

Dickie, E. A., Young, S. A. and Smith, T. K. (2019) Substrate specificity of the neutral sphingomyelinase from Trypanosoma brucei. *Parasitology*, 146(5), pp. 604-616. (doi:10.1017/S0031182018001853)

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/197303/

Deposited on: 21 November 2018

 $En lighten-Research \ publications \ by \ members \ of \ the \ University \ of \ Glasgow \\ \underline{http://eprints.gla.ac.uk}$

Page 1 of 38 Parasitology

1	
2	Full title: Investigating the Substrate Specificity of the Neutral Sphingomyelinase
3	from Trypanosoma brucei
4	
5	Emily A. Dickie ¹ , Simon A. Young and Terry K. Smith
6	
7	Biomedical Sciences Research Complex, Schools of Biology and Chemistry,
8	University of St Andrews, Fife, KY16 9ST, UK
9	
10	Running title: T. brucei neutral sphingomyelinase substrate specificity
11	
12	Correspondence should be addressed to Terry K. Smith. Address: Biomedical Sciences
13	Research Complex, Schools of Biology and Chemistry, University of St Andrews, Fife,
14	KY16 9ST, UK. Telephone: +44(0)1334 463412. Email: tks1@st-andrews.ac.uk
15	KY16 9ST, UK. Telephone: +44(0)1334 463412. Email: tks1@st-andrews.ac.uk

_

¹ Current address: Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK

ABSTRACT

16

17	The kinetoplastid parasite <i>Trypanosoma brucei</i> causes African trypanosomiasis in both
18	humans and animals. Infections place a significant health and economic burden on
19	developing nations in sub-Saharan Africa, but few effective anti-parasitic treatments are
20	currently available. Hence, there is an urgent need to identify new leads for drug
21	development. The T. brucei neutral sphingomyelinase (TbnSMase) was previously
22	established as essential to parasite survival, consequently being identified as a potential drug
23	target. This enzyme may catalyse the single route to sphingolipid catabolism outside the
24	T. brucei lysosome. To obtain new insight into parasite sphingolipid catabolism, the substrate
25	specificity of TbnSMase was investigated using electrospray ionization tandem mass
26	spectrometry (ESI-MS/MS). TbnSMase was shown to degrade sphingomyelin,
27	inositol-phosphoceramide and ethanolamine-phosphoceramide sphingolipid substrates,
28	consistent with the sphingolipid complement of the parasites. TbnSMase also catabolised
29	ceramide-1-phosphate, but was inactive towards sphingosine-1-phosphate. The broad-range
30	specificity of this enzyme towards sphingolipid species is a unique feature of TbnSMase.
31	Additionally, ESI-MS/MS analysis revealed previously uncharacterised activity towards
32	lyso-phosphatidylcholine (lyso-PC), despite the enzyme's inability to degrade PC.
33	Collectively, these data underline the enzyme's importance in choline homeostasis and the
34	turnover of sphingolipids in <i>T. brucei</i> .
2.5	
35	KEYWORDS : lipid catabolism, sphingolipid, choline, lipid extraction, mass spectrometry,
36	enzyme, activity assay
37	

Page 3 of 38 Parasitology

KEY FINDINGS

38

43

- TbnSMase has broad substrate specificity towards various sphingolipids
- TbnSMase is the first *T. brucei* enzyme shown to catabolise *lyso*-phosphatidylcholine
- Sphingosine-1-phosphate, glycosphingolipids and phosphatidylcholine are not
- 42 TbnSMase substrates
 - TbnSMase plays a direct role in choline homeostasis in bloodstream form parasites

