q
,

for any positive ǫ.

Lemma 2.15. — Assume that Pi ě 1 for 1 ď i ď n and that |z| ď 1. Then

I6
wpγq Î rP min

#
1, rPǫ

ˆ
Pmax

Pmin

˙Kp1`1{Rpd´1qq ´
P d

max|γ|}g6}´R`1
¯´K{Rpd´1q

+
.
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The proof of Lemma 2.15 is relatively standard (see Lemma 5.2 in [Bir62]), with the
exception that we compare the oscillatory integral I6

wpγq with parameters P1, . . . , Pn to an

exponential sum with box length B1, . . . , Bn such that Bi

Bmax
“ Pi

Pmax
for all 1 ď i ď n.

We shall show that the truncated singular integral JwpQq converges for Q Ñ 8, we will
therefore let

Jw :“ lim
QÑ8

JwpQq, (2.7)

and call it the singular integral.
In the following we will always assume that 1 ď Pi for 1 ď i ď n and that |z| ď 1. As a
consequence of Lemma 2.15 we obtain the following result.

Lemma 2.16. — Assume that K ą R2pd´ 1q. Then Jw is absolutely convergent and

Jw ´ JwpQq Î rP1`ǫ

ˆ
Pmax

Pmin

˙Kp1`1{Rpd´1qq ´
P d

max}g6}´R`1
¯´K{Rpd´1q

Q´K{Rpd´1q`R.

Moreover, we have

Jw Î rP1`ǫ

ˆ
Pmax

Pmin

˙R2pd´1q`R

P´Rd
max }g6}RpR´1q.

We can now complete both the singular series and singular integral in our major arc anal-
ysis. According to Lemma 2.13 and Lemma 2.16 we obtain the following result.

Lemma 2.17. — Assume that equations (2.3), (2.4) and (2.5) hold and |z| ď Pmax, as well
as K ą R2pd ´ 1q. Then the following holds for any real N ě 1,
ż

M1pθq
Swpαq dα “SJw `O

´
}g6}2R2`R}g}rPP´R´1

min P´Rpd´1q`p2R2`2Rqpd´1qθ
max

¯

`ON

˜
rPP´N

max ` }g6}K{pd´1q`R2´RrP1`ǫ

ˆ
Pmax

Pmin

˙R`K

P´Rd´Kθ`R2pd´1qθ
max

¸
.

Theorem 2.1 is now a consequence of the major arc analysis in Lemma 2.17 in combination
with the minor arc analysis from Lemma 2.7. For this, we choose θ by

P θ
max “ }g}

´ 1
2Rpd´1q`1 }g7}´ 3R

3Rpd´1q`1P
1

4RpR`1qd
max .

Then we clearly have 0 ă θ ă 1 and equation (2.3) reduces to the assumption (2.2). Moreover,
one quickly sees that with this choice of θ both of the conditions (2.4) and (2.5) are satisfied. It
remains to understand that the error terms in Lemma 2.17 and Lemma 2.7 are both majorised
by the error term in Theorem 2.1. We bound the first error term in Lemma 2.17 by

}g7}2R2`R}g}rP
ˆ
Pmax

Pmin

˙R

P´Rd´1
max P p2R2`2Rqdθ

max Î rP
ˆ
Pmax

Pmin

˙R

P´Rd´1{2
max .

Note that the last error term in Lemma 2.17 as well as the second error term in Lemma 2.7
are bounded by

}g6}
2K
d´1

´R}g}
K´R2pd´1q

2Rpd´1q rP1`ǫ pPmax{PminqR`K P
´Rd´ K´RpR`1qpd´1q

4RpR`1qd
max .

The first error term in Lemma 2.7 is also present in the statement of Theorem 2.1.
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Lastly let us remark that it is a well-known fact that the singular series factorises as
S “

ś
p σppgq, where for any prime p we have

σppgq :“ lim
lÑ8

p´lpn´Rq7
 
1 ď x ď pl : pl|gpxq

(
.

3. Local densities

Throughout this section we will have R forms of degree d ą 1,

f1, . . . , fR P Zrx1, . . . , xns

and we will always assume that the Birch rank satisfies

Bpfq ą 2d´1pd´ 1qRpR ` 1q.

For a prime p and a vector j “ pj1, . . . , jnq P pZě0qn we shall be concerned with bounding the
quantities

δpjq :“ lim
lÑ8

p´lpn´Rq7
 
1 ď x1, . . . , xn ď pl : pl|fppj1x1, . . . , p

jnxnq
(
,

these estimates will be applied later towards the proof of Theorems 1.1, 1.5 and 1.6. We
suppress the letter p from the notation for δ to make the presentation easier to follow. The
forms f will be considered constant, however the prime p and the vector j will not, thus we
shall require uniformity of our bounds with respect to p and j. For later applications we only
have to consider all big enough primes p ą z0, where z0 is a constant depending at most on
the coefficients of f and n, d,R. This constant will be enlarged, if needed, with no further
comment. Let us emphasize that the entities δpjq encode the probability of the events

pj1|x1, . . . , p
jn |xn

as x P Zn sweeps through the zeros of f “ 0, therefore, they are intimately connected with
certain closed subvarieties of f “ 0. This is manifested even in the most simple of situations:
for a primitive integer zero of x1x2 “ x2

3 and a prime p|x3 we always have p2|x1 or p2|x2 as a
result of the subvariety x1x2 “ x2

3, x3 “ 0 being reducible. We shall give geometric conditions
that prevent δpjq to attain large values for general systems f “ 0.

For every j P t0, 1un we define the system f j “ 0 of R forms in n´ |j|1 variables via

f
j
ξpxq “ fξpx1, . . . , xnq|

xi“0 if ji“1, ξ P N X r1, Rs.

We later need a lower bound for the Birch rank of the new systems, as for example obtained
in [CM14, Lem.3]. As there is a slight oversight in the proof of [CM14, Lem.3], we give here
the statement and proof of the corrected lemma where the quantity R in [CM14, Lem.3] is
replaced by R ` 1.

Lemma 3.1. — One has

Bpf jq ě Bpfq ´ pR ` 1q|j|1. (3.1)

It is important to note here that we view f j as a system of R equations in n´ |j|1 variables.

Proof. — Let ĂV ˚ Ă Pn´1
C be the projective variety given by

rank

ˆ
Bfξ

Bxi

˙

ξ,i

ă R,
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and note that this is well-defined as all of the polynomials fξ are homogeneous. Then the
Birch rank of f is given by

Bpfq “ n´ dimpĂV ˚q ´ 1.

Similarly, let ĄV ˚,j Ă P
n´|j|1´1
C be the projective variety given by

rank

˜
Bf j

ξ

Bxi

¸

ξ,i

ă R,

such that we have

Bpf jq “ n´ |j|1 ´ dimpĄV ˚,jq ´ 1.

The variety ĄV ˚,j naturally embeds into the linear subspace of Pn´1
C given by xi “ 0 for ji “ 1.

We write ιpĄV ˚,jq for this embedding. Then we observe that

ιpĄV ˚,jq X
č

1ďξďR

č

1ďiďn
ji“1

"
Bfξ

Bxi
“ 0

*
Ă ĂV ˚.

Hence we obtain

dimpĄV ˚,jq ´R|j|1 ď dimpĂV ˚q.

Finally, this implies

Bpf jq ě n´ |j|1 ´ pdimpĂV ˚q `R|j|1q ´ 1 “ Bpfq ´ pR ` 1q|j|1.

This is a convenient place to introduce the helpful notation

Θpjq :“
Bpf jq

Rpd ´ 1q2d´1

and Θp0q will be denoted by Θ. For non-negative integers j1, . . . , jn, any prime p and a vector
x we use the notation

pj|x ðñ pji |xi,@1 ď i ď n.

This enables us to introduce the densities

σpppj|xq “ lim
lÑ8

p´lpn´Rq7
!

1 ď x1, . . . , xn ď pl : pl|fpxq, pj|x
)

and from the definition of δ we infer that

δpjq

p|j|1 “ σpppj|xq.

Lemma 3.2. — Let t, d be integers with 2 ď d ă t. Then for each a P pZ{pt´dZqR with p ∤ a
and any vector polynomial g P ZrxsR with max1ďiďR degpgiq ď d´ 1 we have

ÿ

xpmod pt´1q
ept

´
pda ¨ fpxq ` pa ¨ gpxq

¯
Îǫ p

pt´1qpn´ t´d
t´1

Θ`ǫq
,

where the implied constant is independent of p, t,g and a.
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Proof. — We shall use [Bir62, Lem.4.3] with P “ pt´1 and α “ p´t`da; in doing so we
observe that lower degree polynomials leave the strength of the bounds in [Bir62] unaffected.
Recall that the constant K in [Bir62, Eq.(8)] is given via Bpfq{2d´1. Our aim is to acquire
a constant η ą 0, as large as possible, such that α R M pηq, where M pηq is given in [Bir62,
Sect.4,Eq.(5)]. This would then imply that the sum in our lemma is

Î p
pt´1qpn´Bpfqη

2d´1
`ǫq
.

The assumption α P M pηq provides non-negative integers q1, a1
1, . . . , a

1
R fulfilling

gcdpa1
1, . . . , a

1
R, q

1q “ 1, 1 ď q1 ď ppt´1qRpd´1qη

and such that for all i “ 1, . . . , R the succeeding inequality is valid,

2|q1ai ´ a1
ip

t´d| ď pt´d`pt´1qp´d`Rpd´1qηq . (3.2)

As explained in [Bir62, Lem.4.1], we need to assume 2Rpd´ 1qη ă d in order to ensure that
the major arcs are disjoint. It is straightforward to infer that this condition is met upon
choosing

η :“ ηpǫq “
t´ d

pt ´ 1qRpd ´ 1q
´ ǫ

for any small enough ǫ ą 0. Furthermore, this choice of η makes the exponent of p in (3.2)
non-positive, thus giving birth to the equalities q1ai “ a1

ip
t´d for all i. In particular, we obtain

pt´d “ q1 ď ppt´1qRpd´1qη , thus t´ d ď pt ´ 1qRpd ´ 1qη, which constitutes a violation to the
the definition of η.

For j P t0, 1un, c P N and any prime p define

Eppc; jq :“ 7
!

x pmod pcq : fpxq ” 0 pmod pcq , pji |xi @i
)
.

