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Pattern recognition receptors (PRR), such as NOD-like receptors (NLRs), sense conserved 
microbial signatures, and host danger signals leading to the coordination of appropriate 
immune responses. Upon activation, a subset of NLR initiate the assembly of a multim-
eric protein complex known as the inflammasome, which processes pro-inflammatory 
cytokines and mediates a specialized form of cell death known as pyroptosis. The identi-
fication of inflammasome-associated genes as inflammatory bowel disease susceptibility 
genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact 
that the functional importance of inflammasomes within immune cells has been well 
established, the contribution of inflammasome expression in non-hematopoietic cells 
remains comparatively understudied. Given that intestinal epithelial cells (IEC) act as 
a barrier between the host and the intestinal microbiota, inflammasome expression by 
these cells is likely important for intestinal immune homeostasis. Accumulating evidence 
suggests that the inflammasome plays a key role in shaping epithelial responses at the 
host–lumen interface with many inflammasome components highly expressed by IEC. 
Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune 
defense, inflammation, and tumorigenesis. In this review, we present the main features of 
the predominant inflammasomes and their effector mechanisms contributing to intestinal 
homeostasis and inflammation. We also discuss existing controversies in the field and 
open questions related to their implications in disease. A comprehensive understand-
ing of the molecular basis of intestinal inflammasome signaling could hold therapeutic 
potential for clinical translation.

Keywords: inflammasome, iL-18, iL-1β, intestinal epithelial cells, NOD-like receptor, pyroptosis, inflammatory 
bowel disease

iNTRODUCTiON

Intestinal homeostasis is governed by complex interactions between the host immune system, 
the vast constitutive antigenic load in the lumen, and the epithelial barrier. Breakdown in this 
molecular dialog can lead to the development of chronic pathologies, such as inflammatory 
bowel diseases (IBD). The precise etiology of IBD remains unclear, although it is likely multifac-
torial involving a number of elements, such as host genetic susceptibility, environmental factors  
(e.g., smoking), and the composition of the microbiome (1). These factors contribute to the distur-
bance of homeostasis leading to the generation of chronic inflammation and development of IBD, 
including Crohn’s disease (CD) and ulcerative colitis (UC). IBD are debilitating, relapsing diseases 
affecting approximately 1:400 people. With no cure available, IBD patients are consigned to long-
term anti-inflammatory and immune suppressive therapies, and surgery is often required. Thus, there 
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TabLe 1 | NLR family members and other inflammasome components.

NLR/inflammasome 
component

Ligand/agonist expression  
in ieC

NLR family

NLRA (acidic 
activation 
domain)

CIITA Unknown Yes (10, 11)

NLRB1 (BIR 
domain)

NAIP1, NAIP2 T3SS (12, 13) Yes (14–16)
NAIP5, NAIP6 Flagellin (12, 13) Yes (14–16)

NLRC (CARD 
domain)

NLRC1 
(NOD1)

iE-DAP (17) Yes (18)

NLCR2 
(NOD2)

MDP (19, 20) Yes (18, 21, 22)

NLRC4 Flagellin, T3SS rod  
proteins (via NAIP) (6, 7, 23)

Yes (24–26)

NLRC3 + 5 Unknown ND

NLRP (PYRIN 
domain)

NLRP1 Anthrax lethal toxin,  
ATP, and MDP (8, 27)

Yes (28)

NLRP3 ATP, MSU, toxins,  
oxidized mitochondrial  
DNA, alum, silica, UV  
radiation, amyloid β (5, 29),  
and SCFA (acetate) (30)

Yes (26, 31) 

NLRP6 Metabolites (e.g., taurine, 
spermine, and histamine) (32)

Yes (33–35)

NLRP7 Microbial lipopeptides (36) ND

NLRP9b dsRNA (37) Yes (37)

NLRP12 Yersinia pestis (38) ND

NLRP 2, 4, 
5, 8, 10, 11, 
13 + 14

Unknown ND

Unclassified NLRX1 ssRNA, dsRNA, and  
poly (I:C) (39)

Yes (40)

inflammasome components

AIM2 dsDNA (41) Yes (42)
Asc NA Yes (16, 43)
Caspase-1 NA Yes (26, 44, 45)
Human caspase-4/ 
murine caspase-11

LPS (46) Yes (44, 46–48)

Caspase-8 ND Yes (24)
IL-1β NA Yes (44)
IL-18 NA Yes (44, 49–52)

SCFA, small chain fatty acids; ND, not determined; NA, not applicable; T3SS, type 3 
secretion system; IEC, intestinal epithelial cells; CARD, caspase recruitment domain; 
AIM2, absent in melanoma 2; dsDNA, double-stranded DNA; NLR, NOD-like receptor.
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is an urgent, unmet need to further understand the molecular 
mechanisms underlying IBD, to inform the development of new 
potential therapies. Genome-wide association studies (GWAS) 
revealed that inflammasome-associated genes were linked to 
IBD susceptibility (2), suggesting that this family of proteins is 
important for maintenance of intestinal homeostasis.

The inflammasome is a multimeric protein complex involved 
in inflammation. It comprised of an intracellular Pattern 
Recognition Receptors (PRR), usually a NOD-like receptor (NLR), 
and is activated in response to exogenous pattern-associated 
molecular patterns (PAMP) or endogenous danger-associated 
molecular patterns (DAMP) (3). NLR are highly conserved 
throughout evolution attesting to their important role in host 
defense (4). NLR possess three domains: the N-terminal effector 
domain that may be a caspase recruitment domain (CARD), a 
pyrin (PYD) domain, or a baculovirus inhibitor of apoptosis 
repeat (BIR) domain; the central nucleotide-binding oligomeri-
zation domain (NOD); and the C-terminal domain comprised 
of leucine rich repeat sequences (LRR) (5). Based on their  
N-terminal domains, NLR can be divided into four main families 
(Table  1). Different NLR have been linked to the detection of 
different signals, for example, NLRC4 recognizes bacterial flagel-
lin (6, 7) whereas NLRP1 has been implicated in the sensing of 
anthrax lethal toxin (8), but the specific molecular ligands for 
a majority of NLRs remain uncharacterized. In some cases, the 
LRR of the C-terminal bind directly to the PAMP (5); however, 
the precise mechanism of agonist activation of NLR remains to be 
determined, as other reports have postulated an auto-inhibitory 
role for the LRR (9).

Upon sensing of endogenous or exogenous danger signals, 
some NLR oligomerize via their NOD domains. If the NLR  
contains a CARD domain this can facilitate the recruitment 
of the inactive enzyme pro-caspase-1, through direct CARD–
CARD interactions. However, inflammasome-forming NLR 
lacking a CARD domain use their PYD domain to recruit the 
adaptor protein Apoptosis-associated speck-like protein con-
taining CARD (Asc)—comprising a PYD and a CARD domain, 
and this serves as a scaffold, bridging the interactions between 
the NLR and pro-caspase-1. This “canonical” inflammasome 
formation results in the autocatalytic activation of caspase-1. 
Caspase-1 has two main functions, cleavage of pro-IL-1β and 
pro-IL-18 into their active forms for secretion (53, 54), and 
the induction of a specialized form of inflammatory cell death 
known as pyroptosis (55–57). Another form of inflammasome 
has been described which does not require a member of the 
NLR family, but instead contains members of the PYHIN family 
(PYD and HIN domain containing). For example, the PYHIN 
family member absent in melanoma 2 (AIM2) can directly bind 
to its stimulus, double-stranded DNA (dsDNA), which may 
be present in the cytosol during infection, to form a caspase-1 
containing inflammasome (41).

