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We examine orbifold theories of grand unification with Scherk-Schwarz twisting, performing a
renormalization group analysis and applying low energy experimental constraints. We rule out the
minimal SU(5) models, and consider simple extensions including additional fields, such as an additional
scalar field, or additional symmetries, such as SUð5Þ ×Uð1Þ or E6. We find that it is very difficult to
generate a large enough Higgs mass while simultaneously passing LHC experimental search constraints.
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I. INTRODUCTION

The Large Hadron Collider’s (LHC) triumph on the
discovery of the 125 GeV Higgs boson [1,2] has been
tempered somewhat by the lack of evidence of physics
beyond the standard model (SM). Indeed, supersymmetry
(SUSY), which was for many years the most popular
beyond the SM speculation, is now facing significant
exclusions from the LHC [3–35]. While many of these
exclusions are for so-called “simplified models” (see e.g.,
Refs. [5,36]), which make assumptions about the super-
partner mass spectrum, these exclusions are particularly
hard on models where the supersymmetry breaking param-
eters are assigned restricted values at some high super-
symmetry breaking scale. Indeed the constrained minimal
supersymmetric standard model (MSSM), which gives the
supersymmetry breaking parameters common values at a
high scale, is now mostly ruled out [37,38]. However,
typical unconstrained supersymmetric models are compli-
cated by having over 100 additional free parameters (due to
the lack of knowledge of the supersymmetry breaking
mechanism), so plenty parameter space remains for more
nonminimal models of supersymmetry and the LHC will of
course continue to search for them.
This naturally leads to two complementary approaches to

the search for supersymmetry. First, not all the supersym-
metry breaking parameters are important for LHC searches,
so one may make very reasonable assumptions about
the model (such as no new source of CP violation, no
flavor changing neutral currents, and first and second

generation universality) to reduce the number of para-
meters. For example, the phenomenological MSSM
(pMSSM) [39] has “only” 19 additional parameters,
making its investigation at the LHC much more practi-
cable. Alternatively, one may posit mechanisms of super-
symmetry breaking at the high scale to predict relations
between the supersymmetry breaking parameters, and the
consequent low energy spectrum that can be confronted
with data.
This is often married with a grand unified theory (GUT)

in which the SM gauge groups are unified into a larger
group. Such theories address longstanding shortcomings of
the SM, explaining the origin of its semisimple group, the
particular quark and lepton multiplet structure, and the
lepton and quark charges. The combination with super-
symmetry in turn allows a solution of the hierarchy
problem, while helping with gauge coupling unification.
Indeed, these issues make it difficult to build a convincing
GUT without including supersymmetry.
Supersymmetry itself must be broken at low energies.

One interesting idea is that supersymmetry may be broken
by the compactification of extra dimensions [40,41]. An
additional extra dimension may have escaped previous
detection by being rolled up with a radius R that is smaller
than the resolution of our colliders. Compactifying the
extra dimension by imposing additional symmetries results
in heavy Kaluza-Klein (KK) states [42,43] and can break
supersymmetry as well as any underlying symmetry of
grand unification.
Although the introduction of supersymmetry is helpful,

it does not provide a solution for the doublet-triplet-
splitting problem. We still must explain why the repre-
sentation of the larger gauge group that contains the Higgs
bosons is split in mass, with the SM Higgs doublet at the
electroweak scale while the other states [e.g., a color triplet
in an SUð5Þ GUT] remain at the GUT scale; and of course,
this must be done while keeping proton decay suppressed
[44,45]. While there are proposals to solve this problem in
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four dimensions [46–62] these generally require a rather
complicated Higgs sector. Instead one may again use the
compactified extra dimensions, making appropriate quan-
tum number choices to split the multiplet.
The symmetries imposed on the compactified dimension

and the representation of the states under these symmetries
define the model. In “ordinary” compactifations, the states
transform trivially under these extra symmetries, e.g.,
ϕðxμ; yþ 2πRÞ ¼ ϕðxμ; yÞ where y is the extra dimension.
However, if the transformation becomes nontrivial, e.g.,
ϕðxμ; yþ 2πRÞ ¼ Tϕðxμ; yÞ where T is a model dependent
operator, the theory is said to have a Scherk-Schwarz (SS)
twist [40,41]. In this study we seek to investigate some
simple Scherk-Schwarz models of compactification to test
if they are phenomenologically compatible with electro-
weak symmetry breaking (EWSB) and low energy exper-
imental constraints.
Ultimately we ask if these SS models, and in particular

Barbieri et al.’s original minimal model [63], can provide a
realistic and “natural” spectrum of broken supersymmetry
at the TeV scale that may be discovered at the LHC.
We note that orbifold GUTs are effective theories

requiring explicit cutoffs due to the loss of perturbative
control associated with the renormalization group equa-
tion (RGE) running of the couplings. Consequently, these
theories may potentially be embedded into fully complete
UV string theories [64,65], where the cutoff is replaced
by the physical string scale. Previous attempts have
implemented phenomenologically acceptable models
using D-brane and F-brane models [66], with the focus
of models presented here on E8 × E8 heterotic string
models containing GUT gauge symmetries as subgroups,
e.g., E8 ⊃ E6 ⊃ SOð10Þ ⊃ SUð5Þ ⊃ GSM.
In Sec. II we describe the theoretical framework of

Schrek-Schwarz compactification, including the breaking
of supersymmetry and the GUT symmetry, and discuss the
placement of fermionic matter. We describe our method-
ology for investigating these models in Sec. III as well as
list our low energy experimental constraints. Following this
we go on to discuss the results for each model in Secs. IV
to VII. These include the Barbieri et al. SUð5Þ model [63]
in Sec. IV, an SUð5Þ model with an additional singlet in
Section V, an SUð5Þ ×Uð1Þ model in Sec. VI, and an E6

model in Sec. VII. In Sec. VIII we summarize our findings
and draw some conclusions.

II. THEORETICAL FRAMEWORK

Here, we briefly review the theoretical framework of
Schrek-Schwarz models. In Sec. II A we discuss the com-
pactification and introduce our additional symmetries,
and show how this may be projected onto four dimensions
in Sec. II B. We demonstrate how this can be used to
break supersymmetry and the unification gauge group in
Secs. II C and II D, respectively. Finally we discuss the
placement of fermionic matter in Sec. II E.

A. Scherk-Schwarz compactification

We first briefly review the Schrek-Schwarz compactifi-
cation of extra dimensions, following the notation of
Quiros [67], to provide context for our study and set our
notation. Here we initially consider only five-dimensional
models and restrict ourselves to flat compactifications. We
split our space-time coordinates into xμ, defined on our
usual flat Minkowski space-time, and y, our extra coor-
dinate describing the compactified space C of finite size R.
We work in the regime E ≪ 1=R and integrate out the
heavy modes of the theory, resulting in a four-dimensional
effective field theory of the five-dimensional action.
In general, the compact manifold C may be written in

terms of a noncompact manifold M, modded out by a
discrete group G, so that C ¼ M=G. The discrete group G
acts freely on the manifold M via some operators τg,

τg∶ M → M; g ∈ G; ð1Þ

where the τg live in the representation space of G. The
compact space is obtained by identifying points that belong
to the same orbit,

y≡ τgðyÞ; ð2Þ

which in turn must be reflected in the symmetry of
our theory. That is, physics should not be dependent
on individual points in y, but rather on their orbits, and
our (five-dimensional) Lagrangian must reflect this
identification,

L5½ϕðxμ; yÞ� ¼ L5½ϕðxμ; τgðyÞÞ�; ð3Þ

where ϕðxμ; yÞ are some generic fields.
Clearly a sufficient condition on these fields is

