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Abstract  27 

Pancreatic cancer is accompanied with a fibrotic reaction that alters interactions between 28 

tumor cells and the stroma to promote tumor progression. Consequently, strategies to target 29 

the tumor stroma might be used to treat patients with pancreatic cancer. We review recently 30 

developed approaches for re-shaping the pancreatic tumor stroma and discuss how these 31 

might improve patient outcomes. We also describe relationships between the pancreatic 32 

tumor extracellular matrix, the vasculature, the immune system, and metabolism and discuss 33 

the implications for the development of stromal compartment-specific therapies. 34 

 35 

Keywords: pancreatic cancer, stromal remodeling, invasion, metastasis, diagnostic tool, 36 

patient-derived models 37 
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Pancreatic cancer is predicted to be the second-largest cause of cancer-related death by 57 

2030 and fewer than 7% of patients survive for 5 years1. We therefore need to identify new 58 

therapeutic targets and radically rethink our approach to developing treatments for patients 59 

with pancreatic cancer. Pancreatic cancer progression is accompanied with a fibrotic stromal 60 

(desmoplastic) reaction, characterized by extensive deposition of extracellular matrix (ECM) 61 

components, recruitment and activation of cancer-associated fibroblasts (CAFs), decreased 62 

vasculature patency and altered immune-surveillance2, 3. Stromal remodeling leads to altered 63 

interactions between tumor cells and stromal compartments, which can promote tumor 64 

progression4. Studies have shown that the stroma can promote and prevent pancreatic cancer 65 

progression, highlighting that multiple considerations should be taken into account when 66 

clinically translating stromal-based therapies5.  67 

We review the importance of the different stromal compartments, strategies for 68 

targeting them or re-shaping the pancreatic tumor stroma, and we explore their potential to 69 

improve outcomes of patients with pancreatic cancer. In particular, we outline how short-70 

term, fine-tuned manipulation of interactions between cancer cells and the stroma, both in 71 

primary and metastatic sites (such as the liver), can improve the efficacy of chemotherapy 72 

and reduce growth of metastases while maintaining normal tissue functions. We discuss 73 

findings from studies reporting the intricate interactions between different elements of the 74 

stroma (such as the ECM, CAFs, immune cells, blood, and the lymphatic vasculature) and 75 

how these affect the development of new stromal-based treatments for pancreatic cancer. We 76 

also summarize recently developed diagnostic tools and pre-clinical models that can be used 77 

to assess individualized stromal-based therapies. Lastly, we discuss how discoveries from 78 

research on other types of tumors with high levels of fibrosis could be repurposed in 79 

pancreatic cancer. 80 

 81 

Fine-Tuned Manipulation of the Interactions Between Tumor Cells  and ECM 82 

Within pancreatic tumors, extensive remodeling of the ECM can increase tissue stiffness to 83 

mechanically induce intracellular signaling that promotes disease progression6. Remodeling 84 

of the ECM does not occur evenly throughout the tumor—it was recently shown to be 85 

heterogeneous and spatially well-defined within pancreatic tumor tissues and to correlate 86 

with clinical and pathology features of patient tumors7. Although ECM remodeling has been 87 

proposed to be predominantly mediated by activated stromal cells such as CAFs8, cancer cell 88 
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tension, mediated for instance by JAK signaling via STAT and ROCK, can tune the 89 

pancreatic ECM and thereby mechanically activate signaling pathways that regulate survival 90 

and metastasis in pancreatic cancer cells7, 9. Similarly, increased stiffening of the ECM has 91 

been reported to promote the epithelial-to-mesenchymal transition (EMT) in pancreatic 92 

tumor cells, a key step of the metastatic cascade, and to reduce their response to 93 

chemotherapy10-12.  94 

 95 

Targeting mechanical features of the ECM 96 

The mechanical features of the ECM can determine pancreatic cancer aggressiveness. 97 

Consequently, disruption of the mechanical feedback between tumor cells and the ECM, or 98 

mechano-reciprocity6, has been evaluated as an approach to impair pancreatic cancer 99 

progression. Initial studies assessing ECM targeting have demonstrated that reducing fibrosis 100 

in pancreatic tumors is possible by inhibiting the fibrotic Hedgehog (Hh) signaling pathway13 101 

or by targeting hyaluronic acid (HA) with PEGPH20 (PEGylated hyaluronidase)14, 15 in Pdx1-102 

cre; KrasG12D; p53fl/+ (KPC) mice bearing primary tumors16, 17. These strategies led to reduced 103 

intra-tumor pressure, increased vasculature patency, and longer survival times of KPC mice.  104 

The efficacy of anti-ECM agents in combination with chemotherapy has also been 105 

assessed in clinical trials of patients with pancreatic cancer. For instance, vismodegib, IPI-106 

926 (hedgehog inhibitors, NSC7476918 and NCT0138353819) or PEGPH20 (NCT0183948720, 107 

Table 1) have been tested in combination with chemotherapy. In addition, PEGPH20 is also 108 

currently being tested in patients where high HA deposition in their tumors is assessed as a 109 

marker for response to treatment (HaLo 109-202, Table 1). The promising interim results 110 

from these trials led to a Phase 3 trial for PEGPH20 in combination with gemcitabine and 111 

abraxane (NCT02715804, HaLo 301). Moreover, a phase 1b/2 study of PEGPH20 in 112 

combination with anti-PDL1 cancer immunotherapy is also underway21 (Table 1). 113 

 Inhibition of lysyl oxidase (LOX), an enzyme required for collagen biogenesis and 114 

crosslinking, which is overexpressed in hypoxic tumor environments, was also assessed in 115 

KPC mice. In KPC mice with pancreatic primary tumors, the combination of a LOX blocking 116 

antibody with gemcitabine reduced ECM crosslinking, blocked metastasis, and increased 117 

survival times, compared to gemcitabine alone22. The increased efficacy of gemcitabine upon 118 