Of emerging interest in the field is the formation of “non-canon-
ical” inflammasomes by caspase-11 and caspase-8. Caspase-11 
was originally discovered to be important in caspase-1 and -3 
activation (58) and has been found to indirectly increase pro-
cessing of pro-IL-1β and pro-IL-18 by promoting NLRP3 inflam-
masome activation (59). Indeed, it was shown that caspase-11  

can detect intracellular LPS, and some intracellular bacte-
ria, leading to cell death (60, 61). The human orthologs of 
murine caspase-11, namely, caspase-4 and -5, appear to serve 
similar functions (46, 62). Recently, an inflammasome formed 
by NLRC4, Asc, and potentially caspase-8 was described in 
a model of enteric Salmonella enterica serovar Typhimurium  
(S. Tm) infection, and this inflammasome was required for expul-
sion of infected intestinal epithelial cells (IEC) (Table 2) (24). There 
has also been a report of caspase-8 driving caspase-1 cleavage and 
downstream pro-IL-1β cleavage during Yersinia pestis infection of 
macrophages (63). Although immune cells and IEC express both 
“canonical” and “non-canonical” inflammasome components, 
how these complexes interact with one another upon stimulation 
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TabLe 2 | Inflammasome components and intestinal inflammation.

Mutant strain Trigger effect Reference

inflammasome components

Asc−/− DSS Increased pathology (33, 42, 52, 
131, 164)

Decreased IL-18 levels (33, 52)
Decreased AMP levels
Treatment with taurine  
rIL-18 ameliorated disease

(32)

C. rod Increased bacterial colonization (34, 43, 103)
Increased pathology (43, 103)
Decreased IL-18 levels (43)
Decreased mucus secretion  
by goblet cells

(34)

Rotavirus Increased viral load (37)

Casp1−/− 
Casp11−/−

DSS Increased pathology (33, 51, 52, 
164)

Decreased IL-18 levels
Phenotype rescued by rIL-18

(51, 52)

C. rod Increased bacterial colonization (34)

FlaTox Decreased IEC pyroptosis (24)

NSAID-
induced SI 
damage

Decreased pathology
Decreased IL-1β levels

(165)

Caspase1−/− DSS Decreased pathology
Decreased IL-18 levels

(142)

Rotavirus Increased viral load (37)

Casp1ΔIEC DSS Decreased pathology
Decreased IL-18 levels

(142)

Casp1ΔIEC Rotavirus Increased viral load (37)

Caspase11−/− DSS Increased pathology (47, 48)
Increased IL-18 (48)
Decreased IL-18 and IL-22
Phenotype rescued by rIL-18

(47)

S. Tm Decreased IL-18 levels
Decreased pathology
Increased intraepithelial  
bacterial burden
Decreased IEC extrusion

(44)

gasdermin D−/− FlaTox Decreased IEC pyroptosis (24)

gasdermin D−/− Rotavirus Increased viral load
Decreased IEC death

(37)

Casp1−/−Casp8−/− 
Ripk3−/−

S. Tm
FlaTox

Decreased IEC extrusion (24)

NLR proteins

NAIP1–6Δ/Δ S. Tm Increased intraepithelial  
bacterial loads
Decreased IEC expulsion

(14)

NAIP1–6Δ/ΔIEC S. Tm Increased intraepithelial  
bacterial loads

(14)

NLRC4−/− DSS Increased pathology (30)

C. rod Increased bacterial colonization
Increased pathology
Decreased IL-18 at steady state

(25)

S. Tm Increased intraepithelial  
bacterial loads

(14)

(Continued )

Mutant strain Trigger effect Reference

iNLRC4+Vil-Cre+ S. Tm
FlaTox

Comparable bacterial burden
Comparable IL-18  
and PGE2 levels
Comparable caspase-1  
and caspase-8 activation

(24)

NLRP1−/− DSS Increased pathology
Rescued by treatment with  
rIL-1β or rIL-18 or antibiotics

(131)

NLRP3−/− DSS Increased pathology (30, 42, 52, 
164)

Decreased pathology
Decreased IL-1β

(166)

C. rod Increased pathology (43, 103)
Increased bacterial colonization (43, 103)

T cell 
transfer 
colitis

Increased pathology upon  
transfer of NLRP3−/− T cells  
into lymphopenic hosts
Increased Th17 cells and  
decreased Th1 cells

(167)

NSAID-
induced  
SI damage

Decreased pathology
Decreased IL-1β levels

(165)

NLRP6−/− DSS Increased pathology (33)
Decreased IL-18 levels (32, 33)
Decreased AMP levels (32)

C. rod Increased bacterial colonization
Decreased mucus  
secretion by goblet cells
Decreased autophagosome 
formation

(34)

NLRP9b−/− Rotavirus Increased viral load
Decreased IEC death

(37)

NLRP9bΔIEC Rotavirus Increased viral load (37)

NLRP12−/− DSS Increased pathology (168–170)

NLRX1ΔIEC DSS No change in pathology
Increased IEC proliferation

(40)

PYHiN sensors

AIM2−/− DSS Increased pathology (42, 129)
Decreased IL-1β levels (129)
Decreased IL-18 levels (42, 129)
Decreased IL-22BP levels (42)
Dysregulated AMP levels (42, 129)

AMP, antimicrobial peptides; C. rod, Citrobacter rodentium; FlaTox, Legionella 
pneumophila flagellin fused to the N-terminal domain of Bacillus anthracis lethal factor; 
NAIP5, ligand delivered to cytosol; IEC, intestinal epithelial cells; NSAID, non-steroidal 
anti-inflammatory drugs; SI, small intestine; S. Tm, Salmonella Typhimurium; DSS, 
dextran sodium sulfate; rIL-18, recombinant IL-18; NLR, NOD-like receptor.
Mutant strain: Casp1ΔIEC, caspase-1-deficient IEC; NAIP1–6Δ/ΔIEC, NAIP1–6-deficient 
IEC; iNLRC4+Vil-Cre+, NLRC4 only expressed in IEC; NLRP9ΔIEC, NLRP9b-deficient IEC; 
NLRX1ΔIEC, NLRX1-deficient IEC.

TabLe 2 | Continued
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and tailor their responses (e.g. pro-inflammatory cytokine secre-
tion versus pyroptosis) remains to be elucidated (Figure 1).

Innate immune recognition at mucosal surfaces, in particular 
the intestine, is a critical mediator of homeostasis (64). Indeed, in 
the gut, PRR sensing has been implicated in several key processes, 
such as maintenance and repair of the epithelial barrier and 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigURe 1 | Inflammasomes in intestinal epithelial cells. During homeostatic 
conditions, in the absence of inflammation, IL-18 is released from epithelial 
cells and is involved in epithelial repair, proliferation, and maturation (33, 34). 
A metabolomics screen identified microbiome-derived metabolites, including 
taurine, that are capable of modulating NLRP6 inflammasome activation and 
subsequent IL-18 secretion (32). However, the mechanisms of release of 
IL-18 during homeostatic conditions are undefined. In the context of 
microbial invasion and pathogen-associated molecular pattern stimulation, 
inflammasome activation in intestinal epithelial cells has been described to 
engage both “canonical,” caspase-1-mediated and “non-canonical,” 
caspase-11 pathways (14, 24, 44). Recently, caspase-8 was also shown to 
be involved in inflammasome responses downstream of NLRC4 engagement 
with intracellular flagellin (24). Both caspase-1 and caspase-11 can lead to 
cell death by pyroptosis accompanied by IL-18 secretion; however, 
caspase-1 and caspase-8 were shown to lead to a non-lytic form of cell 
death upon NLRC4 sensing of intracellular flagellin (24). These observations 
raise the possibility of a distinction between a pro-immunogenic cell death 
signal driven by caspase-11 and GsdmD, a pro-silent cell death driven by 
caspase-8, and perhaps a threshold-dependent cellular decision between 
non-lytic and lytic forms of cell death involving caspase-1. Under low stress 
levels, it would be desirable to deal with the invading threat in an 
immunologically silent way. However, when the threat is high, an 
immunogenic cell death could recruit inflammatory cells to help clear the 
microbial insult.
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production of antimicrobial peptides (AMP) (65–67). Aside from 
basal roles at steady state, effective PRR signaling also protects 
against enteric pathogens by initiating immune responses Tables 2 
and 3 (68–70). To date, the majority of work has focused on the 
role of the hematopoietic compartment in microbial detection 

and inflammation, but non-hematopoietic cells, particularly IEC, 
are now appreciated to be important contributors to PRR sensing 
circuits in the gut (71).