ϕðxμ; τgðyÞÞ ¼ ϕðxμ; yÞ, which leads to what we call ordi-
nary compactification. However, a more general necessary
and sufficient condition is ϕðxμ; τgðyÞÞ ¼ Tgϕðxμ; yÞ,
where Tg is an appropriate representation of G acting on
field space. The case Tg ¼ 1 recovers ordinary compacti-
fication, but nontrivial Tg results in Scherk-Schwarz
compactification, which is the main focus of this paper.
The simplest compact space we can use is the circle,

C ¼ S1, which may be constructed as the identification
R1=Z, where R1 is the real line and Z corresponds to a
translation of 2πnR with n ∈ Z. The action of the infinite
discrete group moduloZ is given by the operators τn, acting
on elements y ∈ R1 by mapping them onto

τnðyÞ ¼ yþ 2πnR; n ∈ Z; ð4Þ

where R is the radius of the circle S1. Effectively we have
taken the real number line R1 and curled it up, therefore
restricting the domain of our manifold to ½y; yþ 2πRÞ.
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The first generator of Z, τ1 ¼ 2πR corresponds to the only
independent twist T, acting on fields ϕ according to

ϕðxμ; τ1ðyÞÞ ¼ ϕðxμ; yþ 2πRÞ ¼ Tϕðxμ; yÞ; ð5Þ

since the other operators τn, n > 1, can be built out of
multiple applications of τ1.
Unfortunately these five-dimensional models do not allow

for chiral fermions [68], due to the five-dimensional Lorentz
algebra containing γ5 resulting in the smallest irreducible
representation being a Dirac fermion. To overcome this we
further fold our extra dimension, converting our circle into
an interval. This is an orbifold compactification. We assign a
parity to our fields under a Z2 transformation

y → ξðyÞ ¼ −y; ð6Þ
which identifies the lower half of our circle with the upper
half, as seen in Fig. 1. The manifoldO ¼ S1=Z2 is no longer
smooth but now becomes an orbifold with fixed points at
y ¼ 0 and πR.
As before, our Lagrangain must remain invariant under

this transformation, so the fields transform as

ϕðxμ; ξhðyÞÞ ¼ Zϕðxμ; yÞ; ð7Þ
where Z is the parity assignment. When integrating over
the fifth dimension and writing our theory as a four-
dimensional effective theory, we generate an effective
tower of Kaluza-Klein states. Under the Z2 identification
the two component spinors within the Dirac fermion have
opposite parities [69]. Those that have an even assignment
(i.e., von Neumann boundary conditions) are allowed to
have zero modes whereas the odd ones (i.e., Dirichlet
boundary conditions) are not.
Therefore, by choosing our parities we can prevent

whichever zero mode we like from appearing, allowing
us to lift the right-handed fermions and regain, what is in
effect a chiral theory.
We note that Z2 ¼ 1, and Z; T must obey the consistency

condition,

TZT ¼ Z ⇔ ZTZ ¼ T−1: ð8Þ
We can easily see this latter relation geometrically by

applying y!τ yþ2πR!ξ −y−2πR!τ −y¼ ξðyÞ, and requir-
ing an analogous relation between the field operators.

Recall that T corresponds to an operator expressing the
symmetry defined by G, so we can write T as

T ¼ expð2πiβaλaÞ; ð9Þ

where βa parametrizes the symmetry transformation, and λa

are the Hermitian generators. For infinitesimal transforma-
tions we may rewrite the consistency condition to Oðβ2Þ as

fβaλa; Zg ¼ 0: ð10Þ

We are later interested in fields that transform as doublets
under a global SU(2) symmetry. In this case since Z2 ¼ 1,
we have two choices for Z, i.e., Z ¼ σ3 or Z ¼ �1. The
latter choice Z ¼ �1 requires T ¼ �1 and we recover
ordinary compactifications. For the nontrivial case, Z ¼ σ3
and the generators of T are also Pauli matrices, λ⃗ ¼ σ⃗. If
T ¼ expðiπσ3Þ ¼ 1, we again have an ordinary compactifi-
cation. The remaining solution T ¼ expð2πiðβ1σ1 þ
β2σ2ÞÞ may be simplified by rotating away the σ1 direction
while preserving σ3, so that

Z ¼ σ3; T ¼ expð2πiασ2Þ; ð11Þ

where α parametrizes the transformation.

B. Projecting to four dimensions

The building blocks of our five-dimensional theory are
hypermultiplets H, and vector multiplets V, which we
present in the formalism introduced by Mirabelli and
Peskin [70]. The hypermultiplets H consist of complex
scalars Ai, i ¼ 1; 2 and a Dirac spinor Ψ,

H ¼ ðAi;ΨÞ: ð12Þ

Note that the minimal fermionic matter field in five
dimensions is the Dirac spinor since it is the lowest weight
representation of the Lorentz algebra. Furthermore note
that Ψ; Ai transform as a doublet under SUð2ÞR [71], the
residual five-dimensional supersymmetry. The vector mul-
tiplets V consist of the five-dimensional gauge fields AM,
M ¼ 0…5, gauginos λi, i ¼ 1; 2, and a scalar Σ in the
adjoint representation,

V ¼ ðAM; λi;ΣÞ: ð13Þ

λi transforms as a doublet under SUð2ÞR, where λi are
symplectic Majorana spinors,

λi ¼
�

λiL

ϵijλ̄jL

�
; λ̄jL ≡ −iσ2ðλjLÞ�; ð14Þ

with λiL a left-handed Weyl spinor. These are defined in the
five-dimensional space-time withFIG. 1. Modding S1 by Z2
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ηMN ¼ diagð1;−1;−1;−1;−1Þ; γM ¼ fγμ; γ5g;

γ5 ¼
�−i 0

0 i

�
⊗ I2; ð15Þ

and

σμ ¼ ð1; σ⃗Þ; σ̄μ ¼ ð1;−σ⃗Þ; ð16Þ

where again we emphasize that we are considering a flat
extra dimension, ignoring the brane tension (i.e., not a
warped scenario).
The on-shell vector multiplet V is extended to off shell

by adding a SUð2ÞR triplet of real valued auxiliary fields
Xa, a ¼ 1; 2; 3, and the hypermultiplet H is similarly
extended by adding a complex doublet of auxiliary fields
Fi, i ¼ 1; 2,

Von-shell ¼ ðAM;Σ; λiÞ → Voff-shell ¼ ðAM;Σ; λi; XaÞ; ð17Þ

Hon-shell ¼ ðAi;ΨÞ → Hoff-shell ¼ ðAi;Ψ; FiÞ: ð18Þ

These fields obey the supersymmetry transformations
of Ref. [67].
For the S1=Z2 orbifold, the fixed points at y ¼ 0 and πR

provide four-dimensional Minkowski manifolds, and com-
pactification results in a tower of Kaluza-Klein states as
usual. We may restrict which zero modes appear by
assigning their Z2 assignment to þ1 if the zero mode is
to be allowed and−1 if we want to forbid it. Specifically, by
choosing Z ¼ σ3, we assign

Z ¼ þ1∶ AM; λ1L; X
3; ξ1L; ð19Þ

Z ¼ −1∶ A5;Σ; λ2L; X1;2; ξ2L; ð20Þ

where ξi, i ¼ 1; 2 are the corresponding five-dimensional
supersymmetry parameters, which are symplectic Majorana
spinors.
After orbifolding, the states on the y ¼ 0 brane obey

reduced supersymmetric transformations [67], and

δξX3 ¼ ðξ1LÞ†σ̄μDμλ
1
L − iðξ1LÞ†D5λ̄

2
L þ H:c:

δξð∂5ΣÞ ¼ −iðξ2LÞ†D5λ̄
2
L þ H:c:

