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Abstract 

 

This paper describes a comprehensive testing and numerical simulation investigation into the 

material properties, membrane residual stresses and compression capacities of S690 high 

strength steel welded I-section stub columns. The testing programme was performed on eight 

welded I-sections fabricated from 5 mm thick S700MC high strength steel hot-rolled plates by 

means of gas metal arc welding, and included material tensile coupon tests, membrane residual 

stress measurements, initial local geometric imperfection measurements, and sixteen 

concentrically loaded stub column tests. A membrane residual stress distribution model for 

S690 high strength steel welded I-sections was firstly proposed, based on the experimentally 

measured results. In conjunction with the structural testing, a numerical modelling study was 

carried out, in which finite element models were initially developed and validated against the 

experimental results, and afterwards employed to conduct parametric studies, aiming at 

generating further structural performance data over a broader range of cross-section sizes. The 



obtained experimental and numerical data were used to evaluate the accuracy of the slenderness 

limits (for classifications of plate elements and cross-sections) and design rules for S690 high 

strength steel welded I-section stub columns, as set out in the European, American and 

Australian standards. The results of the evaluation revealed that the codified slenderness limits 

are accurate for the plate element and cross-section classifications of S690 welded I-sections 

in compression, and the established local buckling design provisions in the considered three 

codes result in precise and consistent cross-section compression resistance predictions for both 

non-slender and slender S690 welded I-section stub columns.    
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1. Introduction 

 

Growing emphasis is being placed on the use of high strength construction materials in 

structural and bridge engineering [1–3], in order to adapt to the increasing need for high-rise 

buildings and long-span bridges in the past decade. Compared with the conventional mill steel 

grades S235, S275 and S355 with the nominal yield stresses less than or equal to 355 MPa, 

high strength steel grade S690 possesses substantially more superior mechanical strength with 

the nominal yield stress of 690 MPa. Therefore, the use of S690 high strength steel in 

construction enables the achievement of structural members designed with smaller cross-



section sizes and lighter weights, which not only facilitate the transportation and assembly of 

the components, but also result in more usable interior space and lighter self-weight of the 

structure. Although the advantages of using high strength steel in construction have been highly 

acknowledged, its actual application is generally hindered by the lack of suitable design 

guidelines, since most of the formulations and provisions set out in the exiting design standards 

for high strength steel structures were developed by directly mirroring those for normal strength 

mild steels. This has thus prompted in-depth research to investigate the behaviour of different 

types of high strength steel structural components, quantify their load-carrying capacities and 

derive more efficient and accurate design rules. A brief review of the previous experimental 

and numerical studies of S690 high strength steel welded I-section structural members is 

provided herein. Rasmussen and Hancock [4] performed stub column tests on S690 welded I-

sections to investigate their local buckling responses and compression resistances, while the 

flexural buckling behaviour and strengths of S690 welded I-section long columns were 

experimentally and numerically studied in [5–9]. Ma et al. [10,11] carried out a testing and 

numerical simulation programme to examine the global stability of S690 welded I-section 

beam-columns subject to combined compression and bending. The brief review generally 

indicated that although there have been extensive studies on the member stability of S690 high 

strength steel welded I-section long columns and beam-columns, investigations into the local 

buckling behaviour of S690 welded I-section stub columns remain scarce, with the only study 

reported by Rasmussen and Hancock [4] in the early 1990s, and, to date, membrane residual 

stresses in S690 welded I-sections have not been measured. This thus prompted the present 

research, to further investigate the local stability and compressive load-carrying capacities of 



S690 high strength steel welded I-section stub columns and experimentally verify the 

membrane residual stress amplitudes and distributions in S690 high strength steel welded I-

sections.  

 

In the present paper, a comprehensive experimental programme, including material tensile 

coupon tests, membrane residual stress and initial local geometric imperfection measurements, 

and sixteen concentrically loaded stub column tests on eight S690 welded-I sections, was firstly 

conducted. The experimental investigation was supplemented by a finite element modelling 

study, where numerical models were initially developed to simulate the experimentally 

observed results and subsequently adopted to conduct parametric studies to generate additional 

numerical data. Finally, the experimentally and numerically derived results were employed to 

assess the accuracy of the local buckling design rules for S690 high strength steel welded I-

section stub columns set out in the European code EN 1993-1-12 [12], American specification 

ANSI/AISC 360-16 [13] and Australian standard AS 4100 [14]. 

 

2. Experimental investigation 

 

2.1. General 

 

A structural testing programme was carried out to study the material properties, membrane 

residual stresses and compression capacities of S690 high strength steel welded I-sections. 

Eight I-section sizes – I-50×50×5, I-70×70×5, I-80×60×5, I-90×70×5, I-100×100×5, I-



140×70×5, I-150×150×5 and I-200×100×5 – were considered in the present experimental study, 

and all the I-sections were fabricated from the same batch of 5 mm thick S700MC high strength 

steel hot-rolled plates by means of gas metal arc welding (GMAW). Overall, the testing 

programme involved material tensile coupon tests to obtain the stress–strain responses of the 

examined S690 high strength steel, residual stress measurements to determine the membrane 

residual stress magnitudes and distributions in S690 welded I-sections, imperfection 

measurements to derive the initial local geometric imperfections of the stub column specimens, 

and concentric compression tests to investigate the local stability and compression resistances 

of welded I-section stub columns in grade S690 high strength steel. 