LOX inhibition was not due to increased vasculature patency or drug delivery, suggesting 119 

that manipulation of the ECM and of mechano-reciprocity using LOX inhibitors might 120 
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deprive cancer cells of mechanical survival cues that promote metastasis and resistance to 121 

treatment22. Interestingly, inhibition of LOX in combination with gemcitabine in mice with 122 

locally advanced tumors, with a well-established matrix, did not significantly increase 123 

survival22. As LOX inhibition blocks only progressive cross-linking of the ECM and does not 124 

reverse previous LOX-induced changes to the ECM, these findings indicate that agents to 125 

manipulate the ECM are likely to have tumor stage-dependent effects. In light of this, ECM 126 

biomarkers could be used to identify tumors most likely to respond to these agents. 127 

 Studies of stroma-targeting agents in mouse models of pancreatic tumors have mainly 128 

been tested in mice with early-stage (primary) tumors, and have provided insights into the 129 

effects of long-term stromal manipulation14, 15, 23-25. However, most patients present with late-130 

stage pancreatic cancer and metastases. Consequently, there are valid arguments for testing 131 

anti-stroma agents in mice with early- or late-stage tumors to optimize stromal agents in 132 

combination with standard-of-care therapies in both settings26, 27 (Fig. 1A). In addition, studies 133 

using human pancreatic tumor tissues and mathematical modeling have shown that these 134 

tumors do not always progress in a linear or gradual manner, but rather can be a result of fast 135 

and simultaneous accumulation of genetic alterations that lead to early dissemination of 136 

tumor cells28. This finding suggests that testing anti-stroma agents in mice with localized 137 

primary tumors and with metastatic tumors, rather than optimizing the timing of anti-storma 138 

agent administration, could be beneficial. 139 

Tissue stiffening is also mediated by cell contractility, which is in part regulated by Rho 140 

kinase (ROCK) signaling 29-31. Expression of ROCK1 and ROCK2 were recently found to be 141 

increased in human pancreatic tumors with stage and grade, and genomic alterations in 142 

ROCK1 and ROCK2 correlated with shorter survival times of patients32. Interestingly, 143 

ROCK2 activation in non-invasive pancreatic cancer cells promoted their invasion of a 144 

collagen matrix and increased ECM remodeling, potentially via an increased release of 145 

matrix metalloproteinases (MMPs) into the surrounding environment32. In line with this, 146 

short-term inhibition of ROCK activity, via oral administration of fasudil as a priming agent 147 

before administration of a chemotherapeutic reduced fibrosis in pancreatic tumors33. Intravital 148 

imaging analyses of single cells in primary and metastatic pancreatic tumors showed that 149 

pulsed and iterative priming with fasudil, rather than chronic exposure to anti-ECM drugs 150 

(Fig. 1B), reduced ECM crosslinking, increased vasculature patency and enhanced the effects 151 

of chemotherapeutic agents 33. Survival and proliferative stimuli provided by the ECM are 152 
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partly mediated by integrins and Src signaling, and these were also reduced in tumors primed 153 

with fasudil. Src can promote progression of pancreatic tumors by reducing their responses to 154 

chemotherapy34 and increasing their invasive activities 35. Because fasudil priming reduces Src 155 

activity, anti-stromal priming agents such as these could potentially be employed as an anti-156 

invasive approach in pancreatic cancer. This is in line with recent assessment of Src 157 

inhibition post-surgery in pancreatic cancer36, 37. Fine-tuned ROCK inhibition also reduced 158 

cancer cell resistance to shear stress in the blood circulation, decreased cancer cell seeding in 159 

the liver, and inhibited the establishment of a fibrotic environment that supports growth of 160 

metastases 33, as recently reported in models of melanoma38.  161 

Together, these findings indicate that short-term, sequential and pulsed administration 162 

of anti-fibrotic agents allows subtle manipulation of the ECM and deprives cancer cells of a 163 

supportive mechanical niche3, 6, 31, 33. This is an important advantage of fine-tuned ECM 164 

targeting, since chronic, systematic ablation of fibrosis can be accompanied with enhanced 165 

metastasis and increased tumor infiltration by immune cells that support tumor progression 23, 24 166 

(Figs. 1B and 2A).  167 

 168 

Inhibiting the ability of the ECM to promote metastasis 169 

Although remodeling of the ECM accompanies primary tumor progression, alterations of the 170 

tumor ECM can also mediate metastasis39. Changes of the ECM in distant organs before 171 

seeding of metastatic cells can be mediated by exosomes released by primary tumor cells. For 172 

instance, pancreatic cancer cell-derived exosomes can accumulate in other tissues, such as 173 

the liver, to create a pre-metastatic niche by activating hepatic stellate cells and Kupffer 174 

cells39-41. This was shown to induce remodeling of the host ECM and to facilitate cancer cell 175 

invasion and growth in the liver.  176 

 Surgical resection of primary tumors has also been reported to alter the ECM in other 177 

tissues such as the lungs42, and to thereby increase the ability of circulating tumor cells to 178 

form metastases at these sites compared to mice that were not undergoing surgery42. Given 179 

that approximately 20% of patients with pancreatic cancer are eligible for surgical resection 180 

of primary tumors, this may have implications in this disease too. In addition, local changes 181 

to the ECM in secondary organs can reawaken disseminated and dormant tumor cells 182 

(identified as single, non proliferative tumor cells), which could then form metastases. 183 

Activation of dormant tumor cells by a fibrotic matrix can be prevented by blocking 184 
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mechanical interactions between tumor cells and the ECM43. Conversely, cell quiescence and 185 

dormancy can be induced by ECM components such as lumican—further highlighting how 186 

the ECM can promote and impair tumor progression at multiple stages44. FOXO4 was recently 187 

identified as a regulator of cell senescence and dormancy, and inhibiting interactions between 188 

