
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Linker S, Sevegnani M. 2019
Target counting with Presburger constraints
and its application in sensor networks. Proc. R.
Soc. A 475: 20190278.
http://dx.doi.org/10.1098/rspa.2019.0278

Received: 7 May 2019
Accepted: 2 October 2019

Subject Areas:
computational mathematics, mathematical
modelling, computer modelling and
simulation

Keywords:
target counting, Presburger arithmetic, sensor
networks, model enumeration

Author for correspondence:
Sven Linker
e-mail: s.linker@liverpool.ac.uk

Target counting with
Presburger constraints and its
application in sensor networks
Sven Linker1 and Michele Sevegnani2

1Department of Computer Science, University of Liverpool,
Liverpool, UK
2School of Computing Science, University of Glasgow, Glasgow, UK

SL, 0000-0003-2913-7943

One of the applications popularized by the
emergence of wireless sensor networks is target
counting: the computational task of determining
the total number of targets located in an area by
aggregating the individual counts of each sensor. The
complexity of this task lies in the fact that sensing
ranges may overlap, and therefore, targets may be
overcounted as, in this setting, they are assumed to
be indistinguishable from each other. In the literature,
this problem has been proven to be unsolvable,
hence the existence of several estimation algorithms.
However, the main limitation currently affecting
these algorithms is that no assurance regarding the
precision of a solution can be given. We present
a novel algorithm for target counting based on
exhaustive enumeration of target distributions using
linear Presburger constraints. We improve on current
approaches since the estimated counts obtained by
our algorithm are by construction guaranteed to
be consistent with the counts of each sensor. We
further extend our algorithm to allow for weighted
topologies and sensing errors for applicability in
real-world deployments. We evaluate our approach
through an extensive collection of synthetic and
real-life configurations.

1. Introduction
The recent widespread adoption of wireless sensor
network technologies has enabled the development of
monitoring and sensing applications deployed over a
large number of inexpensive and spatially dispersed
devices. The focus of this paper is target counting,

2019 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2019.0278&domain=pdf&date_stamp=2019-11-06
mailto:s.linker@liverpool.ac.uk
http://orcid.org/0000-0003-2913-7943
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

stage 1

stage 2

exit

exit

a

b

c

(a)

(b)

Figure 1. Example application of target counting for crowd control. (a) Spatial arrangement of the two stages and apassageway
between them leading to the exit and (b) detailed view of the sensors deployed in the passageway (a, b, c) and corresponding
ranges.

a sensing task with important applications in domains ranging from farming/agriculture and
wildlife protection to traffic and crowd control, indoor security and defence [1,2]. It consists of
estimating the total number of observable targets within a region using local counts (also called
readings) performed by a set of sensors. In this setting, sensors are capable of counting but not
identifying targets within their sensing range. This implies that multiple sensors may be observing
the same target if it is located within the intersection of their overlapping sensing ranges. This
may lead to wrong estimates as duplicate observations, together with the inability to distinguish
different targets, introduce overcounting. Moreover, it is assumed that the exact position of the
sensors and the geometry of their ranges are fully known. This information is referred to as the
topology of a sensor network.

As an example, consider a large event, where crowds sometimes need to be guided through
a narrow passageway connecting two stages. Such a situation is depicted in figure 1a. For safety
reasons (e.g. to prevent overcrowding the passageway and hence outbreaks of crowd crushes),
it is necessary to monitor the number of people within this narrow passage. A possible way
to carry out this task is to track the mobile phones in the area. However, it is often difficult to
use the cellular network information directly to precisely analyse the number of people in the
passageway, as each cell is usually too large and covers the entire event venue.

Furthermore, information regarding the participation of individuals to public events might
be sensitive (e.g. protests, political rallies). Therefore, the sensors should not send identifiable
information about individuals to the base station as it would be the case with mobile phones.
Therefore, in these kind of scenarios, we need dedicated sensing devices that do not identify
individuals in a given area, but only pass on their aggregate number. This could be achieved, for
example, by deploying Bluetooth beacons or passive devices with a restricted range allowing for
more precise localization than the cellular network. In this case, the placement of these devices is
known, as shown in figure 1b.

The core problem we address is that current approaches are not always capable of estimating
target counts accurately and reliably: the range of estimates is often too wide to be usable in
practice, and results may even correspond to infeasible target distributions.1 In the following, we

1A feasible target distribution is a placement of targets in the topology that is consistent with all the individual sensor
readings.

3

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

a : 1

b : 1

c : 1

Figure 2. Example topology with three sensors a, b and c and four feasible target distributions.

show how this problem occurs in practice by estimating target counts in a simple topology using
two current algorithms. A thorough discussion on related work is deferred to §7. Details of the
computations performed by the two algorithms considered are reported in appendix A.

Consider the example topology with three sensors (a, b and c) in figure 2 (left) where each
sensor counts one target within its range (drawn as an oval). Given this configuration, there are
four feasible target distributions: one with three targets and three with two targets. These are
enumerated in figure 2 (right) where targets are indicated by small triangles. By applying the
SCAN algorithm by Gandhi et al. [3] to this example, we estimate that the target count is included
in the interval [1.5, 3]. Note that the left-hand endpoint of the SCAN estimate falls outside what is
feasible, i.e. either two or three targets. Experimental results show that this inaccuracy is further
exacerbated in more complex topologies as the estimation interval grows wider with more sensors
and more overlapping ranges. By applying the algorithm of Baryshnikov and Ghrist [4] to the
same topology, the estimated target count is zero, which does not correspond to any feasible
distribution. Experimental results in a study by Pianini et al. [5] have also confirmed the difficulty
in obtaining reliable results with this algorithm.

In this paper, we propose a novel counting algorithm that overcomes these problems. We
do so by computing target counts by means of exhaustive enumeration of the feasible target
distributions in a topology. The algorithm is based on the first-order theory of integers with
addition, or Presburger Arithmetic (PA) [6], which can be solved efficiently by current ‘satisfiability
modulo theory’ (SMT) solving tools. To give an intuition about how the additional information
from the algorithm can be of use, consider again the topology in figure 2. Our algorithm computes
all four feasible distributions and then assigns relative frequencies to the possible target counts.
In this case, a count of two targets occurs more frequently than a count with three targets as
there are three possible distributions with two targets and only one with three targets. This
approach allows to adopt any appropriate statistical measure to estimate a target count.2 A further
benefit of our formalization is to enable more advanced spatial analysis of sensor topologies; for
instance, we can compute the likelihood of a target to be in a given spatial region. This kind of
information can be extremely valuable in practice as it can be used to adjust sensor placements
to obtain more accurate estimates, to optimize scheduled maintenance, to reduce overall energy
consumption, etc.

Finally, we extend the basic algorithm to include richer models of the topology and the sensing
hardware. First, we augment topologies with weights to gain a finer control on how each feasible
distribution affects the estimated target count. Second, we introduce a more realistic sensor model
by associating an error distribution with each sensor reading.

The contributions of this paper are summarized as follows:

— novel formalization of the target counting problem based on exhaustive enumeration of
the feasible target distributions by means of Presburger constraints,

— new algorithms supporting both sensing errors and weighted topologies for applications
in real-world settings,

— prototype OCaml implementation of our algorithms3 based on the Z3 SMT solver,

2For instance, the mean target count in this example is 2× (3/4)+ 3× (1/4)= (9/4)= 2.25 and the median is 2.

3Source code publicly available at https://bitbucket.org/svenlinker/tcpres

https://bitbucket.org/svenlinker/tcpres

4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

a

b

c

d

a

b

(a)

(b)

Figure 3. Example topologies. (a) Topology with sensors a, b, c and d. (b) Two sensors (a and b) having non-convex sensor
ranges. The solid black circle represents an obstacle.

— evaluation of our approach against a collection of regular (square grids) and randomly
generated topologies.

Our article is organized as follows. We begin in §2 by presenting an algorithm to compute all
feasible target distributions and explaining how these can effectively be used to estimate target
counts. In §3, an extension of the algorithm for weighted topologies is introduced. The algorithm
is then further extended with the support for sensing errors in §4. We evaluate our approach in
§5 and discuss future challenges and extensions in §6. Related work is presented in §7, and we
conclude our work in §8.

2. Target counting using Presburger constraints
In this section, we present an algorithm to enumerate all the feasible target distributions within a
space covered by a set of sensors. We will then use these distributions to compute the frequencies
of the possible target counts and hence infer their probability. This approach builds upon the
previous work [7], where such topologies were specified by a formal model based on the first-
order logic. However, a crucial difference with the current approach is that previously, sensor
readings were not taken into account.

We model scenarios following the example sensor deployment shown in figure 3a. Sensors are
indicated by a, b, c, . . ., and the corresponding ranges are shown as solid circles. Observe that the
sensor ranges partition the space into zones, where each zone is defined by the sensor it is covered
by. For example, zone {a, c} denotes the part of the space covered by both sensor a and c, but not
by sensor b. In this figure, it is coloured in blue. In the formal model, we employ three different
sorts, one for the sensors, one for the zones of space and one for the readings of the sensors.