44 INTRODUCTION

- 45 The kinetoplastid parasite *Trypanosoma brucei* causes African trypanosomiasis in both
- 46 humans and animals. Human African trypanosomiasis (HAT) is considered fatal if left
- 47 untreated, and poses a serious health risk to an estimated 65 million people in Sub-Saharan
- 48 Africa (World Health Organization, 2017a). Recent efforts have led to a dramatic decrease in
- 49 reported disease cases, with 2804 cases reported in 2015, although the World Health
- Organization estimates the actual number of cases to be 10-fold greater (World Health
- Organization, 2017a; b). Research has also produced promising new drug candidates,
- bowever, the risk of parasite resistance and consequent HAT re-emergence still threaten the
- progress made in combatting the disease. Animal trypanosomiasis remains a significant
- burden, with billions of US dollars lost through livestock infections each year and few
- 55 treatment candidates on the horizon (Shaw et al., 2014). Thus, there is an urgent need to
- identify leads for drug development.
- 57 T. brucei sphingolipid biosynthesis has long been identified as a potential drug target. Most
- eukaryotes are capable of synthesising their own sphingolipids via the *de novo* biosynthesis
- 59 pathway (Fig. 1A), which is highly conserved amongst eukaryotic organisms (Kolter and
- 60 Sandhoff, 1999). Although homologues of most of the enzymes involved in this biosynthetic
- 61 pathway have been (putatively) identified in *T. brucei*, many still require biochemical
- 62 characterisation (Smith and Bütikofer, 2010). The first reaction in the pathway, condensation
- 63 of serine and palmitoyl-CoA, is catalysed by the enzyme serine-palmitoyltransferase (SPT)
- 64 (Tidhar and Futerman, 2013). A homologue of this enzyme has been identified in *T. brucei*,
- which was shown to be essential for cell cycle progression and parasite survival (Fridberg et
- 66 al., 2008). Inhibiting the initial SPT-catalysed reaction of the *T. brucei de novo* biosynthesis
- pathway disrupted procyclic cytokinesis and kinetoplast segregation, validating the pathway
- as a drug target (Fridberg et al., 2008; Smith and Bütikofer, 2010). Although SPT is known to

Parasitology Page 4 of 38

- be essential in other parasites, such as *Plasmodium falciparum* (Gerold and Schwarz, 2001),
- 70 these findings contrast with research involving the related kinetoplastid parasite *Leishmania*
- 71 major (Denny et al., 2004; Zhang et al., 2007). Unusually, T. brucei has four tandemly linked
- genes, each encoding different sphingolipid synthases (TbSLSs1-4) (Sevova et al., 2010).
- 73 This family of sphingolipid synthases is orthologous to the *S. cerevisiae AUR1*-encoded IPC
- synthase (Mina et al., 2009), and equivalent enzymes are found in both Leishmania major
- 75 (Denny et al., 2006) and Trypanosoma cruzi (De Lederkremer et al., 2011). RNA
- 76 interference (RNAi) against the *TbSLS1-4* gene locus in bloodstream trypanosomes impeded
- growth, ultimately leading to parasite death (Sutterwala et al., 2008). This finding identified
- 78 the TbSLSs as potential drug targets. The individual functional specificities of the four
- synthases were determined by employing a cell-free synthesis system (Sevova *et al.*, 2010).
- TbSLSs 1 and 2 synthesise IPC and EPC respectively (Sevova et al., 2010). TbSLSs 3 and 4
- are bi-functional, producing both SM and EPC (Sevova et al., 2010). Research has indicated
- 82 TbSLS substrate specificity is dictated by natural variations in a small number of active site
- residues, thought to be involved in acid-base catalysis (Goren *et al.*, 2011). Establishing the
- functions of the TbSLSs has clarified how the parasite is capable of altering its sphingolipid
- complement during its life cycle (Mina et al., 2009; Sevova et al., 2010), an observation
- 86 further confirmed by recent sphingolipidomic analysis (Guan and Mäser, 2017). Currently,
- 87 trypanosomatids are the only organisms known to synthesise sphingolipid species with
- 88 choline, ethanolamine and inositol headgroups (Serricchio and Bütikofer, 2011; Guan and
- 89 Mäser, 2017).
- In comparison to the knowledge of *T. brucei* sphingolipid biosynthesis that has already been
- acquired, little is known of the processes involved in the parasites' sphingolipid catabolism.
- 92 The catabolism of sphingolipids in eukaryotes takes place via the degradation pathway
- 93 (Fig. 1B), predominantly in lysosomes and late endosomes, but also in other cellular
- locations (Kolter and Sandhoff, 1999; Jenkins *et al.*, 2009). A number of different enzymes
- are involved in the degradative process (ceramidases, lyases, phospholipase D), but one
- major group of proteins responsible for sphingolipid turnover in mammalian cells is the
- 97 sphingomyelinase (SMase) enzyme family (Kolter and Sandhoff, 1999). As indicated by their
- name, the primary substrate of these enzymes in mammals is SM, which is hydrolysed to
- 99 yield ceramide and choline-phosphate (ChoP) (Jenkins et al., 2011). T. brucei has a single
- neutral SMase (TbnSMase) (Q57U95), a membrane protein with two identified
- transmembrane domains at its C-terminus (Young and Smith, 2010). TbnSMase has been