 

2.2. Material testing 

 

Material testing was firstly conducted to derive the material stress–strain responses of the 

studied S690 high strength steel welded I-sections. Tensile coupons were extracted from the 

same batch of plates as that used in the fabrication of the welded I-section stub column 

specimens. Specifically, two longitudinal coupons were cut along the rolling direction of the 

plate, while two additional transverse coupons were extracted perpendicularly to the plate 

rolling direction. The dimensions of the two pairs of coupons are in compliance with the 

geometric requirements specified in EN ISO 6892-1 [15]. A Schenck 250 kN hydraulic testing 

machine, driven by displacement control, was utilised to perform tensile coupon tests, with the 

applied loading rates respectively set to be equal to 0.05 mm/min and 0.8 mm/min up to and 

beyond the nominal yield stress of 690 MPa. The resulting strain rates satisfied the relevant 



requirements given in EN ISO 6892-1 [15]. Fig. 1 displays the setup for tensile coupon tests, 

including an extensometer mounted onto the central 50 mm of the necked portion of the coupon 

and a pair of the strain gauges attached to the two parallel wider faces of the coupon at mid-

height. Fig. 2 shows the stress–strain curves measured from both the longitudinal and 

transverse coupons, whilst the key average measured material properties, including the Young’s 

modulus E, the yield stress fy, the ultimate stress fu, the ultimate-to-yield stress ratio fu/fy, the 

strain at the ultimate stress εu, and the fracture strain measured over the standard gauge length 

of 50 mm εf, are reported in Table 1. It is worth noting that the stress–strain curves of high 

strength steel grade S690 display much shorter yield plateaux and lower levels of material 

strain hardening and ductility (as also reflected by the ratios of fu/fy and εu in Table 1), compared 

to those shown by its normal strength mild steel counterparts.    

 

2.3. Membrane residual stress measurements 

 

Membrane residual stresses are introduced into welded steel sections during the welding 

process, which can lead to premature failure of the structural components. Measurements on 

the magnitudes and distributions of membrane residual stresses in S690 high strength steel 

welded I-sections were therefore performed and reported herein. The sectioning method was 

employed for the membrane residual stress measurements on two S690 welded I-sections I-

150×150×5 and I-200×100×5, with the procedures conforming to those specified in Ziemian 

[16]. The dimensions and locations of the strips sectioned for the membrane residual stress 

measurements are depicted in Figs 3 and 4. For each strip, the nominal length and width are 



equal to 150 mm and 10 mm, respectively. Prior to sectioning, an automatic dot puncher was 

used to drill a pair of gauge holes (1.98 mm in diameter), located along the centreline of the 

outer face of each strip and at a distance of 25 mm from the strip ends; this resulted in the 

nominal strip length between each pair of gauge holes L0 equal to 100 mm, while the actual 

length of each strip was measured by means of a Demec gauge with 100 mm gauge length. 

Membrane residual stresses were then released by sectioning the welded I-section specimens 

into strips. This was achieved through the use of a waterjet cutting machine, which induced 

very little if any heat input into the strips during the cutting process, and thus did not affect 

their original membrane stress patterns and amplitudes. Fig. 5 depicts a typical sectioned S690 

welded I-section (I-200×100×5). The length between gauge holes for each strip after sectioning 

was again measured by the Demec gauge. The effect of temperature variation on the change in 

strip length during the membrane residual stress measurements was taken into account by 

means of a temperature reference bar, which was extracted from the same batch of S700MC 

plates as that utilised in the fabrication of welded I-sections. The temperature reference bar was 

drilled with two gauge holes, between which the length was measured before and after 

sectioning through the use of the Demec gauge. 

 

The relieved axial strains ε0 resulted from the release of membrane residual stresses can be 

derived from Eq. (1), where r1 and t1 are respectively the lengths of the strip and temperature 

reference bar, measured by the Demec gauge before sectioning of the I-section specimens, 

whilst r2 and t2 are the measured lengths of the strip and temperature reference bar after 

sectioning, respectively. It is worth noting that positive and negative values calculated from Eq. 



(1) respectively signify the release of tensile and compressive strains upon sectioning of the 

welded I-sections. As obtained from previous residual stress measurements on normal strength 

mild steel [17,18] and stainless steel [19,20] welded sections and also observed in the present 

measurements on S690 high strength steel welded I-sections, the sectioned strips in the vicinity 

of welds displayed slightly curved shapes; this can be attributed to the existence of a relatively 

high level of through-thickness bending residual stresses near the welds, and corrections to the 

relieved axial strains calculated from Eq. (1) were then made on the basis of Eq. (2) [17], where 

ε0,c is the corrected relieved axial strain and δ is the maximum deviation from a straight 

reference line connecting the two gauge holes of the strip. The released membrane residual 

stresses can then be back-calculated as the products of the relived axial strains ε0 (or ε0,c) and 

the Young’s modulus E; negative and positive values indicate compressive and tensile residual 

stresses, respectively. 
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The magnitudes and distributions of the experimentally derived membrane residual stresses for 

the two S690 welded I-sections I-200×100×5 and I-150×150×5 are exhibited in Figs 6(a) and 

6(b), respectively, while the peak values of both the acquired tensile and compressive residual 

stresses, normalised by the material yield stress fy measured from the longitudinal coupons, are 

presented in Table 2, where the subscripts ‘t’ and ‘c’ respectively indicate tensile and 

compressive residual stresses, and the subscripts ‘f’ and ‘w’ respectively denote flange and web. 



Given that there have been no codified membrane residual stress distribution models for high 

strength steel welded sections, the corresponding predictive models for normal strength mild 

steel welded I-sections, as specified in the European convention ECSS [21] and Swedish 

regulations BSK 99 [22], were assessed herein for their applicability to S690 high strength steel 

welded I-sections. The two codified residual stress predictive modes for normal strength mild 

steel welded I-sections were established based on the same distribution pattern, as shown in 

Fig. 7, but with different distribution coefficients (a, b, c and d) and peak compressive residual 

stresses (ffc and fwc), as presented in Table 3. A graphic comparison between the measured 

membrane residual stresses and the two predictive models given in ECSS [21] and BSK 99 [22] 

is depicted in Figs 8(a) and 8(b); note that the measured residual stress data points were plotted 

in a normalised format, with the normalised positions at 0.0 (origin point) and 1.0 (end point) 

respectively representing the web-to-flange junction and the mid-point of the web or the tip of 

the flange. The comparison results showed that the two codified predictive models generally 

over-predict the peak tensile residual stresses but result in underestimated peak compressive 

residual stresses for S690 high strength steel welded I-sections. It is also evident in Fig. 8 that 

the transition regions of the membrane residual stresses in S690 high strength steel welded I-

sections were considerably wider when compared to those specified by the two codified 

predictive models for normal strength mild steel welded I-sections. This thus prompted the 

development of a new predictive model specific for the membrane residual stresses in S690 

high strength steel welded I-sections herein. The new membrane residual stress predictive 

model follows the general pattern depicted in Fig. 7, but employs a new set of distribution 

coefficients as well as different peak residual stress amplitudes. Fig. 8 shows a comparison of 



the new residual stress predictive model with the measured membrane residual stresses in S690 

high strength steel welded I-sections, indicating good agreement. 