Definition 2.1 (Topology Model). A topology model is a structure M= (S, Z, σ , ρ), where S is a
finite set of sensors, Z⊆P(S) is the set of zones, with ∅ �∈Z and, for all s ∈ S, there is at least one
z ∈Z such that s ∈ z. Furthermore, the range function σ : S→P(Z) associates a set of zones to each
sensor and is defined by σ (s)= {z | s ∈ z ∧ z ∈Z}. The reading function ρ : S→N maps each sensor
to a reading. For simplicity, we will often omit the braces and commas when we refer to zones.
That is, we denote a zone {a, c} by ac or, equivalently, ca.

In this section, we assume each sensor yields a single count of targets within its range and,
furthermore, that this count is correct. We will modify the definition of ρ to widen the scope to
non-exact sensor readings in §4.

One of the advantages of this high level of abstraction is that it can be employed in a diverse
range of real-life settings. For example, zones can be of any arbitrary shape; in particular, they do
not have to be convex, and they can be concave or have holes. This is shown by the example
topology in figure 3b where the sensor ranges of a and b are non-convex, since the sensing

5

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

a
b c r(a) r(b) r(c) w(b) w(c) w(bc) w(ac) w(abc)

1 1 2 3 1 1 2 1

b c bc ac abc
q1
q2
q3

0 0 1 1 0
1 1 0 1 0
0 1 0 0 1

Figure 4. Example topology with sensors a, b and c (left). Reading function ρ and weight function ω (cf. §3) (top right).
Feasible distributions θ1, θ2 and θ3 (right) (bottom right).

capabilities are inhibited by the presence of an obstacle, drawn as a solid black circle. By using
this notion of spatial models, we can define what we mean by target distributions. Essentially, a
target distribution is a function associating each zone with a natural number, which denotes the
number of targets residing in this zone.

Definition 2.2 (Target Distribution). Let M= (S, Z, σ , ρ) be a topology model. A map θ : Z→
N is a target distribution for M. We say that θ is feasible for M iff ρ(s)=∑

z∈σ (s) θ (z) for all sensors s ∈
S. We call θ a partial target distribution if θ is a partial function on Z. A partial target distribution
is feasible for M if ρ(s)≥∑

z∈σ (s)∩domθ θ (z) for all s ∈ S. If θ is not partial, we also call it complete,
to emphasize this fact. Let θ1 and θ2 be (possibly partial) target distributions for M. We say that
θ1 is an extension of θ2 if dom θ2 ⊆ dom θ1 and θ2(z)≤ θ1(z) for all z ∈ dom θ2.

Consider again the topology depicted in figure 3a. It can be formalized by M=
(S, Z, σ , ρ), where S= {a, b, c, d}, Z= {{a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {c, d}, {a, b, c}}. The sensor range
σ (b) (coloured green) consists of all zones containing b, i.e. σ (b)= {{b}, {a, b}, {b, c}, {a, b, c}}.

Now consider the following readings for the sensors: ρ(a)= 1, ρ(b)= 0, ρ(c)= 2 and ρ(d)=
1. Since b does not perceive any target, each feasible target distribution θ has to satisfy θ (b)=
θ (ab)= θ (bc)= θ (abc)= 0. Furthermore, because a reads exactly one target, we also have either
θ (a)= 1 and θ (ac)= 0, or θ (a)= 0 and θ (ac)= 1. In particular, it is not possible that both θ (a)= 1
and θ (ac)= 1 because we would then have ρ(a)= 2. We will exploit this relationship in the next
section to compute all feasible target distributions.

(a) Computing target distributions
The goal of this section is to define formally a procedure for the computation of the set of feasible
target distributions for a given topology model M. Namely, we want to find all the ways to
place targets in the zones of M while preserving consistency with the readings of M. The most
important observation driving our approach follows directly from definition 2.2: the reading of a
sensor s has to comprise the targets within all the zones in the range of s. This becomes apparent in
the example in figure 4 where all feasible target distributions (θ1, θ2 and θ3) satisfy this condition.
For example, by considering θ1, we have

ρ(a)= θ1(ac)+ θ1(abc)= 1+ 0= 1

ρ(b)= θ1(b)+ θ1(bc)+ θ1(abc)= 0+ 1+ 0= 1

and ρ(c)= θ1(c)+ θ1(bc)+ θ1(ac)+ θ1(abc)

= 0+ 1+ 1+ 0= 2.

In the following, we define a constraint satisfaction problem (CSP) over quantifier-free PA
formulae to compute all feasible target distributions for a model M= (S, Z, σ , ρ). We assume an
infinite set of variables Var and associate a variable xz to each zone z ∈Z. For simplicity, we will
omit braces and separators in the names of the variables, i.e. a zone {a, b} corresponds to xab. Then,

6

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

for each sensor s ∈ S, we define a constraint as follows:

ρ(s)=
∑

z∈σ (s)

xz. (2.1)

The CSP consists of the set of equations defined above and its solutions are the feasible target
distributions for M. Observe that in general, this set is not a singleton, i.e. there may be more than
one feasible distribution. For an example, consider figure 4, where the readings of each sensor are
given in the table on the right as well as the feasible target distributions. In particular, note that
the overall number of targets differs among the distributions: θ1 and θ3 have two targets, whereas
θ2 has three.

Solving a single instance of this problem is straightforward: we first create the CSP instance
consisting of |S| equations as in (2.1) with procedure BUILD-CSP, and then we solve them by
invoking any off-the-shelf solver supporting PA. However, this does not immediately give us
all solutions. To that end, the solver needs to be invoked several times, while ensuring that
previously found solutions are ignored. Note that any solution θ of the CSP corresponds to
the formula

∧
z∈Z xz = θ (z). Hence, to prevent the solver from returning θ again at successive

invocations, we add the following constraint to the CSP:

BUILD-FORMULA(θ)=
∨
z∈Z

¬xz = θ (z).

The complete enumeration algorithm is defined by procedure COMPUTE-MODELS in algorithm 1.
An analysis of its computational complexity is given in §2c, while a fuller discussion on its
scalability in real-world scenarios is presented in §6.

Algorithm 1 Computation of all feasible target distributions.
1: function COMPUTE-MODELS(S, Z, σ , ρ)
2: C← BUILD-CSP(S, Z, σ , ρ)
3: Θ←∅
4: X← CREATE-SOLVER

5: while X.SOLVE(C) do
6: θ←X.GET-SOLUTION

7: Θ←Θ ∪ {θ}
8: C←C ∧ BUILD-FORMULA(θ)
9: end while

10: return Θ

11: end function

(b) Frequentist analysis of target distributions
Let ΘM be the set of feasible target distributions for a model M. For each θ ∈ΘM, we can
compute the number of targets present in the space covered by M, simply by summing up the
values of the used variables. That is, we can compute the frequency of a target count among all
solutions. Hence, we can associate this frequency with the probability of the presence of a certain
number of targets within M. For example, from the solutions of the model shown in figure 4, we
can deduce that the probability for the presence of exactly two targets is 2

3 , while with probability
1
3 , exactly three targets are present. Furthermore, we can extend this analysis to single zones in
the model. This allows for a much more granular spatial analysis. For example, from the solutions
of figure 4, we can also deduce that there is a target in zone ac with probability 2

3 .

7

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

(c) Complexity
A triply-exponential complexity of the decision procedure for PA was proven by Oppen [8]: in the

worst case, the time required to decide the truth of an instance of length n is O(222n

). Furthermore,
Fisher & Rabin [9] gave a non-deterministic doubly exponential time lower bound.

The formulation of our algorithm is based on equations in the form of (2.1) (see procedure
BUILD-CSP in algorithm 1), which belong to the quantifier-free fragment of PA with a fixed
number of variables (one for each zone). This formula class has much lower complexity
as it requires only deterministic polynomial time to be decided [10]. A precise bound for
equality constraints was defined by Papadimitriou [11] who proved that the complexity is
O(|Z||S|(a|S|)|S|2), a polynomial in a=maxs∈S ρ(s) if, as in our setting, |S|, thus |Z|, are fixed.

Known results on the complexity of PA concern the decision problem, that is deciding if a set
of constraints allows a solution. However, in our setting, all the solutions need to be enumerated,
and therefore, we are interested in defining the complexity of the enumeration problem. The analysis
of algorithm 1 shows that the loop on line 5 is repeated |ΘM| =O(2a|Z|) times, since, in the worst
case, the number of solutions to the problem is exponential in the size of the input [12]. At
each iteration, a new constraint with |Z| variables is generated by procedure BUILD-FORMULA

and added to the set of constraints C. Therefore, the total running time of algorithm 1 is
O(|Z||ΘM|2a|Z|).