FOXO4 and p53 with a FOXO4 peptide caused apoptosis specifically in senescent and 189 

dormant cells 45. Combinations of such pharmacological agents that induce death of dormant 190 

cells and anti-stroma agents could be repurposed to prevent cancer recurrence caused by 191 

dormant pancreatic cancer cells 46, 47. 192 

 Collectively, these studies show how primary tumor can induce early stromal 193 

alterations in other tissues to promote cancer spread. This highlights the need for assessing 194 

anti-stromal agents in combination with chemotherapy in the neo-adjuvant and adjuvant 195 

settings to reduce the risk of tumor dissemination22, 39-41, 48-50 (Fig. 1A). In addition, in patients with 196 

late-stage pancreatic cancer, tissues containing metastases or pre-metastatic lesions have 197 

already recruited CAFs, increased the density of collagen I fibers and HA, become 198 

hypovascular, and induced changes in the anti-tumor immune response 51. Consequently, 199 

strategies aimed at reversing stromal alterations in secondary sites to restore normal tissue 200 

homeostasis and mechanical properties might also impair pancreatic cancer progression (Fig. 201 

1A). 202 

 203 

Stromal Targets for Fine-Tuning the ECM in Pancreatic Cancer 204 

Additional regulators of ECM stiffening and mechano-signaling, such as FAK, MMPs, 205 

SerpinB2, RhoA, JAK/STAT, YAP/TAZ, CDK4 and PAK, which are known to play vital 206 

roles in mechano-reciprocity and cancer development, might also be targeted to prevent 207 

pancreatic tumor progression 7, 32, 52-57 (Fig. 2A). For example, the activity of RhoA was recently 208 

demonstrated to switch during pancreatic cancer development and metastasis53. Given the role 209 

of RhoA in regulating the interactions between tumor cells and the surrounding stroma, this 210 

calls for careful consideration for the development of fine-tuned targeting of RhoGTPases in 211 

pancreatic cancer58-60. In addition, in pancreatic cancer cells that have lost p53 function (TP53 212 

is frequently mutated in pancreatic cancer cells)61, JAK2 signaling via STAT3 has been shown 213 

to promote activation of pancreatic stellate cells (PSCs) and to increase ECM remodeling9. 214 

Similarly, mechanically induced FAK activity can help establish a fibrotic and 215 

immunosuppressive environment, and FAK inhibition in combination with immunotherapy 216 
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was shown to double survival times of mice with pancreatic tumors54. These observations led 217 

to studies of the efficacy of the FAK inhibitor defactinib in combination with anti-PD1 218 

antibody and gemcitabine in patients with advanced pancreatic cancer (phase 1, 219 

NCT02546531; study still recruiting, see Table 1).  220 

Importantly, these signaling pathways are not active in only pancreatic cancer cells. 221 

Indeed, changes in tumor–stroma interactions have been reported to affect the mechanical 222 

features of liver tumors 55, melanomas62, breast tumors49, 63, and glioblastoma64. Consequently 223 

agents designed to alter mechanical feedback from the ECM could also be beneficial in these 224 

contexts. 225 

 226 

Simultaneous manipulation of dist inct  stromal compartments in pancreatic 227 

cancer 228 

Although manipulation of the mechanical features of the ECM disrupts intracellular signaling 229 

and thereby promotes pancreatic tumor progression, alterations of the ECM can also induce 230 

changes in the intra-tumor vasculature. For instance, increases in matrix stiffness were shown 231 

to induce invasion of endothelial cells and formation of new vessels, potentially via 232 

upregulation of MMPs in endothelial cells. These changes also reduced vessel barrier 233 

function, as demonstrated in experiments in which Evans Blue was injected into mice, and 234 

could be reversed by blocking collagen crosslinking65. Similarly, increased tissue stiffness has 235 

been shown to induce cadherin 2 (CDHN) presentation on the surface of endothelial cells, 236 

thereby facilitating cancer cell interactions with the endothelium and metastasis66.  237 

Conversely, changes in tissue vascularity can modulate the properties of the ECM. For 238 

example, proteomic analyses of the ECM in decellularized pancreatic tissues undergoing 239 

angiogenesis revealed that numerous ECM proteins are differentially regulated during 240 

angiogenesis. These include fibrillin 1, Von Willebrand factor A domain containing 5a, and 241 

hemicentin; none of these had previously been associated with pancreatic cancer 242 

progression67.  243 

Due to the intricate interactions between the tumor ECM and vasculature, manipulation 244 

of one compartment might affect another stromal component. This was recently assessed in a 245 

mouse model of metastatic colorectal cancer, in which administration of blocking antibodies 246 

against VEGF to impair angiogenesis was associated with increased ECM remodeling and 247 

enhanced deposition of HA in liver metastases68. Enzymatic depletion of HA following anti-248 
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VEGF administration increased tissue perfusion and thereby prolonged survival of mice, 249 

compared to mice that received only anti-VEGF agents 68, demonstrating the increased benefit 250 

of sequential targeting of both compartments (Fig. 1B and 2B). In line with this, 251 

manipulation of the ECM in fibrosarcoma increased the permeability of the tumor 252 

vasculature and response to anti-VEGF agents 69. In addition, Frentzas et al reported 253 

interactions between the ECM and vasculature in liver metastases in human and in mice. 254 

Here, the authors demonstrated that metastatic emboli surrounded by a fibrotic capsule 255 

respond well to anti-angiogenic agents, whereas metastases progressing without a fibrotic 256 

tissue were resistant to these drugs 70. These findings indicate the potential benefits of dual, or 257 

sequential, targeting of the ECM and vasculature and such approaches might be used in the 258 

treatment of pancreatic cancer (Fig. 1B). These studies also suggest that combinations of 259 

markers of the tumor ECM and vasculature might be used to identify patients most likely to 260 

benefit from dual manipulation of the ECM and vasculature. 261 

 262 

Manipulating Pancreatic  Tumor Immune Response 263 

While pancreatic cancer cells often display oncogenic mutations that affect anti-tumor 264 

immunity, the fibrotic reaction also affects the immune response in pancreatic tumors 61, 71, 72. 265 

For instance, low infiltration of tumors by T cells has been correlated with poor outcomes 73, 266 

and PSCs and CAFs have been reported to reduce T-cell infiltration of the tumor site74.  267 