This quantity is intimately related to the geometry of f j “ 0 and we begin by using it to
approximate δpjq.

Lemma 3.3. — Let j P t0, 1un and assume that Θ ą R. Then there is some z0 ą 0, such
that for p ą z0 and each sufficiently small ǫ ą 0, we have

δpjq “ pdpR´nq`|j|1Eppd; jq `Opp´Θ`Rpd`1q`ǫq,

where the implied constant depends at most on f .

Proof. — For t ě 1, j P t0, 1un and any a P ZR we bring into play the entities

Wa,ptppj|xq :“
ÿ

x pmod ptq
pj|x

eptpa ¨ fpxqq and Gpj; ptq :“ p´tn
ÿ

*

a pmod ptq
Wa,ptppj|xq,
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where the summation
ř

*
apmod qq is over vectors a P pZ{qZqR with gcdpa, qq “ 1. We have

δpjqp´|j|1 “ lim
lÑ8

p´lpn´Rq ÿ

a pmod plq

1

pRl

ÿ

x pmod plq
pj|x

eplpa ¨ fpxqq

“ lim
lÑ8

ÿ

a pmod plq
p´ln

ÿ

x pmod plq
pj|x

eplpa ¨ fpxqq

“ lim
lÑ8

˜
lÿ

t“1

Gpj; ptq ` p´ln7tx
´

mod pl
¯

: pj|xu

¸

“ p´|j|1 ` lim
lÑ8

lÿ

t“1

Gpj; ptq,

whence

δpjq “ 1 ` p|j|1
8ÿ

t“1

Gpj; ptq. (3.3)

Observe that for each form F P Zrxs, any prime p and any fixed integer vector y there exists
an integer polynomial Fy P Zrxs of degree strictly smaller than degpF q, such that

F py ` pxq “ pdegpF qF pxq ` F pyq ` pFypxq.

Hence, if t ě d` 1, this allows us to rewrite the exponential sum Wa,ptppj|xq as
ÿ

yPpNXr1,psqn

pj|y

ÿ

hPpNXr1,pt´1sqn

eptpa ¨ fpy ` phqq

“
ÿ

yPpNXr1,psqn

pj|y

epp´ta ¨ fpyqq
ÿ

hPpNXr1,pt´1sqn

eppd´ta ¨ fphq ` p´t`1a ¨ gyphqq,

where the polynomials gyphq have degree strictly smaller than d in h. Invoking Lemma 3.2
endows us with the following bound for the inner sum over h,

Î ppt´1qpn`ǫq´pt´dqΘ,

where the implicit constant is independent of p, t,y and a. Hence, for t ą d we deduce that

Wa,ptppj|xq Î ptpn`ǫq´|j|1´pt´dqΘ,

thereby procuring the validity of

8ÿ

t“d`1

|Gpj; ptq| Î p´|j|1`dΘ
8ÿ

t“d`1

p´tpΘ´R´ǫq.

Our assumption R ă Θ shows that for each 0 ă ǫ ă pΘ ´Rq{2 the sum over t has the value

p´pd`1qpΘ´R´ǫq

1 ´ p´pΘ´R´ǫq
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and increasing the value of z0 to ensure that z
pΘ´Rq{2
0 ě 2 shows that

8ÿ

t“d`1

|Gpj; ptq| Î p´|j|1´Θ`Rpd`1q`ǫpd`1q.

To control the contribution of the terms with t ď d we note that

p´|j|1 `
dÿ

t“1

Gpj; ptq “ pdpR´nq7
!

x
´

mod pd
¯

: fpxq ” 0
´

mod pd
¯
, pj|x

)
,

thus concluding our proof.

Observe that, at least when |j|1 is relatively small, the quantity Eppd; jq regards the number
of zeros pmod pq of a variety in sufficiently many variables; thus the estimates of Birch yield
the required estimation of Eppd; jq.

Lemma 3.4. — Let j P t0, 1un and assume that Θpjq ą R is fulfilled. Then for all ǫ ą 0 and
primes p ą z0 we have

Eppd; jq “ pdpn´Rq´|j|1 `Oǫ

´
pdpn´Rq´|j|1´pΘpjq´Rq`ǫ

¯
,

with an implicit constant that is independent of p.

Proof. — We initiate our argument by slicing the counting function Eppd; jq along the vari-

ables which are divisible by p. Let I “ t1 ď i ď n : ji “ 1u and for x1 “ pxiqiPI P pZ{pdZq|I|

we define
Eppd; j; x1q :“ 7

!
xi

´
mod pd

¯
, i R I : fpxq ” 0

´
mod pd

¯)
.

We rewrite this counting function with exponential sums as follows,

Eppd; j; x1q “ pdpn´|j|1q´dR ` p´dR
dÿ

t“1

ppn´|j|1qpd´tq ÿ
*

apmod ptq

ÿ

xipmod ptq
iRI

eptpa ¨ fpxqq.

Note that the degree d part of the polynomial fpxq when viewed as a polynomial in the
variables xi, i R I, is f jpxq. We now apply [Bir62, Lem.5.4], the strength of which is unaffected
by lower degree polynomials, to obtain for any ǫ ą 0 and uniformly for all p ą z0,

ÿ

xi pmod ptq
iRI

eptpa ¨ fpxqq Îǫ p
tpn´|j|1´Θpjqq`ǫ.

We use this to estimate Eppd; j; x1q as follows,

Eppd; j; x1q ´ pdpn´|j|1´Rq Îǫ p
dpn´|j|1´Rq`ǫ

dÿ

t“1

ptpR´Θpjqq

Îǫ p
dpn´|j|1´Rq´pΘpjq´R´ǫq.

We can now evaluate Eppd; jq as
ÿ

xipmod pdq,iPI

p|xi

Eppd; j; x1q “ pdn´|j|1´Rd `Oǫ

´
pdpn´Rq´|j|1´pΘpjq´Rq`ǫ

¯
,

which concludes our proof.
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Tying Lemmas 3.3 and 3.4 together provides the succeeding estimate.

Corollary 3.5. — Assume that j P t0, 1un, mintΘ,Θpjqu ą R and that p is a prime in the
range p ą z0. Then the following holds for each ǫ ą 0 with an implied constant depending
only on f and ǫ,

δpjq “ 1 `O
´
pR´mintΘ´dR,Θpjqu`ǫ

¯
.

Utilising (3.1) to find lower bounds for Θpjq gives the following consequence of Corollary 3.5.

Corollary 3.6. — Assume that for some j P t0, 1un we have

Bpfq ą max
 

pd ´ 1qR22d´1 ` pR ` 1q|j|1, pd
2 ´ 1qR22d´1

(
.

Then there exists λ ą 0 such that for all large enough primes p ą z0 “ z0pfq, we have

δpjq “ 1 `Opp´λq,

with an implied constant depending only on f .

We can see that the bound δpjq Î 1 fails when |j|1 approaches n hence the assumption
Θpjq ą R of Corollary 3.5 is no longer applicable. Indeed, a moment’s thought reveals that

δp1, . . . , 1q “ pdRσp and that whenever hi ě ji for all 1 ď i ď n then δpjq ě δphqp|j|1´|h|1. The
bound σp Ï 1, valid with an implied constant independent of p when p is sufficiently large,
reveals that for such p we have

n´
dR

2
ă |j|1 ď n ñ δpjq Ï p

dR
2

with an implied constant independent of p. Therefore we need to provide (necessarily weaker)
bounds for the densities δpjq which are however valid through the whole range 1 ď |j|1 ď n.
The crucial import will be bounds for the exponential sums in Birch’s work with the additional
property that the dependence on the coefficients of the underlying forms is explicitly recorded.

Lemma 3.7. — Assume that Θ ą R. Then there exists a large z0 “ z0pfq such that for each
j P t0, 1un, ǫ ą 0 and prime p ą z0 the following holds with an implicit constant depending at
most on ǫ and f ,

δpjq Î pdRΘ`R´Θ`ǫ.

Proof. — We start by rewriting

Wa,ptppj|xq “ p´|j|1
ÿ

xpmod ptq
eptpa ¨ fppj1x1, . . . , p

jnxnqq

and considering fppj1x1, . . . , p
jnxnq as a system of homogeneous polynomials in the variables

x1, . . . , xn. Note that the maximum of the coefficients is bounded by C1p
d for a positive

constant C1 “ C1pfq that is independent of p. Moreover, the Birch rank of the system
fpxq “ 0 equals the Birch rank of the system fppj1x1, . . . , p

jnxnq “ 0. Alluding to the
estimate [vI17a, Lem.2.2] supplies us with the bound

Wa,ptppj|xqp|j|1 Îǫ p
dRΘ`tpn´Θ`ǫq,

which, once injected into (3.3), offers the validity of

δpjq ´ 1 Î pdRΘ
8ÿ

t“1

ptpR´Θ`ǫq.
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Enlarging z0 and 1{ǫ if needed, ensures the convergence of the sum over t to a value that is
Îz0

pR´Θ`ǫ, independently of p.

For a prime p and a vector j P pZě0qn we define

̟ppj1, . . . , pjnq :“
δpjq

σppfq
. (3.4)

The standard estimate σp “ 1 `Opp´1´ǫpfqq holds for some ǫpfq ą 0. Alluding to Lemma 3.7
supplies us with the following corollary.

Corollary 3.8. — Assume that Bpfq ą R2pd´1q2d´1 and recall the definition of Υ in (1.4).
Then the following bound holds uniformly for each j P t0, 1un and p ą z0,

̟ppjq Î pΥ.