3. Weighted topologies
The approach described in §2b computes the frequency of a target count, assuming all sensor
readings are equally likely. However, many scenarios require us to regard some readings as more
important than others. Think for instance of the relative size of sensor ranges in which a larger
range is more likely to contain a target as it covers more space than a smaller range. Similarly,
sensors in some specific positions in the topology may be known to be more likely to observe
targets, for example by analysing historical logs. This is the case, for instance, of an application
that counts employees within an office when a sensor covering the area around the door detects
targets more frequently, as some employees often enter the office to ask a question, but do not
progress beyond the door area.4

Consider again the case of the crowd control example presented in §1, i.e. an event where
the two main stages are connected by a narrower passageway. In figure 1b, we show a possible
arrangement of three sensors, a, b and c, in the passageway between the stages. The zones in
the stage areas and the passageway can be associated with different weights to reflect the safety
focus on the passageway area. This is an established practice in risk analysis of these kinds of
scenarios [13]. For instance, the average width of the three different areas can be used to compute
the weights of the zones covering them. By assuming stage 1, stage 2 and the passageway have
average widths of 17, 23 and 3.5 m, respectively, the weights of the corresponding zones are 3.5÷
17= 0.21, 3.5÷ 23= 0.15 and 3.5÷ 3.5= 1, that is, every zone in stage 1 has weight 0.21, every
zone in stage 2 has weight 0.15 and zones {a, b}, {b}, {b, c}, {c} in the passageway have weight 1.

The weights could also be adjusted over time according to the schedule of the event. For
example, during a music event, we can expect a large number of people in the passageway when a
popular act finishes on one stage and shortly afterwards another popular band starts on the other
stage. Hence, we would increase the weight of the zones {a, b}, {b}, {b, c} and {c} in the passageway.
These weights could also depend on the assumed overlap in the audience. This would increase
the probability of target distributions where targets are in these zones (cf. §5b) and thus allow a
safety operator to promptly identify possible congestions. Operationally, weights can be updated
employing suitable statistical methods or machine learning techniques [14,15] as new data are
collected.

4This expectation can stem from other data, for example from questionnaires given to the employees or explicit observations.

8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

∅

b c bc ac abc

3
8

1
8

1
8 2

8

1
8

c ac

1
3

2
3

b ac abc

3
6 2

6

1
6

b c bc

3
5 1

5

1
5

q2 q2 q2 q2 q3 q2 q3q2q1 q1

Figure 5. Probability tree for target distributions θ1, θ2 and θ3 for the topology in figure 4. Branches with probability 1 are
omitted. The two paths highlighted in red indicate the two possible ways of obtaining distribution θ1.

This use of weights is highly dependent on the application at hand. In this example, it
is important that the system errs on the side of caution, i.e. a high density of targets in the
passageway is identified as soon as possible to prevent the occurrence of potentially fatal crushes.

To model this kind of scenarios, we extend our approach by associating each zone with a
positive real value, denoting the weight of the zone. This is a generalization that easily lends itself
to various interpretations depending on the application domain. For example, in figure 4, zone abc
consists of a smaller area than zone b. If we assume that the figure reflects the physical topology,
we can represent this fact in the model by ensuring that the weight of abc is smaller than the
weight of b.

Definition 3.1 (Weighted topology model). We extend a topology model N = (S, Z, σ , ρ) by a
weight function ω : Z→R≥0 associating a weight to each zone. We call M= (S, Z, σ , ρ, ω) a weighted
topology model (based on N). Observe that we do not require ω to be a probability measure, i.e. the
sum of all the weights can be different from 1.

The feasible target distributions for a weighted topology model based on M are the same
as for M. However, our extension allows us to carry out a more sophisticated analysis of the
probability of each distribution by constructing a probability tree that represents all the possible
ways each distribution can be obtained. For example, consider the topology in figure 4 extended
with the weights defined to the right of the figure. Initially, we can place a target in any zone with
probability given by the normalized weight of each zone (i.e. the weight of a zone divided by
the sum of all the possible weights). Note, however, that our choices to place the next target are
limited. For example, if we place a target in zone {a, b, c}, we can only place a target in zone {c}
afterwards.5 On the other hand, if we initially choose {a, c}, then the next target can be placed in
zones {b}, {c} or {b, c}. Hence, different choices of placement of a target, thus different probabilities,
are possible at each step. The full probability tree for this example topology is given in figure 5.

The probability of a target distribution θ can be computed by summing over the probabilities
of all the ways to obtain θ . These are all the paths in the probability tree from the root to a leaf
θ . In the example in figure 5, the probability of target distribution θ1 is given by the sum of the
probabilities of the two paths highlighted in red:

P(θ1)= 1
8
+ 2

8
· 1

5
= 7

40
= 0.175.

(a) Computing the probability tree
Formally, we can create the probability tree as follows. We derive the probability for each target
distribution from the possible ways to distribute targets among the zones of the topology model.
However, these ways are dependent on each other. For example, in figure 4, if the first target is

5This because θ3 is the only distribution allowing targets in zones {a, b, c} and {c}.

9

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

found in zone {c}, then the next target cannot be found in zone {b, c}. Hence, we need to define a
new event space for each random variable dependent on the previous choices. This event space is
given by zones z of M, for which a target distribution exists, where at least one target is present
in z and which have not yet been assigned their maximal number of targets. To define the event
space, we will use zone sequences, which denote the order in which targets have been distributed
into the zones. The empty zone sequence is denoted by ε. Otherwise a zone sequence is ζ =
〈z1, . . . , zn〉. That is, a zone sequence is a function ζ : {1, . . . , n}→Z. The size of ζ , denoted by |ζ |,
is the maximal value of its domain, i.e. |ζ | =max(dom ζ). If ζ is a zone sequence and m≤ |ζ |, we
will denote the sequence coinciding with ζ on the domain {1, . . . , m− 1} by ζ<m. We set ζ<1 = ε.
Furthermore, we denote the nth element of ζ by ζ (n). Intuitively, a zone sequence corresponds to
a branch of the probability tree, starting at the root and ending at the some node. For example,
the branches highlighted in figure 5 are represented by the zone sequences 〈bc, ac〉 and 〈ac, bc〉.

We need an auxiliary function to model the addition of a target presence to a target
distribution. That is, if the (partial) distribution does not yet contain a value for this zone, we
add a presence of one target into this zone, otherwise we increase the current presence by one.6

inc(z, θ)=
{

θ ⊕ [z �→ 1] if z �∈ dom θ

θ ⊕ [z �→ θ (z)+ 1] otherwise.

Each sequence of choices gives rise to an associated (partial) target distribution, which we can
compute using recursively the function above.

θζ =
{
∅ if ζ = ε

inc(ζ (n), θζ<n) if |ζ | = n.

Note that different zone sequences may induce the same target distribution. For example, we
have θ〈b,c〉 = θ〈c,b〉. For a sequence ζ , we define the still possible target distributions at this point
recursively.

Eε =ΘM

and

Eζ = {θ | θ ∈ Eζ<|ζ | ∧ θ is an extension of θζ }.

Note that Eζ contains only complete target distributions for any ζ . Then, for each zone sequence
s, we identify the set of zones where additional targets may reside, denoted by Zζ . Intuitively, for
each zone z in this set, we can still find at least one possible target distribution θ , where some
targets are in z, and either θζ does not already associate a target with z, i.e. z /∈ dom θζ , or θζ

associates less targets to z than θ . Formally, we have

Zζ = {z | ∃θ ∈ Eζ : θ (z) > 0 ∧ (z /∈ dom θζ ∨ θζ (z) < θ (z))}.
Observe that before choosing any zone, the set of possible zones consists of the zones for which
there is at least one target distribution, which associates a present target with this zone, i.e. Zε =
{z | ∃θ ∈ΘM : θ (z) > 0}. To compute the probabilities for the events at each choice, we need to
normalize the weights of the possible zones. To that end, we use Wζ to denote the sum of the
weights of the possible zones after the choices defined by ζ .

Wζ =
∑
z∈Zζ

ω(z).

Now, we define random variables Xζ , where ζ is the sequence of zones chosen to construct the
target distributions. The event space for each Xζ is P(Zζ). For each elementary event {z}, where
z ∈Zζ , its probability is given by the weight of z normalized by the sum of the weights of possible

6We use the notation f ⊕ [x �→ y] to express the update of f at x by y. That is, f ⊕ [x �→ y] is the function that assigns y to x and
otherwise coincides with f on all elements of dom f .

10

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

zones. That is, we set its probability as follows, where n= |ζ | is the length of ζ .

P(Xζ = z |Xζ<n = ζ (n− 1), . . . , Xε = ζ (1))= ω(z)
Wζ

.

Then, the probability of a specific zone sequence is as follows:

P(ζ)= P(Xε = ζ (1)) · P(Xζ<2 = ζ (2) |Xε = ζ (1)) · . . .

= ω(ζ (1))
Wε

· ω(ζ (2))
Wζ<2

· · · · · ω(ζ (|ζ |))
Wζ

.

These definitions yield a probability tree similar to figure 5, except that fixed choices (i.e. where
only one possibility exists) are omitted in the figure. Then, the probability of a target distribution
θ is the sum of the probabilities for zone sequences ζ with θζ = θ .

