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Abstract. Linear optical operations are fundamental and significant for both
quantum mechanics and classical technologies. We demonstrate a non-cascaded
approach to perform arbitrary linear operations for N-dimensional phase-coherent
spatial modes using meticulously designed phase gratings. As implemented on
spatial light modulators (SLMs), the unitary transformation matrix has been
realized with dimensionalities ranging from 7 to 24 and the corresponding fidelities
are from 95.1% to 82.1%. For the non-unitary operators, a matrix is presented
for the tomography of a 4-level quantum system with a fidelity of 94.9%.
Thus, the linear operator has been successfully implemented with much higher
dimensionality than that in previous reports. It should be mentioned that our
approach is not limited to SLMs and can be easily applied on other devices. Thus
our proposal could provide another option to perform linear operations with a
simple, fixed, error-tolerant and scalable scheme.
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1. Introduction

Linear operations on an N-dimensional vector are a
powerful tool both for quantum optics and for classical
optical information processing. In the quantum do-
main, several information protocols have been demon-
strated with linear optics. These include the famous
KLM scheme for universal quantum computing [1], bo-
son sampling [2, 3, 4, 5, 6, 7, 8, 9], quantum gates and
Hadamard operations [8], quantum walks [10], Quan-
tum transport [11], homomorphic encryption [12] and
quantum metrology [13]. For classical information, lin-
ear optics has been applied for the programmable filters
for microwave signals [14], photonic switch matrices for
packet data networks [15] and optical neural network
for vowel recognition [16].

Typically, arbitrary linear operators can be achieved
with a programmable optical multiport interferometer
introduced by Reck et.al. [17]. In the Reck scheme,
the N x N transformation matrix is achieved by a spe-
cific triangular mesh of 2x2 beam splitters (or direc-
tional coupler) and phase shifters. Recently, some
modified designs of the Reck scheme have been pro-
posed to achieve more compact and loss-tolerant multi-
port interferometer [18], non-unitary linear operations
[19] and an on-chip multiple interferometer has been
developed to unscramble beams [20]. However, both
the Reck scheme and variants of it require, in general,
N(N-1)/2 beam splitters (or directional couplers) and
a corresponding number of phase shifters. Thus, as the
dimensionality (N) increased, the complexity in terms
of system arrangement and parameter control would
grow significantly as O(N?). Consequently, realising
a high-dimensional transformation matrix is still very
technologically challenging. To our knowledge only a
6x6 unitary transformation matrix has been imple-
mented in the Reck scheme [8] while the achievable
values are 9x9 [9], 13x13 [6], 15x15 [21] and 26x26
[11] for constant and partially adjustable matrix ele-
ments, respectively.

Recently, some linear transformation schemes have
been proposed within the orbital angular momentum
(OAM) and frequency domains. In the OAM do-
main, high-dimensional transformations have not been
achieved yet [22]. For transformation in the frequency
domain, multi-beam splitting and recombining are em-
ployed. The dimensionality of such approach relies on
high speed phase modulator, which is still technically
challenging. Meanwhile, the cascaded structure is still
required to achieve both high dimensionality and near-
unitary efficiency [23]. Apart from the approaches im-
plemented with OAM modes or in frequency domain,
generating a chosen unitary transformation has also
been demonstrated using multiple spatial light modu-
lators [24] and this technique has been used as a mul-
tiplexer [25].