4. Proof of Theorems 1.5 and 1.6

4.1. Preparations. — Owing to (1.3), there exists positive integers z0 “ z0pfq,m “ mpfq
such that if we let

W :“
ź

pďz0

pm,

then there exists y P pN X r1,W sqn fulfilling the following,

gcdpy1 ¨ ¨ ¨ yn,W q “ 1 (4.1)

and

p ď z0 ñ σppfpy `Wxqq ą 0. (4.2)

Define

A :“ tx P Zn : fpxq “ 0,x ” y pmod W qu. (4.3)

Let us now choose a non-singular point ζ P Vf pRq (whose existence is guaranteed by (1.3))
and we let η P p0,minitmintζi{2, p1 ´ ζiq{2uuq be arbitrary. Defining

Bη :“
!

x P Rn :
ˇ̌
ˇx ´

ζ

2|ζ|

ˇ̌
ˇ ă η

)
, (4.4)

we see that for any such η, one has Bη Ă p0, 1qn. Now we choose any smooth function
w : R Ñ Rě0 of compact support in r´η{2, η{2s and such that if |t| ď η{4 then wptq ą 0.
Letting w0 :“ suptwptq : t P Ru we have 1t0ătďBuptq ě w´1

0 wpt{B ´ ζi{p2|ζ|qq and therefore
for every x P Zn,

nź

i“1

1t0ăxiďBupxq ě w´n
0

nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙
. (4.5)
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4.2. A level of distribution result. — Let us now take the opportunity to record a level
of distribution result that will be the main input in the forthcoming sieving arguments. For

k P Nn with gcdprk,W q “ 1 and each ki being square-free let w : R Ñ Rě0 be a smooth weight
as above. We let

NwpB; kq :“
ÿ

xPA
ki|xi

nź

i“1

w

˜
xi

B
´

ζi

2|ζ|

¸
. (4.6)

Recall the definition of the matrix ǫ in (1.7). Our result will involve an error term related to
the following function, defined for m P Nn and B ě 1,

EpB; mq :“
3ÿ

i“1

B´ǫi,1|m|ǫi,2 mintmjuǫi,3 .

Furthermore, extend the function ̟ defined in (3.4) to Nn by letting for k P Nn,

̟pkq :“
ź

p|k1¨¨¨kn

̟
`
pνppk1q, . . . , pνppknq˘

and if gcdpk1 ¨ ¨ ¨ kn,W q “ 1 we define τ P pZ X r0,W qqn via xτky ” y pmod W q. Finally, we
let

Spf ,W q :“
ź

p|W
σppfpτ `W sqq

ź

p∤W

σppfq

and

Jwpf ,W q :“
1

W n

ż

RR

ż

Rn

e pγ ¨ f puqq
nź

i“1

w

ˆ
ui ´

ζi

2|ζ|

˙
du dγ.

Lemma 4.1. — Assume Bpfq ą 2d´1RpR ` 1qpd ´ 1q and that k P Nn satisfies

gcdpk1 ¨ ¨ ¨ kn,W q “ 1 and |k| ď B1{ρplogBq´1,

where B P Rě1 and the constant ρ was defined in (1.6). Then for each ǫ ą 0 we have

NwpB; kq “ Jwpf ,W qSpf ,W q
̟pkq

rk
Bn´Rd `O

ˆ
Bn`ǫ

rk
EpB; kq

˙
.

Proof. — Defining gpsq :“ fpxkpτ `W sqyq gives

NwpB; kq “
ÿ

sPZn

gpsq“0

nź

i“1

w

˜
si

B
kiW

´

˜
ζi

2|ζ|
´
τi

B
ki

¸¸
.

We shall apply Theorem 2.1 at this point; before doing so we need to verify that
ˇ̌
ˇ̌
ˇ
ζi

2|ζ|
´
τi

B
ki

ˇ̌
ˇ̌
ˇ ď 1

and that condition (2.2) is met. The former is easy to verify due to |τ | ď W Î 1 and ρ ą 1,

which implies that B{ki ě B1´1{ρplogBq Ñ `8. Regarding (2.2), the obvious equality
g6psq “ W dfpxksyq presents us with max

 
}g6}, }g}

(
Î |k|d, thus the growth condition on |k|
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in our lemma is sufficient. The last issue to be commented regards the real densities. The
real density provided by the application of Theorem 2.1 is

ż

RR

ż

Rn

epW dβ ¨ fpxksyqq
nź

i“1

w

˜
si

B
W ki

´

˜
ζi

2|ζ|
´
τi

B
ki

¸¸
ds dβ.

Note that the proof of Theorem 2.1 in fact shows that the real density can also be replaced
by its inhomogeneous version,

ż

RR

ż

Rn

epβ ¨ fpxkτ y `W xksyqq
nź

i“1

w

˜
si

B
W ki

´

˜
ζi

2|ζ|
´
τi

B
ki

¸¸
ds dβ.

For this we note that the major arc analysis initially came in its inhomogeneous form, namely
having fpxkτ y ` W xksyq in the exponential. Moreover, by shifting the center of the weight
functions, one sees that Lemma 2.15 still applies to the inhomogeneous form and then every-
thing stays exactly the same with regard to the error terms.

To continue the proof of our lemma we perform the linear change of variables si ÞÑ ui and
βi ÞÑ γi given by kipτi ` Wsiq “ Bui, B

dβi “ γi. This leads to the following expression for
the real density in our lemma,

Bn´Rd

W nrk

ż

RR

ż

Rn

e pγ ¨ f puqq
nź

i“1

w

ˆ
ui ´

ζi

2|ζ|

˙
du dγ,

which equals Jwpf ,W qrk´1Bn´Rd.

The most noteworthy property of Lemma 4.1 is related to the presence of rk´1 in the error term;
this allows to drastically improve the level of distribution in the forthcoming applications.

4.3. Using the Rosser–Iwaniec sieve. — By (4.5) we have the following whenever z
satisfies z0 ă z ă B,

ÿ

xPpNXr´B,Bsqn

fpxq“0,P ´prxqąz

1 ě w´n
0

ÿ

xPA
P ´prxqąz

nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙
.

Let us now bring into play a lower bound sieve sequence λ´
k of dimension n. Recall the

definition of θ1 in (1.5). We shall make use of the terminology in [FI10, §11.8]; in doing so
we shall call the support of λ´ by D :“ Bδ, for some constant δ P p0, θ1q. Using p1 ˚ µqplq ě
p1 ˚ λ´qplq for l “ gcdpP pz0, zq, rxq yields

ÿ

xPpNXr´B,Bsqn

fpxq“0,P ´prxqąz

1 ě w´n
0

ÿ

k|P pz0,zq
kďBδ

λ´
k

ÿ

xPA
k|rx

nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙
.

The proof of [BF94, Lem.8] can be directly adapted in the setting of arbitrary dimension,
thus providing the equality of the inner sum over x to

µpkq
ÿ

kPNn

p|rkôp|k

µpkqNwpB; kq,

where here and throughout the rest of the paper we will use the notation

µpkq :“ µpk1q ¨ ¨ ¨ µpknq.
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A moment’s thought reveals that the succeeding function is multiplicative,

gpkq :“ 1pk,W q“1pkqµpkq
ÿ

kPNn

p|rkôp|k

µpkq̟pkqrk´1, (4.7)

a notation which allows to assort our conclusions so far in the following form,

ÿ

xPpNXr´B,Bsqn

fpxq“0,P ´prxqąz

1 Ï Bn´Rd
ÿ

k|P pz0,zq
kďBδ

λ´
k gpkq `O

˜
Bn`ǫ

ÿ

kďBδ

|µpkq|
ÿ

kPNn

p|rkôp|k

|µpkq|

rk
EpB; kq

¸
.

In bounding the error term we will be confronted with sums of the form

bk :“ |µpkq|
ÿ

kPNn

p|rkôp|k

|µpkq|

rk
|k|α1 mintkiu

α2 ,

where αi ě 0. Each k making a contribution to bk satisfies |k| ď k ď rk, therefore

bk Î |µpkq|kα1`α2´1`ǫ.

We deduce that for each 1 ď j ď 3, the quantity

B´ǫj,1

ÿ

kďBδ

kǫj,2`ǫj,3´1 Î B´ǫj,1`δpǫj,2`ǫj,3q

becomes Î B´Rd´ǫ1
for some ǫ1 ą 0 due to δ ă θ1. Therefore, we can see that for each

δ P p0, θ1q and ǫ ą 0 there exists η “ ηpǫ, δq ą 0 such that

Bn`ǫ
ÿ

kďBδ

|µpkq|
ÿ

kPNn

p|rkôp|k

|µpkq|

rk
EpB; kq Î Bn´Rd´η.

This leads to the conclusion that subject to the assertion
ÿ

k|P pz0,zq
kďBδ

λ´
k gpkq Ï plogBq´n (4.8)

we can establish Theorem 1.5 due to
ÿ

xPpNXr´B,Bsqn

fpxq“0,P ´prxqąz

1 Ï
Bn´Rd

plogBqn
.

To prove (4.8) we shall use [FI10, Th.11.12]. To this end, for any polynomials hi P Zrx1, . . . , xns
we abbreviate

σppp|hpxqq :“ lim
lÑ`8

p´pn´Rql7

"
1 ď x ď pl : pl|fpxq, p|hpxq

*
.

Lemma 4.2. — For each prime p ą z0 we have gppqσp “ σppp|x1 ¨ ¨ ¨ xnq.

Proof. — The definition (4.7) furnishes

gppqσp “
nÿ

m“1

p´1qm´1

pm

ÿ

jPt0,1un

|j|1“m

δpjq,



SARNAK’S SATURATION PROBLEM FOR COMPLETE INTERSECTIONS 27

thus, letting Njpp
lq :“ 7

 
1 ď x1, . . . , xl ď pl : fpppjixiqq ” 0

`
mod pl

˘ (
, we conclude that

gppq lim
lÑ`8

N0pplq

ppn´Rql “ lim
lÑ`8

nÿ

m“1

p´1qm´1

pm

ÿ

jPt0,1un

|j|1“m

Njpp
lq

ppn´Rql . (4.9)

Obviously, if ji “ 1 and yi ” xi

`
mod pl´1

˘
then pjiyi ” pjixi

`
mod pl

˘
. Therefore we may

split the interval r1, pls into p subintervals of length pl´1 to obtain

Njpp
lq “ p|j|17

!
ji “ 1 ñ 1 ď xi ď pl´1, ji “ 0 ñ 1 ď xi ď pl : fpppjixiqq ” 0

´
mod pl

¯)
.

One can see that this entity equals 7
!

x ď pl : fpxq ” 0
`
mod pl

˘
, ji “ 1 ñ p|xi

)
, hence,

combining this with (4.9) yields the desired result.

Lemma 4.3. — There exists ǫ0 P p0, 1q such that one has

gppq “
n

p
`Opp´1´ǫ0q.