102	localised to the ER in bloodstream form parasites, and genetically confirmed as a potential
103	drug target (Young and Smith, 2010). The activity of this protein is thought to be essential
104	due to its intrinsic roles in vital biochemical processes, including choline and ceramide
105	homeostasis, and endocytosis. This is particularly relevant to the coupling of endocytic and
106	exocytic mechanisms with post-Golgi sorting of GPI-anchored variant surface glycoprotein
107	(VSG), which is needed to maintain VSG surface density (Young and Smith, 2010). VSG
108	molecules form the protective coat that permits <i>T. brucei</i> parasites to evade the host immune
109	system (Mugnier et al., 2016). The importance of TbnSMase corroborates findings relating to
110	the single leishmanial sphingolipid degradative enzyme (ISCL), another nSMase homologue
111	(Zhang et al., 2009; McConville and Naderer, 2011). ISCL IPCase activity is required for
112	L. major promastigote stationary phase survival, most noticeably at acidic pH (Xu et al.,
113	2011). The enzyme's SMase function is necessary for amastigote proliferation and virulence
114	in mammalian hosts (Zhang et al., 2009, 2012). This means that the importance of
115	leishmanial ISCL activity is linked to cell cycle stage (Zhang et al., 2012). Similarly,
116	inhibiting the nSMase/lyso-PC phospholipase C of Plasmodium falciparum disrupts parasite
117	intra-erythrocytic proliferation, suggesting the protein could serve as a drug target (Hanada et
118	al., 2002). In previous research, TbnSMase was shown to catabolise SM effectively, but was
119	inactive towards phosphatidylcholine (PC) (Young and Smith, 2010). This initial analysis has
120	now been taken forward to provide a more comprehensive overview of TbnSMase lipid
121	degradative activity and specificity.

MATERIALS AND METHODS

Unless otherwise stated, all reagents and materials were purchased from Sigma, Promega, Thermo Scientific or VWR. C-1-P (d18:1/16:0), EPC (d17:1/12:0), SM (brain, porcine), dipalmitoyl-PC and dimyristoyl-PC (used as a mass spectrometry standard) were purchased from Avanti Polar Lipids. SM (D18:1/6:0), lyso-PC (from egg yolk), S-1-P (d18:1), and galactosylceramide were purchased from Sigma. EPC (from buttermilk, semi-synthetic) was purchased from Matreya LLC. Procyclic cell culture media were filter sterilised with either Millex GP 0.22 μM syringe filters or Triple Red 0.22 μM vacuum filtration units. Parasite cultures were maintained in Greiner Bio-One CELLSTAR® tissue culture flasks.