P(θ)=
∑
{ζ |θζ=θ}

P(ζ).

We present a recursive algorithm to create such a probability tree in algorithm 2. The functions
EXTENSIONS(Θ , θ) compute all extensions of θ that are members of Θ . Similarly, the function
COMPUTE-ZONES(Θ , θ) returns the zones that are responsible for the existence of these extensions.
Both functions can be straightforwardly implemented given the definitions above. The whole
function then returns a tree structure, where each node is of the form (p, Θ , B). Such an element
denotes that a zone was chosen with probability p, the only possible distributions left are in Θ ,
and the next choices are given by the nodes in B. A node is a leaf, if it is of the form (p, {θ},∅),
where p is the probability of choosing θ in the final step. We initially call this function with the
parameters TREE(ΘM, 1,∅).

Algorithm 2 Recursive computation of probability tree.
1: function TREE(Θ , p, θζ)
2: if Θ = {θ ′} then
3: return (p, {θ ′},∅)
4: else
5: Θζ ← EXTENSIONS(Θ , θζ)
6: Zζ ← COMPUTE-ZONES(Θζ , θζ)
7: Wζ ←

∑
z∈Zζ

ω(z)

8: B←{TREE(Θζ , ω(z)
Wζ

, inc(z, θζ)) | z ∈Zζ }
9: return (p, Θ , B)

10: end if
11: end function

Given a probability tree computed with algorithm 2, we can compute the probability of a zone
sequence by following the tree down to the corresponding leaf, and hence, we can also compute
the probability of a target distribution in ΘM by the sum of the corresponding zone sequences.

With this information at hand, we can refine the frequentist analysis of target counts of
§2b. Instead of associating the same probability with each target distribution, we can sum the
probabilities given by the above construction to take the weights into account. Even further, we
can analyse the probability for a specific zone z to contain one or more targets by summing the
probabilities of all zone sequences containing z.

To obtain the probability of a target distribution θ , we employ the following recursive function:

Pθ ((p, Θ , B))=
⎧⎨
⎩

p , if B=∅
p ·∑(p′,Θ ′,B′)∈B

∧θ∈Θ ′
Pθ ((p′, Θ ′, B′)) otherwise.

11

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

That is, the probability of a distribution θ at a node (p, Θ , B) is either p, if there are no more
possible choices for zones, or it is p multiplied with the sum of the probabilities for choosing θ

in the children of the current node. Hence, if we apply the function Pθ to the root of the tree, it
traverses the branches and computes the probability of θ .

(b) Complexity
In every call of TREE, we require EXTENSIONS(Θ , θ) to check whether every member of Θ is an
extension of θ , i.e. in the worst case, the check has to be performed |ΘM| times. Within each
of these checks, every zone of θ has to be compared with the member of Θ to be checked.
Hence, for each such call, the complexity is O(|ΘM| · |Z|). The function COMPUTE-ZONES(Θ , θ)
does basically the same comparisons; hence, the complexity of each call is also O(|ΘM| · |Z|). At
each stage of the computation, the tree branches with |Zζ | successors up to a maximum depth of
b=∑

s∈S ρ(s). Hence, we need to create at most |Z|b nodes of the tree. All in all, the complexity of
the whole computation is O(|Z|b · |ΘM| · |Z|). The worst case for computing the probability of a
target distribution is that the distribution is at every leaf of the tree. Hence, the complexity of this
computation is also O(|Z|b).

4. Target counting with error bounds
In this section, we extend the enumeration algorithm introduced in §2 to take sensing errors
into account by assuming each sensor produces a maximum and a minimum reading instead
of a single value. We present the formal definitions for non-weighted topologies in the following
section. Subsequently, we introduce weights to these topologies, similar to the extensions shown
in §3.

(a) Topologies with error bounds
To model sensors with error bounds, we define the codomain of the reading function as N× N.

Definition 4.1 (topology with error bounds). We call a structure M= (S, Z, σ , ρ), where S, Z
and σ are given as in definition 2.1, and the reading function is ρ : S→N× N, a topology model
with error bounds. For readability, we denote the first (second) element of the reading of sensor s
by min s (max s, respectively). That is, ρ(s)= (min s, max s).

To acknowledge the inaccuracy in the sensor readings, a feasible target distribution now has
to satisfy

∑
z∈σ (s) θ (z) ∈ [min s, max s] for every sensor s. Hence, we create two constraints for each

s, instead of one.

min s≤
∑

z∈σ (s)

xz. (4.1)

max s≥
∑

z∈σ (s)

xz. (4.2)

Observe that the constraints for exact sensor readings defined by equation (2.1) are a
special case of this definition, i.e. when min s=max s. With this change, the solutions of the
corresponding CSP are again all feasible target distributions for the sensor readings. Note that
these solutions have exactly the same form as the solutions for the case with exact sensor readings.
In particular, this allows us to extract the frequency of target counts within the solution space in
the same way as for exact sensors readings, both for the whole of the space as well as for single
zones.

Furthermore, this correspondence allows us to relate feasible target distributions for topologies
with error bounds with sensor readings without error bounds. For a feasible distribution θ , we
can unambiguously compute what the reading for each sensor s should be. We call this value the
admissible sensor reading of s for θ . For example, consider again figure 4, and let ρ(a)= (1, 1), ρ(b)=

12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

(1, 1) and ρ(c)= (0, 2). Then, all three target distributions shown in the figure are still feasible.
Furthermore, the admissible sensor reading of c for θ1 is 2. However, there cannot be a feasible
target distribution θ such that 0 is admissible for c because a has to sense at least one target and
its range is a subset of the range of c.

Definition 4.2 (admissible and derived sensor readings). Let θ be a feasible target distribution
for the topology with error bounds M= (S, Z, σ , ρ). Then, the admissible sensor readings of s for θ

is
∑

z∈Z∧s∈z θ (z). The sensor readings derived from θ are given by a function ρθ : S→N, defined
by ρ(s)=∑

z∈Z∧s∈z θ (z). That is, the derived sensor readings map each sensor to its admissible
reading for θ . Generally, we will denote derived sensor readings by ρ.

Note that to compute the set of derived sensor readings, we need to examine M as a whole, or,
more specifically, all feasible target distributions for M. Consider the example above, where 0 was
not an admissible sensor reading for the sensor c. This restriction stems from the zone structure
of M and not just from the values of its reading function. Furthermore, we have the following
uniqueness property.

Lemma 4.3. Let M be a topology with error bounds and θ a feasible target distribution for M. Then,
the sensor readings derived from θ are a unique function.

Proof. For each sensor s, the admissible sensor reading is unique, as it consists of the sum of all
values of θ for each zone that is part of the range of s. �

In particular, this lemma implies that the derived sensor readings partition the set of feasible
target distributions. We will exploit this relationship in the following section.

(b) Weighted topologies with error bounds
The approach for weighted topologies described in §3 can be extended to include sensing errors
by introducing an estimation of the error distribution for each sensor. Such information can either
be given a priori or learned from the historical data by means of Bayesian inference [14] or other
machine learning techniques [16].

Definition 4.4 (weighted topology with error bounds). Given a weighted topology model
N = (S, Z, σ , ρ, ω), we can extend N further by a probability distribution over the interval of
possible readings for each sensor. Hence, to each sensor s, we associate a probability distribution
δs : [min s, max s]→ [0, 1]. We call the model M= (S, Z, σ , ρ, ω, (δs)s∈S) a weighted topology model
with error bounds.

We do not impose any restrictions on the probability distributions: each δs is a function, such
that for each r ∈ [min s, max s], we have δs(r) > 0 and

∑
r∈[min s,max s] δs(r)= 1. This means we do

not enforce the distributions to be, for instance, normal or exponential.
Since for a given sensor, not every element in the range [min s, max s] may be admissible, we

have to condition the probability of the sensor readings on the only admissible values that can be
derived from the set of solutions for M.

If we treat the derived sensor readings as possible events, the whole event space is defined as
follows:

R= {ρθ | θ ∈ΘM}.

We can then condition the probabilities for the derived sensor readings. The probability for a
derived sensor reading is the product of the probabilities of the occurrence of each reading:

P(ρ)=
∏
s∈S

Dists(ρ(s)).

Furthermore, we sum all probabilities of the possible events (i.e. the derived sensor readings) to
get the value for the whole event space. Note that this may be less than 1, since not every derived

13

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

sensor reading may be admissible. Formally, we have

P(R)=
∑
ρ∈R

P(ρ).

Finally, the probability that a specific-derived sensor reading occurs depends on the overall event
space, and hence, we normalize the probability accordingly.

P(ρ |R)= P(ρ)
P(R)

.

As explained above, the feasible target distributions form a partition according to their
derived sensor readings, i.e. Θρ = {θ | θ ∈ΘM ∧ ρ = ρθ }. Now, instead of simply computing zone
sequences and proceeding as in §3, we parameterize each of these definitions with a derived
sensor reading

Eρ,ε =Θρ

and
Eρ,ζ = {θ | θ ∈ Eρ,ζ<|ζ | ∧ θ is an extension of θζ }.