Proof. — For a prime p and t P N let Mpptq :“ 7t1 ď x ď pt : pt|fpxq, p ∤ x1 ¨ . . . ¨ xnu. Then
Lemmas 11-12 in [CM14] imply that there exists a positive ǫ0 ą 0 such that

ˆ
1 ´

1

p

˙´n

lim
tÑ8

p´tpn´RqMpptq “ 1 `Opp´1´ǫ0q.

We observe that limtÑ8 p´tpn´RqMpptq “ σp ´ σppp|x1 . . . xnq, thus Lemma 4.2 reveals that

gppq “
σppp|x1 . . . xnq

σp

“ 1 ´ σ´1
p lim

tÑ8
p´tpn´RqMpptq

“ 1 ´

ˆ
1 ´

1

p

˙n 1

σp
`Opσ´1

p p´1´ǫ0q.

The work of Birch [Bir62] establishes the existence of a positive ǫ1 such that σp “ 1 `
Opp´1´ǫ1q. This is sufficient for our lemma.

Enlarging z0 if necessary, ensures that for all primes p we have

0 ď gppq ă 1 and gppq ď
n

p
`Opp´1´ǫ0q.

This means that one can take κ “ n in [FI10, Eq.(11.129)], hence our sieve problem has di-
mension n. By [DH08, Th.17.2,Prop.17.3], the sieving limit β fulfils β ď 3.75n, thus [FI10,
Th.11.12], in combination with Lemma 4.3, guarantees the veracity of (4.8) under the condi-
tion

logD

log z
ą 3.75n.

This concludes the proof of Theorem 1.5.



28 D. SCHINDLER & E. SOFOS

4.4. Using the weighted sieve. — In the last section we saw that sieving out small prime
divisors of x1 ¨ ¨ ¨ xn for integer zeros of fpxq “ 0 gives rise to a sieve of dimension n. When the
dimension of the sieve increases then the weighted sieve gives better results for the number of
prime divisors in our sequence. We would like to use the weighted sieve in the form given in
the Cambridge Tract of Diamond and Halberstam [DH08, Th.11.1], however we shall need a
more flexible version of their work; one that allows the use of smooth weights. This will follow
from a generalisation of the weighted sieve that will be given in §4.4.1. This generalisation
permits the use of any suitable non-negative function rather than just a smooth weight as
well as sieving in multisets.

4.4.1. The weighted sieve with smooth weights. — We assume that M is any set equipped
with two functions π : M Ñ N, h : M Ñ R such that

hpM q Ă r0, 1s, h ‰ 0, 7M ă 8. (4.10)

For convenience of presentation we shall prefer the notation m “ πpmq. We also assume that
there exists a set of primes P, a constant X P Rą0 and a multiplicative function ω : N Ñ Rě0

such that, when letting

rM ,hpkq :“
ÿ

mPM
b|m

hpmq ´
ωpbq

b
X, pb P Nq,

there exist constants τ P p0, 1s, κ P N, A1 ě 1 and A2 ě 1 such that
ÿ

1ďbďXτ plog Xq´A1

µpbq24νpbq|rM ,hpbq| ď A2
X

plogXqκ`1
, (4.11)

where the function ω enjoys the following properties for some constants κ ě 1, A ą 1,

0 ď ωppq ă p pp P Pq, ωppq “ 0 pp R Pq (4.12)

ź

w1ďpăw

´
1 ´

ωppq

p

¯´1
ď

´ logw

logw1

¯κ´
1 `

A

logw1

¯
, 2 ď w1 ă w. (4.13)

We furthermore demand that
m P M , p|m ñ p P P, (4.14)

and that that there exists a constant µ0 ą 0 such that

maxt|m| : m P M u ď Xτµ0 . (4.15)

Lastly, we shall say that the property Qpu, vq holds for two real positive numbers u ă v if

Qpu, vq :
ÿ

X1{v ďpďX1{u

pPP

ÿ

mPM
p2|m

hpmq Î
X

logX

ź

pPP
păX1{v

´
1 ´

ωppq

p

¯
. (4.16)

Before stating the main theorem in this section recall the definition of f “ fκ, F “ Fκ

and βκ in [DH08, Th.6.1] through certain differential equations. The inequality βκ ă νκ is
proved for κ ě 200 in [DH97, Th.2]; here νκ is the Ankeni-Onishi sieving limit[AO65] that
satisfies νκ „ cκ as κ Ñ `8, where

c “
2

e log 2
exp

˜ż 2

0

eu ´ 1

u
du

¸
“ 2.445 . . . .

In particular there exists an absolute positive constant c0 such that βκ ď c0κ for all κ ě 1.
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Theorem 4.4 (Diamond–Halberstam–Richert). — Assume that κ ě 1,M ,X, ω, µ0 are
as above, that each one of the conditions (4.10)-(4.15) holds, that r is a natural number
satisfying r ą Npu, v;κ, µ0, τq, where

Npu, v;κ, µ0, τq :“ τµ0u´ 1 `
κ

fκpτvq

ż v

u

Fκ

´
v
´
τ ´

1

s

¯¯´
1 ´

u

s

¯ds

s

and u, v satisfy Qpu,vq, τv ą βκ as well as 1{τ ă u ă v. Then we have

7
!
m P M , P´pmq ě X1{v,Ωpmq ď r

)
Ï X

ź

pPP
păX1{v

´
1 ´

ωppq

p

¯
.

Proof. — The proof is merely a careful recast of the proof of Theorem 11.1 in [DH08, §11].
In place of the function defined in [DH08, Eq.(11.6)] we shall use the following function that
combines the classical weights related to the weighted sieve in addition to the new weight h,

WhpM ,P, z, y, λq :“
ÿ

mPM
gcdpm,P pzqq“1

hpmq

#
λ´

ÿ

pPP,p|m
zďpăy

´
1 ´

log p

log y

¯+
,

where P pzq :“
ś

tp : p P P, p ă zu. A statement analogous to [DH08, Eq.(11.9)] can be

verified once the entities SpA ,P,X1{vq and SpAp,P,X1{vq are replaced by
ÿ

mPM
gcdpm,P pX1{vqq“1

hpmq and
ÿ

mPM ,p|m
gcdpm,P pX1{vqq“1

hpmq

respectively. The rest of the arguments in [DH08, §11.2] are carried automatically to our
setting since, once the level of distribution result (4.11) is applied, all information regarding M
and h is absorbed into X. The only point of departure is the use of various sieve estimates from
previous chapters of the book. These sieve estimates boil down to the use of the Fundamental
lemma of sieve theory and the Selberg sieve, both of which can be adapted to our setting. This
is due to the non-negativity of the function h, which allows various combinatorial inequalities
to be adapted once multiplied by h. One example of this is in the case of an upper bound
sieve, say λ`: opening up the convolution in the right side of p1 ˚ µq ď p1 ˚ λ`q gives

ÿ

mPM
gcdpm,P pzqq“1

hpmq ď
ÿ

k|P pzq
λ`

k

ÿ

mPM
k|m

hpmq,

and one can now use (4.11) to absorb M and h in X for the rest of the argument.
For the proof of the present theorem it remains to adapt the arguments in [DH08, §11.3].

First, the contribution towards
ř

m hpmq of thosem P M such that m is divisible by the square

of a prime p P P in the range X1{v ď p ď X1{u can be safely ignored due to condition (4.16).
An inspection of [DH08, §11] reveals that condition Q0 in [DH08, Eq.(11.2)] is used in
the proof of [DH08, Th.11.1] only to deal with this particular sum over primes in P X
rX1{v ,X1{us. We are thus free to focus our attention exclusively on the contribution of the
elements of the set

M 1 :“
 
m1 P M : there is no prime p P P X rX1{v,X1{us such that p2 | m1(.
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The last inequality in [DH08, p.g.140] becomes

ÿ

X1{vďpăX1{u

pPP,p|m1

´
1 ´

u log p

logX

¯
ě Ωpm1q ´

u log |m1|
logX

,

which, when multiplied by hpm1q, gives, as in [DH08, p.g.141],

WhpM 1,P, z, y, λq ď pr ` 1q
ÿ

m1PM 1,Ωpm1qďr

gcdpm1,P pX1{vqq“1

hpm1q

for the choice of λ and r made in [DH08, p.g.141]. The property hpM q Ă r0, 1s shows that

7tm P M : P´pmq ě X1{v,Ωpmq ď ru ě 7tm1 P M 1 : P´pm1q ě X1{v,Ωpm1q ď ru

ě
ÿ

m1PM ,Ωpm1qďr

gcdpm1,P pX1{vqq“1

hpm1q ě
1

r ` 1
WhpM 1,P, z, y, λq,

which allows the rest of the proof of [DH08, Th.11.1] to be adapted to our case. Finally,
the choice of the constants v and r given in our theorem is borrowed from the inequalities
succeeding [DH08, Eq.(11.22)].

Remark 4.5. — The setting of Theorem 4.4 includes that of [DH08, Th.1.1]; indeed, one
can choose pM , π, hq “ pA , id, 1q.

Remark 4.6. — In most cases it is easy to verify Qpu, vq for all u, v ą 0, however this is not
the case for the problem of prime factors of x1 ¨ ¨ ¨ xn for integer solutions x “ px1, . . . , xnq of
general Diophantine equations, since, as explained in §3, quite often a prime could divide two
coordinates of x.

Remark 4.7. — A table of estimates for βκ for 1 ď κ ď 10 is given in [DH08, p.g.227].
Furthermore, [DH08, Eq.(11.21)] contains estimates for r that are slightly weaker but simpler
than that of [DH08, Th.11.1]. For example, the choice ξ “ βκ in [DH08, Eq.(11.21)] shows

that, as long as Q
`

2βκ´1
τβκ

, 2βκ´1
τ

˘
holds, then the conclusion of Theorem 4.4 remains valid

with v “ p2βκ ´ 1q{τ and for all natural numbers r satisfying

r ě µ0 ´ 1 ` pµ0 ´ κqp1 ´ 1{βκq ` pκ ` 1q log βκ. (4.17)

In fact [DH08, Eq.(11.21)] with ξ “ βκ shows that if Qpu, vq holds for some u ą 1{τ and any
v ą u, then letting

v1 :“
βκ ´ 1

τ ´ 1{u

we deduce that the conclusion of Theorem 4.4 still holds with any r satisfying

r ě τµ0u ´ 1 `
´
κ `

u

v1βκ

¯
log

v1

u
´ κ

´
1 ´

u

v1

¯
. (4.18)

To prove Theorem 1.6 we take

M :“
!

x P Nn : fpxq “ 0,x ” y pmod W q , |x| ď B
)
, πpxq :“ rx,
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and we let

hpxq :“
nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙
.