2

Here we propose and demonstrate a simple, fixed,
error-tolerant and scalable scheme based on meticu-
lously designed phase gratings in order to perform
arbitrary linear operations for N-dimensional phase-
coherent spatial modes. In contrast with the Reck
scheme, a cascaded multi-stage mesh is avoided and
any linear operator can be decomposed into just two
processes, namely beam splitting and recombining.
This simplification is comparable to the ability to sort
OAM modes with just two specially designed elements
[26] in place of the multiple interferometers in an ear-
lier device [27]. Our proposal applies, at least in prin-
ciple, irrespective of the number of modes, N, that are
introduced. In our experiment, implemented on a spa-
tial light modulator (SLM), the unitary transformation
matrix has been realized with dimensionalities ranging
from 7 to 24 with corresponding fidelities from 95.1% to
82.1%. Besides the unitary operations, non-unitary op-
erators can also be implemented, which makes it more
flexible for certain applications. As a concrete exam-
ple, a 4x16 matrix is presented for the tomography of
a 4-level quantum system, performed with a fidelity of
94.9%. An additional feature of our proposal is that
the high-dimensional states can be coded with any de-
signed optical modes, including the fundamental Gaus-
sian modes, which is usually quite desired in quantum
applications to improve the collection efficiency. These
results indicate that the linear operator has been suc-
cessfully implemented with much higher dimensionality
than in previous reports. Although our proposal is not
intrinsically lossless for an arbitrary linear operator,
we have provided an optimization process to map the
matrix elements into the phase grating patterns with
the lower bound of optimized transformation efficiency
of 1/v/N while the achieved value is ~0.8/+/N in our
experiments.

Finally, our proposal is an approach employing the spa-
tial degree of freedom so that there are some known
advantages. In particular, the identity of the photons
could be readily maintained and the manipulation is
more manageable. Thus, spatial modes are adopted in
many quantum applications including information pro-
cessing [28, 29, 30, 31] and measuring Winger function
of a quantum-chaotic system [32]. Furthermore, there
is the potential to combine our approach with that in
the frequency domain since the spatial distribution and
optical frequency are independent degrees of freedom.
Thus our proposal could provide a feasible approach to
perform linear operations with optical modes.

2. Results

2.1. N-dimensional optical states

As a general consideration, our task is to perform a
linear transformation on the N-dimensional vector of
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Figure 1. The operation principle and the experimental setup of
the linear transformation on the high-dimensional optical states.
(a) The high-dimensional optical states is encoded with phase-
coherent spatial modes. (b) Beam splitting and recombining are
achieved with the phase gratings, which can be achieved by using
SLMs. (c) 3-D view of full scheme of the state transformation,
including two SLMs, a pinhole and a lens. (d) Experimental
setup of the linear transformation on discrete phase-coherent
spatial modes. BS: beam splitter, SLM: spatial light modulator,
DL: delay line.

|a) to obtain an M-dimensional vector of |3). In gen-
eral, this entails realizing a complex matrix T' (M xN)
such that |5) = T|«). Here the matrix T could be
either unitary or non-unitary. Inspired by structural
light beams, the state vector can be represented with
optical phase-coherent spatial modes. To form an N-
dimensional vector of [ay, ag, -+, an_1,an]|T, discrete
beams are employed, as shown in Fig. 1(a). The com-
plex field amplitude of each optical beam represents a
corresponding coefficient of «,,. These beams have to
be phase-coherent so that complex operation can be
performed. Furthermore, the employed modes should
share the same profile shape so as to allow them to
interfere. Here, discrete Gaussian beams are employed
to represent the state vectors:

" ; (1)

|r — 7, |2
u(r — 1) |20 = up exp [ ——5—
wo

where r and r,, denote the position vector and the
central position of the nth Gaussian beam spot,
respectively, while ug is the normalization coefficient.
To ensure the mode overlap small enough, the distance
between the different spots should be much larger than
the waist size of wy (wo < |r; — r;|) and the detailed
discussion is given in the supplementary material (S6).