 

2.4. Initial local geometric imperfection measurements 

 

Initial local geometric imperfections affect the local stability and load-carrying capacities of 

thin-walled steel section structural components, and were thus measured for all the S690 high 

strength steel welded I-section stub column specimens herein. The experimental rig for initial 

local geometric imperfection measurements is similar to that utilised by Schafer and Peköz [23] 

and shown in Fig. 9, where an LVDT is mounted onto the head of a milling machine with the 

specimen lying on the base table of the machine. Three local imperfection measurements were 

carried out on each constituent plate element of the S690 welded I-section. Specifically, for the 

internal web, measurements were carried out along the centreline and the two edges of the web-

to-flange junctions, while for the outstand flange, measurements were conducted along the 

centreline and the two flange tips, as depicted in Fig. 10. It is also worth noting that 

imperfection measurements were all carried out over the central 75% of the specimen lengths, 

in order to eliminate the effect of flaring of specimen ends upon cutting. The initial local 

geometric imperfections along each measured line were defined as the deviations from a linear 

regression line fitted to the measured data set [24–28], with the maximum amplitude denoted 

as ωn, in which the subscript ‘n’ indicates the measured line. The initial local geometric 

imperfection amplitudes of the web and two flanges (ωw, ωf1 and ωf2) were taken as the largest 

values from the three measurements on the respective plate elements, as reported in Table 4, 



while the initial geometric imperfection amplitude of the specimen ω0 was taken as the 

maximum of ωw, ωf1 and ωf2. 

 

2.5. Stub column tests 

 

For each of the eight S690 high strength steel welded I-sections, two repeated stub column tests 

were carried out, to investigate its local stability and compression resistance under compression. 

The nominal length of each stub column specimen was taken as the minimum of three times 

the outer section depth and twenty times the radius of gyration about the minor principal axis 

[16]; each selected nominal specimen length was deemed long enough to include a 

representative distribution pattern of membrane residual stress and initial local geometric 

imperfection, but still short enough to prevent column flexural buckling. The measured 

member length and cross-section sizes of each S690 high strength steel welded I-section stub 

column specimen are summarised in Table 4, in which L is the specimen length, bf is the flange 

width, h is outer section depth and t is the material thickness. Prior to stub column tests, milling 

and deburring were carried out on the specimen ends; this enabled the achievement of flat end 

surfaces of the specimens and thus uniformly distributed compressive stresses over the full 

cross-sections during testing. All the stub column specimens were compressed between the 

fixed end platens of an Instron 2000 kN hydraulic testing machine at a constant loading speed 

of 0.3 mm/min. Fig. 11 depicts the stub column test setup, including a pair of longitudinally-

placed LVDTs to measure the end shortening of the specimen, and two strain gauges, attached 

to the web-to-flange junctions of the specimen at mid-height, to record the axial strains. The 



end shortening values derived from the LVDTs were modified by eliminating the elastic 

deformation of the end platens of the testing machine based on the strain gauge readings 

[25,28–31]. The modified load–end shortening curves for all the sixteen tested S690 high 

strength steel welded I-section stub columns are presented in Fig. 12, while the key 

experimental results, including the ultimate load Nu, the end shortening at failure δu, and the 

ultimate-to-yield load ratio Nu/(Afy), in which A is gross cross-section area, are presented in 

Table 5. All the tested S690 welded I-section stub columns were shown to fail by local buckling, 

and Fig. 13 displays typical failure modes of the specimens I-150×150×5-1, I-90×70×5-1 and 

I-200×100×5-1 with cross-section aspect ratios h/b varying between 1.0 and 2.0. 

 

3. Numerical study 

 

3.1. General 

 

In parallel with the testing programme, a numerical simulation programme, including a 

validation study and a parametric study, was conducted by means of the finite element (FE) 

analysis software ABAQUS [32]. In the numerical validation study, FE models were developed 

and validated against the experimentally obtained results, while in the numerical parametric 

study, the validated FE models were utilised to generate further numerical data to supplement 

the derived test results.  

 

 



3.2. Development of finite element models 

 

The shell element S4R [32] has been extensively used in previous numerical modelling of 

welded I-section steel components [11,19,33,34], and was also employed herein for simulating 

the S690 high strength steel welded I-section stub columns. For the purpose of selecting 

suitable shell element size, a mesh sensitivity study, considering a series of element sizes 

varying between 0.5t and 4t, was performed. The results of the mesh sensitivity study generally 

indicated that an element size equal to the material thickness t was capable of well 

incorporating the membrane residual stress distributions into the FE models and meanwhile 

providing both computational accuracy and efficiency. This element size was thus used for 

discretisation of the welded I-section stub column FE models herein. Regarding the material 

modelling of grade S690 high strength steel, the plastic material model with isotropic hardening, 

as provided in ABAQUS [32], requires the inputted material properties to be specified in the 

form of true stress and true plastic strain. Therefore, the stress−strain curves, measured from 

the longitudinal coupons, were firstly converted into the true stress−true plastic strain responses 

and then incorporated into ABAQUS [32]. Membrane residual stresses for S690 welded I-

sections, as derived from the predictive model proposed in Section 2.3, were incorporated into 