Intestinal epithelial cells face a unique challenge as they con-
stitute the first cellular border between the complex contents of 
the gut lumen and the largely sterile subepithelial compartment. 
This intestinal epithelial surface area is greatly increased by gland 
like invaginations called crypts, as well as projections of small 
finger like protrusions in the small intestine, known as villi. IEC 
are composed of various specialized cell types; enteroabsorptive 
cells, goblet cells, Paneth cells, neuroendrocrine cells, tuft cells, 
and stem cells. Due to the constant epithelial turnover, stem 
cells are responsible for replenishing any lost cells via Notch-
mediated epithelial cell differentiation (72). Goblet cells secrete 
heavily glycosylated mucins which form a mucus matrix (73) 
into which Paneth cells secrete antimicrobial peptides (AMP) 
(74–76), together providing a physical and chemical barrier 
between the epithelial cell layer and the luminal contents. This 
barrier is further fortified by the secretion of IgA dimers into the 
mucus layer which act to sterically hinder any potential threats 
(77). In addition, goblet cells have been reported to deliver lumi-
nal antigens to subepithelial antigen-presenting cells enabling 
screening of the luminal contents (78). Thus, there are numerous 
antimicrobial mechanisms employed by the epithelium to limit 
access of potentially inflammatory stimuli.

During homeostasis, interactions with the microbial and 
dietary antigens induce a non-inflammatory IEC state that pro-
motes immune tolerance. However, luminal content occasionally 
carries pathogenic microorganisms or toxic particles capable of 
causing mucosal damage and, in severe cases, systemic disease. 
Accumulating evidence suggests that the inflammasome plays 
a key role in modulating epithelial responses at the host–lumen 
interface. Data generated on purified IEC, in  situ detection, or 
cell-specific ablation have revealed an expression of an array 
of inflammasome components within IEC including; NAIP, 
NLRC4, NLRP1, NLRP6, AIM2, caspase-1, caspase-4/5 (human), 
caspase-11 (mouse), Asc, and IL-18 (Tables 2 and 3) (79, 80). This 
review will discuss the functional importance of the inflammasome  
and its components within the context of epithelial cells and 
intestinal inflammation.

iNFLaMMaSOMeS aND THeiR SOLUbLe 
MeDiaTORS iN iNTeSTiNaL 
HOMeOSTaSiS

Inflammasome formation and caspase-1 activation lead to 
cleavage and secretion of the active forms of IL-1 family mem-
ber cytokines, such as IL-1β and IL-18. These cytokines play a 
central role in immunity due to their diverse array of biological 
functions and broad range of target cells. IL-1β is a potent pro-
inflammatory cytokine exerting a plethora of systemic and local 
effects. IL-1β promotes the recruitment of immune cells to the 
site of inflammation via induction of adhesion molecules and 
chemoattractants (81, 82). Stimulation with IL-1β promotes the 
activation and effector functions of dendritic cells, macrophages, 
and neutrophils (83). In addition, IL-1β plays a role in adaptive 
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TabLe 3 | Soluble mediators of inflammasome activation and intestinal 
inflammation.

Mutant 
strain

Trigger effect Reference

iL-1R1 signaling pathway

IL-1αβ−/− S. Tm No effect on intraepithelial bacterial load (14)

IL-1β−/− DSS Decreased pathology
Hematopoietic expression (monocytes)

(98)

C. rod Increased bacterial colonization
Increased pathology

(103)

IL-1R1−/− DSS Increased pathology (104)

C. rod Increased pathology (104)

T cell 
transfer 
colitis

Decreased pathology upon transfer of 
IL-1RI−/− T cells into lymphopenic hosts
Decreased Th17 cell survival

(101)

iL-18R signaling pathway

IL-18−/− – Increased intestinal Th1 and  
Th17 effector cells
Non-hematopoietic expression  
[intestinal epithelial cells (IEC)]

(49)

DSS Increased pathology (33)

C. rod No effect on bacterial colonization (104)
Increased bacterial colonization
Increased pathology

(103)

S. Tm No effect on intraepithelial load (14)

Rotavirus Comparable viral load (37)

IL-18Tg DSS Increased pathology (123)

IL-18ΔIEC DSS Decreased pathology (110)

IL-18Δ/HE DSS Decreased pathology (110)

IL-18R−/− – Increased intestinal Th1 and Th17  
effector cells
Decreased intestinal Treg function

(49)

C. rod Increased bacterial colonization
Increased pathology

(43)

IL-18rΔIEC DSS Decreased pathology (110)

IL-18r Δ/HE DSS No difference in pathology (110)

IL-18bp−/− DSS Increased pathology
Increased goblet cell loss

(110)

IL-18bp−/− 
IL-18rΔ/HE

DSS No difference in pathology (110)

C. rod, Citrobacter rodentisum; S. Tm, Salmonella Typhimurium; Treg,  
T regulatory cells.
Mutant strain: IL-18Tg, IL-18 transgenic: overexpression of IL-18; IL-18ΔIEC, IL-18-
deficient IEC; IL-18Δ/HE, IL-18-deficient hematopoietic cells; IL-18rΔIEC, IL-18R-deficient 
IEC; IL-18r Δ/HE, IL-18R-deficient hematopoietic cells; IL-18bp−/−, IL-18 binding protein-
deficient; IL-18bp−/−IL-18rΔ/HE, IL-18bp−/− with IL-18R-deficient hematopoietic cells.
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lesions of IBD patients (87–89). IL-1β levels in the colon cor-
related with disease activity suggesting an important role for this 
cytokine in driving local inflammation (90, 91). Elevated colonic 
IL-1β levels are also characteristic of many animal IBD models 
(92–94), and strategies blocking IL-1β signaling were beneficial 
in ameliorating acute models of intestinal inflammation (95–98). 
Moreover, genetic alterations of key innate immune molecules, 
such as NOD2 and Atg16l1, resulted in over production of 
IL-1β by macrophages and enhanced susceptibility to dextran 
sodium sulfate (DSS)-mediated intestinal injury (99, 100).  
In addition, IL-1β augmented the recruitment of granulocytes 
and the activation of innate lymphoid cells during Helicobacter 
hepaticus-triggered intestinal inflammation, and IL-1R signal-
ing in T cells controlled the early accumulation and survival of 
pathogenic Th17 cells in the colon during T cell transfer colitis 
(101). The role of IL-1β in promoting intestinal inflammation 
has also been confirmed in infection studies, as blocking IL-1β 
ameliorated pathology in both Clostridium difficile-associated 
colitis and Salmonella Typhimurium-induced enteritis (68, 102). 
However, alternative studies suggest a protective role for IL-1β 
during Citrobacter rodentium induced intestinal inflammation, 
as IL-1R1−/− and IL-1β−/− animals suffered from increased bacte-
rial loads and pathology (Table 3) (103, 104).