2.2. Linear operations with discrete phase-coherent
spatial modes

In the Reck scheme, any linear unitary operator can be
decomposed into a series of 2-dimensional beam split-
ting and recombining operations, with the transforma-
tion coefficients controlled by inserting phase shifters.
As a consequence, N(N—1)/2 units are required for full
generality. In our scheme, the splitting and recombin-
ing of the Gaussian beams are based on a series of phase
gratings implemented on two SLMs as proposed in our
previous work [33]. An SLM is an efficient and pro-
grammable device, which is capable of generating arbi-
trary beams and so is ideal for our task [34]. As shown
in Fig. 1(b), the input vector |«a) zzganu(r —ry)is
incident on the SLM1, on which a diffraction pattern is
pre-settled to mimic a series of blazed gratings so that
each Gaussian beam can be split into M beams with a
selected ratio and then incident on SLM2. On SLM2,
there is also a properly prepared diffraction pattern
so that the split modes are recombined with selected
weights. It should be noted that each of the reformed
beam spots on SLM2 is a superposition of several tilted
beams diffracted from different spots on SLM1. Thus,
there are some undesired side lobes in addition to the
desired recombined one. To eliminate these side lobes
and to keep the output beam propagation direction as
well as the original state, a 2f system with a pinhole is
employed for realignment and spatial filtering. Follow-
ing this, the output vector of |3) = an\f Bmu(r — Ry,)
is obtained, where R, denotes center position of the
mth Gaussian beam. In our approach, the most impor-
tant issue is how to map the complex matrix elements
onto the phase gratings on the SLM1 and SLM2. The
modulation function on nth spot of SLM1 and mth
spot of SLM2 are settled as:
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M
Haigr1 = arg {Z A, €XP [tk - (1 — rn)]}
" G
Hdin2 = arg {Z bmn €xXp [_kan : ('I" + Rm)]}

where the coefficients of a,,, and b,,, are the beam
splitting and recombining weight from nth spot on
SLM1 to mth spot on SLM2, respectively. The
diffraction coefficients of k,,, are determined by the
tilt angle. Additionally, some auxiliary holograms
are added in order to compensate for the divergence
during the propagation of Gaussian beams. A detailed
description can be found in section of S.1 S.3 in the
supplementary material. Here only the key points
are presented. For a target transformation matrix
of T (elements of t,,, where n = 1,..,N and m =
1,.., M), the coefficients of a,,, and by, should be
determined according to the relation of amy - byp =
tmn- In principle, an arbitrary coeflicient pair of
(@mn, bmn) can satisfy such relation to perform the
linear operation. However, different strategies for
determining the coefficient pair result in different
efficiencies for implementing the matrix T'. Due to
the passive property of SLMs and spatial filtering of
pinhole, there is some energy loss when processing the
optical states. Thus, the actually obtained matrix of T"
may have an overall energy loss compared to the ideal
target matrix of T' (denoted as TV = nT'). To account
for this, we introduce the parameter of n = T"/T,
which characterizes the efficiency of implementation.
To maximize this efficiency, the coefficient pair of
(@mmn, bmn) 18 obtained using Lagrange’s method. A
detailed discussion of this is provided in S.1 in the
supplementary material. ~ Our theoretical analysis
indicates that the efficiency of implementation is about
n ~ 1/V/N for an N-dimensional unitary matrix
transformation. In our experiments, the achieved
efficiency is about n &~ 0.8/v/N. A detailed discussion
may be found in the results section.

2.8. Optical setup

Figure 1(d) shows the experimental setup, in which
there are three parts for generating N-dimensional in-
put vector, performing the linear operations, and mea-
suring the M-dimensional output vector. The incident
light beam is emitted from a continuous wave laser with
operation wavelength of 1550nm and linewidth of 1kHz
(Rio Orion). It should be mentioned that a narrow
linewidth light source is required since coherent states
are employed in our proposed scheme. The SLMO is
employed to generate the input vector by modulating
the incident Gaussian beam with the same beam split-
ting holograms, while the SLM1, SLM2, pinhole and

Spot 0

Spot 7

Figure 2. Typical holograms and measured high-dimensional
optical states. (a) The hologram on SLM1 for a 24-dimensional
unitary linear transformation. (b) The intensity of 24-
dimensional optical states of vector [1,1,1,---, l]T is recorded
with CCD camera while the right corner shows the measured
phase of one light spot in the state. (c) The relation between
the state vector and the light spots. There are 24 light spots
for each vector labeled as spots 1~24. Additionally, there is an
extra light spot marked as spot 0, which is introduced for the
phase measurement. (d)-(f) Typical output after 24-dimensional
unitary transformation. The input states are the column vectors
of the conjugate transpose matrix of the matrix corresponding
the unitary transformation. Thus the output states are the
column vectors of the identity matrix, corresponding to the
optical states with one spot is illumining. In (c)-(f), for clearer
view, the brightness is increased by 20 percent compared to the
raw data obtained by CCD camera.