Parasitology Page 6 of 38

133	Recombinant expression of TbnSMase (Q57U95) in E. coli
134	A pGEX-6P-1-TbnSMase expression construct was employed as previously described
135	(Young and Smith, 2010). The expression construct was used to transform BL21 pLysSGold
136	E. coli. Positive clones were selected using ampicillin-agar plates (100 μg mL ⁻¹)
137	supplemented with chloramphenicol (34 µg mL ⁻¹). Three bacterial colonies were used to
138	inoculate 3 x 10 mL of LB media (Miller composition, supplemented with 50 $\mu g\ mL^{-1}$
139	ampicillin and 34 $\mu g\ mL^{-1}$ chloramphenicol). After a 24 hour incubation, the 10 mL
140	overnight cultures were combined in a single tube (30 mL total volume). The combined
141	culture was then used to inoculate 3 x 1 L auto-induction (AI) media (Formedium,
142	supplemented with 50 $\mu g\ mL^{-1}$ ampicillin and 34 $\mu g\ mL^{-1}$ chloramphenicol), using 10 mL of
143	overnight culture per litre flask of AI media. Cells were grown at 37°C for 4 hours before the
144	temperature was decreased to 25°C for a further 20 -hour incubation.
145	GST-TbnSMase-enriched bacterial membranes were prepared from these cultures. Pellets of
146	500 mL spun-down culture were washed in PBS and stored at -80°C until they could be
147	processed.
148	TbnSMase-enriched bacterial membrane preparation
149	The protocol described is adapted from methods previously outlined (Young and Smith,
150	2010). Pellets of 500 ml spun-down bacterial culture were suspended and lysed in 10 mL
151	lysis buffer (50 mM Tris.HCl (pH 8.0), 300 mM NaCl, 10% glycerol (v/v), 5 mM MgCl ₂ ,
152	1 mM DTT), containing 0.2 mg mL ⁻¹ lysozyme (Sigma), Merck Millipore Benzonase®
153	Endonuclease (250 units mL ⁻¹ lysate) and 1 x protease inhibitor tablet (Roche). The lysis
154	solution was incubated for 30 minutes at 37°C, followed by probe sonication at 4°C
155	(6 minutes total, 30 seconds on/30 seconds off). The lysate was then centrifuged at
156	14,500 x g, 20 minutes. The product supernatant was divided amongst 3.2 mL capacity
157	Beckman Coulter ultra-centrifuge tubes (x 3) for ultra-centrifugation at 100,000 x g, 1 hour.
158	Pellets were washed with 1.5 mL PBS. Bacterial membrane pellets were then suspended in
159	500 μL buffer each (100 mM Tris-HCl (pH 7.4), 10 mM MgCl ₂ , 20% glycerol) using a
160	combination of vortexing and water bath sonication (25°C, 4 minutes). The total membrane
161	suspension (1500 μ L total volume) was mixed in a single tube and was then aliquoted
162	(50-100 μL). Aliquots were flash-frozen using liquid nitrogen and stored at -80°C. Total
163	protein in each membrane preparation was quantified using the BCA Protein Assay Kit