Although IL-1β signaling appears to play a predominant 
role in mediating intestinal inflammation, IEC do not produce 
significant levels of IL-1β themselves (44, 105). Interestingly, 
stratified epithelia at other sites produce considerable amounts of 
IL-1β upon activation of their NLRP3 inflammasome (106, 107).  
The significance of differential IL-1β expression between epi-
thelial cell types in distinct tissues remains incompletely explored.  
In the gut, it appears that lamina propria phagocytes constitute the 
main source of IL-1β during intestinal inflammation (101, 108).

In contrast, there is substantial evidence for the expression 
and secretion of IL-18 by the intestinal epithelium. Notably, 
at steady state in the intestine IEC appear to be the primary 
source of IL-18 (44, 49, 50, 109). The inactive 24 kDa precursor 
pro-IL-18 is constitutively expressed by IEC, primed for release 
upon inflammasome activation (44, 49, 50, 109, 110). Akin to 
IL-1β, IL-18 has been shown to induce a diverse array of immune 
responses. Originally termed IFNγ-inducing factor, IL-18 is 
typically considered a Th1 promoting cytokine due to its ability 
to elicit IFNγ production by T cells (111). However, in the pres-
ence of the correct co-stimuli, IL-18 can also drive Th2 cytokine 
production (112), or IL-17 production by γδ T  cells (113).  
In addition, IEC derived IL-18 can drive perforin production by 
NK cells during enteric infection with S. Typhimurium, reveal-
ing an important role for IEC in coordinating acute mucosal 
responses (114).

Genome-wide association studies have linked mutations 
within the IL-18R1-IL-18RAP locus with susceptibility to IBD 
(115–117). Furthermore, increased IL-18 levels were detected in 
the biopsies of CD patients (50, 118). Using immunohistochemi-
cal analysis, IL-18 localized to the epithelium of non-inflamed 
regions, whereas in involved regions IL-18 was detected in cells 
morphologically described as macrophages (50). However, this 
altered IL-18 distribution was specific to CD, as UC patients 
displayed an epithelial distribution of IL-18 regardless of severity 

immunity driving T cell activation and survival (84), and acting 
in concert with other cytokines to promote Th17 cell differen-
tiation (85). Due to these highly pro-inflammatory properties, 
IL-1β release is tightly regulated via a two-step process, namely, 
TLR-induced production of an inactive ~31–34 kDa precursor 
pro-IL-1β, followed by caspase-1 dependent cleavage and secre-
tion of the active form (86).

Several clinical studies reported high levels of IL-1β produc-
tion by the lamina propria mononuclear cells from active colonic 
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(50). Moreover, the bioactivity of mature IL-18 is regulated by 
the production of IL-18 binding protein, levels of which are also 
elevated in CD patients (119, 120). Thus, although the contribu-
tions of IL-18 to clinical intestinal inflammation remain unclear, 
evidence suggests that dysregulated IL-18 signaling could influ-
ence intestinal inflammation.

In murine models, different studies have drawn conflicting 
conclusions on whether IL-18 plays a predominantly pathogenic 
or protective role in intestinal inflammation. Early studies using 
biochemical inhibition of IL-18 signaling revealed a detrimental 
role for the cytokine in intestinal inflammation mediated by 
DSS (121, 122). Furthermore, overexpression of IL-18 in IL-18 
transgenic mice resulted in increased severity of DSS-mediated 
intestinal injury (Table 3) (123). Hyperproduction of IL-18 in 
mice deficient in Atg16l1, a key autophagy adaptor molecule, 
was also associated with increased susceptibility to DSS, a 
phenotype which was rescued by antibody-mediated blockade 
of IL-18 (100). This exacerbated inflammation associated with 
IL-18 may be due to its ability to induce pro-inflammatory 
effector T cell activation, even in the absence of T cell receptor 
engagement (111, 113, 124, 125). In fact, intestinal T cells express 
significantly greater amounts of IL-18R than those found in sys-
temic lymphoid tissues, suggesting that they may be particularly 
sensitive to IL-18 signaling (49). Indeed, blocking IL-18 signal-
ing protected mice against colitis mediated by transfer of naive 
T cells into lymphopenic hosts (126).

Conversely, independent studies using IL-18- and IL-18R-
deficient mice revealed a beneficial role for IL-18 signaling during 
DSS colitis (Table 2) (127, 128). In addition, caspase-1−/− animals 
were more susceptible to DSS-mediated colitis, which was associ-
ated with decreased epithelial cell proliferation and IL-18 secre-
tion (51). This was corroborated by Zaki et al., who also observed 
increased susceptibility to DSS colitis in the absence of caspase-1 
(Table  2) (52). Interestingly, this exacerbated phenotype could 
be rescued through administration of recombinant IL-18  
(rIL-18), but not by adoptive transfer of myeloid cells, suggesting 
that IL-18 expression in the non-hematopoietic compartment 
was essential for protection (51, 52). Similarly, non-hematopoietic 
NLRP6 expression was found to be necessary to protect against 
DSS colitis, an effect that was again associated with impaired 
IL-18 production (33). In addition, deficiencies in NLRP6 
were associated with a dominant dysbiosis (33) and decreased 
microbiota diversity (32), with rIL-18 treatment ameliorating this 
effect by increasing AMP production by IEC (32). Furthermore, 
a metabolomics screen identified potential microbiome-derived 
metabolites capable of modulating NLRP6 inflammasome activa-
tion and subsequent IL-18 secretion (32). Thus, deficiencies in 
NLRP6 expression are associated with reduced IL-18 production 
and the emergence of a dysbiotic microbiome that sensitizes mice 
to exacerbated DSS-mediated intestinal inflammation. In addi-
tion, deficiency in the cytosolic dsDNA sensor AIM2 also led to 
increased pathology upon DSS administration, which was again 
associated with decreased IL-18 signaling (Table 2) (42, 129).

In fact, DSS colitis is ameliorated in antibiotic treated geneti-
cally susceptible mice (33, 42, 98, 129–131), or exacerbated in 
mice receiving transfers of pathobionts (98), signifying the impor-
tance of the microbiota composition in this model. Microbiota 

sensing may also mediate protective effects against DSS colitis as 
evidenced by reports of exacerbated disease in germ-free mice 
(132) and Myd88−/− mice (133). A key caveat of many studies 
using DSS colitis models in mice with genetic deficiencies is that 
they did not employ appropriate co-housing strategies to mini-
mize any potential effects of the microbiota. As such, variations 
or “dysbiosis” in the microbiota may have occurred as a result 
of long-term microbial divergence due to extended isolation of 
breeding cohorts, as was reported for TLR-deficient mice (134). 
Therefore, studies in which inflammasome-deficient strains were 
compared to independent breeding cohorts of wild type mice 
must be interpreted with caution. In addition, these conflicting 
results emphasize the importance of using littermate controls to 
evaluate potential differences in susceptibility to experimental 
colitis in genetically modified mice.