Treating KPC mice with all-trans retinoic acid (ATRA) to render PSCs and CAFs more 268 

quiescent increased T-cell infiltration into pancreatic tumors, and prolonged survival 74, 75. 269 

Furthermore, CAFs can secrete CXCL12, which binds to cancer cells and protects them from 270 

T-cell induced apoptosis76. Depletion of CAFs that express fibroblast-activation protein (FAP) 271 

increased T-cell infiltration of tumors and enhanced the efficacy of anti-PD-L1 76, 77. This 272 

suggests that manipulating, rather than eliminating CAFs (for which increased infiltration of 273 

tumors with immune cell that promote cancer progression has been reported) might increase 274 

the efficacy of immune-based therapies for pancreatic cancer (Fig. 2C). Such strategies could 275 

be achieved using pharmacologic agents, such as osteopontin-neutralizing antibodies or 276 

vitamin D, which have both been shown to deactivate CAFs78, 79 (Table 1). In addition, ATRA 277 

is being tested in combination with gemcitabine and abraxane in a phase 1 clinical trial in 278 

pancreatic cancer (the STARPAC study); and given the interactions between CAFs and T 279 
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cells within tumors, ATRA could also be tested in combination with immunotherapy (Fig. 2C 280 

and D, Table 1).  281 

 Immune cells recruited to tumor tissues can also affect some features of the tumor ECM. 282 

Tumor-associated macrophages (TAMs) have been reported to promote deposition and 283 

crosslinking of ECM components such as collagens and fibronectin80. Immune cells might 284 

therefore also be involved in shaping the tumor ECM, and thus could be targeted to not only 285 

improve the anti-tumor immune response but also to reduce ECM stiffness in pancreatic 286 

tumors (Fig. 2D). 287 

 Although the work described above report that CAFs potentially reduce T-cell 288 

infiltration of tumors74, 75, studies that mapped T cells within mouse and human pancreatic 289 

cancer tissues using multiplex immune-labelling and computational imaging did not correlate 290 

T-cell infiltration with the abundance of collagen I or alpha-smooth muscle actin (ACTA)-291 

positive CAFs81. This implies that the relationships between T cells, CAFs, and fibrosis might 292 

be more complicated and heterogeneous than previously reported. A potential explanation of 293 

these results may be that rather than homogenous fibroblastic population, heterogeneous 294 

subtypes of CAFs co-exist in tumor tissues, and have distinct roles in promoting ECM 295 

remodeling, recruitment of immune cells, and response to therapy82-84 (Fig. 2C). Researchers 296 

have described 2 populations of CAFs which are spatially separated in pancreatic tumor 297 

tissues: ACTAHigh CAFs and ACTALow/IL6High CAFs84. ACTAHigh CAFs were shown to promote 298 

ECM remodeling, whereas ACTALow/IL6High CAFs secreted higher levels of cytokines84. 299 

Moreover, CDHN-expressing CAFs have been shown to promote cancer cell collective 300 

invasion. Here, heterotypic interactions between CDHN on CAFs and cadherin 1 on cancer 301 

cells allowed the transmission of mechanical forces and induced collective cell movement85 302 

(Fig. 2C). Similarly, CAFs have been shown to have a heterogenous epigenetic signature and 303 

varying patterns of gene expression, and these are associated with ECM remodeling, 304 

angiogenesis, inflammation, and metastasis86, 87. In addition, although cancer cells can induce 305 

epigenetic changes in CAFs, targeted therapies might also affect their epigenetic regulation. 306 

Consequently, assigning CAFs to subgroups based on their histologic, epigenetic, mechanical 307 

and/or immunologic profiles could be used to target specific sub-populations while leaving 308 

other fibroblast populations intact (Fig. 2C, D). Together, these studies suggest that subtle, 309 

context-dependent targeting of specific CAF populations, rather than complete ablation of 310 
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CAFs, could be beneficial in pancreatic cancer (Fig. 2C, D). This aligns with observations 311 

discussed above for subtle manipulation of ECM stiffness.  312 

 313 

During tumor progression, the vasculature also interacts with the immune system, and this 314 

has implications for the development of anti-stroma agents. For example, chronic stress was 315 

shown to induce dissemination of pancreatic cancer cells via the lymphatic vasculature 316 

network, and this was supported by TAMs. Interestingly, blocking the recruitment of 317 

macrophages to the tumor site reduced lymphatic network remodeling and the subsequent 318 

dissemination of cancer cells88 (Fig. 2D). In addition, targeting beta-adrenergic stress-319 

responsive signaling using beta-blockers reverted stress-induced lymphatic changes and 320 

reduced metastasis (Fig. 2B). Beta-blockers are already used in the clinic to control blood 321 

pressure, so their effects on pancreatic tumor metastases should be evaluated.  Beta-blockers 322 

are being tested in a phase 2 trial of patients with breast cancer (ACTRN12615000889550, 323 

Table 1). In addition, in a phase 2 trial of patients with pancreatic cancer, beta-blockers will 324 

be combined with non-steroidal anti-inflammatory drugs, as a perioperative therapy (personal 325 

communication, M. Diener, E. Sloan, and I. Rooman).  326 

Analyses of gene expression patterns in human breast cancer tissues demonstrated a 327 

positive correlation between expression of genes that regulate vessel normalization with 328 

immune-stimulatory signaling pathways89. In mice bearing tumors, disruption of vessel 329 

normalization reduced T-cell infiltration, while blockade of T-cell activity reduced tumor 330 

vessel pericyte coverage. In addition, immune checkpoint blockade increased vessel patency 331 

and reduced hypoxia in patient-derived xenografts (PDXs)89. Similarly, normalization of the 332 

vasculature using A2V, an inhibitor of angiopoietin 2 and VEGFA, led to recruitment of 333 

TAMs, dendritic cells, and T cells to different types of tumors, including neuroendocrine 334 

pancreatic tumors 90, 91. The studies also revealed that administration of A2V combined with 335 

PD1 blockade significantly increased T-cell activation and prolonged survival of mice 90, 91 336 