the finite element models through the ‘*INITIAL CONDITIONS’ command. Fig. 14 shows a 

typical residual stress distribution incorporated into the finite element models for the stub 

column specimens I-150×150×5-1 and I-150×150×5-2. With regards to the end section 

boundary conditions, the two end sections of each stub column FE model were fully restrained 

except for the longitudinal translation at one end, in order to mimic the fixed-ended boundary 



condition adopted in the stub column tests. Initial local geometric imperfections were 

incorporated into the FE models, with the distribution patterns taken as the lowest elastic 

buckling mode shapes under compression and derived from a prior elastic eigenvalue buckling 

analysis [11,19,28,35–38]. Four initial local imperfection amplitudes, including the measured 

value ω0, and 1/10, 1/30 and 1/100 of material thickness t, were employed to factor the 

imperfection patterns for the purpose of assessing the sensitivity of the FE models to 

imperfections and seeking the most suitable local geometric imperfection amplitudes to be 

utilised in the parametric studies.   

 

3.3. Validation of finite element models 

 

Upon development of the welded I-section stub column FE models, nonlinear Riks analysis 

[32] was conducted to determine the numerical failure loads, load−end shortening curves and 

failure modes, which were then compared against the corresponding experimentally derived 

results, allowing the accuracy of the developed numerical models to be examined. Table 6 

reports the FE to test failure load ratios for the S690 welded I-section stub column specimens; 

the results of the comparison revealed that all the four considered initial local geometric 

imperfection amplitudes yield precise and consistent predictions of the experimental failure 

loads, while the best agreement between the experimental and numerical failure loads was 

generally acquired when the imperfection amplitude equal to 1/100 of the material thickness 

was utilised in the numerical simulation. Fig. 15 depicts a comparison between the 

experimental and numerical load−end shortening histories for a typical S690 welded I-section 



stub column specimen I-140×70×5-1, where the full range of the experimental 

load−deformation response is shown to be well captured by numerical modelling. Moreover, 

the FE load–end shortening curve obtained from the stub column numerical model without 

incorporating membrane residual stresses is also plotted in Fig. 15, and shown to almost 

coincide with that derived from the numerical model with the membrane residual stresses 

included; this indicated that membrane residual stresses have an insignificant effect on the local 

stability and compression resistances of S690 high strength steel welded I-section stub columns. 

Excellent agreement was also obtained between the experimental and FE failure modes, as 

illustrated in Fig. 16. To conclude, the finite element models developed in Section 3.2 are 

capable of precisely simulating the stub column tests on S690 high strength steel welded I-

sections, and thus considered to be validated. 

 

3.4. Parametric studies 

 

The validated S690 high strength steel welded I-section stub column FE models were adopted 

to carry out numerical parametric studies in this section, aiming at expanding the experimental 

data pool over a broader range of cross-section dimensions. In the present parametric studies, 

the average measured material properties of the longitudinal coupons, together with the initial 

local geometric imperfection amplitudes equal to 1/100 of the material thicknesses, were 

utilised. Regarding the geometric sizes of the modelled I-sections, the outer cross-section 

depths were fixed at 150 mm, while the flange widths were taken as 75 mm, 90 mm, 100 mm 

and 150 mm, respectively, leading to a wide spectrum of cross-section aspect ratios being 



considered. The thicknesses of the flange and web of each modelled I-section were set to be 

equal and varied between 3 mm and 15 mm, resulting in a broad range of cross-section sizes 

being examined. The lengths of the stub column models were equal to the minimum of three 

times the outer section depths and twenty times the radii of gyration about the minor principal 

axes. In total, 90 numerical parametric study results for S690 welded I-section stub columns 

were derived.   

 

4. Assessment of established international design codes 

 

4.1. General 

 

In this section, the experimental data, derived in Section 2, and the finite element results, 

obtained in Section 3, were utilised to assess the accuracy of the codified design provisions for 

S690 high strength steel welded I-section stub columns. Three established design standards, 

including the European code EN 1993-1-12 [12], American specification ANSI/AISC 360-16 

[13] and Australian standard AS 4100 [14], were considered in the present study. The Eurocode 

EN 1993-1-12 [12] was developed specifically for high strength steels with grades greater than 

S460 up to S700, though mirroring most of the design provisions set out in EN 1993-1-1 [39] 

for normal strength mild steels, while the current ANSI/AISC 360-16 [13] and AS 4100 [14] 

provide design provisions for both normal strength mild steels and high strength steels with 

grades up to S690. With regards to the design of stub columns failing by local buckling, all the 

three considered design codes employ the cross-section classification framework and the 



effective width method. In the following Section 4.2, the accuracy of the slenderness limits for 

classifications of the outstand flanges and internal webs of S690 welded I-sections, specified 

in the three design codes, was assessed, while the cross-section compression resistance 

predictions, particularly those for slender S690 welded I-section stub columns determined from 

the effective width formulations, were evaluated in Section 4.3. 

 

4.2. Cross-section classification limits 

 

All the three considered design standards, including the European code EN 1993-1-12 [12], 

American specification ANSI/AISC 360-16 [13] and Australian standard AS 4100 [14], adopt 

the cross-section classification framework for the design of S690 high strength steel welded I-

sections subjected to compression. The American specification ANSI/AISC 360-16 [13] and 

Australian standard AS 4100 [14] categorise cross-sections in compression as non-slender and 

slender sections, where local buckling occurs upon and prior to the attainment of the material 

yield stress, respectively, with the corresponding cross-section compression resistances taken 

as the yield loads Afy and effective compression resistances Aefffy, in which A and Aeff are 

respectively the gross area and effective area of the welded I-section. Four classes of cross-

sections are defined in the European code EN 1993-1-12 [12]: Class 1, 2 and 3 sections 

(corresponding to the non-slender sections specified in ANSI/AISC 360-16 [13] and AS 4100 

[14]) are capable of attaining the yield loads Afy at failure, while Class 4 sections 