Then for P being the set of all primes p ą z0, g as in (4.7), θ1 as in (1.5) and any 0 ă ǫ ă θ1

we can verify all conditions (4.11)-(4.15) with

X :“ Jwpf ,W qSpf ,W qBn´Rd, ωpbq :“ bgpbq, κ :“ n, τ :“ θ1 ´ ǫ, µ0 “
n

n´Rd

1 ` ǫ

θ1 ´ ǫ

with an argument that is identical to that in §4.3. It remains to check condition Qpu, vq and
for this we note that in our setting, the sum in (4.16) is at most

ÿ

X1{văpďX1{u

ÿ

kPNn

rk“p2

ÿ

xPA
ki|xi

nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙
.

Invoking Lemma 4.1 we see that, if u ą 2pn´Rdqρ, where ρ is defined in (1.6), this is

Î Bn´Rd

˜
ÿ

X1{vďpďX1{u

p´2
ÿ

kPNn

rk“p2

̟pkq

¸
`Bn`ǫ

˜
ÿ

X1{văpďX1{u

p´2
ÿ

kPNn

rk“p2

EpB; kq

¸
.

Assuming maxtpd2 ´1qR22d´1, pd´1qR22d´1 `2pR`1qu ă Bpfq, we obtain via Corollary 3.6
that the first sum over k above is Î 1, thus, when v ą 0, the first term contributes

Î Bn´Rd´ pn´Rdq
v Î

Bn´Rd

plogBqn
.

It remains to verify that there exists ǫ1 ą 0 such that
ÿ

X1{văpďX1{u

p´2
ÿ

kPNn

rk“p2

EpB; kq Î B´ǫ1´Rd. (4.19)

For this we note that each ǫi,2 is at least 1
2 owing to K ě maxtRd,R2pd ´ 1qu and K ě 1.

Thus the error term above becomes

Î
3ÿ

i“1

B´ǫi,1

ÿ

X1{văpďX1{u

p´2`2ǫi,2 Î
3ÿ

i“1

B´ǫi,1` pn´Rdq
u

p2ǫi,2´1q.

Therefore, if

u ą max

#
pn´Rdqp2ǫi,2 ´ 1q

ǫi,1 ´Rd
: 1 ď i ď 3

+

then (4.19) holds. Now define u0 :“ p1 ` ǫq max
 
u1, 1{pθ1 ´ ǫq, 2pn ´Rdqρ

(
, where

u1 :“ max

#
pn´Rdqp2ǫi,2 ´ 1q

ǫi,1 ´Rd
: 1 ď i ď 3

+
.

Then applying (4.18) with u “ u0 and v1 :“ pncn ´ 1q{pθ1 ´ ǫ ´ 1{u0q, allows to take

r ě
n

n´Rd
p1 ` ǫqu0 ´ 1 ` n

´
1 `

u0

v1 cn

¯
log

v1

u0
´ n

´
1 ´

u0

v1

¯
,
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where cn :“ βn{n satisfies limnÑ`8 cn “ 2.44 . . .. Letting ǫ ą 0 be arbitrarily close to zero
concludes the proof of the lower bound claimed in Theorem 1.6. This is because the quantities
u2, pu, pv introduced in (1.8) and (1.9) are such that for fixed f , n, d,R we have

lim
ǫÑ0

pu1, u0, vq “ pu2, pu, pvq.

To complete the proof of Theorem 1.6 it remains to verify the estimates regarding pv and
r0, where r0 is defined in (1.10). It is easy to see that u2{pn´Rdq is a function of K that is
bounded away from 0 and `8, while a similar remark applies to ρ and θ1. This implies that
pu Îd,R n and noting that pu ă pv, one has

r0 Îd,R pu ` n log
pv
pu Îd,R np1 ` log

pv
puq,

where the implied constant is independent of K and n. The identity ncn ´1 “ τpv´pv{pu shows
that

pv{pu Î n` pv Î n`
n

θ1 ´ 1{pu Î n,

therefore r0 “ Od,Rpn log nq, with an implied constant depending at most on d and R.

5. Multidimensional vector sieve

The next lemma constitutes a generalisation of the vector sieve of Brüdern and Fou-
vry [BF94] to arbitrarily many variables.

Lemma 5.1 (Multidimensional vector sieve). — Let n P N and assume that we are
given 2 sequences λ´

i , λ
`
i , pi “ 1, . . . , nq such that for each m P N and 1 ď i ď n we have

p1 ˚ λ´
i qpmq ď p1 ˚ µqpmq ď p1 ˚ λ`

i qpmq. (5.1)

Then the following inequality holds for each m P Nn,
nź

i“1

p1 ˚ µqpmiq ě
nÿ

i“1

p1 ˚ λ´
i qpmiq

ź

1ďjďn
j‰i

p1 ˚ λ`
j qpmjq ´ pn´ 1q

nź

i“1

p1 ˚ λ`
i qpmiq

Proof. — In light of (5.1) it is sufficient to verify
nź

i“1

p1 ˚ µqpmiq ě ´pn´ 1q
nź

i“1

p1 ˚ λ`
i qpmiq `

nÿ

i“1

p1 ˚ µqpmiq
ź

1ďjďn
j‰i

p1 ˚ λ`
j qpmjq. (5.2)

If mi “ 1 for all i “ 1, . . . , n then p1 ˚ λ`
i qpmiq ě 1, thus the entities xi :“ 1{p1 ˚ λ`

i qpmiq
fulfill 0 ă xi ď 1. The inequality (5.2) becomes x1 ¨ ¨ ¨ xn ě ´n` 1 ` px1 ` ¨ ¨ ¨ ` xnq. Letting
Ai “ 1´xi the last inequality becomes p1´A1q ¨ ¨ ¨ p1´Anq ě 1´pA1 `¨ ¨ ¨`Anq, which is the
Weierstrass product inequality, see [KN70, Eq.(1)]. In the remaining case where there exists
i with mi ‰ 1 we can assume that p1 ˚ λ`

i qpmiq ‰ 0 for each such i, for otherwise both sides
of (5.2) vanish. We may now introduce for each 1 ď i ď n the variables xi :“ 1{p1 ˚ λ`

i qpmiq;
then (5.2) becomes

n´ 1 ě
ÿ

1ďiďn
mi“1

xi.

The proof is concluded upon observing that the condition mi “ 1 implies xi ď 1.
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Our aim now becomes to prove a version of the Fundamental Lemma of sieve theory in
the context of prime divisors of coordinates of integer zeros in varieties. The exact form is
given in Proposition 5.5 and the rest of this section is devoted to its proof. The quantity
under consideration is the weighted density of vectors x P A with |x| ď B such that rx does
not have prime divisors in the range p ď z1 for any z1 with z0 ă z1 ď B. We prefer to keep
the choice of z1 unspecified in this section and we shall only need the value z1 “ plogBqA for
A ą 0 independent of B in §6.

For k P Nn and y1, y2 P R with y1 ă y2 we define

µpkq :“
nź

i“1

µpkiq and P py1, y2q :“
ź

y1ăpďy2

p.

For a smooth function w : R Ñ Rě0 that is as in subsection 4.1, any z1 ą z0 and any l P Nn

we let

GpB, z1; lq :“
ÿ

xPA, li|xi,
p|x1¨¨¨xnñpąz1

nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙
. (5.3)

We are interested in estimating GpB, z1; lq whenever l P Nn fulfills li|P pz1, zq, where z is any
constant satisfying z ą z1. This is analogous to [BF94, Prop.p.g.83] and we shall also begin
by proving the upper bound. We shall use the upper and lower bound sieves, λ` and λ´, as
defined at the bottom of [BF94, p.g.84]. Assume that λ` is an upper bound sieve supported
in r1,D1s and note that the condition x ” y pmod W q ensures that p ∤ rx for all p ď z0.
Recalling definition (4.6) we see that whenever li|P pz1, zq then

GpB, z1; lq ď
ÿ

kPNn

ki|P pz0,z1q

NwpB; pk1l1, . . . , knlnqq
nź

i“1

λ`
ki
.

Note that all k and l above must satisfy

gcdprk,rlq “ 1 “ gcd
´
rk rl,

ź

pďz0

p
¯
, µpkiq

2 “ 1 “ µpliq
2.

Recall definition (1.6) and assume that

|l| ď
B1{ρ

D1 logB
. (5.4)

Then Lemma 4.1 shows that if K ą RpR ` 1qpd ´ 1q and (5.4) holds then

NwpB; pk1l1, . . . , knlnqq “
̟pkq

rk
Xl `O

´Bn`ǫ

rl
EpB; pk1l1, . . . , knlnqq

rk

¯
,

where

Xl :“ SpfqJwpf ,W q
̟plq

rl
Bn´Rd.

We may now set

ΣpD1, z1q “
ÿ

kPNn

ki|P pz0,z1q

̟pkq

rk

nź

i“1

λ`
ki
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to obtain

GpB, z1; lq ď ΣpD1, z1qXl `O

˜
Bn`ǫ

rl
ÿ

|k|ďD1

p|rkñz0ăpďz1

µpkq2

rk
EpB; pk1l1, . . . , knlnqq

¸
. (5.5)

5.1. Bounds for ̟.— One has to be careful when adapting the approach [BF94] to
homogeneous equations. The reason is that in the case of Lagrange’s equation there exists a
multiplicative function r̟ satisfying

̟pmq ď
nź

i“1

r̟ pmiq

and such that for all large primes p one has r̟ ppq ď 2, see [BF94, Lem.12,part(iii)]. It is easy
to see that bounds of this quality fail to hold rather spectacularly for systems of forms f “ 0
as in Theorem 1.1. Indeed,

̟pp, . . . , pq “ σ´1
p lim

lÑ8
p´lpn´Rq7

!
x

´
mod pl

¯
: fppxq ” 0

´
mod pl

¯)

“ pRdσ´1
p lim

lÑ8
p´pl´dqpn´Rq7

!
x

´
mod pl´d

¯
: fpxq ” 0

´
mod pl´d

¯)

“ pRd.