Epithelium-derived IL-18 has also been implicated in protect-
ing against infection-associated intestinal inflammation. For 
example, IL-18-deficient or IL-18R-deficient mice were more 
susceptible to colonization and inflammation upon infection 
with C. rodentium (Table 3) (43, 103, 109). Similarly, caspase1−/− 
animals suffered from increased susceptibility to C. rodentium 
infection which was associated with increased inflammatory 
responses and decreased IL-18 secretion, suggesting a protective 
role for IL-18 in this model (103). Consistent with these findings, 
mice deficient in NLRP3 or Asc also suffered from exacerbated  
C. rodentium infection and pathology (43). Furthermore, non-
hematopoietic cells were the source of this protective NLRP3 and  
Asc circuit, with strong Asc expression evident in the IEC (43). 
However, although C. rodentium-infected Asc−/− animals almost 
completely lacked IL-18 in the intestine, the absence of NLRP3 
did not affect IL-18 secretion (43). Thus, NLRP3 signaling may 
be mediating alternative protective pathways aside from IL-18 
production (43). NLRC4 expression in IEC is also important 
for protection against C. rodentium induced intestinal inflam-
mation, and NLRC4 deficiency was associated with decreased 
basal IL-18 levels and increased early pathogen colonization of 
the epithelium (25). Thus, the discrepancies in intestinal IL-18 
production between the NLRP3- and Asc-deficient mice may 
be explained in part by compensation of the NLRC4 inflam-
masome in the absence of NLRP3 expression. Finally, NLRP6 
inflammasome expression was also reported to protect against  
C. rodentium induced inflammation, and this was linked to 
effective mucin granule exocytosis by goblet cells (Table 2) (34). 
In addition, NLRP6 inflammasome formation and subsequent 
IL-18 secretion also enhanced AMP production by IEC (32). The 
non-redundant requirement for several NLR in protection from 
attaching and effacing pathogens like C. rodentium suggests that 
distinct NLR may mediate slightly different protective responses 
in IEC and/or that activation of NLR in additional cell types may 
contribute to epithelial protection. In addition, whether and how 
different inflammasomes interact during C. rodentium infection 
remains to be fully elucidated, although there is some evidence 
for the interaction of NLRP3 and NLRC4 inflammasomes during 
S. Typhimurium infection (135).

The epithelial protective effects of IL-18 may be explained by 
its roles in wound healing (127, 136) and in driving IL-22 (109), 
a cytokine important for AMP production and mucosal barrier 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


7

Lei-Leston et al. Epithelial Cell Inflammasomes and Intestinal Inflammation

Frontiers in Immunology | www.frontiersin.org September 2017 | Volume 8 | Article 1168

integrity (137, 138). Of note, IL-22 expression has been shown 
to protect mice against several models of IBD (139, 140). In fact, 
administration of rIL-18 to IEC decreased their production of 
IL-22 binding protein allowing for greater amounts of IL-22 sign-
aling (42). Interestingly, co-administration of IL-22 and IL-18 
induced reprogramming of IEC gene expression, not observed 
with either cytokine alone, which correlated with protection 
against rotavirus infection, suggesting that these cytokines 
may act in concert in the intestine to promote antimicrobial 
responses (141). In addition, IL-18 has also been demonstrated 
to promote optimal T regulatory cells responses in the gut, with 
the lack of IL-18 associated with increased proinflammatory  
T effector cells (49).

Such studies have led to the conclusion that epithelial-derived 
IL-18 promotes barrier integrity and maintains a healthy 
microbiota, which contributes to protection against intestinal 
injury and inflammation. However, this function of IL-18  
has been inferred from complete deletion of inflammasome 
components, as well as the cytokine itself, alongside bone mar-
row chimera studies. Recently, studies have been conducted using 
IEC-specific IL-18 knockouts (IL-18ΔIEC) (110) and IEC-specific 
caspase-1 knockouts (Casp1ΔIEC) (Tables 2 and 3) (142). These 
studies reported that caspase-1 activation and consequent IL-18 
secretion by IEC during DSS colitis was associated with exacer-
bated inflammation and decreased goblet cell maturation (110, 
142). These findings are somewhat surprising, as NLRP6 deficien-
cies were previously associated with both decreased IL-18 levels 
(33) and goblet cell mucus secretion (34), which led to increased 
susceptibility to DSS-mediated intestinal injury. In addition, 
several studies demonstrated that rIL-18 administration rescued 
inflammasome-deficient phenotypes from hypersusceptibility 
to DSS colitis (32, 47, 51, 52, 131). Considering these publica-
tions, the authors argue that extrapolation of IL-18 functions 
from mice fully deficient in inflammasome components should 
be interpreted with caution, as such deletions may affect the 
myeloid compartment beyond the scope of IL-18 production 
(i.e., there could be confounding effects on IL-1β production 
and pyroptosis). However, numerous bone marrow chimera 
experiments pointed to the importance of non-hematopoietic 
inflammasome expression in mediating protection against intes-
tinal inflammation (25, 43, 51, 52, 129). As noted above, it is very 
likely that the microbiota is a key confounding factor, therefore 
repeating DSS colitis in IL-18ΔIEC mice housed in alternative 
vivariums could help clarify the contribution of genotype versus 
microbiota. Clearly, further studies using mice with cell-type 
specific ablation of inflammasome components (or effector mol-
ecules) need to be carried out to better understand their diverse  
functions in IEC.

In addition to IL-1 family cytokines, inflammasome activa-
tion affects the release of alternative bioactive factors by immune 
cells. The alarmin high-mobility group box 1 (HMGB1) was 
originally identified as a nuclear DNA-binding protein. Upon 
infection or injury, inflammasomes were shown to mediate 
extracellular release of HMGB1 from stimulated immune cells 
triggering inflammation (143, 144). In the context of epithe-
lial cells, LPS transfection of IEC led to HMGB1 release (46) 
and infection of gingival epithelial cells with Fusobacterium 

nucleatum drove release of HMGB1 alongside Asc and IL-1β 
secretion (107), suggesting that inflammasomes may be involved 
in the active secretion of HMGB1 from IEC. Caspase-1 activa-
tion has also been hypothesized to play a role in unconventional 
protein secretion of leaderless peptides such as IL-1α and FGF2 
from macrophages (145). Others have postulated that AMP 
may be regulated via post translation modification by an effec-
tor downstream of inflammasome activation (146). The lipid 
inflammatory mediators, eicosanoids, have also been linked to 
inflammasome-dependent unconventional secretion (147, 148).  
In fact, the eicosanoid prostaglandin PGE2 was secreted by murine 
IEC upon NLRC4 inflammasome activation (24). Examination 
of the downstream soluble mediators of inflammasome acti-
vation, aside from IL-1β and IL-18, remains comparatively 
understudied in IEC compared to classical immune cells. Future 
work will need to address this by systematically examining the 
inflammasome-dependent secretome of activated IEC, and its 
downstream activities.

iNFLaMMaSOMeS aND CeLL DeaTH: 
PYROPTOSiS aND aPOPTOSiS

Inflammasome functional studies to date have largely focused 
on the secretion of downstream soluble mediators. However, 
there is much emerging interest in the role of inflamma some-
dependent cell death, termed pyroptosis, an inflammatory 
form of cell death (149, 150). Pyroptosis takes place following 
engagement of “canonical” (caspase-1) or “non-canonical” 
(caspase-11) inflammasomes. “Non-canonical” triggering 
of pyroptosis occurs by intracellular LPS engagement with 
caspase-11 and has mainly been described in macrophages 
(151, 152). Identification of the “non-canonical” pathway 
followed from the finding that 129SvEv mice carried a pas-
senger mutation that truncated the caspase-11 gene (59), 
meaning that the original caspase-1 knockout mice, which 
were generated on a 129SvEv background, were deficient in 
both caspase-1 and caspase-11. Using caspase-11 complemen-
tation, Kayagaki et  al. showed that macrophages underwent 
caspase-1-independent “non-canonical” cell death in response 
to several inflammasome activating stimuli, including Gram-
negative bacteria such as Escherichia coli, Vibrio cholerae, and  
C. rodentium, as well as LPS co-treatment with cholera toxin 
subunit B (59). Subsequently, it was found that macrophages 
that were loaded with intracellular LPS activated caspase-11 and 
died by pyroptosis, and that mice lacking caspase-11 were pro-
tected from LPS-induced endotoxemia and pyroptosis (59–61). 
Finally, two independent studies identified caspase-11 as the 
key intracellular receptor for LPS (46, 153).