(Fig. 2B and D). Together, findings from these studies indicate that manipulation of the 337 

tumor vasculature and tumor immune response might be more beneficial than targeting a 338 

single stromal compartment (Fig. 1B); these findings could be applied to pancreatic cancer, 339 

in which both the tumor vasculature and immunity are compromised. 340 

The development of immune-based therapies for pancreatic cancer has proven to be 341 

challenging, because of the tumor’s poor antigenicity, dense fibrotic stroma and 342 



 13 

immunosuppressive environment, leading to a paucity of infiltrating T cells 3. Recently, 343 

immune-based targets have been identified and have shown promising results in mice. In 344 

patients with pancreatic cancer, expression of the neutrophil-homing receptor CXCR2 and its 345 

ligands92, 93 correlated with lower survival times 48. Inhibition of CXCR2 using a small molecule 346 

inhibitor in KPC mice reduced ECM remodeling and increased infiltration of neutrophils, 347 

macrophages, and T cells into the tumor, while also reducing metastases. In addition, 348 

sequential blocking of CXCR2 to increase T-cell infiltration followed by administration of 349 

anti-PD1 significantly prolonged survival in mice with established tumors. This may be a 350 

promising treatment for pancreatic cancer and is being assessed in a phase 1 clinical trial 351 

(NCT02583477, Fig. 2A, D, Table 1). Similarly, TAMs can also affect response to 352 

treatment94, and manipulating their effects has been suggested to increase the efficacy of 353 

immune checkpoint inhibitors. Indeed, TAMs can capture anti-PD1 antibody, potentially via 354 

Fcγ receptor, and prevent activation of T cells. Blockade of Fcγ receptor before 355 

administration of anti-PD1 antibody significantly increased the efficacy of immunotherapy, 356 

and such approach could be used for the development of immune-based therapies in 357 

pancreatic cancer95 (Fig. 2D). The efficacy of anti-PD1 agents can be increased by 358 

administration of anti-OX40 agents. For instance, sequential administration of anti-OX40 to 359 

increase T-cell activation, followed by administration of anti-PD1 agents, delayed tumor 360 

growth and increased survival compared to anti-PD1 alone96. Importantly, concurrent 361 

administration of anti-OX40 and anti-PD1 agents, rather than sequential administration, did 362 

not increase survival times of mice but instead provoked a cytokine storm-like event. In 363 

addition, sequential administration of anti-PD1 agent first followed by OX40 blockade failed 364 

to increase survival, demonstrating that timing and order are crucial for the combination of 365 

anti-OX40 plus anti-PD-1 agents96, 97 (Fig. 2D).  366 

These findings might guide clinical studies of the efficacy of anti-OX40 antibodies such 367 

as MOXR0916 and GSK3174998, in combination with anti-PD1/PDL1 agents for patients 368 

with solid tumors98 (NCT02410512; NCT02528357, Table 1). Given the subtle balance of the 369 

tumor immune landscape in pancreatic cancer, sequential administration of immune-based 370 

agents, rather than concurrent administration should be considered for the development of 371 

immunotherapies72 (Fig. 1B).  372 

 373 

Effects of the Stroma on Cancer Cell  Metabolism 374 
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Alterations in the stroma during pancreatic tumor progression have also been shown to 375 

affect cancer cell metabolism99. Given the metabolic switch occuring in cancer cells during 376 

tumor progression, this may have implications for the development of anti-stroma agents. 377 

Signaling from activated PSCs can induce metabolic changes in cancer cells, such as 378 

secretion of non-essential amino-acids, which fuel the tricarboxylic acid cycle and 379 

mitochondria metabolism in cancer cells100, 101. Similarly, patient-derived CAFs were shown to 380 

release exosomes, which can be taken in by cancer cells and inhibit mitochondrial oxidative 381 

phosphorylation, increase glycolysis and glutamine-dependent reduction of carbon in cancer 382 

cells102. On the other hand, cancer cell metabolic pathways may also shape some features of 383 

the ECM. As such, AMP-kinase, a metabolic sensor, was recently shown to regulate the 384 

activity of β1-integrin and to affect fibronectin remodeling induced by fibroblasts103, 104. Here, 385 

fibroblasts derived from AMPK knock-out mice assembled more fibronectin and had higher 386 

mechano-reciprocity, indicating a connection between metabolic activity and cell stiffness103, 104. 387 

Moreover, pancreatic tumor cells can scavenge and degrade extracellular proteins through 388 

macropinocytosis and thereby acquire nutrients that support their metabolic activity105. For 389 

instance, using a micro-device to deliver labeled extracellular proteins into pancreatic tumors, 390 

Davidson et al monitored albumin and fibronectin uptake and catabolic degradation 391 

specifically by cancer cells and not by adjacent non-cancerous pancreatic tissue106. In addition, 392 

blocking macropinocytosis in pancreatic tumors of mice via administration of 5-(N-Ethyl-N-393 

isopropyl)-amiloride led to reduced levels of amino acids in pancreatic cancer cells. This 394 

could be an interesting approach to deprive cancer cells of metabolic factors provided by the 395 

extracellular compartment (Fig. 2E).  396 

Obesity, a factor for pancreatic cancer107, has been shown to trigger inflammation and 397 

fibrosis within pancreatic tumor tissues. As such, growth of pancreatic primary tumors, 398 

orthotopic xenograft tumors, and metastases were all accelerated in obese mice compared 399 

with lean mice 108. Obesity was also reported to promote remodeling of the tumor ECM and 400 

vasculature and to reduce drug diffusion into tumor tissue. In addition, tumor infiltration by 401 