To confront this issue our first task is to control the contribution towards ΣpD1, z1q of integer
vectors k such that there exists i ă j with kij :“ gcdpki, kjq attaining a large value. Define

Σ˚pD1, z1q “
ÿ

kPNn

ki|P pz0,z1q
max kijď∆

̟pkq

rk

nź

i“1

λ`
ki

and recall the definition of Υ in (1.4).

Lemma 5.2. — Assuming max
 

pd ´ 1qR22d´1 ` pR ` 1qpΥ ` 1q, pd2 ´ 1qR22d´1
(

ă Bpfq,
one has

ΣpD1, z1q ´ Σ˚pD1, z1q Î ∆´1`ǫplog z1qn.

Proof. — The quantity under investigation is Î
ř

1ďl1ăl2ďn E pl1, l2q, where

E pl1, l2q :“
ÿ

δą∆

µpδq2
ÿ

ki|P pz0,z1q
δ|kl1

,δ|kl2

̟pkq

rk
.

We may now use the multiplicative properties of ̟ to deduce that

E pl1, l2q Î
ÿ

δą∆

˜
ź

z0ăpďz1

p|δ

ÿ

jPt0,1un

jl1
“jl2

“1

̟ppjq

p|j|1

¸˜
ź

z0ăpďz1

p∤δ

ÿ

jPt0,1un

̟ppjq

p|j|1

¸
.

Fix η P p0, 1{4q and let us denote s0 :“ Υ ` 1 ` η. By Corollary 3.8 we obtain

ÿ

|j|1ěs0

̟ppjq

p|j|1 Î pΥ
ÿ

s0ďsďn

ˆ
n

s

˙
p´s Î p´1´η.
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The assumptions of our lemma allow us to apply Corollary 3.6 whenever |j|1 ď s0. Thus it
supplies us with some λ ą 0 such that ̟ppjq “ 1 `Opp´λq, which yields

ÿ

jPt0,1un

̟ppjq

p|j|1 “ 1 `
n

p
`Opp´1´ǫq and

ÿ

jPt0,1un

jl1
“jl2

“1

̟ppjq

p|j|1 “ p´2 `Opp´2´ǫq,

for some ǫ ą 0. Assorting all related estimates we obtain for square-free δ that

ź

z0ăpďz1

p|δ

ÿ

jPt0,1un

jl1
“jl2

“1

̟ppjq

p|j|1 Î δ´2`ǫ,

and
ź

z0ăpďz1

p∤δ

ÿ

jPt0,1un

̟ppjq

p|j|1 Î
ź

z0ăpďz1

ˆ
1 `

n

p
`Opp´1´ǫq

˙
Î plog z1qn.

These estimates prove that E pl1, l2q Î plog z1qn
ř

δą∆ δ´2`ǫ, which is sufficient.

For any square-free integer m and index 1 ď i ď n define

̟ipmq :“ ̟p1, . . . , 1,m, 1, . . . , 1q,

where m appears in the i-th position. For ǫ ą 0 define the multiplicative function

φǫpmq :“
ź

p|m
pąz0

p1 ` p´ǫq.

Note that if assumptions of Corollary 3.6 hold for |j|1 “ 1 then there exists ǫ “ ǫpfq ą 0 such
that σpppei |xq “ 1

p
`Opp´1´ǫq. Enlarging z0 and replacing ǫ by a smaller positive constant if

needed yields the following result.

Lemma 5.3. — Assume that Bpfq ą max
 
R22d´1pd2 ´ 1q, R22d´1pd´ 1q ` pR` 1q

(
. Then

there exists ǫ “ ǫpfq ą 0 such that for all square-free integers m,

max
1ďiďn

̟ipmq ď φǫpmq.

Observe that for all d P Nn with µpdq2 “ 1 the expression

̟pdqśn
i“1 ̟ipdiq

is a function of the vector pgcdpdi, djqq1ďiăjďn. To see this, it is enough to consider the case

when rd is divisible by a single prime, say p. We need to show that if h,k P t0, 1un and

i ‰ j ñ minpki, kjq “ minphi, hjq (5.6)

then
̟ppkqśn

i“1̟ippkiq
“

̟pphqśn
i“1 ̟ipphiq

. (5.7)

Obviously this holds in the case that k “ h and we can therefore assume that k ‰ h. A little
thought reveals that in this case (5.6) guarantees that there exist l,m, i ‰ j such that pk,hq
equals one of the following,

pel,0q, p0,emq, pei,ejq.
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For any such instance we can verify that both sides of (5.7) equal 1, hence our claim holds.

We have proved that there exists a function pg : Npn
2q Ñ Rě0 such that

µpdq2 “ 1 ñ ̟pdq “ pgppdi,jqq
nź

i“1

̟ipdiq.

The function ̟ipdiq keeps track of the probability that di|xi and the function pgppdi,jqq takes
values close to 1 when the events di|xi are independent (in a suitable sense) but can obtain
larger values in general.

Defining

Sppui,jqq :“
ÿ

kPNn

ki|P pz0,z1q
pki,kjq“ui,j

nź

i“1

λ`
ki
̟ipkiq

ki

enables us to write
Σ˚pD1, z1q “

ÿ

ui,jď∆
1ďiăjďn

pgppui,jqqSppui,jqq. (5.8)

We may now use the expression pµ˚1qppki{ui,j, kj{ui,jqq to detect the condition pki, kjq “ ui,j,
thus inferring

Sppui,jqq “
ÿ

pli,jqPNpn
2q

1ďi‰jďn
ui,j li,j |P pz0,z1q

µplq
nź

i“1

¨
˚̊
˚̊
˝

ÿ

kPN
k|P pz0,z1q

ξi|k

λ`
k ̟ipkq

k

˛
‹‹‹‹‚
, (5.9)

where

ξi :“ rad

¨
˚̊
˝

ź

1ďjďn
j‰i

ui,jli,j

˛
‹‹‚

and rad stands for the radical of a positive integer. Under the assumptions of Lemma 5.3 we
thus obtain the following estimate for all square-free integers δ,ˇ̌

ˇ̌
ˇ

ÿ

kPN
k|P pz0,z1q

δ|k

λ`
k ̟ipkq

k

ˇ̌
ˇ̌
ˇ ď

φǫpδq

δ

ź

z0ăpďz1

p1 ` p´1 ` p´1´ǫq Î
φǫpδq

δ
log z1.

Note that the succeeding inequality holds for all divisors m1 of m,

φǫpmq

m
ď
φǫpm

1q
m1 .

Letting ξ˚
i be the radical of

ś
j‰i li,j and using the last inequalities with δ “ m “ ξi and

m1 “ ξ˚
i allows us to truncate the sum in (5.9) to the range li,j ď ∆B1, where B1 ą 0 is a

constant that will be chosen in due course. The contribution of l1,2 ą ∆B1 is

Î plog z1qn
ÿ

li,jďD1,li,j |P pz0,z1q
l1,2ą∆B1

µplq2

Ăξ˚

nź

i“1

φǫpξ
˚
i q,
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where D1 is the support of λ`.
We may now use the inequality

φǫpξ
˚
i q ď

ź

j‰i

φǫpli,jq

to obtain
nź

i“1

φǫpξ
˚
i q ď

ź

1ďi‰jďn

φǫpli,jq2.

Hence the last sum is

ď
ÿ

l1,2ą∆B1

µplq2

ξ˚
1 ¨ ¨ ¨ ξn̊

ź

1ďi‰jďn

φǫpli,jq2.

This is really a summation over the variables l1,2, . . . , ln´1,n because each expression ξ˚
i is a

function of some of these variables. We first perform a summation over ln´1,n. Recalling that

ξ˚
i “ rad

`ź

j‰i

li,j
˘

we see that only ξ˚
n´1 and ξ˚

n depend on ln´1,n, since they satisfy

ξ˚
n “ rln´1,n, ξ

˚˚
n s, ξ˚

n´1 “ rln´1,n, ξ
˚˚
n´1s,

where both ξ˚˚
n´1 and ξ˚˚

n are defined as ξ˚
n´1 and ξ˚

n but with the variable ln´1,n missing, i.e.

ξ˚˚
n´1 :“ rad

` ź

j‰n´1,n

ln´1,j

˘
, ξ˚˚

n :“ rad
` ź

j‰n´1,n

ln,j

˘
.

Hence the sum over ln´1,n is

ÿ

ln´1,n

µpln´1,nq2φǫpln´1,nq2

rln´1,n, ξ
˚˚
n´1srln´1,n, ξ˚˚

n s
,

which equals

1

ξ˚˚
n´1ξ

˚˚
n

ÿ

ln´1,n

µpln´1,nq2φǫpln´1,nq2

l2n´1,n

gcdpξ˚˚
n´1, ln´1,nqgcdpξ˚˚

n , ln´1,nq.

The last sum is

ď
ź

p|ξ˚˚
n´1ξ˚˚

n

p2 ` 2p´ǫ ` p´2ǫq
ź

p

p1 ` p´2p1 ` p´ǫq2q Î τpξ˚˚
n´1qAτpξ˚˚

n qA,

where A “ 3. Of course we can bound any ξ˚˚
k by the product of all available variables except

ln´1,n, i.e.
ś

ti,ju‰tn´1,nu li,j, thus we obtain

Î
1

ξ˚˚
n´1ξ

˚˚
n

ź

ti,ju‰tn´1,nu
τpli,jq2A.

The process above is the first step of a finite induction that eliminates all variables li,j ,
beginning from ln´1,n and terminating with l1,2. At each step expressions of the form

ÿ

l1,2ą∆B1

µplq2

ξ1
1 ¨ ¨ ¨ ξ1

n

ź 5

1ďi‰jďn

τpli,jqA
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are bounded by

Î
ÿ

l1,2ą∆B1

µplq2

ξ
2

1 ¨ ¨ ¨ ξ2

n

ź 55

1ďi‰jďn

τpli,jq100A,

where the notation ξ1,
ś 5 means that some of the variables li,j have been eliminated, the

notation ξ
2
,
ś 55 that one further variable has been eliminated and the constant A1 depends

at most on A and f . At the last step of the induction we will arrive at the expression

ÿ

l1,2ą∆B1

µpl1,2q2

l21,2

τpl1,2qC ,

where C “ Cpfq. Obviously this is Î ∆´ B1
2 . The arguments above show that

Sppui,jqq “
ÿ

pli,jqPNpn
2q

li,jď∆B1

ui,j li,j |P pz0,z1q

µplq
nź

i“1

¨
˚̊
˚̊
˝

ÿ

kPN
k|P pz0,z1q

ξi|k

λ`
k ̟ipkq

k

˛
‹‹‹‹‚

`O
´

plog z1qn∆´ B1
2

¯
, (5.10)

where the implied constant is independent of the ui,j.
We now aim to use a consequence of the linear case of the Rosser–Iwaniec sieve (in fact the

linear case was settled first by Jurkat and Richert [JR65]) that is given in [BF94, Lem.11].
We shall find it convenient to use the error term appearing in [Iwa80, Th.1], this will lead to

replace the term e
?