�

⇒ δξðX3 − ∂5ΣÞ ¼ ξ1Lσ̄
μDμλ

1
L þ H:c: ð21Þ

We see that X3 − ∂5Σ transforms as a total derivative.
The vector multiplet projected onto the brane is then, in
the Wess-Zumino gauge, ðAμ; λ1L;DÞ where D ¼ X3 −
∂5Σ [72,73].
Analogously for the hypermultiplet, starting with

H ¼ ðAi;Ψ; FiÞ, with Dirac spinor Ψ ¼ ðψL;ψRÞ, we have
the assignment

Z ¼ þ1∶ A1;ψL; F1; ξ1L; ð22Þ

Z ¼ −1∶ A2;ψR; F2; ξ2L: ð23Þ

After orbifolding we have

δξF1 ¼ i
ffiffiffi
2

p ðξ1LÞ†σ̄μ∂μψL þ ffiffiffi
2

p ðξ1LÞ†∂5ψR

δξð∂5A2Þ ¼ ffiffiffi
2

p ðξ1LÞ†∂5ψR

�

⇒ ∂ξðF1 − ∂5A2Þ ¼ i
ffiffiffi
2

p
ðξ1LÞ†σ̄μ∂μψL; ð24Þ

which also transforms as a total derivative. The off-shell
chiral supermultiplet on the y ¼ 0 brane is ðA1;ψL; FÞ
with F ¼ F1 − ∂5A2.
The five-dimensional Lagrangian for the gauge fields

is the standard five-dimensional super Yang-Mills
Lagrangian [72],

L5 ¼ Tr

�
−
1

2
F2
MN þ ðDMΣÞ2 þ iλ̄γMDMλþ X⃗2 − λ̄½Σ; λ�

�
:

ð25Þ

The corresponding Lagrangian on the y ¼ 0 brane has a
standard form corresponding to a four-dimensional chiral
multiplet coupled to a gauge multiplet (see Quiros [67]).
This gives a bulk and a brane Lagrangian with the added
feature of a superpotential W that connects the bulk and
brane matter fields via the interaction of chiral superfields
on the y ¼ 0 brane, WðΦ0;AÞ, where by Φ0 we mean any
general four-dimensional chiral superfield.
The five-dimensional Lagrangian for the hypermultiplet

H components, ignoring the gauge coupling for now, is

L5 ¼ j∂MAij2 þ iψ̄γM∂Mψ þ jFij2: ð26Þ

The brane Lagrangian involving interactions with matter is
then given by

L4 ¼ F1
∂W
∂A1

þ H:c: ¼ ðF1 − ∂5A2Þ ∂W∂A2
þ H:c: ð27Þ

Integrating out the auxiliary field F1 leaves the action

S ¼
Z

d4xdy

�
j∂MAij2 þ iψ̄γM∂Mψ − δðyÞ

×

��
∂5A2

∂W
∂A1

þ H:c:

�
þ δðyÞ

���� ∂W∂A1

����
	�

: ð28Þ

C. Supersymmetry breaking

We first demonstrate supersymmetry breaking in the
simpler case where gauge symmetry is unaffected.
Consider a vector multiplet V ¼ ðAM; λi;ΣÞ and two
Higgs matter hypermultiplets H ¼ ðHa

i ;ΨaÞ; a ¼ 1; 2

D. D. SMARANDA and D. J. MILLER PHYS. REV. D 100, 075016 (2019)

075016-4



which can be rotated into one another under an SUð2ÞH
flavor symmetry. The five-dimensional action is then
invariant under SUð2ÞR × SUð2ÞH with a Lagrangian,

L5 ¼
1

g2
Tr

�
−
1

2
F2
MN þ ðDMΣÞ2 þ iλ̄iγMDMλ

i

− λ̄i½Σ; λi� þ jDMHa
i j2 þ Ψ̄aðiγMDM − ΣÞΨa

− ði
ffiffiffi
2

p
ðHa

i Þ†λ̄iΨa þ H:c:Þ − ðHa
i Þ†Σ2Ha

i

−
g
2
ððHa

i Þ†σ⃗jiTAHa
j Þ2

�
; ð29Þ

as long as the fields are of the appropriate representations,
e.g., λi ∼ ð2R; 1HÞ, Ψa ∼ ð1R; 2̄HÞ, Ha

i ∼ ð2R; 2̄HÞ, with the
subscripts R;H referring to SUð2ÞR or SUð2ÞH.
With our choice of Z ¼ σ3 we then have the eigenvalues

Z ¼ þ1∶ λ1L; Vμ; H1
1;ψ

1
R; H2

2;ψ
2
L; ð30Þ

Z ¼ −1∶ λ2L; V5;Σ; H1
2;ψ

1
L; H2

1;ψ
2
R; ð31Þ

which forbids massless Kaluza-Klein modes for the Z ¼
−1 states. The parity operator may be written as a product
of operators acting on either the SUð2ÞR or SUð2ÞH
symmetries,

Z ¼ �ðσ3ÞR ⊗ ðσ3ÞH ⊗ iγ5; ð32Þ

where the iγ5 acts only on the spinor indices of the
representations to project the left/right handed chirality
of the Dirac spinors.
Extending the twist operator T to SUð2ÞR × SUð2ÞH

gives

T ¼ e2πiασ
2 ⊗ −e2πiγσ2 ; ð33Þ

where α parametrizes the SUð2ÞR symmetry, and γ the
SUð2ÞH. Under this twist, fields ϕ must obey our boundary
conditions,

ϕðxμ; yþ 2πRÞ ¼ e2πiασ
2

ϕðxμ; yÞ; ð34Þ

where to illustrate the argument we have just taken the
action dictated by the SUð2ÞR field space. The above has
the trivial solution,

ϕðxμ; yþ 2πRÞ ¼ eiασ
2y=Rϕ̃ðxμ; yÞ; ð35Þ

where ϕ̃ðxμ; yþ 2πRÞ ¼ ϕ̃ðxμ; yÞ is a periodic field in y
and can be in turn be expanded into its KK modes.
Applying this reasoning to our fields, we find

�
λ1

λ2

�
¼ eiασ

2y=R

�
λ̃1

λ̃2

�
; ð36Þ

�
Ψ1

Ψ2

�
¼

�
Ψ̃1

Ψ̃2

�
e−iγσ

2y=R; ð37Þ

�
H1

1 H1
2

H2
1 H2

2

�
¼ eiασ

2y=R

�
H̃1

1 H̃1
2

H̃2
1 H̃2

2

�
e−iγσ

2y=R; ð38Þ

where each acquires an α and/or γ parametrized exponen-
tial according to their transformation properties under
SUð2ÞR × SUð2ÞH.
Applying this to the Lagrangian of Eq. (29), the kinetic

part, or more specifically the ∂5 derivative, acts on the
boundary conditions giving us effective four-dimensional
soft SUSY breaking masses as in Barbieri et al.’s
model [63],

LSUSY ¼ −
1

2

α

R
ðλ1ð0ÞL λ1ð0ÞL þ H:c:Þ

−
�
α2

R2
þ γ2

R2

�
ðjhuj2 þ jhdj2Þ

þ 2αγ

R2
ðhuhd þ H:cÞ − γ

R
ðψ̄hψh þ H:c:Þ; ð39Þ

where we have labeled the zero modes of our solutions,

hu ¼ H1ð0Þ
1 , hd ¼ H2ð0Þ

2 , ψ̄h ¼ ψ̄2ð0Þ
L , ψh ¼ ψ1ð0Þ

R . In the
language of the MSSM, the Scherk-Schwarz twists have
generated universal gaugino breaking terms (m0 ¼ α̂),
and holomorphic Higgs terms (m2

Hu
¼ m2

Hd
¼ α̂2, μ ¼ γ̂,

μB ¼ −2α̂ γ̂) via the α̂≡ α=R; γ̂ ¼ γ=R parameters con-
trolling the SUð2ÞR × SUð2ÞH breaking.