Caspase-11-driven pyroptosis has been shown to be key 
for protection against intracellular pathogens, particularly 
those that can escape from phagocytic vacuoles, such as S. Tm  
(151, 154, 155). However, studies with phagocytes and embryonic 
fibroblasts reported that caspase-1 “canonical” inflammasomes 
were required for efficient processing of IL-1β and IL-18, even in 
the context of direct caspase-11 activation, which was only able 
to lead to cytokine cleavage via indirect activation of caspase-1 
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Characteristic of the dying cell apoptosis Necrosis Pyroptosis Necroptosis

DNA fragmentation + (171–173) +/− (171, 172) + (174–177) ? (See necrosis)
Nuclear condensation + (171–173) (172, 178) + (179) − (172, 180)
Nuclear integrity maintained − (171–173) + (171, 172) + (181) + (172, 180)
Cell swelling − (171–173) + (171, 172) + (175) + (172, 180)
Lysis/membrane permeability − (171–173) + (171, 172) + (175) + (178)
Membrane blebbing and shedding + (171–173) − (171, 172) − (182) ? (See necrosis)
Membrane pore formation − − + (183–185) + (186, 187)
DAMP release − + (188) + (179) + (178)
IL-1β and IL-18 release − − + (179) −
Main caspases casp-3 and casp-7 Non-caspase mediated casp-1 and casp-11 (mouse)

casp4 and casp-5 (humans)
Non-caspase mediated (189)

+, present; −, absent; +/−, present to a limited degree; ?, not yet assessed.
GsdmD, gasdermin D; DAMP, danger-associated molecular pattern.
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(156–159). Nevertheless, caspase-11-dependent activation of 
IL-18 has also been reported, for instance, cecal tissue explants 
from S. Tm-infected caspase-11-deficient mice were also 
defective in IL-18 but not IL-1β secretion (44). Furthermore, 
colonic tissue explants from C. rodentium-infected caspase-
11-deficient mice also had decreased IL-18 secretion (160). This 
caspase-11-dependent IL-18 processing was proposed to occur in  
IEC, contrary to the caspase-1-dependent cleavage of IL-18 and 
IL-1β observed in myeloid cells (161).

The importance of “canonical” and “non-canonical” inflam-
masomes may vary depending on the nature and characteris-
tics of the pathogenic threat and the cell types involved. For 
example, upon challenge with flagellin-deficient Salmonella, 
caspase-1-deficient macrophages died in a similar manner to 
WT macrophages, whereas caspase-11-deficient macrophages 
were resistant to cell death (158, 161). In contrast, both 
caspase-1 and caspase-11 were required for cell death in mac-
rophages infected with WT Salmonella (158). This highlights 
the fact that Salmonella can activate both the “canonical” 
inflammasome, through flagellin–NAIP–NLRC4 interactions, 
and the “non-canonical” inflammasome, through direct LPS–
caspase-11 interactions (Figure 1). The complementary roles of 
“canonical” and “non-canonical” inflammasomes are especially 
important in the context of bacterial infections. Bacterial 
evasion strategies can counteract inflammasome responses, 
such as inhibition of epithelial caspase-11 via NleF, a type 3  
secretion system effector protein produced by E. coli and  
C. rodentium (160). In a caspase-11-deficient scenario, however, 
pyroptosis may still proceed due to intact caspase-1 activa-
tion, highlighting potential redundancy of these two caspases 
(162). It seems logical that the intestinal epithelium, as a first 
line of defense, would have intrinsic mechanisms to warn the 
immune system of an invading threat. Indeed, as noted above, 
caspase-11 in mice (an ortholog of human caspases-4/5) is 
important for the recognition and clearance of S. Tm, and 
mice lacking caspase-11 harbor increased loads of S. Tm in the 
intestinal epithelium (14, 44). Furthermore, siRNA knockdown 
of caspase-4 in human colonic IEC led to reduced cell death 
upon E. coli, S. Tm, and Shigella flexneri infection (44, 163), and 
this was accompanied by increased S. Tm intracellular load, and 
reduced IEC shedding (44, 161).

Recent studies, in addition to highlighting the importance of 
“non-canonical” inflammasomes in innate immune defense in 
IEC, have also shed some light on the mechanisms involved in 
IEC-intrinsic restriction of S. Tm invasion. The innate immune 
sensor NLRC4 and its NAIP adaptors were shown to be essential 
for the extrusion of infected IEC into the intestinal lumen fol-
lowing S. Tm challenge of streptomycin-treated mice (14). IEC 
extrusion may represent a cell-intrinsic defense mechanism that 
serves to limit the rate of pathogen colonization of the intestinal 
epithelium. In this study, it was unclear whether IEC extrusion 
was linked to pyroptosis, as plasma membrane integrity of 
extruded enterocytes seemed to be maintained (14). However, by 
using an inducible construct to drive the expression of NLRC4 
specifically in the intestinal epithelium, Rauch et  al. showed 
that IEC-specific NLRC4 activation by FlaTox (Legionella pneu-
mophila flagellin fused to the N-terminal domain of Bacillus 
anthracis lethal factor to drive cytosolic delivery) was sufficient 
to drive pathology, IEC death and IL-18 release (24).

Moreover, in agreement with the findings of Sellin et  al., 
FlaTox activation of NLRC4 in IEC also limited S. Tm coloniza-
tion of intestinal tissues and drove IEC death and extrusion (14). 
However, FlaTox-induced expulsion of IEC was accompanied by 
lytic cell death with plasma membrane permeabilization, resem-
bling pyroptosis (24) (see Table  4 for morphological features 
of pyroptosis). From these studies, it becomes clear that, upon 
NLRC4 activation, IEC can undergo cell death and expulsion 
from the intestinal epithelium. In parallel, experiments in which 
caspase-1 expression was selectively induced in IEC, it was found 
that caspase-1 could drive pyroptosis in response to NLRC4 acti-
vation by FlaTox. On the contrary, caspase-1-deficient IEC did 
not undergo lytic cell death but were expelled from the epithelial 
layer with intact plasma membranes, indicating that caspase-1 
was required for pyroptosis but not for IEC extrusion (24). 
Furthermore, they also observed that caspase-1-independent 
IEC extrusion following NLRC4 activation was dependent on 
both Asc and caspase-8 (24). Taken together, these studies show 
that various inflammasome-dependent responses are triggered 
in IEC during S. Tm infection, and these encompass activa-
tion of NLRC4, caspase-1, caspase-11 and possibly caspase-8  
(14, 24, 44) (see Figure 1). However, it is unclear how the dif-
ferent inflammasome responses are regulated in IEC and if they 
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are redundant, complementary, or interdependent. In addition, 
further studies are required to better define the precise kinetics 
and interconnections between downstream responses, such as 
IEC expulsion and cell death.