the lens are utilized for the linear operation. As the
linear operation is based on the phase-coherent modes,
the phase terms of the output vector have to be mea-
sured. Thus, two beam splitters (BS1 and BS2) are
inserted before SLMO and CCD camera so that a typi-
cal Mach-Zender interferometer (MZI) is implemented
to measure the phase terms with the method in our
previous work [35]. The details can be found in S.4 of
the supplementary material and the Ref. [35].

In our experiment, the employed SLMs (PLUTOTELCO-

013) are reflection type and the light beam is incident
at ~ 45 degrees. Although the SLMs are considered as
the transmission type for conveniently introducing the
principle of operation is required, this does not affect
the results significantly although some modification of
the real implementation is necessary. Figure 2(a) shows
a typical hologram on SLM1 for 24-dimensional coher-
ent states. As the light beam is incident with ~ 45°
on the SLMs, the hologram spot has to be distorted on
purpose as an ellipsoid shape (shown in Fig. 2(a)) to
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keep the output spot circular in shape. For each holo-
gram spot, the minor and major axes extend over about
70 pixels and 99 pixels, respectively, while the width of
each pixel is 8 micrometers. As an SLM can only par-
tially modulate the incident light beam, an additional
phase grating with period of 4 pixels is introduced on
each spot to separate directly reflected light beam from
the modulated beam. Furthermore, the pixels out of
the desired hologram spots should behave as the ‘zero’
modulation. Normally, the phase should be set as 7
and zero alternatively. However, in our experiments,
as the phase grating is introduced in each spot, a flat
phase could also serve as the ‘zero’ modulation. Fig-
ure 2(b) shows the intensity of the output light spots
recorded by a CCD camera. As mentioned above, the
phase term of each spot is measured with the help of
the MZI as well as CCD camera while the measured
phase term of one spot is shown as the inset in Fig.
2(b). As shown in Fig. 2(b), there are some fluctua-
tions on the phase profile, which come from the random
variations of each arm in the MZI. Thus the phase term
of each spot is calculated by averaging the overall phase
profile to reduce the random fluctuations. Moreover,
to deal with the unavoidable misalignment between dif-
ferent optical components, we have first measured the
alignment error and modified the target matrix ele-
ments (especially the phase term). The detailed mea-
surement and data processing approaches are provided
in the supplementary material.

As shown in Fig. 2(c), (d) and (f), up to a 24-
dimensional linear transformations has been achieved,
with the dimensionality limited by the resolution of
SLMs. Some typical experimental results of 24-
dimensional transformation are shown in Fig. 2(c), (d)
and (f) and a detailed discussion of these is provided in
supplementary material. For the 24-dimensional case,
the input states are settled as the column vectors of the
conjugate transpose matrix of the matrix correspond-
ing the unitary transformation, so that only the nth
spot is illumining in the output vector. In Fig. 2(d)
and (f), only the results for spot 2, 7 and 22 are shown
while the full results are provided in supplementary
material.

2.4. Transformation fidelity

For the linear operations, the most important param-
eter to evaluate the performance is the transformation
fidelity:
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Figure 3. The elements of output vector after a randomly
generated 7-dimensional unitary matrix acting on each column
vector of the unit matrix (a and b) and the DFT matrix (c and
d). The upper and bottom figures show the target elements and
differences between the measured elements, respectively. (a), (c),
The amplitude term. (b), (d), The phase term.

where ¢, and ¢,,, denote the matrix elements of ob-
tained and target transformation, respectively. It is
this fidelity that quantifies the precision of the trans-
formation. To obtain the matrix elements, each col-
umn vector of the identity matrix is selected in turn
as the input state in turn so that each column of the
matrix can be obtained. The details are provided in
the supplementary material. For simplicity, instead of
24-dimensional transformations, a 7-dimensional ma-
trix is implemented and measured to investigate the
transformation fidelity.