(corresponding to the slender sections specified in ANSI/AISC 360-16 [13] and AS 4100 [14]) 

fail before the material yield stress fy is achieved, limiting the design cross-section compression 



resistances to the effective compression resistances Aefffy. The class of a welded I-section 

subjected to compression is defined on the basis of its most slender constituent plate element, 

while each plate element (i.e. web or flange) is classified through comparing the flat width-to-

thickness ratio (cw/t or cf/t) against the corresponding slenderness limits, in which cw and cf are 

the flat widths of the web and flange, respectively. Note that the slenderness limits between 

slender and non-slender plate elements are also known as Class 3 limits, yield slenderness 

limits and limiting width-to-thickness ratios in EN 1993-1-12 [12], ANSI/AISC 360-16 [13] 

and AS 4100 [14], respectively. Table 7 reports the slenderness limits between slender and non-

slender outstand flanges (and internal webs), as specified in the three design codes, in which 

EC3 y235 f =  , AISC yE f =   and AS y250 f =   are the material parameters to reflect 

the difference in material strengths between high strength and normal strength steels, and 

c w4k t c=  is a geometric coefficient to consider the effect of web size on the slenderness 

limit of flange.  

 

The experimentally and numerically derived ultimate loads of S690 welded I-section stub 

columns are normalised with respect to the corresponding cross-section yield loads Afy, and 

then plotted against the cf/(tεEC3), cf/(tεAISCkc
0.5) and cf/(tεAS) ratios of the flanges of the studied 

welded I-sections in Figs 17–19, respectively, together with the EC3, AISC and AS  

slenderness limits for non-slender/slender outstand flanges in compression. The results of the 

comparison generally revealed that the slenderness limits for non-slender/slender outstand 

flanges in compression, as specified in all of the three design standards [12–14], are safe and 

accurate when applied to S690 high strength steel welded I-sections. Similar graphic 



comparisons are also presented in Figs 20–22 for the internal webs of the examined S690 

welded I-sections, which also indicated the accuracy of the codified slenderness limits for non-

slender/slender internal elements subject to compression. In summary, the slenderness limits, 

as given in the current EN 1993-1-12 [12], ANSI/AISC 360-16 [13] and AS 4100 [14], are safe 

and accurate for the plate element and cross-section classifications of S690 welded I-sections 

in compression. 

 

4.3. Cross-section compression resistances 

 

The accuracy of the cross-section compression resistance predictions of S690 welded I-section 

stub columns, as determined from EN 1993-1-12 [12], ANSI/AISC 360-16 [13] and AS 4100 

[14], was assessed in this section. All the three design codes prescribe the use of the cross-

section yield loads (Afy) for non-slender (Class 1, 2 and 3) welded I-sections subject to 

compression, and employ the effective width methods for predicting the compressive load-

carrying capacities of their slender (Class 4) counterparts. The effective width methods account 

for loss of effectiveness of each constituent plate element of a slender section susceptible to 

local buckling through a reduction in plate element width. The formulations for determining 

the (reduced) effective widths of slender internal and outstand plate elements, as specified in 

EN 1993-1-12 [12], ANSI/AISC 360-16 [13] and AS 4100 [14], are given by Eqs (3)–(5), 

respectively, where 
l  is the plate element slenderness and can be calculated from Eq. (6), in 

which c is the flat width of the plate element (taken as cw and cf for internal web and outstand 

flange of an I-section) and k  is the buckling factor, respectively taken as 4.0 and 0.43 for 



internal and outstand plate elements in compression, and 
r,int   and 

r,out   are the AISC 

limiting width-to-thickness ratios for internal and outstand plate elements (see Table 7). Upon 

calculation of the effective width of each slender plate element of the welded I-section, the 

effective cross-section area (Aeff) and the effective compression resistance (Aefffy) can then be 

derived. 

      

2

l l

eff,EC3

2

l l

1 0.22
        for internal elements

1 0.188
      for outstand elements

c c

c

c c

 

 

  
−   

  
= 

 
−  

 

  (3) 

      
( )

( )

2

r,int r,int

2

eff,AISC
2

r,out r,out

2

1.31 0.31
        for internal elements

1.49 0.49
       for outstand elements

c c
c t c t

c

c c
c t c t

 

 

  
  − 
   

= 
 
 −   

  

  (4) 

      
( )
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eff,AS
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35
        for internal elements

14
        for outstand elements

c c
c t

c
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c t





  
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  
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 

                 (5) 
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l
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k


 

=  (6) 

 

The experimental and numerical compressive load-carrying capacities of S690 welded I-

section stub columns are normalised by the design cross-section compression capacities 

predicted from the three design codes, and then plotted against the cw/t ratios of the I-sections, 

as shown in Figs 23–25, while Table 8 reports the mean test (and FE) to predicted cross-section 

compression resistance ratios Nu/Nu,pred and the corresponding coefficients of variation (COVs). 



The results of both the graphic and quantitative evaluations showed that all the three design 

codes yield rather accurate and consistent predictions of cross-section compressive load-

carrying capacities for both slender and non-slender S690 welded I-section stub columns. 

 

5. Conclusions 

 

An experimental and numerical modelling programme has been carried out to investigate the 

material properties, membrane residual stresses and load-carrying capacities of S690 high 

strength steel welded I-section stub columns. The testing programme was performed on eight 

S690 welded I-sections, and included material tensile coupon tests, membrane residual stress 

and initial local geometric imperfection measurements, and sixteen concentrically loaded stub 

column tests. A new predictive model for membrane residual stress distributions in S690 

welded I-sections was proposed. In conjunction with the experimental study, a finite element 

modelling investigation was also carried out, including a validation study, where FE models 

were developed and validated against the experimental results, and a parametric study, where 

the validated FE models were utilised to generate an extensive numerical data pool on S690 

welded I-section stub columns. The obtained test and FE results were carefully analysed, and 

employed to assess the accuracy of the established slenderness limits for classifications of S690 

high strength steel internal and outstand plate elements in compression and the local buckling 

design rules for S690 welded I-section stub columns, as given in EN 1993-1-12 [12], 

ANSI/AISC 360-16 [13] and AS 4100 [14]. The results of the assessment generally indicated 

that (i) all the three sets of codified slenderness limits between slender and non-slender outstand 



(or internal) plate elements are safe and accurate when applied to S690 high strength steel 

welded I-sections in compression, and (ii) all the three design standards generally yield precise 

and consistent cross-section compression resistance predictions for both non-slender and 

slender S690 welded I-section stub columns.  