The definitions of §3 can be straightforwardly amended to take these changes into account.
For example, instead of Zζ , we refer to Zρ,ζ , which in turn refers to Eρ,s. In particular, instead
of computing the probability of a zone sequence immediately, we first choose a derived sensor
reading. Otherwise, we proceed as before:

P(ρ, ζ)= P(ρ |R) · Pρ (ζ),

where Pρ (ζ) is computed as P(ζ) in §3, but where all occurrences of zone sequences are preceded
by the choice of ρ. The probability for a target distribution is then defined as follows:

P(θ)=
∑

{(ρ,ζ)|θζ=θ}
P(ρ, ζ).

Furthermore, we can use algorithms 1 and 2 to solve this straightforwardly: for a model M=
(S, Z, σ , ρ, ω, (δs)s∈S), the solutions Θ can be computed by COMPUTE-MODELS(S, Z, σ , ρ), where the
internal function BUILD-CSP(S, Z, σ , ρ) creates inequalities as in equations (4.1) and (4.2). From this
set of solutions, we can compute all possible derived sensor readings R and then partition ΘM
accordingly to Θ/R = {Θρ | ρ ∈R}. Then, we can compute the probability tree for each equivalence
class by calling TREE(Θρ , P(ρ |R),∅) for each Θρ ∈Θ/R. This gives us the means to compute the
probability for each feasible target distribution for M, as before.

5. Evaluation
In this section, we present empirical results of applying our approach to several example
topologies.7 We start with a short description of the implementation. Then, we show with an
example, how the addition of weights affects the probabilities of target counts. Finally, we
evaluate the performance of algorithm 1 with a set of random and regular topologies.8

(a) Implementation
We implemented our approach using the OCaml programming language [17]. To solve the CSP,
we employed the SMT solver Z3 [18], which can be invoked via the ML bindings of its API.
Z3 is very well suited for our purposes, since it contains dedicated tactics for quantifier-free
linear integer arithmetic, and we only need to address minor implementation details: Z3 does
not support natural numbers, but only positive and negative integers. Hence, we had to add a

7The experiments were conducted on a Intel Core i7-7700 CPU running at 3.60 GHz, equipped with 16GB of memory.

8The implementation, the dataset and the evaluation using the statistical package R can be found at
https://bitbucket.org/svenlinker/tcpres.

https://bitbucket.org/svenlinker/tcpres

14

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

a : (2,3)

b : (0,2)

c : (1,4)

d : (0,2)

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7 8 9
target count

2 3 4 5 6 7 8 9
target count

2 3 4 5 6 7 8 9
target count

pr
ob

ab
ili

ty

pr
ob

ab
ili

ty

0

0.1

0.2

0.3

0.4

0.5

pr
ob

ab
ili

ty

(a) (b) (c) (d)

Figure 6. Probabilities of target counts. (a) Topology, (b) without weight, (c) weight:ω1 and (d) weight:ω2. (Online version
in colour.)

constraint xz ≥ 0 for each variable. Furthermore, since we add the negation of every found model
to the set of assertions, the CSP increases in size in every step. In our experiments, we found that
as soon as the number of solutions exceeds 170 000, Z3 aborts with an exception due to a lack of
heap memory. To keep our evaluation reasonable, we hence aborted the search for solutions, if
we found at least 100 000 of them.

The computation of the probability tree for weighted topologies was implemented directly in
OCaml, with only slight deviations. For example, we did not compute the tree if there was only
one possible target distribution.

(b) Frequentist analysis and weighted topologies
In this section, we show how the introduction of weights changes the analysis of target count
estimations. We chose an example topology and show how the probabilities of estimated target
counts change with the introduction of different weights for zones. The basic topology model
of our example is given as in figure 3a. However, to increase the number of feasible target
distributions, we immediately assume sensor readings with error bounds, as given in figure 6.
This topology has 539 feasible target distributions, distributed as shown in table 1. If we use the
frequentist analysis as outlined in §2b, we get a probability distribution as shown in figure 6. As
the figure shows, the probabilities are uniformly distributed around the target count of 5, which
is most probable.

If we introduce weights into the topology, we also have to fix a distribution over the values
of each sensor reading, since we use sensor readings with error bounds. These distributions are
given in table 2a. We discuss two different weight functions, as shown in table 2b. The weights
of function ω1 are all between 0.5 and 3, where the zones only covered by a single sensor, that
is, a, b and c, are given weights greater or equal to 2, while the overlaps of the sensor ranges are
weighted less (with the exception of bc). In particular, this means that distributions with targets
in the single zones should be more probable than before. This implies that higher target counts
should be more probable, since the amount of overcounting of targets is reduced. Figure 6c shows
the corresponding probability distribution. As expected, the probability of having six or seven
targets is much higher than in the distribution derived only from the number of feasible target
distributions.

The weights assigned by function ω2, however, set a much higher emphasis on the zones
denoting the overlaps of the range of sensor a with the other sensors. That is, overcounting of
targets is more probable, and hence, lower numbers of targets are more likely. This can be seen in
figure 6d, where the probabilities for the presence of seven or more targets are reduced. However,
the probabilities for three and four targets are less than in the frequentist analysis. This is due to
the fact that sensor b perceiving no targets is less likely than before due to the high weights of
zones ab and abc.

15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

s00 s01 s02

s10 s11 s12

Figure 7. Square topology with two rows, three columns and maximum overlap degree of two.

Table 1. Target counts for figure 6 (#: number of targets,Θ : number of feasible target distributions).

2 3 4 5 6 7 8 9

Θ 7 45 116 158 129 63 18 3
. .

Table 2. Error distributions and weight functions for figure 6.

(a) error distributions for sensors

0 1 2 3 4
. .

δa — — 0.2 0.8 —
. .

δb 0.1 0.5 0.4 — —
. .

δc — 0.3 0.1 0.2 0.4
. .

δd 0.1 0.1 0.8 — —

(b) weight functions

zone a b c ab ac bc cd abc
. .

ω1 2 3 2 1 1 2 1 0.5
... .

ω2 0.5 0.1 4 5 5 2 1 5
... .

(c) Random and grid topologies
In this section, we analyse the behaviour of the algorithm to find all feasible target distributions
for different sets of topologies. Since the number of distributions tends to be rather high, we do not
compute the probability trees for the analysis in this section. Sensor readings may be arbitrarily
high, which implies that, generally, there are infinitely many topology models. We restrict our
attention to the following topologies.

We used two different types of topology for our experiments. In the following, the degree
of overlap of a zone z is its cardinality. Assume that a set of sensors S is given. To start the
creation of a topology, we iteratively computed a set of zones, starting with the empty zone.
Each time, we chose an existing zone, and, if the degree of overlap of the zone was less than 4, we
added one randomly chosen sensor to it. After creating a large set of topologies in this way, we
removed all non-connected topologies, i.e. topologies where the underlying bi-partite graph is not
connected.9 From this set of connected topologies with maximal degree of overlap of 4, we chose
160 topologies at random. We repeated this method for each value 5≤ |S| ≤ 10.

9This underlying graph is constructed in the obvious way: The set of nodes is S ∪ Z, and there is an edge {s, z}, if and only if
s ∈ z.

16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

4

5

6

7

8

9

10

11

12

13

6 8 10
|S|

|Z
|

random: |S| versus |Z|

0

25 000

50 000

75 000

4 6 8 10 12
|Z|

|Q
|

random: |Z| versus |Q |

0

50

100

150

4 6 8 10 12
|Z|

ru
nt

im
e

(s
)

random: |Z| versus runtime (s)(a) (b) (c)

Figure 8. Results for random topologies. (a) Degrees of overlap in test set, (b) distributions and (c) runtimes. (Online version
in colour.)

For a more specialized analysis, we also analysed a square grid topology fixing the number of
sensors to be 6 and the zones according to figure 7. That is, we take the sensors to be arranged in
two rows of three sensors each, and each sensor is overlapping with its neighbours, and no other
sensor. This type of topology is similar to some examples analysed by Pianini et al. [5].

For both of these types of general topology models, we created readings as follows. We
distributed a number of targets uniformly over the set of zones. Then, we derived the reading
of each sensor from this given distribution and widen this reading according to a normal
distribution. Hence, we always have consistent sensor readings. For each random topology, we
created one set of readings from 5 and one from 10 targets in this way. For the square grid
topology, we created 80 readings from 5 and 80 readings from 10 targets.

Figure 8a shows the interquartile ranges of the size of the sets of zones of the random
topologies within the dataset with respect to the number of sensors. This figure shows that most
created topologies contain between 7 and 10 zones.