D. Gauge breaking

We have seen how the Scherk-Schwarz compactification
provides supersymmetry breaking, but it can also break our
GUT’s gauge symmetry G to a subgroupH on the brane. To
do this, we extend the definition of the parity assignment on
the fields with nontrivial gauge structure to

AA
Mðxμ;−yÞ ¼ αMΛABAB

Mðxμ; yÞ; ð40Þ

ψðxμ;−yÞ ¼ λR ⊗ ðiγ5Þψðxμ;þyÞ; ð41Þ

where αM ¼ �1 are the previous parity assignments,ΛAB is
a matrix with Λ2 ¼ 1 and eigenvalues �1, and λR is a
Hermitian matrix acting on the representation space of the
field ψR. In order to keep the bulk kinetic term FA

MNF
AMN

invariant, Λ must satisfy

fABC ¼ ΛAA0ΛBB0ΛCC0
fA

0B0C0
; ð42Þ

where fABC are the structure constants of the gauge group.
Since Λ has eigenvalues �1 it can be written in a diagonal
basis as ΛAA0 ¼ δAA

0
ηA

0
, with ηA

0 ¼ �1. In this basis we
have
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fABC ¼ ηAηBηCfABC; ð43Þ

where there is no summation over repeated indices. We are
free to choose whatever parity assignment η’s we like,
and break the gauge symmetry, as long as they obey this
constraint. Conversely, setting all η’s to 1 recovers the
trivial case of Λ ¼ 1; λR ¼ 1, maintaining the gauge
symmetry. To break our group G to a subgroup H we
must therefore keep the parities of field components in the
directions corresponding to the generators ofH even, while
setting the others to be odd.
We simplify the treatment by choosing the ηA’s such that

the generators TA are naturally split into two cases. First,
Ta with ηa ¼ þ1 such that the surviving gauge group
has generators H ¼ fTag. These Ta transform as Ta →
δaa

0
ηa

0
Ta0 ¼ Ta so that the automorphism and the subgroup

is preserved. Secondly, Tâ with ηâ ¼ −1 such that the
broken group has generators K ¼ G=H ¼ fTâg (and now
Tâ → −Tâ). For example if our gauge group is SUð2Þ and
we choose a ¼ 3; â ¼ 1; 2 we would have SUð2Þ breaking
down to Uð1Þ.
The η assignment also impacts the fields that live

in the gauge representation space. Since we require
that the bulk action be invariant, we require that the
coupling

igAA
Mψ̄γ

MTAψ ð44Þ

remain invariant. To achieve this the λR matrix must satisfy

½λR; Ta
R� ¼ 0 fλR; Tâ

Rg ¼ 0: ð45Þ

Our choice in Λ has split our representation into two
implicit subspaces, with the Z parity assignment dictated by
the (anti-) commutation relations.
For example, taking SUð5Þ as the unification gauge

group, we may choose Λ such that Ta ∈ GSM; Tâ ∈
SUð5Þ=GSM so that λR ¼ diagðþ1;þ1;þ1;−1;−1Þ, and
the lowest nontrivial SUð5Þ representation, 5, is naturally
separated into 3 ⊕ 2. Fields with Z ¼ −1 are prevented
from having zero modes, and acquire a heavy mass of
Oð1=RÞ via the ∂5 derivative. The surviving gauge group
can use the standard Higgs mechanism to undergo the usual
standard model electroweak breaking.
We noted earlier that we can combine our Z and T

transformations to form an alternative Z0, giving us the
equivalent orbifold R1=Z2 × Z0

2. The above gauge break-
ing argument may be applied to the R1=Z2 × Z0

2 orbifold.
To this extent the gauge breaking can be assigned to either
Z; Z0 or the translation T or a combination [due to them
being isometries obeying the consistency condition in
Eq. (8)].
The physical symmetry of the theory then consists of the

generators Ta that simultaneously commute with the cho-
sen forms for Z; Z0; T. If we take Z ∼ diagðþ;þ;þ;þ;þÞ

and want to achieve SUð5Þ → GSM breaking, we can
choose

Z ∼ diagðþ;þ;þ;þ;þÞ; T ∼ diagðþ;þ;þ;−;−Þ;
ð46Þ

which was explored originally by Kawamura [74,75].
Note that the simultaneously anticommuting generators

Tâ determine the presence of nontrivial Wilson lines
phases, which can lead to Hosotani breaking [76–78],
depending on the matter content of the theory. The above
form of the gauge symmetry breaking assignment is chosen
to ensure that we do not have any Wilson line phases
present in the four-dimensional theory.
To summarize, the actions of our isometries on field

space are defined by

Z ¼ ðσ3ÞR ⊗ ðσ3ÞH ⊗ diagðþ;þ;þ;þ;þÞ; ð47Þ

T ¼ e2πiασ
2 ⊗ −e2πiγσ2 ⊗ diagðþ;þ;þ;−;−Þ: ð48Þ

The Scherk-Schwarz compactification allows us to break
both supersymmetry and the unification gauge group on the
y ¼ 0 brane.

E. Fermionic matter: Brane vs bulk

The fermionic matter allows some freedom in whether
they should be in the bulk as hypermultiplets via L5 or only
on the brane as chiral multiplets via L4i; i ¼ 0. Their
placement impacts the number of required multiplets to
provide the low energy standard model fields. For clarity, in
this discussion we assume an SUð5Þ gauge structure.
We begin with the simplest placement, brane matter. In

this case we use the usual chiral multiplets from an ordinary
SUð5Þ model, i.e., the supersymetric standard model
fields U;D;Q; L; E which are contained in the T10 ∼ 10 ⊃
fQ;U; Eg and F5̄ ∼ 5̄ ⊃ fD;Lg. These representations are
now coupled to the Z2 chiral projection of the Higgs
hypermultiplets on the brane via the superpotential W.
We note that when projecting the bulk matter hyper-

multiplets we form two chiral multiplets defined by either
Z ¼ �1. The components of the hypermultiplet must
transform to maintain gauge invariance in the bulk as
dictated by the Lagrangian in Eq. (29). More specifically
the components contained in the Z ¼ þ1 chiral multiplet
transform as the fundamental of the group while those in
the Z ¼ −1 one transform as the conjugate, which we
denote with a superscript c. For an arbitrary matter
hypermultiplet, coupled to an SUð5Þ gauge structure,

A¼ ðAi;ΨaÞ→A¼ ðA1;ψA
RÞ∼ 5; Ac ¼ ðA2;ψA

LÞ∼ 5̄:

ð49Þ

Therefore as usual we have
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SMatter ¼
Z

d4xdyδðyÞ
�Z

d2θ
X3
j;k¼1

ðy1ÞjkT10jT10kH
c
5

þ ðy2ÞjkT10jF5̄kH5̄ þ H:c:

	
; ð50Þ

where H5 ¼ ðH1
1;ψ

1
RÞ; H5̄ ¼ ðH2

2;ψ
2
LÞ, and we have intro-

duced three generations denoted by the index structure j; k.
After orbifolding, the H5; H5̄ automatically acquire a 2–3
splitting and the rest of the model’s phenomenology is
analogous to the usual supersymmetric SU(5) GUT.
If on the other hand we put our matter fields as

components of hypermultiplets in the bulk we run into
another issue. Since all the bulk hypermultiplets automati-
cally undergo the 2–3 splitting induced by the T action,
inserting just one of the chiral analogs T 10,F 5̄ would result
in having some of the states in the standard model spectrum
projected out; i.e., we would not have the correct zero-
mode spectrum. To get around this we must add two copies
of each SUð5Þ fermionic matter hypermultiplet, assigned
opposite Z parities with respect to each other. That is, we
introduce four hypermultiplets T 10 ¼ fT10; Tc