Page 7 of 38 Parasitology

164	(Thermo Scientific). The presence of TbnSMase in bacterial membranes was confirmed by
165	mass spectrometry.
166	Amplex® UltraRed assay
167	Amplex® UltraRed assay coupling enzyme solutions were prepared from lyophilized
168	powders using dH ₂ O, and were stored as small aliquots at -20°C. Alkaline phosphatase
169	(AlkPhos) (Sigma) from bovine intestinal mucosa was prepared as a 400 units mL ⁻¹ stock
170	solution. Choline oxidase (ChoOx) (Sigma) from Alcaligenes sp. was prepared at
171	20 units mL ⁻¹ , horseradish peroxidase (HRP) (Sigma) at 200 units mL ⁻¹ . Desiccated aliquots
172	of Amplex® UltraRed reagent (Thermo Scientific) were suspended in 340 µL DMSO, as
173	directed by the manufacturer, and stored at -20°C in small aliquots. To assay the aqueous
174	fractions of biphasically separated GST-TbnSMase SM substrate reactions, aqueous phases
175	were dried using a Savant SPD121P SpeedVac concentrator. The fractions were suspended in
176	100 μL reaction buffer (100 mM HEPES (pH 7.4), 10 mM MgCl ₂) and divided between
177	2 wells of a black 96-well reaction plate (50 μ L per well). Additional reaction buffer (50 μ L)
178	was then added to each well. A mastermix of Amplex® assay components (coupling enzymes
179	and Amplex® UltraRed reagent) was prepared. The mastermix accounted for the addition of
180	2 μL AlkPhos, 1.5 μL ChoOx, 1 μL HRP, 0.25 μL Amplex UltraRed reagent and 95.25 μL
181	reaction buffer per well (total reaction volume per well was 200 μ L). Change in fluorescence
182	(Ex. 560 nm, Em. 587 nm) was then monitored for 1 hour using a Spectra Max Gemini XPS
183	fluorescence plate reader at 37°C. Results were recorded using SoftMax Pro v 5.2 software.
184	<u>Lipid substrate activity assays</u>
185	Lipid substrates were suspended in 2% Triton X-100 to the desired stock concentration
186	through vortexing and water-bath sonication (10 minutes). Substrate mass was substrate- and
187	analysis-dependent (20-50 nmoles), but each was added to reactions (50-100 μL total
188	volume) to a final concentration of 0.1-0.2% Triton X-100. Substrates were incubated with
189	TbnSMase-enriched bacterial membranes (~100 μg total protein) in 1.5 mL
190	solvent-resistant microcentrifuge tubes. In heat-inactivated protein reactions, protein aliquots
191	were heated to 95°C (20 minutes) prior to substrate addition. Reactions were performed in
192	100 mM HEPES (pH 7.4), 10 mM MgCl ₂ buffer. On substrate addition, reactions were mixed
193	briefly and sonicated for 30 seconds in a water bath (25°C). Reaction tubes were then
10/	incubated at 37°C (A hours) in a water both. Following incubation, reactions were quenched

Parasitology Page 8 of 38

- with 800 µL CHCl₃ If required, mass spectrometry standards (e.g. PC 28:0) were then added
- 196 (500 pmoles), prior to the addition of 250 μL dH₂O. The organic phase was isolated
- 197 following the Bligh and Dyer biphasic separation method (Bligh and Dyer, 1959), and dried
- 198 under nitrogen.
- 199 Parasite lysate NBD-IPC activity assays
- 200 Cells were suspended in lysis buffer (25 mM Tris (pH 7.5), 0.1% Triton X-100, 1 x protease
- inhibitor tablet (Roche)) to a density of $\ge 2 \times 10^8$ cells mL⁻¹, and were incubated on ice for
- 5 minutes. Subsequently, 4×10^6 parasites from each stock were transferred to each reaction.
- 203 Parasites were incubated with 0.8 nmoles NBD-IPC, in 50 mM Tris (pH 7.5), 5 mM MgCl₂,
- 5 mM DTT, 0.1 % Triton X-100 reaction buffer, for 1 hour at 25 °C with gentle agitation
- 205 (protected from the light). Following incubation, reactions were quenched with the addition
- of 1 mL CHCl₃. Subsequently, 500 μL MeOH and 200 μL dH₂O were quickly added.
- 207 Samples were vortex mixed, then left to stand (protected from the light). The organic phase
- from each sample was isolated through biphasic separation, and dried under nitrogen.
- 209 <u>High-performance thin-layer chromatography</u>
- 210 HPTLC analysis of EPC and NBD-IPC substrate reactions was conducted using a
- 211 CHCl₃: MeOH: dH₂O solvent system (65:25:4). Dried lipid samples were resuspended in 2:1
- 212 CHCl₃: MeOH (10-20 μL volume) and were gradually spotted onto HPTLC plates.
- 213 EPC reaction results were visualised by treating HPTLC plates with ninhydrin solution
- 214 (1% w/v in butan-1-ol). NBD-IPC reaction results were visualised via fluorescence imaging
- using a Typhoon FLA 7000 (GE), with CY2 (filter Y520, 473 nm laser) and Sypro Ruby
- 216 (filter O580, 473 nm laser) settings.
- 217 Procyclic form *T. brucei* lipid extract preparation
- 218 T. brucei (Lister 427 (29-13) strain) procyclic (PCF) parasites were grown in SDM-79 media
- at pH 7.4, as previously described (Brun and Schönenberger, 1979). Drugs G418
- 220 (15 µg mL⁻¹) and hygromycin (50 µg mL⁻¹) were included in the media in order to maintain
- the expression of a tetracycline repressor and T7 RNA polymerase (Wirtz et al., 1999). A
- 222 10 ml culture of PCF cells (~1 x 10⁷ cells mL⁻¹) was pelleted via centrifugation at 800 x g,
- 223 10 minutes. The cell pellet was resuspended in a minimal volume of media (~ 500 μL) and
- transferred to a microcentrifuge tube for further centrifugation (3800 x g, 3 minutes). Cells