L´splogDq´1{3 in [BF94, Lem.10] and [BF94, Lem.11] by

e
?

LQpsqplogDq´1{3

where, as stated in [Iwa80, Eq.(1.6)], the function Qpsq satisfies

Qpsq ă expt´s log s` s log log 3s`Opsqu, s ě 3.

The constant L in our case will depend at most on the coefficients of f , which is considered con-
stant throughout our paper-thus we can assume that the terms above are Îf s

´splogDq´1{3,
with an implied constant depending at most on f . Let us choose the set of primes

P :“ tp prime : p ą z0u.

Moreover, we observe that ̟ipkq is a multiplicative function for all 1 ď i ď n. We define the
modified multiplicative function Ă̟ipkq by

r̟ ippq :“

"
̟ippq if p ą z0

0 if p ď z0.

So far we can only assume that ̟ippq ď 1 ` p´ǫ, whereas in [BF94] they work with the
stronger statement that ̟ppq ď 1 ` 1{pp ´ 1q. However, we still get the bound present in
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[BF94, Eq.(3.10)] for a uniform L. For this we observe that

log
ź

w1ăpďw2

ˆ
1 ´

r̟ ippq

p

˙´1

ď
ÿ

w1ăpďw2

log

ˆ
1 ´

1

p
´

C

p1`ǫ

˙´1

ď
ÿ

w1ăpďw2

ˆ
1

p
`

C

p1`ǫ

˙
`Opw´1

1 q

ď log logw2 ´ log logw1 `O

ˆ
1

logw1

˙
.

by Mertens’ theorem. This leads to the bound

ź

w1ăpďw2

ˆ
1 ´

r̟ ippq

p

˙´1

ď

ˆ
logw2

logw1

˙ˆ
1 `

L

logw1

˙
,

for a uniform constant L “ Lpfq. We can now directly apply [BF94, Lem.11] to the inner
sums appearing in (5.10). Introduce the constant s0 through s0 :“ plogD1q{plog z1q, which
we demand that it fullfills s0 ě 3, and set

Uipz1, ξiq :“ µpξiq
ź

p|ξi
pąz0

̟ippq

p´̟ippq

ź

z0ăpďz1

ˆ
1 ´

̟ppq

p

˙
.

This provides us with

ÿ

kPN
k|P pz0,z1q

ξi|k

λ`
k ̟ipkq

k
“ Uipz1, ξiq `O

`
τpξiqs

´s0

0

˘
.

Owing to the apparent bounds 0 ď ̟ippq ă p{2, valid for p ą z0 (as long as z0 is enlarged)
we deduce that |Uipz1, ξiq| ď 1 for all 1 ď i ď n and divisors ξi|P pz0, z1q. We use this
approximation in (5.10), to obtain

Sppui,jqq ´
ÿ

li,jď∆B1

ui,j li,j |P pz0,z1q

µplq
nź

i“1

Uipz1, ξiq Î plog z1qn∆´ B1
2 ` ∆B1pn

2q`1{100ps´s0

0 ` s´s0

0 plogD1q´ 1
3 q.

Assume that the assumptions in Lemma 5.2 are satisfied. Together with equation (5.8) we
now obtain

ΣpD1, z1q “ ΣMT pD1, z1q ` ΣET pD1, z1q,

with a main term given by

ΣMT pD1, z1q “
ÿ

ui,jď∆
1ďiăjďn

pgppui,jqq
ÿ

pli,jqPNpn
2q

li,jď∆B1

ui,j li,j |P pz0,z1q

µplq
nź

i“1

Uipz1, ξiq,

and an error term satisfying

ΣET pD1, z1q Î
plog z1qn

∆1´ǫ
`

∆C`pn
2q´ B1

2

plog z1q´n
` ∆C`pB1`1qpn

2q`1{100s´s0

0 ,
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where C “ Cpfq ą 0 is such that

|pgppui,jqq| Î maxtui,juC .

We will assume that such a C exists for the moment, this will be proved later in Lemma 5.4.
Therefore we may choose B1 ą 0 large enough so that C `

`
n
2

˘
´ B1

2 ă ´1. We can then
obtain

ΣpD1, z1q ´ ΣMT pD1, z1q Î
plog z1qn

∆1´ǫ
` ∆cs´s0

0 , (5.11)

where c “ cpfq ą 0. Note that here we implicitly assume that s0 ě 3, thus log D1

log z1
ě 3.

Lemma 5.4. — Assume that Bpfq ą maxtR22d´1pd2 ´ 1q, R22d´1pd ´ 1q ` pR ` 1qu. Let

u P Npn
2q be such that µ2puq “ 1 and such that p|ru implies that p ą z0. Then, for z0 sufficiently

large one has

pgppui,jqq Î

˜
ź

i‰j

ui,j

¸ dBpfq

pd´1q2d´1
pd´ 1

R
q`R`ǫ

.

Proof. — First we recall that

pgppui,jqq
nź

i“1

̟ipuiq “ ̟puq, (5.12)

where we have ui,j “ gcdpui, ujq. For bounding pgppui,jqq we may make the following assump-
tion: if p is a prime with p|ui for some 1 ď i ď n, then there is a 1 ď j ď n, j ‰ i such that
p|ui,j. Otherwise we could replace in (5.12) the vector u with a vector ru where Ăuk “ uk for
k ‰ i and Ăuk “ uk

p
for k “ i. In particular, we may assume that

ui ď
ź

j‰i

uij ,

for every 1 ď i ď n.
Next we observe that

nź

i“1

̟ipuiq “
nź

i“1

ź

p|ui

̟ippq.

We recall the identity ̟ippq “ pσppei |xqσ´1
p . By Corollary 3.6 we have

σppei |xq “
1

p
`Opp´1´ǫq.

Therefore we obtain
nź

i“1

̟ipuiq “
nź

i“1

ź

p|ui

p1 `Opp´1´ǫqq´1p1 `Opp´ǫqq,

and
śn

i“1̟ipuiq
´1 Îµ pu1 ¨ ¨ ¨ unqµ, for any µ ą 0. By Corollary 3.8 we have

̟ppjq Î p
dBpfq

pd´1q2d´1
pd´ 1

R
q`R

.

Injecting these bounds into (5.12) yields

pgppui,jqq Î
´ź

p|ru
p
¯ dBpfq

pd´1q2d´1
pd´ 1

R
q`R`ǫ

Î
´ź

i‰j

ui,j

¯ dBpfq

pd´1q2d´1
pd´ 1

R
q`R`ǫ

,
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thus concluding the proof.

As in [BF94, p.90], we now observe that ΣMT pD1, z1q is independent of D1. We set

D2 :“ maxpD1, 3
z1q

and with equation (5.11) applied to D2 instead of D1, we obtain that

ΣpD1, z1q ´ ΣpD2, z1q Î
plog z1qn

∆1´ǫ
` ∆cs´s0

0 .

For this choice of D2 we have λ`
d “ µpdq for d|P pz0, z1q (note that with the change of D1 to

D2 also the sieve weights λ change). Hence we can compute ΣpD2, z1q as

ΣpD2, z1q “
ÿ

dPNn

di|P pz0,z1q

̟pdq

rd

nź

i“1

µpdiq “
ź

z0ăpďz1

ˆ
1 ´

gppq

p

˙
,

with gppq defined as in (4.7). Injecting our estimates for ΣpD1, z1q into (5.5) yields the upper
bound in the next result.

Proposition 5.5. — Assuming li|P pz1, zq, |l|D1 logB ď B1{ρ and that Bpfq exceeds

max
 
2d´1pd ´ 1qRpR ` 1q, 2d´1pd´ 1qR2 ` pR ` 1qpΥ ` 1q, 2d´1pd2 ´ 1qR2

(

we have

GpB, z1; lq “ Xl

ź

z0ăpďz1

ˆ
1 ´

gppq

p

˙
`O

ˆ
̟plq

Bn´Rd

rl

ˆ
plog z1qn

∆1´ǫ
` ∆cs´s0

0

˙˙

`O

˜
Bn`ǫ

rl
ÿ

|k|ďD1

p|rkñz0ăpďz1

µpkq2EpB; pk1l1, . . . , knlnqq

rk

¸
.

The lower bound can be procured upon writing

GpB, z1; lq “
ÿ

xPA
l|x

˜
nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙¸˜
nź

i“1

p1 ˚ µqpgcdpP pz0, z1q, xiqq

¸

and using Lemma 5.1 to obtain

GpB, z1; lq ě
nÿ

i“0

ciMi,

where for 1 ď i ď n we define ci :“ 1 and

Mi :“
ÿ

ki|P pz0,z1q

˜
λ´

ki

ź

j‰i

λ`
kj

¸
NwpB; pk1l1, . . . , knlnqq,

in addition to c0 :“ ´pn´ 1q and

M0 :“
ÿ

ki|P pz0,z1q

˜
nź

i“1

λ`
ki

¸
NwpB; pk1l1, . . . , knlnqq.

The treatment of each individual Mi, pi ‰ 0q, is identical to the treatment of M0 earlier in
this section. The only difference arises at the last step (the calculation of the Euler products
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in the main term). Here the coefficients ci satisfy
ř

0ďiďn ci “ 1, thus completing the proof
of Proposition 5.5.

6. Proof of Theorems 1.1 and 1.4

Recall the definition of the set A in (4.3). Our aim is to find a large function z “ zpBq ď B

such that

SpB, zq :“ 7
 
x P A : |x| ď B, p|x1 ¨ ¨ ¨ xn ñ p ą z

(
Ï

Bn´Rd

plogBqn
.