10g, T 0
10 ¼

fT 0
10; T

0c
10g, F 5̄ ¼ fF5̄; F

c
5̄
g, F 0̄

5 ¼ fF5̄; F
c
5̄
g, which we

give the Z assignments

fT10; Tc
10g → fðþÞT10; ð−ÞTc

10g; ð51Þ

fT 0
10; T

0c
10g → fð−ÞT 0

10; ðþÞT 0c
10; g ð52Þ

and analogous assignments for F 5̄, F
0̄
5. With these assign-

ments our Lagrangian becomes that presented in Ref. [63].
However with this matter placement we have another

added complexity since the individual hypermultiplets
transform under the residual SUð2ÞR symmetry (note that
we assume a trivial flavour action acting on T ;F ). After
orbifolding, the nontrivial SS conditions provide us with
squark soft SUSY breaking masses via the kinetic part of
the Lagrangian in Eq. (29), along with a contribution to the
trilinear squark coupling A0 via the ∂5Q2 term in Eq. (28).

III. METHODOLOGY AND CONSTRAINTS

The compactification of the high scale extradimensional
model provides us with an effective four-dimensional
softly broken supersymmetric model at high energies.
We examine this model’s low energy spectrum to ensure
that it is phenomenologically consistent with experimental
observations. We include as inputs the high scale model
parameters and use these to set the soft SUSY breaking
parameters. We then use RGEs to evolve our parameters
down to the low scale, where we apply constraints. For a
study of Scherk-Schwarz with an electroweak scale com-
pactification, see Ref. [79].
The RGE running is performed using the FlexibleSUSY

[v.2.0.1] [80,81] spectrum generator, which uses numerical

routines generated by SOFTSUSY [82,83], and with two-
loop RGEs provided by SARAH [v.4.12.2] [84–87].
SARAH also provides the electroweak tadpole conditions.
For example, in the SUð5Þ model discussed in Sec. IV the
high scale inputs are α̂ and γ̂, which we relate to the soft
SUSY breaking parameters via Eqs. (57) and (58), and
these are then run down to the low scale where electroweak
symmetry is broken and experimental constraints applied.
In principle, the electroweak tadpole equations could set

our final low energy observables, the ratio of vacuum
expectation values (vevs) of the two Higgs doublets, tan β,
and the Z-boson mass. However, for technical reasons it is
easier to assign these values at the low scale. This means we
have to (temporarily) relax some of our high scale relations
between the soft SUSY breaking parameters and the model
inputs. We choose to allow our choice of tan β to fix γ̂ and
leave μB (the soft SUSY breaking parameter corresponding
to the Higgs-higgsino mass parameter) unfixed. Only at the
end of the process do we check if μB ¼ −2α̂ γ̂ as required
by Scherk-Schwarz compactification. We refer to this as the
“Scherk-Schwarz condition.” In practice, we do not insist
that this condition is obeyed exactly, due to the uncertain-
ties arising from the RGE running. Instead we insist that the
Scherk-Schwarz condition is obeyed with 95% confidence.
We stress that, in principle, this is no different than forcing
the relation at high energies and searching for values of
tan β that satisfy the tadpole equations.
To explore the parameter space we employ a “seeded

random walk” scanning algorithm. We first sample the
phase space with a uniform distribution to find points that
produce EWSB and inspect if they come close to satisfying
our required constraints (such as the correct Higgs mass),
with closeness being defined by a global χ2. Then we
perform a random walk around each point to search for
those with a better fit and if such a point is found it becomes
the new seed. This is repeated until we find a point that
agrees with the required constraints (if it exists). The search
is abandoned if computation time exceeds a preset limit.
This provides us with points that are theoretically well
behaved but may still be experimentally excluded. We
therefore then must check LHC and dark matter (DM)
constraints.
We apply LHC bounds and constraints from the ATLAS

and CMS collaborations.
(1) We insist on a Higgs mass in the range

123 ≤ mH ≤ 127 GeV, where we have assumed that
a 2 GeV theoretical uncertainty dominates those
from the experimental measurement [1,2].

(2) We require a gluino mass mg̃ ≥ 2 TeV [11,28].
(3) We require a lightest neutralino and chargino masses

to be outside the exclusion contour provided by
Fig. 13 of Ref. [88], which in particular combines
the exclusions from [7,32].

(4) The stop quark mt̃ should be heavier than
1 TeV [19].
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(5) Any extra gauge boson must have mass mZ0 ≥
2.4 TeV [29].

For scenarios that pass the LHC constraints and satisfy
the Scherk-Schwarz constraint, we apply constraints on the
dark matter relic density. We use the measurement from
Planck [89],

Ωch2 ¼ 0.1157� 0.0023; ð53Þ
and include a further 10% uncertainty arising from the mass
difference from MicrOmegas [90–92] and FlexibleSUSY.
We therefore accept points with a dark matter relic density
smaller than Ωch2 ¼ 0.1275 to allow for the possibility of
other sources of dark matter.

IV. THE BARBIERI et al. SU(5) MODEL

The first model we consider is an SUð5Þ GUT in five
dimensions, compactified on the S1=Z2 orbifold, as pro-
posed by Barbieri et al. [63]. This model contains a vector
multiplet V ¼ ðAM; λi;ΣÞ and two Higgs hypermultiplets
Ha ¼ ðHa;ΨaÞ, a ¼ 1; 2. The five-dimensional action is
invariant under an SUð2ÞR × SUð2ÞH global symmetry
where the fields have the representations λi ∼ ð2R; 1HÞ,
Ψa ∼ ð1R; 2HÞ, Ha

i ∼ ð2R; 2HÞ. The extra dimension is
compactified at a scale 1=R ¼ 1016 GeV to break both
the SUð5Þ symmetry and the supersymmetry. Under the
compactification symmetries y ↔ −y and y ↔ yþ 2πR
the fields transform with

Z ¼ ðσ3ÞR ⊗ ðσ3ÞH ⊗ diagðþ;þ;þ;þ;þÞ; ð54Þ
T ¼ e2πiασ

2 ⊗ −e2πiγσ2 ⊗ diagðþ;þ;þ;−;−Þ; ð55Þ

using the notation of [67], where the final matrix is acting
on the SUð5Þ space.
The derivative with respect to the fifth dimension in

the kinetic part of the Lagrangian acts on the boundary
conditions giving us effective four-dimensional soft SUSY
breaking terms of the form [63]

LSUSY ¼ −
1

2

α

R
ðλ1ð0ÞL λ1ð0ÞL þ H:c:Þ

−
�
α2

R2
þ γ2

R2

�
ðjhuj2 þ jhdj2Þ þ

2αγ

R2
ðhuhd þ H:cÞ

−
γ

R
ðψ̄hψh þ H:c:Þ; ð56Þ

where we have labeled the zero modes as hu ¼ H1ð0Þ
1 ;

hd ¼ H2ð0Þ
2 ; ψ̄h ¼ ψ̄2ð0Þ

L ;ψh ¼ ψ1ð0Þ
R .