 

Acknowledgements 

 

The research work described in this paper is funded by the Regency Steel Asia (RSA) 

Endowment Fund. The authors are grateful to SSAB Swedish Steel Pte Ltd, Singapore for their 

help in the fabrication of S690 high strength steel welded I-section specimens. The assistance 

from Mr. Cheng Hoon Tui during the experiments and the financial support from NTU 

Research Scholarship are also gratefully acknowledged.  

 

References 

 

[1] Pocock G. High strength steel use in Australia, Japan and the US. Struct Eng 

2006;84(21):27–30. 

[2] Collin P, Johansson, B. Bridges in high strenght steel. Proceedings of IABSE 

Symposium Report. Budapest, Hungary; 2006;92:1–9. 

[3] IABSE. Use and application of high-performance steels for steel structures. IABSE, 

ETH Zürich, Switzerland; 2005. 

[4] Rasmussen KJR, Hancock GJ. Plate slenderness limits for high strength steel sections. 



J Constr Steel Res 1992;23:73–96. 

[5] Rasmussen KJR, Hancock GJ. Tests of high strength steel columns. J Constr Steel Res 

1995;34:27–52. 

[6] Shi G, Ban H, Bijlaard FSK. Tests and numerical study of ultra-high strength steel 

columns with end restraints. J Constr Steel Res 2012;70:236–47. 

[7] Li T, Li G, Chan S, Wang Y. Behavior of Q690 high-strength steel columns: Part 1 : 

Experimental investigation. J Constr Steel Res 2016;123:18–30.  

[8] Li T, Liu S, Li G, Chan S, Wang Y. Behavior of Q690 high-strength steel columns : Part 

2 : Parametric study and design recommendations. J Constr Steel Res 2016;122:379–94.  

[9] Ma T, Liu X, Hu Y, Chung K, Li G. Structural behaviour of slender columns of high 

strength S690 steel welded H-sections under compression. Eng Struct 2018;157:75–85.  

[10] Ma T, Hu Y, Liu X, Li G, Chung K. Experimental investigation into high strength Q690 

steel welded H-sections under combined compression and bending. J Constr Steel Res 

2017;138:449–62.  

[11] Ma T, Li G, Chung K. Numerical investigation into high strength Q690 steel columns of 

welded H-sections under combined compression and bending. J Constr Steel Res 

2018;144:119–34. 

[12] EN 1993-1-12:2007. Eurocode 3: design of steel structures – Part 1-12: Additional 

rules for the extension of EN 1993 up to steel grades S 700. Brussels: European 

Committee for Standardization (CEN); 2007. 

[13] ANSI/AISC 360-16. Specification for the structural steel buildings. American Institute 

of Steel Construction (AISC); 2016. 



[14] AS 4100-1998: Reconfirmed 2016. Steel structures. Australian standard, Committee 

BD-001; 2016. 

[15] EN ISO 6892-1. Metallic matetials: tensile testing – Part 1: Method of test at room 

temperature. Brussels: European Committee for Standardization (CEN); 2016. 

[16] Ziemian RD. Guide to stability design criteria for metal structures. 6th ed. John Wiley 

& Sons; 2010. 

[17] Tebedge N, Alpsten G, Tall L. Residual-stress measurement by the sectioning method. 

Exp Mech 1973;13(2):88–96.  

[18] Tebedge N, Tall L. Residual stresses in structural steel shapes – A summary of measured 

values. Fritz laboratory reports 74-12. Lehigh University; 1973.  

[19] Sun Y, Zhao O. Material response and local stability of high-chromium stainless steel 

welded I-sections. Eng Struct 2019;178:212–26. 

[20] Yuan H, Wang Y, Shi Y, Gardner L. Residual stress distributions in welded stainless steel 

sections. Thin-walled Struct 2014;79:38–51. 

[21] ECCS. European convention for constructional steelwork: convention Europeenne de la 

construction metallique. 1976. 

[22] BSK 99. Swedish regulations for steel structures. Boverkets handbok om 

stalkonstructioner. Karlskrona, Sweden; 1999. 

[23] Schafer BW, Peköz T. Computational modeling of cold-formed steel: characterizing 

geometric imperfections and residual stresses. J Constr Steel Res 1998;47(3):193–210.  

[24] Liang Y, Zhao O, Long Y, Gardner L. Stainless steel channel sections under combined 

compression and minor axis bending – Part 1 : Experimental study and numerical 



modelling. J Constr Steel Res 2019;152:154–61. 

[25] Zhao O, Rossi B, Gardner L, Young B. Experimental and numerical studies of ferritic 

stainless steel tubular cross sections under combined compression and bending. J Struct 

Eng (ASCE) 2016;142(2):04015110. 

[26] Zhao O, Gardner L, Young B. Experimental study of ferritic stainless steel tubular beam-

column members subjected to unequal end moments. J Struct Eng (ASCE) 2016;142(11): 

04016091. 

[27] Zhao O, Gardner L, Young B. Buckling of ferritic stainless steel members under 

combined axial compression and bending. J Constr Steel Res 2016;117:35–48. 

[28] Zhao O, Rossi B, Gardner L, Young B. Behaviour of structural stainless steel cross-

sections under combined loading – Part I: Experimental study. Eng Struct 2015;89:236–

46. 