The detailed role of pyroptosis in vivo remains largely unex-
plored due to limited knowledge of the downstream targets of 
caspase-1 and caspase-11 culminating in cell death. Recently, 
however, gasdermin D (GsdmD) was identified as a direct down-
stream target of caspase-1 and caspase-11 and was shown to be 
required for pyroptosis upon “canonical” and “non-canonical” 
inflammasome engagement (150, 183, 184, 190, 191). Indeed, 
upon GsdmD cleavage by caspase-1 or caspase-11, its ~30 kDa 
N-terminus embeds itself in the plasma membrane, form-
ing 10–14  nm pores and ultimately leading to lytic cell death  
(184, 185, 192). Interestingly, GsdmD is highly expressed in 
the intestinal epithelium, suggesting that GsdmD may also be 
involved in pyroptosis in IEC (192, 193). Consistent with this 
hypothesis, IEC pyroptosis in response to in  vivo administra-
tion FlaTox did not proceed in gasdermin D-deficient mice (24).  
A very recent study using a mouse model of rotavirus infection 
reported that activation of a novel NLR inflammasome that 
recognizes viral dsRNA, NLRP9b, contributed to the restric-
tion of rotavirus replication in IEC organoids, at least partly 
through gasdermin D-induced pyroptosis (37). Furthermore, 
mice deficient in either GsdmD or NLRP9b displayed increased  
susceptibility to rotavirus infection in  vivo (37). Collectively, 
these reports suggest that different IEC inflammasomes con-
verge on GsdmD-induced pyroptosis to restrict pathogen load 
in infected IEC.

Pyroptosis shares a number of morphological features with 
both apoptotic and necrotic forms of cell death (Table 4). Akin 
to necrosis, in pyroptosis, nuclear integrity is maintained, and 
the cell undergoes cytoplasmic swelling due to membrane per-
meabilization that ultimately terminates in cell lysis (174, 179). 
Akin to apoptosis, pyroptotic cells exhibit DNA fragmentation 
and are TUNEL positive, as well as presenting nuclear condensa-
tion (174–176, 179). Before the acknowledgment of pyroptosis 
as a new form of cell death (57), its similarities to necrosis and 
apoptosis led researchers to attribute inflammasome-driven cell 
death to only apoptosis and/or necrosis (174, 176, 179). It is partly 
for this reason that the interconnections between the different 
types of cell death upon inflammasome activating stimuli remain 
poorly understood. The discovery of GsdmD as a key player in 
pyroptosis should help elucidate the molecular pathways involved 
(150, 191, 192).

In addition to pyroptosis, inflammasome responses in vari-
ous cell types have also been linked to apoptotic cell death. For 
instance, ectopic expression of NLRC4 and Asc in HEK293T cells 
(which lack caspase-1) showed that these molecules can engage 
with caspase-8 to drive apoptosis (194). Furthermore, both 
apoptosis and pyroptosis have been observed in macrophages 
following NLRP3 or AIM2 activation (194, 195). Interestingly, 
macrophages lacking GsdmD were reported to undergo cell 
death upon LPS plus S. Tm or nigericin treatment, through a 
poorly defined mechanism that was independent of caspase-1, 
were delayed compared to pyroptosis, and had some features of 
apoptosis (192).

The literature also suggests some cross-regulation between 
pyroptosis and apoptosis as THP-1 cells treated with etoposide, 
an apoptosis inducing drug, resulted in the cleavage of GsdmD 
into a ~43  kDa fragment, different from the 30  kDa fragment 
observed in pyroptosis, that occurred independently of caspase-1 
(196). The generation of the 43 kDa fragment was observed upon 
caspase-3 and -7 activation during apoptosis. This suggests that 
the apoptosis and pyroptosis pathways may compete for the 
same substrate and that cells may not be able to simultaneously 
undergo both forms of cell death. The authors speculated that 
the alternative cleavage of GsdmD by apoptotic caspases-3 and 
-7 may prevent apoptotic cells from becoming pyroptotic, thus 
maintaining and immunologically silent cell death (196).

Other studies suggest that differing thresholds may operate 
between the two cell death pathways following inflammasome 
activation. For example, in macrophages, for caspase-8 depend-
ent apoptosis to occur upon AIM2 activation, the concentrations 
of DNA required were much lower than for pyroptosis (195). 
Under low stress levels, it would be desirable to deal with the 
invading threat in an immunologically silent way to avoid hyper 
inflammation, thus apoptosis would be favored. However, when 
the threat is high, an inflammatory response could help deal 
with the microbial insult, therefore pyroptosis may be beneficial. 
However, it is important to stress that it remains to be demon-
strated if this threshold-dependent decision controls differential 
cell death pathways following inflammasome activation in vivo 
and in cells other than macrophages.

LiNKiNg iNFLaMMaSOMe eFFeCTOR 
MeCHaNiSMS

Both IL-1β and IL-18 lack signal peptides and therefore are 
not secreted through the conventional ER–Golgi pathway 
(197–199). For IL-1β, the better described cytokine of the two, 
several routes of release have been proposed, including secretory 
lysosomes, exosomes, and microvesicles (200–204). The secre-
tory exosome pathway was proposed through the observation 
that IL-1β in monocytes was localized in endosomal-like vesicles 
that are normally targeted for degradation, but can be redirected 
to the extracellular space (202, 205). In addition, microvesicle-
mediated rapid secretion was proposed after observing vesicles 
associated with bioactive IL-1β as early as 2  min post-ATP 
stimulation in activated monocytes (203). However, studies on 
these secretory routes were often contradictory and employed 
different cell systems, thus these models of secretion remain 
controversial (206). The mechanisms of secretion of IL-18 are 
generally assumed to follow the mechanisms of IL-1β secretion 
but are much less investigated.

However, pyroptosis has now been proposed to be responsible 
for the release of IL-1β and IL-18 to alert the immune cells of the 
imminent danger, leading to the onset of inflammatory responses 
(207). This was first suggested by the observation of caspase-
1-dependent pores in the plasma membrane of Salmonella-
infected macrophages, ultimately leading to cell swelling and 
osmotic lysis (175). This was supported by more recent studies 
of ATP-stimulated BMDM, in which pharmacological inhibition 
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of membrane permeabilization—a hallmark of pyroptosis—
abolished IL-1β secretion, but not processing (200). The recent 
discovery of GsdmD and its requirement for pyroptosis offers a 
potential mechanistic explanation linking pyroptosis and cytokine 
secretion. Both caspase-1 and -11 are able to cleave GsdmD, 
releasing the active N-terminus that mediates pore formation 
and lytic cell death (184, 185, 191, 192) (Table  3). Consistent 
with the concept that pyroptosis facilitates cytokine secretion, 
macrophages lacking GsdmD exhibit defective IL-1β secretion 
in response to various “canonical” and “non-canonical” inflam-
masome activators, including intracellular LPS, Gram-negative 
bacteria and nigericin (150, 185, 191, 192). However, there is 
also evidence in the literature of IL-1β release in the absence 
of cell death in peritoneal macrophages, human monocytes, 
and neutrophils (208, 209). In particular, neutrophils were able 
to secrete IL-1β in response to Salmonella infection through a 
mechanism that was dependent on NLRC4 and caspase-1 but was 
independent of cell lysis (210). The mechanisms of secretion of 
inflammasome-processed cytokines may therefore be dependent 
on the cell type and the nature of the activatory signals.