Figure 8b shows the relation between the number of distributions and the number of zones
in the set of randomly created topologies. In particular, it shows an exponential increase in the
number of feasible target distributions. This is consistent with our complexity analysis in §2c.
Figure 8c shows the relationship between the runtime of algorithm 2 and the size of the zone set.
Both diagrams show the exponential influence of the zone set on the number of distributions and
the overall runtime. To reduce skewing of the graphs, however, we removed four outliers. Three
outliers are due to aborted searches (see §5a), and one was a topology with approximately 91 000
solutions, where the runtime was around 300 s. While these outliers occurred for topologies with
a high number of zones (11, 12 and 13), the number of sensors was only either 5 or 7.

Figure 9a shows how the runtime varies with the number of feasible distributions for our
set of random topologies. While the left diagram is a direct comparison, we scaled the y-axis in
the right figure with the square root of the runtime. This shows that the runtime is polynomial
in the number of feasible solutions in our dataset. Similar to the situation above, we removed
the outliers from this set of data. Observe that for very low runtimes, the fit is not ideal. We
assume that difference is due to the overhead of instantiating the solver and setting up the CSP,
in comparison with the very short time the solver needs to run.

For the square grid topology, the corresponding results are shown in figure 9b. Here, we
removed every data point where the search was aborted, which included almost every run for
readings derived from 10 targets. Again, the relationship between the runtime of our algorithm
and the number of feasible target distributions appears to be polynomial.

Finally, we show how the partition of the distributions is dependent on the different types of
topologies in figure 10. In this figure, we include all data points, since even the aborted searches
may show parts of the structure of the space of distributions. From this figure, we can see that
the maximal block size of the partition of the feasible solutions for random topologies is typically
quite small, even if many different readings are possible. Only for small numbers of derived

17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

0

100

200

300

0 25 000 50 000 75 000
|Q |

0 25 000 50 000 75 000
|Q |

ru
nt

im
e

(s
)

10 000

20 000

|Q/R|

|Q/R| |Q/R|

10 000

20 000

|Q/R|

random: |Q | versus runtime (s)

100

200

300

random: |Q | versus runtime (s)

runtime (s)

0

50

100

150

200

ru
nt

im
e

(s
)

250

500

750

1000

1250

square: |Q | versus runtime (s)

50

100

150

200

0 25 000 50 000 75 000
|Q |

0 25 000 50 000 75 000
|Q |

250

500

750

1000

1250

square: |Q | versus

(a)

(b)
ru

nt
im

e
 (

s)
ru

nt
im

e
 (

s)

Figure 9. Runtime per number of feasible solutions. (a) Random topologies and (b) square grid topology. (Online version in
colour.)

readings are large numbers of solutions grouped in a single block. This means that the maximal
size of the probability tree is more restricted, since only a limited number of solutions may appear
on the leaves. For the square topology, however, the maximal block size varies much more,
which implies that the computation of the probabilities needs much more space. Furthermore,
we can also see that larger number of distributions typically imply more different readings and
more feasible distributions that give rise to the same derived reading. Hence, there will be more
uncertainty about the correct number of targets in such a topology.

6. Discussion
This section discusses future challenges and possible extensions to our approach. The main factors
affecting the performance; thus, the applicability of our approach are the number of zones in the
topology, the number of feasible target distributions and the size of the probability trees computed
by algorithm 2. We discuss them in detail in the following.

18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

0

500

1000

1500

2000

500 1000 1500
|Q/R| |Q/R|

|Q |

25 000

50 000

75 000

100 000

|Q |

25 000

50 000

75 000

100 000

square: |Q/R| versus max (|Qr |)

m
ax

 (
|Q

r
|)

m
ax

 (
|Q

r
|)

random: |Q/R| versus max (|Qr |)

0

500

1000

0 10 000 20 000

Figure 10. Maximal size of partition block per number of derived readings. (Online version in colour.)

(a) Restrictions due to Presburger arithmetic
The number of zones impacts on the time the SMT solver needs to find each solution, since
it determines the number of variables in the CSP. This running time is increased every time a
new model for the problem is found, since the CSP to solve is extended by the negated model.
Furthermore, the number of feasible target distributions has a direct impact on the applicability of
our algorithm. For instance, in our experiments, Z3 ran out of memory with instances with more
than 170 000 target distributions. In our setting, such huge number of solutions typically arises for
two reasons: a large number of overlapping sensor ranges, where no sensor is completely covered
by another (for example square grid topologies, §5), and sensing errors.

Hence, a strategy to increase the applicability of our approach is to aim at reducing the number
of feasible target distributions. A straightforward strategy is to ignore the error distributions and
only consider some integer close to the mean of each sensor’s reading. This would reduce the
number of solutions of the CSP, but of course we would omit feasible target distributions, and
thus, we would only approximate the probabilities of the target counts. In particular, it is not
clear how to quantify the quality of such an approximation.

An alternative way to reduce the number of feasible distributions is to choose only a subset
of witnesses (i.e. sampling) for the other computations. However, our application requires these
witnesses to be chosen without bias. Chakraborty et al. [19] have proposed an efficient algorithm
to create almost-uniformly distributed witnesses for Boolean formulae. They employ universal
hash functions based on ‘exclusive-or’, and an SMT solver that is optimized for these operators.
While this approach is promising for our setting, it is not straightforward to apply it. The main
issue is the choice of universal hash functions. The typical families of universal hash functions for
integers employ multiplication and modulo operations, and hence, we would leave the language
of PA and enter Peano arithmetic, which is undecidable in general. While Z3 still allows us to
express these functions, it no longer uses the optimized tactics for Presburger formulae. In an
experimental implementation, this approach was too inefficient to be of any use: for a simple
topology with nine zones, creating 200 witnesses for feasible target distributions took around
16 minutes. By contrast, the algorithm using only Presburger constraints created all solutions
(almost 9500) in around 5 s. Of course, this does not preclude the applicability of such a witness
generator, but shows that considerable effort has to be taken. For a different way to generate
uniformly distributed witnesses, observe that the formulae defining the set of feasible target
distributions define a polyhedron, whose dimension is given by the size of the zone set. Hence,

19

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

we could employ an algorithm defined by Pak to sample integer points within such polyhedra
[20]. However, to the best of our knowledge, no implementation of this algorithm exists yet, so
we cannot judge its efficiency in practice.

(b) Restrictions due to the size of the probability tree
Even with these changes, the probability tree may grow too large to be computed efficiently, since
its size is dependent on the maximal readings of sensors and the number of zones. To alleviate this,
we may employ standard simulation techniques, simulating the probabilistic choices to distribute
the targets among the zones. While this gives us an upper limit on the time necessary for the
computation (dependent on the number of simulation runs, i.e. simulated target distributions), it
may still be unfeasible when sensing errors are taken into account. In this case, we need separate
simulation runs for each possible probability tree, i.e. the number of simulation runs is also
dependent on the number of the blocks in the partition Θ/R as defined in §4b.

(c) Optimizations
Many of the aforementioned issues can be countered by parallelizing the approach to some
degree, with varying success. For example, the computation of probability trees for different
equivalence classes of target distributions can be parallelized without any issues, since the trees
are fully independent from each other. However, the initial computation of the full set of target
distributions is dependent on the capabilities of Z3, and even worse, each step in the computation
is dependent on all previous steps, since the CSP changes for each target distribution found.
Hence, it is not obvious if and how this step could be parallelized. Furthermore, the size of
the probability tree may easily exceed the memory available. In this case, parallelizing the
computation does not help either.

Another way to reduce the complexity might be to restrict the possible properties of topologies
according to the space they are intended to model. For example, if we required the sensor ranges
to be connected, or convex or both, many topologies that we currently accept would not be
allowed anymore. Furthermore, we do not distinguish between types of space, for example,
whether the surveyed space is two- or three-dimensional Euclidean space. However, it might
be possible to enforce properties derived from these types of space onto the topologies, thereby
restricting the possible overlaps between sensor ranges and thus the number of zones. However,
deciding which types of models are still allowed under these constraints (e.g. if we only want
to allow for abstractions of connected subsets of two-dimensional Euclidean space) is generally
hard, if it is possible at all (see, e.g. the work of Nenov & Pratt-Hartmann [21], and the surveys in
the Handbook of spatial logics [22]).

(d) Scalability in practice
In the previous sections, we have discussed several general techniques to address the scalability
of our approach to larger sensor networks algorithmically. However, in real-world deployments,
it is often possible to exploit properties specific to the underlying domain or the actual sensor
topology to effectively carry out target counting tasks with our approach even in larger sensor
networks.

In applications where maximum coverage is not essential (i.e. when holes in the sensor
coverage are tolerable), topologies are typically simpler with only a few signals overlapping with
each other.10 In this case, the number of zones is linear with the number of sensors, thus rendering
the instance of the problem easily solvable. Example applications in this category include
environmental sensing scenarios in which sensors are air dropped over a wide landscape [23]. The
feasibility of our approach in this kind of scenarios is demonstrated by an experiment involving
a synthetic topology formed by 100 sensors and 5 (binary) overlaps in which 14 sensors detect up

10This contrasts, for instance, with regular topologies as the square grid in figure 7.