By (4.5) we have

SpB, zq ě w´n
0 SζpB, zq, (6.1)

where

SζpB, zq :“
ÿ

xPA
p|x1¨¨¨xnñpąz

nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙
.

One may now write the sum over x as

ÿ

xPA

˜
nź

i“1

w

ˆ
xi

B
´

ζi

2|ζ|

˙¸˜
nź

i“1

p1 ˚ µqpgcdpP pzq, xiqq

¸
.

For a parameter D let λ˘ be a sieve sequence supported in r1,Ds. Letting

βplq :“
nÿ

i“1

λ´
li

´ ź

1ďjďn
j‰i

λ`
lj

¯
´ pn´ 1q

nź

i“1

λ`
li
, l P Nn,

alluding to Lemma 5.1 and recalling (5.3) allows us to infer that for any z ą z1 we have

SζpB, zq ě
ÿ

lPNn

li|P pz1,zq

βplqGpB, z1; lq.

Define the entities

ΣpD, z1, zq :“
ÿ

l|P pz1,zq
βplq

̟plq

rl
,

B1 :“
ÿ

l|P pz1,zq

̟plq

rl
and B2 :“ BdR`ǫ

ÿ

|l|ďD
l|P pz1,zq

1

rl
ÿ

|k|ďD1

k|P pz0,z1q

EpB; pk1l1, . . . , knlnqq

rk
.

Proposition 5.5 now leads to

SζpB, zq

SpfqJwpf ,W qBn´Rd
ě ΣpD, z1, zq

ź

z0ăpďz1

ˆ
1 ´

gppq

p

˙
`O

ˆ̂
plog z1qn

∆1´ǫ
`

∆c

ss0

0

˙
B1`B2

˙
. (6.2)

Letting mi :“ kili and taking advantage of the coprimality of ki, li shows that

B2 ď BdR`ǫ
ÿ

|m|ďDD1

m|P pz0,zq

EpB; mq

rm .
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Recalling the definition of the matrix ǫ given in (1.7), shows that, under the condition

DD1 ď
B1{ρ

logB
,

the sum over m is

Î
3ÿ

i“1

B´ǫi,1

ÿ

1ďm1ďDD1

m
ǫi,2´1
1

ÿ

1ďm2ďm1

m´1
2 . . .

ÿ

1ďmn´1ďmn´2

m´1
n´1

ÿ

1ďmnďmn´1

m
ǫi,3´1
n .

Since each ǫi,j is non-negative we can use the estimate
ř

1ďmďz m
λ´1 Îλ zλ log z, valid for

each fixed λ ě 0 to deduce that for every ǫ ą 0 one has

B2 Î BdR`ǫ
3ÿ

i“1

B´ǫi,1pDD1qǫi,2`ǫi,3.

Our remaining task will be to give a lower bound for Σ and an upper bound for B1. We begin
by studying the contribution to ΣpD, z1, zq of vectors l with δ :“ gcdpli1

, li2
q ‰ 1; this task is

similar to the one in Lemma 5.2 and we adapt its assumptions in what follows. Each such δ

is a product of primes p ą z1, therefore this contribution is

Î
ÿ

δąz1

µpδq2
ÿ

l|P pz1,zq
δ|li1

,δ|li2

̟plq

rl
.

As in the proof of Lemma 5.2 we find that this is

Î

ˆ
log z

log z1

˙n ÿ

δąz1

δ´2`ǫ Î z´1`ǫ
1 plog zqn.

Note that if li, lj are coprime for all i ‰ j guarantees that ̟plq “
śn

i“1 ̟ipliq. This gives

ΣpD, z1, zq “
ÿ

l|P pz1,zq
i‰jñgcdpli,ljq“1

βplq

rl

nź

i“1

̟ipliq `Opz´1`ǫ
1 plog zqnq.

The same argument can also be used to establish

ÿ

l|P pz1,zq

βplq

rl

nź

i“1

̟ipliq “
ÿ

l|P pz1,zq
i‰jñgcdpli,ljq“1

βplq

rl

nź

i“1

̟ipliq `Opz´1`ǫ
1 plog zqnq.

Letting

Ψ˘
i :“

ÿ

l|P pz1,zq
λ˘

l

̟iplq

l

shows that the sum on the left equals

Ψ :“
nÿ

i“1

˜
Ψ´

i

ź

1ďjďn
j‰i

Ψ`
j

¸
´ pn´ 1q

nź

i“1

Ψ`
i ,

thus providing

ΣpD, z1, zq “ Ψ `Opz´1`ǫ
1 plog zqnq.
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Under the assumptions of Lemma 5.2 we can similarly show that the contribution of l with
gcdpli1

, li2
q ‰ 1 to B1 is

Î
ÿ

δąz1

µpδq2
ÿ

l|P pz1,zq
δ|li´1,δ|li2

̟plq

rl
Î Bn´Rdpz´1`ǫ

1 plog zqnq.

Therefore

B1 Î z´1`ǫ
1 plog zqn `

ÿ

l|P pz1,zq
i‰jñgcdpli,ljq“1

nź

i“1

̟ipliq

li

and the last sum is

ď
nź

i“1

ÿ

l|P pz1,zq

̟iplq

l
ď

nź

i“1

ź

z1ăpďz

ˆ
1 `

1

p
`Opp´1´ǫq

˙
Î plog zqn,

hence B1 Î plog zqn. We therefore find via (6.2) the following lower bound

SζpB, zq

SpfqJwpf ,W qBn´Rd
ě Ψ

ź

z0ăpďz1

ˆ
1 ´

gppq

p

˙
`O

˜
BdR`ǫ

3ÿ

i“1

B´ǫi,1pDD1qǫi,2`ǫi,3

¸

`O

ˆ
plog zqn

z1´ǫ
1 plog z1qn

`

ˆ
plog z1qn

∆1´ǫ
`

∆c

ss0

0

˙
plog zqn

˙
,

where a use of
ź

z0ăpďz1

ˆ
1 ´

gppq

p

˙
Î plog z1q´n

has been made; this can be inferred from the estimate gppq “ n
p

` Opp´1´ǫq. Let us now fix

any θ ą 0 which satisfies θ ă θ1, where θ1 was defined in (1.5). Then there exists a small
positive θ1 such that if D :“ Bθ and D1 :“ Bθ1 then

BdR`ǫ
3ÿ

i“1

B´ǫi,1pDD1qǫi,2`ǫi,3 Î B´δ,

for some δ ą 0 that is independent of B. Choosing ∆ “ z1 “ plogBq2n`1 shows that

s0 “
logD1

log z1
“

θ1 logB

p2n` 1q log logB
Ñ 8,

hence one can verify that

plog zqn

z1´ǫ
1 plog z1qn

`

ˆ
plog z1qn

∆1´ǫ
`

∆c

ss0

0

˙
plog zqn Î

1

plogBqn log logB

and

SζpB, zq

SpfqJwpf ,W qBn´Rd
ě Ψ

ź

z0ăpďz1

ˆ
1 ´

gppq

p

˙
`O

`
plogBq´nplog logBq´1

˘
.

The last product is Ï plog z1q´n, thus it remains to show that Ψ Ï plog z1{ log zqn. Let
s :“ logD{ log z and assume that s ą 2. Using the inequalities stated in [BF94, Lem.10] one



SARNAK’S SATURATION PROBLEM FOR COMPLETE INTERSECTIONS 45

deduces that when s “ Onp1q with an implied constant depending at most on n, then

Ψ ě pΨnpsq `OnpplogBq´1{3qq
nź

i“1

ź

z1ăpďz

´
1 ´

̟ippq

p

¯
,

where Ψnpsq :“ nfpsq ´ pn ´ 1qF psqn. Here fpsq and F psq denote the well-known functions
associated to the linear sieve, their definition can be found in [FI10, Eq.(12.1),Eq.(12.2)], for
example. Further information on f and F is located in [FI10, §11,§12]. In light of the last
lower bound for Ψ, it is sufficient to find the smallest possible value for s such that Ψnpsq ą 0.
This is equivalent to

F psqn

fpsq
ă 1 `

1

n´ 1
. (6.3)

It is a standard fact that when s ą 2 then 0 ă fpsq ď 1 ď F psq. Therefore if s remains
constant and independent of n then one cannot prove (6.3) for large n, this forces us to
take s as a function of n that tends to infinity. At this point we have to employ asymptotic
approximations for fpsq and F psq, these can be found in [FI10, Eq.(11.134)]. They are given
by

F psq, fpsq “ 1 ˘ exp
!

´ s log s´ s log log s` s`O
´s log log s

log s

¯)

and one sees that if s ě 3plog nqplog log nq´1 then

s log s ě 3 log n`
3plog 3qplog nq

log log n
´

3plog nqplog log log nq

log log n
.

Therefore, for all large enough n, say n ě n0 for some positive absolute constant n0, we obtain

F psqn

fpsq
ă
´

1 `
1

n5{2

¯n`1

and the inequality 1`n´5{2 ă p1`pn´1q´1q1{pn`1q, valid for all n ě 2, makes (6.3) available.
In the case that 1 ď n ă n0 one can immediately infer from the approximations to F psq
and fpsq that if s Ñ `8 then (6.3) is automatically satisfied. This gives a constant σ0 that
depends at most on n0 (and is therefore absolute) such that (6.3) is valid whenever s ě σ0.
Hence there exists a positive absolute constant σ0 such that if

s ě
3 log n

log log n
` σ0

then, alluding to (6.1), Theorem 1.1 holds with any constant c0 ą 3`σ and with P´px1 ¨ ¨ ¨ xnq
exceeding the sieving parameter z “ D1{s “ Bθ{s.

Proof of Theorem 1.4 . — The arguments in the present section have so far proved that

SζpB,Bθ{sq Ï Bn´RdplogBq´n.

This is sufficient for Theorem 1.4 because to show that a subset of Vf pQq is Zariski dense in
an absolutely irreducible variety Vf , it is sufficient to choose an arbitrary neighbourhood in
the real analytic topology of a non-singular point ζ P Vf pRq and show that any real point in
the neighbourhood (on the variety) can be approximated by a rational point. In our case the
neighbourhood is given by BBη (where Bη was defined in (4.4)).
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