Firstly, the random unitary matrices are obtained as
the results of singular value decomposition of ran-
domly generated matrices, in which each complex ele-
ment inside have random amplitude (0~1) and phase
terms (0~27) with uniform probability distributions.
A 7-dimensional unitary matrix and the corresponding
measurement results are shown in Fig. 3(a) and (b), in
which the horizontal coordinate is the index of the col-
umn vector in the matrix. With Equ. (3), the fidelity
is calculated as high as 97.7%.

Although, employing the column vector of unit matrix
as input is a quite direct way to measure the matrix el-
ements, the obtained value is sometimes not perfectly
accurate as the beam recombination may not be in-
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volved fully. Thus, the input vector should have mul-
tiple nonzero values. Especially, if each element in the
input vector has the same absolute value, in which case
the full beam recombination is involved. To this end,
we enact the transformation on each column vector of
the discrete Fourier transformation (DFT) matrix as
the input vectors. The target/difference output vec-
tors for these are shown in Fig. 3(c) and (d).
Mathematically, the inner product between the out-
puts scanned by column vectors in an arbitrary uni-
tary matrix would be the same as the one scanned by
column vectors in unit matrix, and the deduction can
be found in supplementary material. Thus, the inner
product between the outputs scanned with vectors in
DFT matrix could also present the transformation fi-
delity and the value is calculated as high as 95.1%,
which is only a little degraded to that obtained from
the directly measuring the matrix elements (97.7%).
This result indicates that the beam combining is quite
accurate and our proposed approach achieves a high
fidelity. Randomly generated unitary matrices with
higher dimensionalities of 16, 19 and 24 have been
implemented and the measured values of the corre-
sponding transformation fidelities are 85.2%, 83.9%,
and 82.1%, respectively. It should be mentioned that,
for such high-dimensional transformations, a projec-
tion method is adopted to measure the fidelities, while
the detailed method and data are provided in supple-
mentary material (S.5 and S.6).

It is our ambition to achieve the high-fidelity lin-
ear operation without the need for a multi-stage mesh.
Thus, besides experimental demonstration, some simu-
lations have been carried out to compare our proposal
and the Reck scheme. The results are summarized in
Fig. 4(a)~(c). For most cases, the fidelity could be
~99%. The worst case is 2-dimension and the reason
is that phase gratings behaves badly in small amount
of fan-out, especially in this case. Thus, the fidelity ac-
tually increases along with the dimensionality at first
and then drops slowly due to the increased complexity.
An obvious advantage of our proposal is the non-
cascaded structure so that there are no accumulated
implementing errors. In the Reck scheme, the fidelity
of transformation would drop due to the inevitable im-
perfections associated with including large numbers of
optical components, for example the losses in the beam
splitters and the phase drift of the phase modulators.
To deal with beam splitters losses, a modified Reck
scheme [18] was proposed to achieve loss-tolerance by
balancing the light path between different ports and
our scheme has the same advantage. However, the
modified Reck scheme still suffers from the phase drift,
which could be introduced by the calibration error
or the ambient fluctuations of the phase modulators,
while our scheme has the advantage of drift-tolerance.
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Figure 4. The comparison between simulations and
experiments in terms of fidelities and efficiencies of the linear
transformations. (a) The simulated transformation fidelity for
50 random unitary operations with dimensionality of 1~25. (b)
The simulated fidelity versus random phase shift ranges with 20-
dimensional transformation. (c¢) The simulated fidelity versus
the dimensionality of transformation with random phase shift
range of 7/10. (d) The simulated average efficiency for all
unitary matrices versus matrix dimensionality is denoted as the
black dot while the value of 1/+/N is also plotted as red line for
comparison while the experimental values for 7-, 16-, 19- and
24-dimensional transformations are also denoted as green star.