[29] Center for Advanced Structural Engineering. Compression tests of stainless steel tubular 

columns. Investigation report S770. University of Sydney; 1990. 

[30] Chen M, Young B. Material properties and structural behavior of cold-formed steel 

elliptical hollow section stub columns. Thin-walled Struct 2019;134:111–26. 

[31] Chen M, Young B. Cross-sectional behavior of cold-formed steel semi-oval hollow 

sections. Eng Struct 2018;177:318–30. 

[32] Hibbitt, Karlsson & Sorensen, Inc. ABAQUS/Standard user’s Manual Volumes I-III and 

ABAQUS CAE Manual. Version 6.14. Pawtucket (USA); 2014. 

[33] Hasham AS, Rasmussen KJR. Nonlinear analysis of locally buckled I-section steel 

beam-columns. Austra J Struct Eng 2002; 3(3): 171–200. 



[34] Saliba N, Gardner L. Cross-section stability of lean duplex stainless steel welded I-

sections. J Constr Steel Res 2013;80:1–14.  

[35] Shi G, Zhou W, Bai Y, Lin C. Local buckling of 460 MPa high strength steel welded 

section stub columns under axial compression. J Constr Steel Res 2014;100:60–70.  

[36] Wang Y, Li G, Chen S, Sun F. Experimental and numerical study on the behavior of 

axially compressed high strength steel columns with H-section. Eng Struct 

2012;43:149–59. 

[37] Zhang L, Tan KH, Zhao O. Experimental and numerical studies of fixed-ended cold-

formed stainless steel equal-leg angle section columns. Eng Struct 2019;184:134–44. 

[38] Liang Y, Vengadesh VJK, Zhang L, Zhao O. Flexural-torsional buckling behaviour of fi 

xed-ended hot-rolled austenitic stainless steel equal-leg angle section columns. J Constr 

Steel Res 2019;154:43–54.. 

[39] EN 1993-1-1:2005+A1:2014. Eurocode 3: design of steel structures – part 1.1: General 

rules and rules for buildings. Brussels: European Committee for Standardization (CEN); 

2014.  



Table 1 

Average tensile material properties measured from longitudinal and transverse coupons. 

Direction E fy fu εu εf fu/fy 

 (MPa) (MPa) (MPa) (%) (%)  

Longitudinal 216290 702.6 750.3 11 24 1.07 

Transverse 201810 701.8 765.6 10 24 1.09 

 

 

Table 2 

Measured peak compressive and tensile residual stresses of S690 welded I-sections. 

Specimen Peak tensile residual stresses Peak compressive residual stresses 

Flange (fft/fy) Web (fwt/fy) Flange (ffc/fy) Web (fwc/fy) 

I-200×100×5 0.48 0.38 -0.32 -0.28 

 0.51 -0.36 

I-150×150×5 0.43 0.26 -0.30 -0.29 

 0.53 -0.35 

Mean 0.49 0.32 -0.33 -0.29 

Maximum 0.53 0.38 -0.36 -0.29 

 

 

 

Table 3 

Residual stress predictive models for S690 welded I-sections. 

Predictive model 
Peak tensile 

residual stresses 

Peak compressive 

residual stresses 
a b c d 

ECCS [21] 1.0 fy 0.25 fy 0.05bf 0.15bf 0.075hw 0.05hw 

BSK 99 [22] 1.0 fy From equilibrium 0.75tf 1.5tf 1.5tw 1.5tw 

Proposed model 0.8 fy From equilibrium 0.225bf 0.15bf 0.075hw 0.225hw 

Note: bf is the flange width; hw is the clear distance between flanges;  

     tw is the web thickness; tf is the flange thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4 

Measured geometric dimensions of S690 welded I-section stub columns. 

Specimen ID L h bf t ωw ωf1 ωf2 ω0 

 (mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

I-50×50×5-1 149.5 47.74 49.39 4.88 0.04 0.05 0.04 0.05 

I-50×50×5-2 149.1 49.51 49.38 4.88 0.03 0.03 0.03 0.03 

I-70×70×5-1 206.7 68.71 69.15 4.97 0.10 0.07 0.09 0.10 

I-70×70×5-2 207.3 68.20 69.09 4.96 0.07 0.03 0.06 0.07 

I-80×60×5-1 239.8 79.98 60.02 5.00 0.03 0.09 0.08 0.09 

I-80×60×5-2 239.9 80.01 59.94 4.99 0.13 0.08 0.06 0.13 

I-90×70×5-1 265.6 90.00 69.19 5.00 0.05 0.05 0.04 0.05 

I-90×70×5-2 265.5 89.87 69.12 4.97 0.05 0.06 0.04 0.06 

I-100×100×5-1 299.9 99.35 98.87 4.89 0.07 0.10 0.12 0.12 

I-100×100×5-2 296.1 99.22 98.97 4.99 0.07 0.11 0.10 0.11 

I-140×70×5-1 298.9 139.39 69.14 5.00 0.08 0.04 0.04 0.08 

I-140×70×5-2 300.0 139.36 69.03 4.99 0.07 0.09 0.07 0.09 

I-150×150×5-1 450.0 149.86 149.02 4.91 0.11 0.10 0.14 0.14 

I-150×150×5-2 448.5 149.78 149.01 4.95 0.09 0.12 0.10 0.12 

I-200×100×5-1 417.2 199.49 99.43 4.96 0.10 0.08 0.07 0.10 

I-200×100×5-2 417.5 199.37 99.35 4.98 0.11 0.07 0.07 0.11 

 

 

Table 5 

Summary of S690 welded I-section stub column test results. 