Ly6G+ lymphocytes was increased in obese mice compared to lean mice and inhibiting these 402 

lymphocytes reduced activation of PSCs, decreased fibrosis, and increased vasculature 403 

patency108. This study demonstrates  complex, subtle crosstalk between obesity, ECM 404 

remodeling, the vascular network, and the immune response within pancreatic tumors. It also 405 
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suggests that stromal intervention could be fine-tuned based on the metabolic profile of 406 

patients or pancreatic tumors.  407 

Lastly, metabolic agents such as metformin (used to treat metabolic diseases)109, lactate 408 

dehydrogenase110, or glutaminase inhibitors111 were recently suggested to be beneficial for 409 

patients with pancreatic cancer and could be combined with other anti-stromal drugs to slow 410 

development of pancreatic cancer (Fig. 2E). Serine and glycine were also recently shown to 411 

promote cancer progression in genetically engineered mouse models of intestinal cancer and 412 

lymphoma112. Restriction of serine and glycine prolonged survival of ApcMin/+ mice, which 413 

develop intestinal adenomas. However, the anti-tumor effects of serine and glycine starvation 414 

were moderate in KPC mice, so although dietary changes appear to potentially impair cancer 415 

progression in some cases, specific genetic features of patients and their tumors may need to 416 

be factored in to predict response to serine and glycine starvation in combination with 417 

stromal therapies (Fig. 2E).  418 

This body of work suggests that concomitant manipulation of multiple stromal 419 

compartments before administration of standard-of-care therapies can be more beneficial 420 

than single targeting alone (Fig. 1B). However, the timing of administration of stroma-421 

targeting agents must be carefully optimized and balanced to maximize the effects of anti-422 

cancer drugs. Recently, more than 10,000 sequential drug combinations were screened using 423 

systematic cell imaging and global Bayesian analysis and this was employed for melanoma 424 

and pancreatic cancer cell lines113. The authors identified multiple time-dependent, sequential 425 

drug combinations which may be relevant for the treatment of pancreatic cancer cells113. 426 

Screening platforms such as these could be combined with 3-dimensional tumor stroma 427 

models described below to optimize sequential administration of anti-stroma agents. In 428 

addition, chemotherapies not only kill cancer cells but can also have unintended negative 429 

effects on stromal compartments114-116. Therefore, the addition of the anti-stromal effects of 430 

chemotherapy with those of anti-ECM agents needs to be fine-balanced in order to maximize 431 

anti-tumor effects and minimize negative effects.  432 

 433 

Technologies for Detection of Pancreatic Cancer  434 

Although strategies to target the tumor stroma have the potential to improve outcomes of 435 

pancreatic cancer, the lack of sensitive diagnostic tools poses a critical challenge to early 436 

treatment. However, recently developed technologies such as liquid biopsies and live 437 
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imaging techniques could facilitate identification of early-stage tumors in patients (Fig. 3). 438 

Markers in the circulation, such as CTCs, circulating tumor DNA, carcinoembryonic antigen, 439 

and cancer antigen 19-9 (CA 19-9), have been used to detect pancreatic tumors in humans 440 

and in mice, in a non-invasive and cost-effective manner. However, tests for these markers 441 

sometimes lack sensitivity and yield high false-positive rates117, 118.  442 

Recently, circulating extracellular vesicles (cEVs) in the blood of patients with cancer 443 

or of mice bearing tumors have been reported to successfully determine prognosis (Fig. 3A). 444 

Specifically, molecules carried by cEVs, such as microRNA23b3p3, microRNA10b, 445 

microRNA30c, mutant Kras, CD44v5, Tspan8, MET, and CD104 have been suggested to 446 

facilitate detection of pancreatic cancer 119-122.  447 

Isolation of tumor-derived cEVs requires large volumes of blood and can be technically 448 

challenging, time-consuming, and costly. Platforms are being developed for faster and more 449 

accurate detection of cEVs from patients’ blood. One such example is a plasmonic-sensing 450 

system that has been developed for high-throughput and cost-effective detection of cEVs123 451 

(Fig. 3A). This platform identified a cEV-based signature composed of 5 markers that 452 

correlate with presence of pancreatic cancer in patients123. Similarly, a nanoparticle-based chip 453 

was engineered for high-throughput identification of cEVs in small quantities in plasma 454 

samples124 (Fig. 3A). Using this platform, EPHA2 was identified as a potential biomarker of 455 

early-stages pancreatic cancer and response to treatment in patients124. Alternative approaches 456 

for isolation of cEVs in patients, such as double-filtration microfluidics, sequential filtration, 457 

or surface plasmon resonance, which have been used for detection of tumor lesions in 458 

glioblastoma, prostate, ovarian, and breast cancer, might also be repurposed for detection of 459 

early-stage pancreatic cancer 125, 126. In addition, because of the role of cEVs in facilitating 460 

establish the pre-metastatic niche39, cEVs could be monitored to detect tumor metastasis. 461 

Given the extent of the stromal alteration during solid tumor progression, circulating 462 

stroma-derived markers have also been tested as potential diagnostic biomarkers. For 463 

example, circulating collagens fragments and thrombospondin-2 have been identified in 464 

serum and plasma of cancer patients 127, 128, and persistence of collagen in the blood following 465 

surgery have been suggested to predict disease relapse or poor outcomes of patients with 466 

pancreatic cancer,129 as well as metastatic disease in patients with colorectal cancer130. 467 

Similarly, circulating markers of collagen turnover such as MMPs and tissue inhibitor of 468 

metalloproteinases have been found in the serum of cancer patients and might be used to 469 
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detect fibrotic changes occurring during pancreatic cancer progression131, 132. Circulating CAFs 470 

(cCAFs) have also been detected in mouse models of breast and lung cancer as well as in 471 

blood from cancer patients, and this correlated with metastatic disease133, 134 (Fig. 3A). This 472 

could be used to detect pancreatic tumors or to monitor tumor response to treatment. 473 

Similarly, immune cells that recognize tumor antigens, such as monocytes and neoantigen-474 

specific lymphocytes, were found in blood of patients with melanoma or colorectal cancer135, 136 475 