As previously discussed, we may still choose where to
define our matter fields. We may either keep them restricted
to the y ¼ 0 brane or allow them to propagate in the five-
dimensional bulk. Restricting them to the brane results in
the MSSM at low energies with supersymmetry breaking
masses given by

m1=2 ¼ α̂; μ ¼ γ̂;

m2
hu;hd

¼ α̂2; μB ¼ −2α̂ γ̂; ð57Þ

and

m2
q̃;ũ;d̃;l̃;ẽ

¼ 0; A0 ¼ −α̂; ð58Þ

where we take the GUT scaleMGUT as the compactification
scale MGUT ¼ 1=R and define α̂ ¼ α=R and γ̂ ¼ γ=R.
Note that with the brane matter placement the trilinear
A0 still gets a contribution from the ∂5H2ðdW=dH1Þ term
in Eq. (28).
We stress that these constraints on the supersymmetry

breaking parameters are particular to how the model is
defined in the extra dimension. Indeed, if we instead allow
matter in the bulk we gain extra contributions to A0 and the
squark soft SUSY breaking masses which arise from the
SUð2ÞR symmetry. Then we have soft masses as seen in
Eq. (57), but now have

m2
q̃;ũ;d̃;l̃;ẽ

¼ α̂2; A0 ¼ −3α̂: ð59Þ

The extra contributions to A0 and the soft SUSY breaking
squark masses arise as a consequence of the matter fields
transforming under the SUð2ÞR symmetry.
With 1=R ∼ 1016 GeV, this model naturally produces a

supersymmetry breaking scale of the order of the GUT
scale, far too high for low energy supersymmetry. In [63]
the authors set α and γ to be extremely small, so that α̂ ¼
α=R and γ̂ ¼ γ=R are of the order of a TeV. Consequently α
and γ must be of the order of 10−13, which presents a fine-
tuning problem. Why must they be so small but nonzero? It
seems that we have just swapped the gauge hierarchy
problem for another fine-tuning problem. We do not tackle
this issue here, but only express hope that these small
parameters may be caused by the underlying UV com-
pletion of the theory.
We also restrict ourselves here to models with a

reasonably low supersymmetry breaking scale so that the
hierarchy problem itself is not an issue. Therefore we make
the restriction that α̂ be less than 104 GeV. We allow tan β
to vary from 1 to 40. Once our low energy scenarios are
generated in FlexibleSUSY we then confront them with the
Scherk-Schwarz condition and the experimental constraints
outlined in Sec. III.
Since we have allowed tan β to fix γ̂ our only input

parameters are α̂ and tan β. We show generated scenarios in
the α̂- tan β plane in Figs. 2 and 3. The color bar represents
the mass of the lightest Higgs boson which we would like
to identify with the discovered 125 GeV resonance. Points
denoted with a circle have passed the LHC and DM
constraints, and have the desired Higgs mass. In contrast,
points that pass the Scherk-Schwarz constraint are denoted
by triangles. The fainter points in the background are points
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that fail these constraints (but are otherwise well behaved).
Figure 2 shows scenarios where the matter is kept on the
y ¼ 0 brane, while Fig. 3 allows matter to propagate in
the bulk.
We see that there is no overlap between the points

providing the correct Higgs mass, while passing LHC and
DM constraints, and those that conform with the Scherk-
Schwarz condition. In essence, the Scherk-Schwarz con-
dition prohibits a heavy enough lightest Higgs boson.
However, we note that the Higgs boson mass is not too
far from its measured value, particularly when matter is
allowed to propagate in the bulk, which encourages us to
study nonminimal extensions. We also note that the points

with acceptable Higgs mass allow lower tan β as α̂ is
increased, so there may still be room for agreement with the
SS constraint in theories of high scale or split supersym-
metry which allow higher values of α̂ (see e.g., Ref. [93]).
It is difficult to provide a definitive explanation of why

the Scherk-Schwarz condition requires such a low value of
tan β, since tan β is a low energy parameter arising from
electroweak symmetry breaking involving parameters that
are evolved from the high scale. Nevertheless we can obtain
some understanding by examining the leading order tad-
pole equations, temporarily making the assumption that the
supersymmetry breaking parameters do not evolve between
the high and low scales. Then m2

Hu
, m2

Hd
, μ and μB keep

FIG. 2. Points from the Barbieri et al. SU(5) model with brane matter. Circles denote points that have passed the experimental
constraints and have the desired Higgs mass; triangles show points that obey the Scherk-Schwarz constraint. Fainter points in the
background fail these constraints but are otherwise well behaved.

FIG. 3. Points from the Barbieri et al. SU(5) model with bulk matter. We use the same conventions for the points as in Fig. 2.

SCHERK-SCHWARZ ORBIFOLDS AT THE LHC PHYS. REV. D 100, 075016 (2019)

075016-9



their values in terms of α̂ and γ̂ seen in Eq. (57). Plugging
these into the leading-order tadpoles gives

α̂2 þ γ̂2 − 2α̂ γ̂
1

tan β
−
1

8
ν2ðg21 þ g22Þ

1 − tan2β
1þ tan2β

¼ 0; ð60Þ

α̂2 þ γ̂2 − 2α̂ γ̂ tan β þ 1

8
ν2ðg21 þ g22Þ

1 − tan2β
1þ tan2β

¼ 0: ð61Þ

The sum of these has a solution tan β ¼ α̂=γ̂, while the
difference leads to α̂ ¼ γ̂. Therefore at leading order and
with no running, we would always expect tan β ¼ 1.
Clearly the supersymmetry breaking parameters do run,
and our tadpole equations are taken beyond leading order,

∂V
∂ϕi

−
1

νi

∂ΔV
∂ϕi

¼ 0;

where the corrections are stated in [94]. So we deviate from
this expectation, but this provides some justification for
why the Scherk-Schwarz boundary conditions may lead to
a low value of tan β.

V. AN SU(5) MODEL WITH AN
ADDITIONAL SINGLET

We have seen that a minimal SU(5) model does not
support Higgs bosons heavy enough to be the observed
125 GeV resonance. However, the Higgs boson mass may
gain contributions from additional states in the spectrum, so
we now extend our investigation by considering the model
with an additional scalar electroweak singlet.
We have two choices for introducing the new scalar: we

could introduce a chiral multiplet scalar singlet on the brane
S ¼ ðs;ψ sÞ, or introduce a hypermultiplet S ¼ fsi;ΨSg
coupled to the Higgs. Here we only couple our scalar to the
Higgs boson and to itself, but again consider having matter
in both the brane or the bulk.
The most general next-to-minimal superpotential that

results in either of the scalar/matter combinations at the low
energy is that of a general next-to-minimal supersymmetric
standard model (NMSSM),

W ¼ WHiggs-Fermions þ μHuHd þ λHuHdSþ 1

3
κS3

þ LSþ 1

2
MSS2: ð62Þ

Note that we have kept an explicit μHuHd term in
contrast to the more usual Z3-invariant NMSSM for which
this term is absent. This is because the model does indeed
produce an effective μ via the ∂5 derivative, thus breaking
the Z3 symmetry of the NMSSM. Using a shift symmetry
we set the linear term L ¼ 0, and also setMS ¼ 0, not to be
confused with m2

S, the soft SUSY breaking mass for the
scalar superfield.