Specimen ID Nu (kN) δu (mm) Nu/(Afy) 

I-50×50×5-1 623.1 5.12 1.23 

I-50×50×5-2 642.9 5.14 1.26 

I-70×70×5-1 805.3 2.04 1.12 

I-70×70×5-2 841.7 2.70 1.17 

I-80×60×5-1 740.6 2.83 1.06 

I-80×60×5-2 769.5 1.53 1.10 

I-90×70×5-1 872.3 2.25 1.09 

I-90×70×5-2 884.5 3.21 1.11 

I-100×100×5-1 1127.3 1.53 1.10 

I-100×100×5-2 1105.3 1.61 1.06 

I-140×70×5-1 985.6 1.50 1.05 

I-140×70×5-2 1023.8 1.46 1.09 

I-150×150×5-1 1254.2 2.29 0.83 

I-150×150×5-2 1274.6 1.67 0.84 

I-200×100×5-1 1214.1 1.60 0.90 

I-200×100×5-2 1155.4 1.35 0.85 

 

 

 



Table 6 

Comparison of stub column test results with finite element results for various imperfection amplitudes. 

Specimen ID FE Nu / Test Nu 

 Measured amplitude t/10 t/30 t/100 

I-50×50×5-1 0.90 0.85 0.88 0.90 

I-50×50×5-2 0.90 0.85 0.87 0.89 

I-70×70×5-1 0.97 0.91 0.95 0.98 

I-70×70×5-2 0.95 0.90 0.93 0.95 

I-80×60×5-1 0.96 0.92 0.95 0.97 

I-80×60×5-2 0.92 0.90 0.92 0.94 

I-90×70×5-1 0.93 0.88 0.91 0.93 

I-90×70×5-2 0.91 0.87 0.89 0.91 

I-100×100×5-1 0.93 0.89 0.92 0.94 

I-100×100×5-2 0.96 0.91 0.95 0.97 

I-140×70×5-1 0.97 0.92 0.95 0.98 

I-140×70×5-2 0.94 0.89 0.92 0.94 

I-150×150×5-1 0.99 0.96 0.98 1.00 

I-150×150×5-2 0.98 0.95 0.97 0.99 

I-200×100×5-1 0.95 0.92 0.94 0.96 

I-200×100×5-2 1.00 0.96 0.99 1.01 

Mean 0.95 0.91 0.93 0.96 

COV 0.03 0.03 0.03 0.03 

 

 

 

Table 7 

Summary of EC3, AISC and AS slenderness limits between slender and non-slender plate elements in compression.  

Design standard Outstand flanges Internal webs 

EN 1993-1-12 [12] 14εEC3 42εEC3 

ANSI/AISC 360-16 [13] 0.64kc
0.5εAISC 1.49εAISC 

AS 4100 [14] 14εAS 35εAS 

 

 

 

Table 8 

Comparisons of test and FE results with EC3, AISC and AS predicted compression resistances. 

Cross-section category* No. of 

test data 

No. of 

FE data 

Nu/Nu,EC3 Nu/Nu,AISC Nu/Nu,AS 

Mean COV Mean COV Mean COV 

Non-slender section  12 43 1.06 0.05 1.06 0.05 1.07 0.05 

Slender section  4 47 1.05 0.03 1.02 0.01 1.10 0.05 

Total 16 90 1.06 0.04 1.04 0.04 1.08 0.05 

* The cross-section category is defined according to EN 1993-1-12 [12]. 



 

 

 

Fig. 1. Tensile coupon test setup. 

 

 

 



 

Fig. 2. Measured stress–strain curves from longitudinal and transverse coupons. 
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Fig. 3. Locations of strips cut for membrane residual stress measurements (dimensions in mm). 

 

 

 

 

 

 

 

(a) I-200×100×5 (b) I-150×150×5 

Fig. 4. Locations and dimensions of strips within I-sections (dimensions in mm). 
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Fig. 5. Typical sectioned S690 welded I-section I-200×100×5. 

 

 



 

 

(a) I-200×100×5 (b) I-150×150×5 

Fig. 6. Measured membrane residual stress patterns and amplitudes. 

 



 

Fig. 7. General membrane residual stress pattern for welded I-sections. 

 

 

 

 

 

 

 

 

 



 
(a) flange 

 

 

(b) web 

Fig. 8. Comparisons between measured residual stress patterns and amplitudes and predictive models. 
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Fig. 9. Test rig for initial local geometric imperfection measurements. 

 

 

 

 

 

 

Fig. 10. Locations of initial local geometric imperfection measurements. 

 

 

 

 

 



 

Fig. 11. Stub column test rig. 

 

 

 

 

Fig. 12. Load–end shortening curves of S690 welded I-section stub column specimens. 
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Fig. 13. Failure modes of S690 welded I-section stub column specimens  

(from left to right: I-150×150×5-1, I-90×70×5-1, I-200×100×5-1). 

 

 

 

Fig. 14. Typical residual stress distribution (in MPa) in modelled S690 welded I-section I-150×150×5 

(Positive values indicate tensile residual stresses while negative values indicate compressive residual 

stresses). 

 



 

Fig. 15. Experimental and numerical load–end shortening curves for stub column specimen I-140×70×5-1. 

 

 

 

 

 

Fig. 16. Experimental and numerical failure modes for stub column specimen I-150×150×5-1. 

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5

L
o
ad

 (
k
N

)

End shortening (mm)

Test

FE without residual stresses

FE with residual stresses



 

 

Fig. 17. EN 1993-1-12 Class 3 slenderness limit for outstand elements in compression. 

 

 

 

 

Fig. 18. ANSI/AISC 360-16 slenderness limit for outstand elements in compression. 
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Fig. 19. AS 4100 slenderness limit for outstand elements in compression. 
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Fig. 20. EN 1993-1-12 Class 3 slenderness limit for internal elements in compression. 

 

 

 

 

 

Fig. 21. ANSI/AISC 360-16 slenderness limit for internal elements in compression. 
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Fig. 22. AS 4100 slenderness limit for internal elements in compression. 
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Fig. 23. Comparison of experimental and numerical results with EC3 resistance predictions. 

 

 

 

Fig. 24. Comparison of experimental and numerical results with AISC resistance predictions. 
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Fig. 25. Comparison of experimental and numerical results with AS resistance predictions. 
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