(Fig. 3A). Given the immune reaction occurring during pancreatic cancer, circulating 476 

immune cells that recognize tumor antigens might represent additional markers to identify 477 

patients with early-stage pancreatic cancer72. 478 

 479 

In patients, imaging technologies such as computed tomography, endoscopic ultrasound or 480 

positron emission tomography (PET), have been used to detect pancreatic tumors and to 481 

monitor cancer progression and response to treatments (Fig. 3B). Given the stromal 482 

alterations occurring during pancreatic cancer development, imaging technologies can be 483 

developed that might allow clinicians to detect changes in the pancreatic stroma in a non-484 

invasive manner, while also providing information about the tumor response to stroma 485 

manipulation.  486 

Technologies have been developed to image changes in pulmonary and liver fibrosis in 487 

patients, and might be used to detect fibrotic alterations in patients with pancreatic cancer. A 488 

PET-based probe was recently developed for the detection of young and fibrotic collagen in 489 

patients with idiopathic pulmonary fibrosis137. The probe allowed for sensitive detection of 490 

fibrotic tissue in the lungs, staging of disease development, and monitoring the efficacy of 491 

anti-fibrosis agents in mice and patients 137 (Fig. 3B). Similarly, cathepsin protease probes and 492 

PET probes to detect αvβ6-integrin were engineered for non-invasive imaging of fibrotic 493 

tissue in lungs and liver138, 139. In addition, features of the gut microbiome were also shown to 494 

serve as markers of fibrotic changes in the liver140.Together, tools assessing gastro-intestinal 495 

cancers could be repurposed for detection of fibrosis in early-stage pancreatic tumors and 496 

other types of cancer, at primary and metastatic sites. Measurements of tissue stiffness could 497 

also be achieved by revisiting techniques such as elastography, previously used to detect 498 

fibrotic tissues following liver transplantation141, or using magnetically responsive ferrofluid 499 

microdroplets, which have recently been used to assess mechanical events that promote organ 500 

development142 (Fig. 3B).  501 
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Tumors might also be stratified based on their fibrotic signature for instance using 502 

automated second harmonic generation imaging (SHG)33, which provides label-free imaging 503 

of non-centrosymmetric entities such as crosslinked collagen fibers, or using 504 

immunohistochemical staining of HA content in patient biopsies (clinical trial HaLo 109-202 505 

and HaLo 301143, Table 1). These approaches might guide the development of personalized 506 

anti-stroma manipulation for patients with pancreatic cancer. Importantly, although the 507 

molecular profiles of pancreatic tumors are highly heterogeneous61, 144-148, these studies suggest 508 

that stratifying patients based on a tumor’s stromal signature, rather than solely that of the 509 

cancer cells, might provide the most useful information for the development of precision 510 

stromal medicine in combination with chemotherapy.   511 

The metabolic switch that occurs in cancer cells during tumor development has been 512 

used as the standard for detection of a tumor mass in an organism. Our increasing 513 

understanding of tumor metabolism has led to the development of tools for detection of 514 

precursor pancreatic cancer lesions99. For instance, 18-FDG PET imaging relies upon imaging 515 

tumor’s avidity for glucose, whereas glutamine-based PET probes have been developed for 516 

detection of tumors in animals and have been tested in patients with glioblastoma149, 150. 517 

Similarly, pancreatic cancer progression has been shown to be accompanied by a decrease in 518 

the ratio of alanine:lactate in primary tumors of mice, and this can be imaged using 13C 519 

magnetic resonance151 (Fig. 3B). This approach could be used for early, non-invasive, 520 

radiation-free detection of pancreatic cancer. Finally, subtle changes in the tumor vasculature 521 

were recently detected in mice with ovarian or breast tumors using non-invasive techniques 522 

such as ultrasound imaging152-154, Doppler ultrasonography,155 and optical coherence 523 

tomography156; these approaches could also be used for patients with pancreatic cancer (Fig. 524 

3B). 525 

The recent development of sensitive, cost-effective, and faster diagnostic tools could 526 

facilitate early detection of tumor lesions. This would allow for earlier therapeutic 527 

intervention and/or surgery to be offered to a larger number of patients.  528 

 529 

Modeling the stroma and patient’s response to stromal manipulation 530 

Testing the efficacy of anti-stroma agents can be facilitated using in vitro and in vivo tools 531 

that mimic some stromal compartments of human tumors. These tools allow researchers to 532 

optimize manipulation of the stroma before clinical assessments. Each of these models is 533 
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specifically designed to study specific events occurring during cancer progression (see Figs. 534 

4 and 5). More detailed information on the current and future applications as well as caveats 535 

of these models can be found in Fig. 4 and Fig. 5. For instance, tumors that develop in 536 

genetically engineered mice and PDXs recapitulate many of the stromal and genomic 537 

features found in the tumor environment157-161, and are powerful tools for development of 538 

strategies for precision cancer medicine 33, 56, 162-167 (Fig. 4A). Organoids are also emerging as 539 

miniature platform for studying tumor development 168-170—stem cells, cultured under specific 540 

conditions, spontaneously generate structures that contain much of the architecture, 541 

functions, and genetic features of the tissue of origin171-174. Organoids display some features of 542 

the tissue stroma, and might be used to study the effects of anti-stromal agents in 543 

combination with chemotherapy84, 175. In addition, the generation of organoids derived from 544 

patient tissues may facilitate the development of individualized therapies in pancreatic cancer 545 

84, 176-178 (Fig. 4B).  546 

Three-dimensional organotypic matrices, designed based on specific features of 547 

individual pancreatic tumors, have been developed to optimize selection of anti-stroma 548 

agents 33, 56, 179. In this system, patients’ cancer cells and fibroblasts that have been exposed to the 549 

cancer cells are used to mimic tumor–ECM interactions in a collagen matrix33, 56. This approach 550 

can be used for faster testing of stromal manipulation before assessment in vivo (Fig. 4C). 551 

This is relevant to pancreatic cancer pre-clinical research because of the need and interest for 552 

precision medicines, due to pancreatic tumor heterogeneity 61, 144-147.  553 

More insights into the properties and functions of the ECM were also provided by de-554 

cellularization protocols, which allow the complete removal of cells from tissues, leaving the 555 

native ECM intact180-183. This technique was recently used to catalogue matrix alterations that 556 

occur during breast cancer development in multiple sites and has been used to catalogue 557 