20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

to one target (thus allowing sensing errors), while the other sensors do not detect any targets. Our
algorithm computed all 46 400 target distributions in 38.7 s and partitioned these distributions
into 16 384 different sensor readings in 203.1 s. Hence, if the sensor topology is only locally dense,
i.e. it exhibits overlaps only over a limited area, while most of the sensor ranges are disjoint, our
approach is feasible.

The aforementioned application is also an example for the impact of the number of targets
in the system on the performance of our algorithm, i.e. this is another crucial factor affecting its
scalability. However, in many applications, low target counts are usually expected, thus allowing
the algorithm to scale more easily. For instance, in military applications in which the number of
hostile submarines in a region is counted through underwater acoustic sensors, in normal times,
individual sensor counts are 0 and rarely exceed 2. We conducted an experiment with the same
sparse topology used in the previous experiment but with only 10 sensors detecting one target
(allowing sensing errors); our algorithm computed all 2900 solutions in 1.3 s and partitioned them
in 3.0 s. As a final example, we chose topologies consisting of 100 sensors, where eight sensors
detect targets: two sensors detect between zero and two targets, while the other sensors perceive
up to one target. We then increased the number of overlaps between the ranges of these sensors to
model a more dense sensor distribution. In our first experiment, we added 21 zones modelling the
overlaps of the sensor ranges. Eleven of these zones modelled binary overlaps, while the maximal
number of overlapping sensor ranges was six. Our algorithm constructed the 8186 solutions in 6.0
s and also created the partition of 576 blocks of sensor readings in 10.5 s. We then increased the
number of zones to 40, where 19 zones were binary, and the maximal number of overlapping
sensor ranges was eight. The execution of our algorithm yielded 24833 solutions in 35.7 s, while
the partitioning into the 576 blocks took 39.2 s. This shows that even if we increase the density of
the topology, our approach can be still feasible if the number of expected targets is low.11

Even in large complex topologies, we might have several zones with low weights as, for
instance, in the crowd control application described in §3. As a first approximation, it is possible
to ‘prune the topology’ by discarding the zones having a weight below a certain threshold and
running our algorithm on the reduced topology.

Finally, we note that many applications support or allow target identification. In these cases,
our approach should not be used as the problem simply amounts to computing the cardinality of
the union of the sets of identifiers produced by each sensor and is thus trivial to solve. Another
special case is when the topology has no overlaps at all. In this case, employing our approach would
be overkill as the target counting problem can be solved by summing over the local counts.

(e) Extensions
Our approach is open for extensions in several different ways. For example, at the moment, our
algorithm only returns target distributions for a single point in time. If we allowed for the passage
of time, we can incorporate changes to the topology: if targets move, the readings of the sensors
could change, if the sensors move, both the readings and the set of zones could change. In both
cases, we could reduce the number of feasible target distributions by requiring that only target
counts that were previously feasible stay feasible (under the assumption, that no target enters
or leaves the sensed area). The possible ways a topology can change within one time-step is
restricted by the possible topological changes [7]. Such an extension could be driven further, by
taking weights into account. In particular, it would be possible to use the previously computed
feasible target distributions to update the existing weights of the topology. To that end, Bayesian
or other learning methods could be employed [14]. This would allow for a dynamically adaptable
algorithm.

It remains to be shown how our algorithms can be extended to support different sensor types
and thus more applications than target counting. For example, if we had temperature sensors, we
would need to associate a value to each zone z. A simple idea would be to use the mean of the

11Observe that we did not introduce overlaps for the sensors perceiving zero targets, since they would not increase the
complexity of the computation.

21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

readings of all sensors covering z. However, since temperature is a continuous property of every
point in the space, in contrast to the discrete property of the presence of targets, this would be less
explicit than the current setting.

Furthermore, we currently assume that all sensors are homogeneous (except for possibly
different error bounds) and thus sense the same type of data. It would be interesting to analyse
how our approach could be extended to cope with sensors that detect different aspects of the same
phenomenon. For example, analysing how fusing sensor readings of different types of sensors is
a natural extension.

Currently, we expect our analysis to be carried out on an existing set of deployed sensors.
However, this analysis can also be helpful during the design phase of the sensor network to
evaluate how different topologies perform in different situations. To that end, we would fix the
interesting topologies and define a set of target distributions as typical situations (and possibly
some to model extraordinary events). From these distributions, we can derive the sensor readings
and then analyse how probable the original distributions were in each sensor topology.

7. Related work
The target counting problem has been studied with different assumptions on both the sensor
capabilities and the topology of the underlying space [1]. For example, the sensors could return
only whether at least one target is within their range (binary sensors) [24] or the amount of energy
they sense [25,26]. Due to these extensive differences in the approaches, we will only discuss and
compare our approach with the most similar algorithms. In particular, we restrict our discussion
to sensors that return the number of targets within their sensing range. Furthermore, we assume
that our sensors have a clearly defined sensing range, that is, we do not take into account that
sensing may become less reliable with increasing distance to the sensor.

The approach most similar to ours is the SCAN algorithm, as presented by Gandhi et al. [3]. The
algorithm works in two steps: first, the given topology of sensor ranges is reduced to a minimal
topology, that is, a topology in which any sensor whose range is entirely covered by other sensor
ranges is removed. Second, the sum of the remaining sensor readings and the maximum overlap
degree, i.e. the maximum number of sensor ranges that overlap in any point in space, are used to
derive an estimation interval of the number of targets in the covered space. The SCAN estimate
is then defined as the geometric mean of the endpoints of this interval.

We improved on their results in different ways. A precondition of SCAN is the convexity of the
sensor ranges, while we allow for arbitrary shapes of the ranges. Furthermore, in two-dimensional
space, minimal topologies are not unique [7]. In particular, different minimal topologies may
possess different maximum overlap degrees, which in turn impacts the estimation of SCAN.
Another peculiar artefact of the SCAN approach is that redundancies in sensor coverage typically
worsen the estimation, since they can only increase the possible overlap degree. By contrast, our
approach is deterministic and uses the redundancies in sensor coverage to its advantage, since
the only way a redundancy may impact on our results is by reducing the possible number of
target distributions. So, either we get an inconsistent reading, which implies faulty sensors, or
our results are more accurate than before.

The bounds computed by our approach are typically tighter than the results of SCAN,
and furthermore, they are always realisable, since they are derived from consistent target
distributions. By contrast, SCAN may return non-integer results for its bounds (see the example in
§1). Furthermore, in addition to bounds on the target counts, we can also more specifically analyse
the frequency of the possible target counts, or even their probability, if we allow for weighted
topologies. Finally, while the SCAN algorithm can be used to synthesize target distributions in a
one-dimensional space, it fails for this purpose in higher dimensions. However, our approach
is much more complex due to its reliance on decision procedures for PA, while only simple
arithmetic computations are necessary to implement the SCAN algorithm.

Baryshnikov and Ghrist presented a target counting approach based on the analysis of
simplicial complexes induced by the topology of the sensors [4]. They proved that their

22

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

approach is correct and complete under the assumption that a sensor is present at each point
in the continuum. Hence, applicability of this approach in practice might be limited as already
highlighted by the authors. In particular, examples such as the one introduced in §1 are not
unlikely to happen in real-world applications. The major downside of this is that generally, the
algorithm gives no assurance on the quality of the result. While in the given example, we can
immediately see that the computed result has to be wrong (since every sensor detects at least one
target), this is just a coincidence. A study by Pianini et al. [5] shows huge variation in accuracy
depending on topology density and target distribution with more realistic sensor placements.
We used topologies similar to their examples to analyse our approach. However, their study also
highlights an advantage of the algorithm: it can be implemented in a distributed fashion, on each
sensor. Our algorithm, in contrast, can be realistically implemented only on a base-station, since it
requires much more computational resources. Furthermore, the formulation of the CSP crucially
depends on the availability of all sensor readings in one device.

8. Conclusion
We have presented a novel approach to solve the problem of target counting. In particular, we
examined situations, where sensors may count the number of sensed targets, but cannot identify
or distinguish different targets, which leads to overcounting of targets if sensor ranges overlap. In
our approach, we abstract from the physical reality of space to a formal model, which allows
us to express the problem as formula of PA. The solutions of this formula form all feasible
target distributions. This set of solutions can then be analysed with standard statistical methods.
Extending the model of space with weights to model the importance and influence of different
parts of space allows to extend such analyses further.

The key benefit over existing approaches is that our algorithm guarantees that computed
solutions are always feasible. Moreover, it allows for a fine-grained spatial analysis that can be
used, for instance, to optimize the topology of a sensor deployment. However, our experiments
also show that it is computationally more expensive. In particular, the number of sensors, their
positioning in the space to be covered and the size of their sensing ranges have a strong impact
on the performance of the algorithm. This limitation can be alleviated by the application of suited
sampling techniques to find uniformly distributed witnesses of target distributions. We defer such
an extension to future work.