Our effective holomorphic terms are then a combination
of the Scherk-Schwarz SUð2ÞH flavor breaking along with
a contribution arising from the vev of S,

μeff ¼ μþ 1ffiffiffi
2

p λhSi; ð63Þ

μBeff ¼ μBþ 1ffiffiffi
2

p TλhSi þ
1

2
κλhSi2: ð64Þ

We also assume that the only soft SUSY breaking masses
arise from the Scherk-Schwarz mechanism. Therefore our
only additional input parameters are κ and λ.
For the simplest case with the scalar S on the brane as a

chiral supermultiplet along with brane confined matter, we
find soft SUSY breaking masses as in Eqs. (57) and (58),
and additionally

m2
S ¼ 0 Tλ ¼ −2λα̂ Tκ ¼ 0: ð65Þ

This new equation (65) holds also for bulk fermions but
must be used with Eqs. (57) and (59).
The results or our analysis for this model are shown in

Figs. 4 and 5, where we use the same convention for the
points as in the previous figures. We allowed the additional
parameters λ and κ to vary from 0 to 0.9.We see that without
enforcing the Scherk-Schwarz constraint, both versions
produce an appropriate low energy SM spectrum with the
appropriate Higgs mass. The only significant difference is
that bulk matter allows a larger range of tan β values, while
the brane matter requires tan β ≲ 25. It is also interesting to
note that all the acceptable points reside in the region with
α̂≳ 2 TeV, indicating that these correspond to a SUSYscale
that naturally falls in the Oð1–10Þ TeV range.
However, as for the “vanilla” SUð5Þ model, the points

that pass the Scherk-Schwarz constraint do not overlap with
those which pass Higgs and LHC constraints. The con-
tribution to the Higgs mass from the additional singlet has
not been sufficient to provide agreement. This is a recurrent
theme that we see all through our studies; the points that
would originate from the Scherk-Schwarz breaking of
SUð2ÞH, SUð2ÞR, have difficulty producing a large enough
Higgs mass and/or do not pass LHC constraints. This is
more pronounced when we have fermions on the brane than
when they are in the bulk, but remains true in both cases.
Indeed, in the latter case, the Schrek-Schwarz constraint
comes rather close to the acceptable phenomenological
region, so a closer look is needed. Perhaps we have been
overly conservative with our error estimates for μ; μB, and a
relaxation of these uncertainties would allow agreement.
For example, the maximum Higgs mass for the Scherk-
Schwarz points ismH ≈ 116.9 GeV, which is close enough
to provide some doubt.
Alternatively we may place the additional scalar in the

bulk. To achieve this, we introduce the SUð5Þ singlet
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hypermultiplet S ¼ fsi;Ψsg;Ψs ¼ ðψ s
L;ψ

s
RÞ, where si,

i ¼ 1; 2 transforms only under the SUð2ÞR residual super-
symmetry. Analogous to our previous treatment, we assign
the Z parities,

Z ¼ þ1∶ s1;ψ s
L; ð66Þ

Z ¼ −1∶ s2;ψ s
R: ð67Þ

This projects out the corresponding zero modes, which are
then coupled to our Higgs boson in the same way as in
Eq. (62). Under T, the fields transform according to

�
s1

s2

�
¼ eiασ

2y=R

�
s̃1

s̃2

�
; ð68Þ

which again produces a soft SUSY breaking mass for the
scalar m2

S, via the ∂5.
In this case of a bulk scalar hypermultiplet S we again

have Eq. (57), and either Eq. (58) or Eq. (59) for either
brane or bulk fermions respectively. However, instead of
Eq. (65) we now have

m2
S ¼ α̂2 Tλ ¼ −3λα̂ Tκ ¼ −κα̂: ð69Þ

The results for these choices are shown in Figs. 6 and 7.
Our story seems to repeat itself as the Scherk-Schwarz
condition is not compatible with the Higgs mass and/or
LHC constraints. Once again, the gap is much more
pronounced for brane matter than bulk matter, and indeed

FIG. 4. Points for the SUð5Þ model with an additional scalar S on the brane, and brane matter. We use the same conventions for the
points as in Fig. 2.

FIG. 5. Points for the SUð5Þ model with an additional scalar S on the brane, and bulk matter. We use the same conventions for the
points as in Fig. 2.
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the gap looks almost absent in Fig. 7. To be clear that there
is indeed no overlap in this latter case, we have also plotted
the data of Fig. 7 as 2α̂þ μB=μ against mH, with tan β as
the point’s color in Fig. 8. The Schrek-Schwarz condition is
exactly realized for points at 2α̂þ μB=μ ¼ 0 and the spread
of points around this value is due to uncertainties. One can
clearly see that these points have no overlap with the correct
Higgs mass region. Even when we artificially inflate our
uncertainties by a factor of 10 (not shown), we do not find
an overlap, though the Higgs mass becomes significantly
better. So unfortunately once again we cannot reconcile this
model and Scherk-Schwarz breaking with the Higgs mass
and experimental constraints.

We may also consider a variant of this model similar to
the more usual Z3-invariant NMSSM but setting our μ ¼ 0,
so that the superpotential is

W ¼ WHiggs-Fermionsðμ ¼ 0Þ þ λHuHdSþ 1

3
κS3

þ LSþ 1

2
MSS: ð70Þ

Here we have effectively set γ̂ ¼ 0 and allowed an
effective μ and its supersymmetry breaking partner param-
eter to be generated entirely through the vev of the new
scalar. That is,

FIG. 6. Points for the SUð5Þmodel with an additional bulk scalar S, and brane matter. We use the same conventions for the points as in
Fig. 2.

FIG. 7. Points for the SUð5Þmodel with an additional bulk scalar S, and bulk matter. We use the same conventions for the points as in
Fig. 2.
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μeff ¼
1ffiffiffi
2

p λhSi; ð71Þ

μBeff ¼
1ffiffiffi
2

p TλhSi þ
1

2
κλhSi2: ð72Þ

Significantly, since γ̂ ¼ 0, the Scherk-Schwarz constraint
is absent and electroweak symmetry breaking proceeds
just like in the NMSSM with freedom to choose tan β.
However, this has extremely constrained supersymmetry
breaking parameters since α̂ is the only input at high
energies.
Unfortunately, we now find that we are unable to

simultaneously satisfy this restrictive high scale boundary
condition and the electroweak tadpole constraints, irre-
spective of our choice of brane/bulk scalars or brane/bulk
fermions. The model is simply too constrained and is not
viable. One could imagine introducing an additional scalar
massMS and associated BMS

to increase the freedom of the
model, possibly allowing the correct pattern of electroweak
symmetry breaking, but this is beyond the philosophy of
our study because it introduces additional supersymmetry
breaking by hand, separate from the SS mechanism.

VI. AN SUð5Þ × Uð1Þ MODEL

Confronted with the inability of the simplest models to
generate a heavy enough Higgs boson while avoiding LHC
and dark matter constraints, we may once again increase the
complexity of our model. Next we consider an SUð5Þ
model with an additional Uð1Þ symmetry, similar to the
USSM. The superpotential is identical to that of Eq. (70),
but with the added complexity of the low energy gauge

group being extended to GSM ×Uð1Þ. The additional Uð1Þ
is broken at the SUSY scale via the brane scalar (projected
or placed), prior to which we assign our fields appropriate
charges. The assignment of these charges is arbitrary and
model dependent, but it is useful to set them to correspond
with those arising from embedding in some larger group
such as SOð10Þ or E6 (see Sec. VII for more details).
As an example, we choose the E6 inspired charge

assignments. The five-dimensional bulk gauge structure
is assumed to be SUð5Þ ×Uð1Þ, and as in the previous
examples, the Schrek-Schwarz compactification, with Z
and T unchanged, breaks this gauge group on the brane
down to GSM ×Uð1Þ. The E6 inspired charges under the
Uð1Þ group are [95]

Qq ¼
1ffiffiffiffiffi
40

p ; Ql ¼
2ffiffiffiffiffi
40

p ; Qd ¼
2ffiffiffiffiffi
40

p ;

Qu ¼
1ffiffiffiffiffi
40

p ; Qe ¼
1ffiffiffiffiffi
40

p ; QHd
¼ −

3ffiffiffiffiffi
40

p ;

QHu
¼ −

2ffiffiffiffiffi
40

p ; QS ¼
5ffiffiffiffiffi
40

p : ð73Þ

The high scale boundary conditions and soft SUSY
breaking masses remain as those for the SUð5Þ model with
an additional scalar in Sec. V, namely Eq. (57) and the
appropriate choice of Eqs. (58), (59), (65) and (69),
depending on the choice of whether the scalar and
the fermions are placed on the brane or in the bulk. The
difference in the spectra arises due to the presence of
the extra Uð1ÞN which modifies the RGEs. In addition the
breaking of Uð1ÞN produces a Z0 boson, and we exclude
points that violate the ATLAS bounds.