ECM and angiogenic changes in pancreatic tumors 67, 180 (Fig. 5A). Lastly, bioengineered 558 

scaffolds with adjustable properties enable researchers to generate 3-dimensional tailored 559 

matrices with controlled mechanical and biochemical features. These tools have been used to 560 

investigate how the ECM promotes angiogenesis, cancer cell intravasation, drug diffusion, 561 

migration of endothelial cells184, 185, EMT 10 and the metabolic activity of pancreatic cancer 562 

cells186, 187 (Fig. 5B). Together, these approaches could provide important insights into tumor–563 

stroma interactions occurring during tumor progression and could guide the development of 564 

stroma-targeting agents for patient-specific treatment of pancreatic cancer.  565 
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 566 

Future Directions 567 

Agents and fine-tuned strategies designed to target the specific stromal features of pancreatic 568 

tumors offer new opportunities for the development of stromal-based therapies in this 569 

disease. Fine-tuned manipulation of the tumor stroma, using carefully timed, sequential 570 

targeting of multiple stromal compartments can deprive cancer cells of the supportive stromal 571 

niche in primary tumors and metastases, without disrupting most normal tissue functions. 572 

The stromal fingerprint of pancreatic cancer, like its epithelial counterpart, is heterogeneous, 573 

and as such the development of stromal-based biomarkers may facilitate identification of 574 

patients that could benefit from subtle manipulation of the stroma prior to, and in addition to 575 

standard-of-care therapy. Pancreatic cancer treatment is in an exciting phase, where fine-576 

tuned, sequential treatment regimens as well as targeting of specific stromal compartments 577 

are set to improve patients’ outcome in this devastating disease.  578 

  579 
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Figure 1.  Manipulating the tumor stroma reduces progression and metastasis  580 

A) Pre-clinical assessment of stromal manipulation in the context of primary tumors and 581 

metastatic disease.   582 

B) Limitations and benefits of long-term exposure to stromal agents (i), pulsed and iterative 583 

administration of anti-stromal agents (ii) and sequential targeting of multiple stromal 584 

compartments (iii).  585 

 586 

Figure 2.  Stromal targets in pancreatic tumors 587 

A) Agents and targets for manipulation of the ECM. Left: SHG imaging of the ECM in 588 

subcutaneous xenografts; right hand image: polarized image of picrosirius red staining in 589 

subcutaneous xenografts. Adapted from33. 590 

B) Strategies for normalization of the tumor vasculature. Red: blood vessel (quantum 591 

dot); blue: collagen (SHG signal).  592 

C) Approaches to induce quiescence in CAFs. Fluorescent image of a spheroid 593 

containing A341-EcadKO cancer cells (magenta) and CAFs (blue). Scale bar: 100 μm. 594 

Adapted from85. 595 

D) Immune-based therapies for pancreatic cancer. Infiltration of CD45+ immune cells 596 

(red) in pancreatic tumor tissues, containing cancer cells (blue) and CAFs (green). Adapted 597 

from134.  598 

E) Approaches for blocking the metabolic switch associated with pancreatic cancer 599 

progression. Images show the mass-spectrometry signal used to detect aspartate and 600 

glutamate (left) and overlaid onto a bright-field image of the tissue section (right). Adapted 601 

from106. 602 

 603 

Figure 3.  Tools for early detection of pancreatic cancer 604 

A) Liquid biopsies can be used to identify patients with pancreatic cancer. (i) 605 

Circulating extracellular vesicles can be detected using high-throughput plasmon sensor chip 606 

(left, adapted from123) or nanoplasmonic technologies (right, adapted from124, scale bar=2 μm). 607 

(ii) Detection of circulating CAFs (green) clustered with CTCs (red) (adapted from134). (iii) 608 

Isolation of circulating, immune cells (lymphocytes) from patients’ tumors and matched 609 

peripheral blood mononuclear cells (PBMCs) by flow cytometry (adapted from135).  610 
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B) Imaging and detection of stromal alterations occurring during pancreatic cancer 611 

progression in patients (i) Detection of fibrotic tissue using PET-based probes. Image 612 

represents detection of fibrotic tissue in the liver using PET-based probe, adapted from137. (ii) 613 

Vizualisation of liver fibrosis and of changes in the mechanical properties of tissue using 614 

acoustic radiation force impulse elastography (adapted from 141). (iii) Detection of aberrant 615 

metabolic activity by monitoring alanine:lactate ratio using 13C magnetic resonance imaging 616 

in mice with pancreatic tumors and metastases (adapted from151). (iv) Mapping of subtle 617 

changes of the tumor vasculature using acoustic angiography (adapted from154, left panel: 618 

acoustic angiography image of the tumor and surrounding tissue; right: vessel segmentation 619 

following acoustic angiography) and via micro-ultrasound and photoacoustic imaging. Image 620 

represents heat map of wash-in of gas-filled micromarker in pancreatic tumor tissue. Blue: 621 

low-wash-in; red, high wash-in. Adapted from 153. 622 

 623 

Figure 4.  Three-dimensional in vitro and in vivo models of tumor–stroma 624 

interactions for development of personalized treatment 625 

Description, applications, limitations and future directions of (A) patient-derived 626 

xenografts; (B) organoids (image adapted from178 and representing pancreatic organoids 627 

cultured for 2 weeks in human complete media. hN1: organoid derived from human normal 628 

pancreas, hT1: organoid derived from human pancreatic tumor) and (C)  personalized 629 

organotypic matrices (adapted from33).  630 

 631 

Figure 5.  Three-dimensional tools for studying tumor–stroma interactions 632 

and testing anti-stroma agents 633 

Description, applications, limitations and future directions of (A) decellularization protocols 634 

(image adapted from180, top: image of polymer casting in the vascular compartment of 635 

pulmonary ECM, lower: fibril-orientation analysis overlay of SHG in decellularized tissue) 636 

and (B) 3-dimensional bioengineered scaffolds (image adapted from187 and representing 637 

scaffold engineered using melt electrospun).  638 

 639 

Table 1: Clinical trials in pancreatic cancer assessing stroma manipulation.  640 

 641 

  642 
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