Obviously, the impact of phase drift on Reck and our
scheme is different. For comparisons, we assume that
there is the same phase drift in Reck and our scheme.
In the Reck scheme, the phase drift is added on each
phase modulator, while in our scheme, it is added in
each diffraction beam. Within the drift range, the
phase value is considered as uniform probability distri-
bution. Figure 4(b) and (c) are the calculated results
of the fidelity versus phase drifts.

A further advantage of our proposal is that a non-
unitary matrix and even a non-square matrix can read-
ily be implemented. For instance, quantum tomogra-
phy can be achieved by linear transformation with a
N x N2 matrix, which can be readily implemented with
our scheme. According to Ref. [36], the tomography of
a 4-level quantum system can be achieved with a 4x16
matrix in Equ. (4).

Such a matrix has been implemented with fidelity of
95.3% measured by the direct elements scanning ap-
proach. This matrix could be treated as a combining
of four square matrices with dimensionality of 4. Thus,
the fidelity could be obtained by inputting the column
vectors of 4-dimensional DFT matrix four times and
the value is as high as 94.9%. This indicates that our
proposal also works well for non-unitary operators.
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2.5. Transformation efficiency

In addition to the transformation fidelity, the
transformation efficiency is an important parameter
with which to evaluate the performance of linear
operations. In the above section, about the
transformation fidelity, the matrix elements as well
as the output vectors are normalized so that the
transformation efficiency has not been discussed. As
mentioned, our scheme for arbitrary linear operator
is not lossless due to the light beam filtering. The
efficiency depends on the strategy to determine
the splitting and recombining coefficients, which is
discussed in supplementary material. The main point
is the worst case will be touched for a non-sparse
matrix, especially for the DFT matrix with value of
n =~ 1/ VN for N-dimensional transformation. For
other types of linear operators, the transformation
efficiency would be higher than this value. In
particular, the Reck scheme can have a much higher
efficiency. To verify the theoretical prediction, we
have carried out some simulations with 50 random
unitary-matrices for dimensionality of 1~25 and Fig.
4(d) summarizes the results. The transformation
efficiency is obtained by calculating the energy ratio
between the output of target matrix and identity
matrix while the error bars denotes the standard
deviation of simulated efficiencies. It can be seen
that the simulated efficiency is a little bit lower than
the ideal prediction of 1/v/N. The reason for this
is that there is diffraction loss due beam splitting
with the phase grating, which is not included in
our theoretical analysis. To estimate the impact of
diffraction loss, the ratio between the transmission
efficiency obtained and the implementing efficiency
from the resolve approach is calculated and the value
is about 0.8 for transformation dimensionality of 7~25.
Thus, the transformation efficiency of our proposal
could be estimated as n ~ 0.8/v/N according to the
simulations and experimental results.

3. Discussion

We have demonstrated a non-cascaded approach to
perform arbitrary linear operations for N-dimensional
phase-coherent spatial modes. With meticulously
designed phase gratings, not only unitary but also
non-unitary operators can be implemented. The main
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i GF dF 00 0

features of our scheme are high-fidelity and error
tolerance. According to the experiments implemented
on SLMs, the transmission fidelity can be as high as
95.1% for randomly generated 7-dimensional unitary
matrix while the values are 82.1% and 94.9% for
24-dimensional unitary matrix and a 4x16 matrix
(for the tomography of a 4-level quantum system),
respectively. Moreover, although the phase gratings
are implemented on a SLM in this work, our approach
is not limited to SLMs and can be easily applied on
other devices. Thus we believe that our proposal
provides another option to perform linear operation
with optical phase-coherent spatial modes.

It should be noted, however, that due to the intrinsic
loss of beam splitting and filtering, our proposal is
not lossless for an arbitrary operator. Thus our
approach would suffer from the efficiency for the cases
that the insertion loss is critical, e.g. some quantum
photonic applications. Theoretically, the lower bound
of optimized transformation efficiency is ~1/v/N and
the achieved value is ~0.8/v/N in experiments. In
practice, the efficiency depends on how to map the
matrix elements into the phase grating patterns and
there is still some space for more improvement.
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