FIG. 8. Points for the SUð5Þmodel with an additional bulk scalar S, and bulk matter. We use the same conventions for the points as in
Fig. 2, but this time we have plotted the deviation from the Scherk-Schwarz condition vs the Higgs mass mH .
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Performing our parameter scans for the additional scalar
on the brane gives Figs. 9 and 10, for brane or bulk
fermions respectively. We see many regions that pass LHC
and dark matter constraints, but again the points passing the
Scherk-Schwarz constraint do not overlap, though they
come close when the scalar is on the brane and fermions are
in the bulk case, only finally being excluded by the LHC
constraints. This pattern repeats if we allow the additional
scalar into the bulk, as seen in Figs. 11 and 12. It is
interesting that with the additional scalar S in the bulk and
fermions on the brane, the constraints favor scenarios with
lower tan β.
We also examined the same model with μ explicitly set to

0 (so γ̂ ¼ 0), as we did for the model in Sec. V, to bypass

the Scherk-Schwarz constraint. Unfortunately no place-
ment of our fields on brane or bulk was able to produce
scenarios with EWSB.
Of course, the setting of our Uð1Þ charges need not

follow the pattern of E6, as the Uð1Þ may be of some
completely different origin. Another obvious example
would be a Uð1Þ as a remnant of SOð10Þ, in which case
the charge assignments would be [96]

Qq ¼ −1; Ql ¼ 3; Qd ¼ 1;

Qu ¼ 3; Qe ¼ −5; QHd
¼ −2;

QHu
¼ 2; QS ¼ 10: ð74Þ

FIG. 9. Points for the SUð5Þ ×Uð1Þ model with the additional scalar S and fermions both on the brane. We use the same conventions
for the points as in Fig. 2.

FIG. 10. Points for the SUð5Þ × Uð1Þ model with the additional scalar S on the brane and fermions in the bulk. We use the same
conventions for the points as in Fig. 2.
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However, none of our models with these charge assign-
ments, including fields in the bulk or on the brain and
with μ set to 0 or not, were able to provide satisfactory
electroweak scale spectra.

VII. AN E6 MODEL

The first model discussed in Sec. VI carried the Uð1Þ
charge assignments that might arise from a larger E6

symmetry group. However, if the unification group were
indeed E6 one would expect other additional fields that
may survive down to the electroweak scale. An example of
such a model is the E6SSM [95,97–100], which has a
superpotential,

WE6SSM ¼ WMSSMðμ ¼ 0Þ þ λHuHdS

þ λαβSðHd
αÞðHu

βÞ þ κijSðDiD̄jÞ
þ f̃αβSαðHd

βHuÞ þ fαβSαðHdHu
βÞ

þ gDijðQiL4ÞD̄j þ hEiαe
c
i ðHd

αÞ
þ μLL4L̄4; ð75Þ

where α; β ¼ 1; 2; 3 and i; j ¼ 1; 2 are generation indices.
(For the definitions of these additional fields, see
Ref. [100].) Applying the Schrek-Schwarz high scale
boundary conditions, with the 27 and 27 representations
placed in the bulk, gives

FIG. 11. Points for the SUð5Þ × Uð1ÞN model with the additional scalar S in the bulk and fermions on the brane. We use the same
conventions for the points as in Fig. 2.

FIG. 12. Points for the SUð5Þ ×Uð1Þ model with the additional scalar S and fermions both in the bulk. We use the same conventions
for the points as in Fig. 2.
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m1=2 ¼ α̂; m2
hu;hd;S;Hu

α;Hd
β ;Di;D̄j;Sα;L4;L̄4

¼ α̂2;

Tξ ¼ −3ξα̂ ð76Þ

and Eq. (59), where ξ ∈ fλ; κij; λαβ; f̃αβ; fαβ; gDij; hEiαg. In
practice, we allow μL to vary independently, and set the
values ofm2

Hd
,m2

Hu
,m2

S during EWSB.Wewould then have
to check for a new Scherk-Schwarz condition to make sure
the full boundary conditions are obeyed. Unfortunately,
even without enforcing this new Scherk-Schwarz condi-
tion, we find that the boundary conditions on the other
parameters at the high scale are so restrictive that we can
find no valid low energy scenarios.
We note that the implementation of this model is

somewhat different from those described earlier because
the Higgs bosons themselves are in the 27 and 27.
Therefore the SUð2ÞH symmetry should be enlarged to
encompass the full 27 and 27. However, here we have taken
the simplest route, ignoring this enlarged symmetry and
allowing the holomorphic μLL4L̄4 term to arise from some
other unknown mechanism altogether (that is, allowing it to
vary). It is possible that a more nonminimal implementa-
tion, where the 27 and 27 symmetry is fully incorporated,
would have more luck in producing a viable phenomenol-
ogy, but this is beyond the scope of this paper.

VIII. CONCLUSIONS

In this investigation we have examined models of
Scherk-Schwarz orbifold compactification. In these scenar-
ios, the extra dimension of a five-dimensional space is
given periodic boundary conditions and rolled up to a
radius R ∼ 1=MGUT; the space is folded to provide an
orbifold with fixed points in the standard fashion. Scherk-
Schwarz compactification differs from standard orbifold
compactification in that it allows nontrivial transformations
of the fields under the orbifolding symmetries. This Scherk-
Schwarz orbifolding allows for the breaking of both
supersymmetry and the GUT symmetry.
We apply this compactification to several models of

grand unification, including SUð5Þ unification, SUð5Þ with

an additional singlet, SUð5Þ ×Uð1Þ, and an E6 inspired
model, all with several variations. The Scherk-Schwarz
mechanism provides severe constraints on the supersym-
metry breaking parameters at the unification scale.We apply
these constraints and use renormalization group equations to
evolve the theory down to the electroweak scale, where they
are confronted with low energy constraints from the LHC,
the dark matter relic density and the Higgs mass.
We find that these boundary conditions are very difficult

to combine with a 125 GeV Higgs boson. Generally, these
models prefer a lighter Higgs boson and rather low tan β,
and despite an exhaustive scan and variations in the models
we were unable to find parameter choices which simulta-
neously obeyed all low scale measurement constraints. In
cases where the Higgs mass was in the correct range, for
example in the SUð5Þmodels with an extra singlet when an
effective Higgs-higgsino mass term was entirely generated
by the Scherk-Schwarz breaking, the models were ruled out
by other low energy constraints such as LHC chargino
exclusions.
Although we studied several models with lots of varia-

tions, this work does not claim to rule out the Scherk-
Schwarz compactification in general. One could imagine
having more complicated gauge groups and extradimen-
sional geometry which would change the unification con-
straints on the supersymmetry breaking masses. Indeed, we
saw in the implementation of the E6 gauge group that one
has additional freedom, allowing an alternative treatment of
the large representations that now include the Higgs boson.
However, we are confident in making the claim that Scherk-
Schwarz compactification of SUð5Þ models, SUð5Þ models
with an extra singlet, and SUð5Þ ×Uð1Þ models where the
extra dimension is compactified on S1=Z2 are not compat-
ible with electroweak scale observations.
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