It is again important to emphasize that inflammasome effector 
responses have largely been studied in leukocytes, particularly 
phagocytic cells. Whether the discoveries made in these cell 
types are applicable to tissue cells, including IEC, remains to be 
determined. For instance, classical activation of the inflamma-
some has long been viewed as a two-step process, starting with 
the transcriptional regulation of the inflammasome components. 
Thus, caspase-11 induced cell death in macrophages was 
dependent on priming by TLR4 ligands through TRIF, but not 
on Myd88 signals (157, 158, 211). Indeed, LPS administration 
in mice, rapidly induced caspase-11 expression in various tis-
sues including thymus, spleen, and lung (161, 212). Conversely, 
IL-1β release in phagocytic cells depended on Myd88-mediated 
transcriptional priming (3, 213). These requirements appear to 
be somewhat different in the intestinal epithelium, for example, 
although TLR4 signaling is downregulated in IEC (214), caspase-
11-dependent responses still occur. This suggests that caspase-11 
is constitutively expressed in the intestinal epithelium and can 
be rapidly activated upon pathogen invasion (48). This “ready-
to-go” phenotype of IEC inflammasome components is further 
supported by the observations that NLRC4 and pro-IL-18 are 
constitutively expressed by IEC and may not require priming 
(25, 49). Furthermore, the constitutive colonization of com-
mensal Gram-negative bacteria in the intestine could explain the 
constitutive elevated expression of caspase-11 and IL-18 in the gut 
compared to other tissues (www.proteinatlas.org) (161).

It is also worth noting that during homeostatic conditions, 
and thus in the absence of inflammation, the inflammasome-
dependent cytokine IL-18 is released from IEC and is believed to 
have functions in epithelial repair, proliferation and maturation 
(33, 34). The mechanisms of secretion of IL-18 by IEC during 
homeostatic conditions are not well understood and whether 
pyroptosis occurs in IEC under physiological conditions in vivo 
remains to be determined (215). Although there is increasing 
evidence that IEC-intrinsic inflammasome activation plays a 
key role in early innate defense against pathogens that target the 
intestinal epithelium (14, 24, 25, 43, 44), much remains to be 

learned on how inflammasomes and their downstream effector 
responses are regulated in IEC. Due to their constitutive expo-
sure to microbial PAMP, inflammasome circuits and thresholds 
in IEC may be quite different to those primarily identified in 
macrophages and dendritic cells. Nevertheless, the constitutive 
secretion of IL-18 by IEC indicates that inflammasomes are 
active under homeostatic conditions in the intestinal epithelium. 
However, the precise signals or thresholds that determine when 
this may be superseded by the induction of pyroptosis or alterna-
tive cell death pathways remain to be determined. For example, it 
will be important to assess the role of GsdmD in IL-18 secretion 
and IEC turnover during steady-state conditions. Furthermore, 
it will also be vital to understand how inflammasome responses 
in IEC are modulated during pathogenic attack or during inflam-
matory conditions, where an optimal balance between apoptosis, 
pyroptosis, and cytokine release may be required to control 
potential pathogens and restore homeostasis.

CONCLUSiON aND PeRSPeCTiveS

High expression levels of many inflammasome proteins are 
enriched in the steady-state intestinal mucosa implicating their 
importance in barrier maintenance and immune monitoring. 
The spatial location of the IEC, directly facing the lumen, in 
combination with their primed phenotype, implies that inflam-
masomes are key sensors of intestinal insults. Indeed, as discussed 
throughout this review, deletion of these components is primarily 
associated with increased susceptibility to injury and infection. 
Thus, we can conclude that epithelial inflammasomes are critical 
for a healthy gut, both at steady state and during acute infection  
or injury. However, the molecular mechanisms orchestrating 
epithelial inflammasome activation remain incompletely under-
stood, representing a key area for further research.

Frustratingly, the literature contains numerous examples of 
conflicting data pertaining to the functional impact and cel-
lular sources of inflammasome components in various models 
of intestinal infection and inflammation. To better define these, 
the field needs to implement stringent lines of investigation that 
properly control for key environmental factors. Variation of 
the intestinal microbiome is likely responsible for most of the 
inconsistent findings reported the literature. For example, recent 
studies have identified protozoa (216) and microbial metabolites 
(32) as novel environmental factors capable of influencing 
inflammasome activation in the intestinal epithelium and in 
modulating susceptibility to intestinal inflammation. Therefore, 
standardized use of littermate controls for in  vivo experiments 
should be implemented to circumvent misinterpretations result-
ing from differences in microbiota composition and baseline 
mucosal immune activation across distinct breeding cohorts. 
Furthermore, as different animal facilities will harbor their own 
distinct microbiotas, it would be advantageous if key experiments 
were reproduced in different vivariums.

To further assess the specific locations important for inflam-
masome function, tissue- and cell-specific deletion approaches 
represent an important approach, for example, the IL-18ΔIEC 
line specifically lacking IL-18 production in IEC (110). In addi-
tion, complementary studies using inducible knockouts will be 
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useful for understanding acute responses while ruling out any 
developmental disadvantages. The increasing application of 
primary intestinal epithelial “organoid” cultures will comple-
ment the in vivo genetic approaches, enabling analysis of acute 
responses, as well as offering a tool for molecular manipulation 
of IEC (217). Moreover, transitioning from murine studies into 
humans will be bolstered by these new ex vivo techniques (218).

Murine bone marrow-derived macrophages have served as 
the gold standard for a majority of inflammasome research, 
contributing significantly to our understanding of inflamma-
some signaling and effector responses. However, it is likely 
that IEC inflammasomes are regulated differently to classic 
hematopoietic cells, due to the unique intestinal environment. 
Thus, we need to address how inflammasome activation and 
regulation in IEC differs from that described in myeloid cells and 
the resulting implications. For example, we can already surmise 
from the literature that IEC produce comparatively little IL-1β 
(44, 105) and constitutively express IL-18 (49). It is likely that 
within IEC there is a different composition of inflammasome 
machinery to tailor their immune responses. In addition, IEC 
could be capable of producing other potential secretory factors 
besides IL-18 upon inflammasome activation, for example, 
prostaglandin production by IEC was recently associated with 
NLRC4 activation (24). The signaling circuitry and relationship 
between different effector responses also needs to be elucidated. 
For example, are there distinct activation thresholds or can dif-
ferent inflammasome components work in concert, as has been  
described for NLRC4 and NLRP3 during S. Typhimurium infec-
tion of macrophages (219).

Our understanding of what specific agonists activate IEC 
inflammasomes is limited and warrants further investigation. 
Aside from microbial signals, how do dietary antigens interact with 
the intestinal epithelium? Evidence already exists for the capacity 
of dietary ligands to induce inflammasome activation [e.g., high 
fat and high cholesterol diets (79)] or dampen inflammasome 
activation [e.g., ketones (220)]. However, further investigation is 
required to delineate whether these dietary factors act directly and/
or indirectly (e.g., through modulation of the microbiota) (30). 

Indeed, a recent study reported that a high fiber diet conferred 
protective effects in the DSS colitis model both by reshaping the 
gut microbiota and by increasing release of SCFAs that activated 
NLRP3 inflammasomes in a non-hematopoietic cell population.

Finally, inflammasome activation in IEC has been described 
to result in IEC extrusion and cell death (14, 24). Further inves-
tigation needs to be carried out into the role of pyroptotic cell 
death in mucosal immune responses. The regulation of different 
forms of cell death in IEC and the consequences for infection 
or inflammatory diseases also requires further characterization. 
For example, does too little IEC death result increased potential 
for invasive infection due to lack of cell extrusion and does too 
much IEC death perpetuate unnecessary inflam mation? Finally, 
what function does dysregulated inflammasome activation and 
pyroptosis play in IBD? IBD patients are known to have necrotic 
lesions and increased levels of IL-18 and IL-1β in the inflamed 
intestine, but their relative contributions to chronic intestinal 
pathology remain incompletely understood.

Despite these challenges and limitations understanding gut- 
associated inflammasome signaling, its role in regulating dietary–
microbiome–host immune interactions constitutes a critical 
component in maintaining homeostasis and mediating various 
immune-mediated disorders. Encouragingly, the identification 
of small molecules capable of targeting specific inflammasome 
components (44) could represent an opportunity for novel clini-
cal interventions to tackle these currently incurable disorders.
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