Data accessibility. The implementation, the dataset and the evaluation using the statistical package R can be found
at https://bitbucket.org/svenlinker/tcpres. Source code publicly available at https://bitbucket.org/sven
linker/tcpres.
Competing interests. We declare we have no competing interests.
Funding. This work was supported by the Engineering and Physical Sciences Research Council, under the grant
nos EP/N007565/1 (S4: Science of Sensor Systems Software) and EP/L024845/1 (Verifiable Autonomy).
Acknowledgements. We thank the two anonymous referees for their helpful comments to improve the paper.

Appendix A. Target counting with existing approaches
This section describes the steps required to compute estimated target counts for the topology in
figure 2 (left) using two current algorithms as described in §1.

(a) SCAN algorithm
The given topology is already minimal,12 and therefore, no sensor is removed. Then, the
maximum overlap degree is computed: m= 2. The SCAN estimate is defined by using the

12A topology is minimal if no sensor is redundant.

https://bitbucket.org/svenlinker/tcpres
https://bitbucket.org/svenlinker/tcpres
https://bitbucket.org/svenlinker/tcpres

23

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

a
1

c
1

b
1

1

1

1

Figure 11. Simplicial complex for topology in figure 2.

individual sensor counts as follows:

t̂= 1+ 1+ 1√
m

= 3√
2
≈ 2.12.

Finally, the SCAN estimation interval is given by[
t̂√
2

, t̂
√

2

]
= [1.5, 3] .

(b) Baryshnikov and Ghrist algorithm
The first step consists in creating a simplicial complex starting from the input topology as shown
in figure 11. Observe that within this complex, only the nodes and edges (0- and 1-simplices)
exist, but the surface within is not part of the complex. The 0-complex is formed by the individual
counts of the three sensors: a= b= c= 1. The 1-complex is obtained by drawing an edge between
any two sensors with overlapping ranges and then setting the value of each edge as the minimum
of its vertices: ab= bc= ac= 1. The Euler characteristic is then computed as an alternating sum for
each possible value of h, the function associating a value to each cell13 of the simplicial complex:

χ{h > 0} = #V − #E= 3− 3= 0

and
χ{h > s} = 0 with s > 0.

Finally, the target estimate is obtained by summing the Euler characteristics:

t̂=
∞∑

s=0

χ{h > s} = 0.

References
1. Wu D, Zhang B, Li H, Cheng X. 2014 Target counting in wireless sensor networks. In The

art of wireless sensor networks (ed. HM Ammari). Advanced Topics and Applications, vol. 2.
pp. 235–269. New York, NY: Springer.

2. Fang Q, Zhao F, Guibas L. 2002 Counting targets: building and managing aggregates in
wireless sensor networks. Palo Alto Research Center Technical Report 10298.

3. Gandhi S, Kumar R, Suri S. 2008 Target counting under minimal sensing: complexity and
approximations. In Algorithmic Aspects of Wireless Sensor Networks: Fourth Int. Workshop,
ALGOSENSORS 2008, Reykjavik, Iceland, July 2008. Revised Selected Papers. pp. 30–42. New
York, NY: Springer.

4. Baryshnikov Y, Ghrist R. 2009 Target enumeration via Euler characteristic integrals. SIAM J.
Appl. Math. 70, 825–844. (doi:10.1137/070687293)

5. Pianini D, Dobson S, Viroli M. 2017 Self-stabilising target counting in wireless sensor networks
using euler integration. In 2017 IEEE 11th Int. Conf. on Self-Adaptive and Self-Organizing Systems
(SASO), Tucson, AZ, 18–22 September, pp. 11–20. Piscataway, NJ: IEEE.

13The cells are the vertices and the edges of the simplicial complex.

http://dx.doi.org/doi:10.1137/070687293

24

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A475:20190278

...

6. Presburger M. 1929 Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus Premier
Congrès des Mathématiciens des Pays Slaves 395, 92–101.

7. Linker S, Sevegnani M. 2018 Formalising sensor topologies for target counting. In Proc. First
Workshop on Architectures, Languages and Paradigms for IoT, Turin, Italy, September 18, 2017 (eds.
D Pianini, G Salvaneschi). Electronic Proceedings in Theoretical Computer Science, vol. 264.
pp. 43–57. Open Publishing Association.

8. Oppen DC. 1978 A 222pn
upper bound on the complexity of Presburger arithmetic. J. Comput.

Syst. Sci. 16, 323–332. (doi:10.1016/0022-0000(78)90021-1)
9. Fischer MJ, Rabin MO. 1974 Super-exponential complexity of Presburger arithmetic. In Proc.

of SIAM-AMS Symp. in Applied Mathematics, New York, NY, 18–19 April, vol. 7. pp. 27–41.
10. Scarpellini B. 1984 Complexity of subcases of Presburger arithmetic. Trans. Am. Math. Soc. 284,

203–218. (doi:10.1090/S0002-9947-1984-0742421-9)
11. Papadimitriou CH. 1981 On the complexity of integer programming. J. ACM 28, 765–768.

(doi:10.1145/322276.322287)
12. Woods K. 2015 Presburger arithmetic, rational generating functions, and quasi-polynomials.

J. Symb. Logic 80, 433–449. (doi:10.1017/jsl.2015.4)
13. Helbing D, Mukerji P. 2012 Crowd disasters as systemic failures: analysis of the Love Parade

disaster. EPJ Data Sci. 1, 7. (doi:10.1140/epjds7)
14. Bishop CM. 2007 Pattern recognition and machine learning, 5th edn. Information science and

statistics. New York, NY: Springer.
15. Barnett V. 1999 Comparative statistical inference, vol. 522. New York, NY: John Wiley & Sons.
16. Mitchell TM. 1997 Machine learning, 1st edn, New York, NY: McGraw-Hill, Inc.
17. Leroy X, Doligez D, Frisch A, Garrigue J, Rémy D, Vouillon J. 2018 The OCaml system release

4.07: Documentation and user’s manual. [Intern report. Inria.]
18. De Moura L, Bjørner N. 2008 Z3: An efficient SMT solver. In Proc. Theory and Practice of

Software, 14th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
TACAS’08/ETAPS’08, pp. 337–340. Berlin, Germany: Springer.

19. Chakraborty S, Meel KS, Vardi MY. 2013 A scalable and nearly uniform generator of
sat witnesses. In Computer aided verification (eds. N Sharygina, H Veith). Lecture Notes in
Computer Science, pp. 608–623. Berlin, Germany: Springer.

20. Pak I. 2002 In On sampling integer points in polyhedra, pp. 319–324. Singapore: World Scientific
Publishing.

21. Nenov Y, Pratt-Hartmann I. 2010 On the computability of region-based euclidean logics. In
Computer science logic. Lecture Notes in Computer Science, pp. 439–453. Berlin, Germany:
Springer.

22. Aiello M, Pratt-Hartmann I, van Benthem J (eds.) 2007 Handbook of spatial logics. New York,
NY: Springer.

23. Song WZ, Huang R, Xu M, Ma A, Shirazi B, LaHusen R. 2009 Air-dropped sensor network
for real-time high-fidelity volcano monitoring. In Proc. of the 7th Int. Conf. on Mobile Systems,
Applications, and Services, Krakôw, Poland, 22–25 June, pp. 305–318. New York, NY: ACM.

24. Zhu M, Ding S, Wu Q, Brooks RR, Rao NSV, Iyengar SS. 2010 Fusion of threshold rules for
target detection in wireless sensor networks. ACM Trans. Sen. Netw. 6, 18.

25. Zhang B, Cheng X, Zhang N, Cui Y, Li Y, Liang Q. 2011 Sparse target counting and localization
in sensor networks based on compressive sensing. In INFOCOM, 2011 Proc. IEEE, Shanghai,
China, 10–15 April, pp. 2255–2263. Piscataway, NJ: IEEE.

26. Sun B, Guo Y, Li N, Fang D. 2017 Multiple target counting and localization using variational
Bayesian EM algorithm in wireless sensor networks. IEEE Trans. Commun. 65, 2985–2998.
(doi:10.1109/TCOMM.2017.2695198)

http://dx.doi.org/doi:10.1016/0022-0000(78)90021-1
http://dx.doi.org/doi:10.1090/S0002-9947-1984-0742421-9
http://dx.doi.org/doi:10.1145/322276.322287
http://dx.doi.org/doi:10.1017/jsl.2015.4
http://dx.doi.org/doi:10.1140/epjds7
http://dx.doi.org/doi:10.1109/TCOMM.2017.2695198

	Introduction
	Target counting using Presburger constraints
	Computing target distributions
	Frequentist analysis of target distributions
	Complexity

	Weighted topologies
	Computing the probability tree
	Complexity

	Target counting with error bounds
	Topologies with error bounds
	Weighted topologies with error bounds

	Evaluation
	Implementation
	Frequentist analysis and weighted topologies
	Random and grid topologies

	Discussion
	Restrictions due to Presburger arithmetic
	Restrictions due to the size of the probability tree
	Optimizations
	Scalability in practice
	Extensions

	Related work
	Conclusion
	References