Page 9 of 38 Parasitology

225	were washed in 1 mL PBS, and then re-pelleted (3800 x g, 3 minutes). The pellet was
226	resuspended in 200 μL PBS and transferred to a glass vial containing 750 μL 2:1
227	MeOH:CHCl3 for biphasic separation, based on the method described by Bligh and Dyer
228	(Bligh and Dyer, 1959). The sample was dried under nitrogen and stored at 4°C until use.
229	Electrospray tandem mass spectrometry
230	Lipid samples were analysed by electrospray tandem mass spectrometry (ESI-MS/MS) with
231	an AB-Sciex Qtrap 4000 triple quadrupole mass spectrometer, incorporating an Advion
232	TriVersa NanoMate nanoelectrospray ionisation source. Single-stage MS in negative ion
233	mode was used to obtain survey scans of phosphatidylethanolamine (PE),
234	ethanolamine-phosphoceramide (EPC), phosphatidylinositol (PI), inositol-phosphoceramide
235	(IPC) and ceramide (Cer) species (cone voltage = 1.25 kV). Positive ion mode survey scans
236	were used to detect phosphatidylcholine (PC) and sphingomyelin (SM) species
237	(cone voltage = 1.25 kV). In tandem mass spectrometry, nitrogen was the collision gas. To
238	examine PC/SM species, positive ion mode scans to detect precursors of m/z 184 were
239	performed, with 50 eV collision energy (CE). In negative ion mode, precursors of m/z 196
2.40	scans allowed the identification of PE and EPC lipids, precursors of m/z 241 scans were used
240	scans anowed the identification of LE and ETC lipids, precursors of 11/2 241 scans were used
240 241	to observe PI and IPC species ($CE = 60$). Spectra were acquired over or within the range of
241	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of
241 242	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropagal: dH ₂ O
241242243	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of $120-1000 \text{ m/z}$, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and
241242243244	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropagal: dH ₂ O
241242243244245	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS
241242243244245246	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched
 241 242 243 244 245 246 247 	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched bacterial membranes, using previously described methods (Young and Smith, 2010). The
 241 242 243 244 245 246 247 248 	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched bacterial membranes, using previously described methods (Young and Smith, 2010). The presence of the GST-TbnSMase membrane protein was confirmed using mass spectrometry
 241 242 243 244 245 246 247 248 249 	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched bacterial membranes, using previously described methods (Young and Smith, 2010). The presence of the GST-TbnSMase membrane protein was confirmed using mass spectrometry (Fig. S1). After isolating the bacterial membranes via ultra-centrifugation, it was possible to
241 242 243 244 245 246 247 248 249 250	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched bacterial membranes, using previously described methods (Young and Smith, 2010). The presence of the GST-TbnSMase membrane protein was confirmed using mass spectrometry (Fig. S1). After isolating the bacterial membranes via ultra-centrifugation, it was possible to assay GST-TbnSMase activity directly from the membranes with minimal bacteria-derived
241 242 243 244 245 246 247 248 249 250 251	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched bacterial membranes, using previously described methods (Young and Smith, 2010). The presence of the GST-TbnSMase membrane protein was confirmed using mass spectrometry (Fig. S1). After isolating the bacterial membranes via ultra-centrifugation, it was possible to assay GST-TbnSMase activity directly from the membranes with minimal bacteria-derived background activity, removing the need for protein purification. This had also been achieved
241 242 243 244 245 246 247 248 249 250 251 252	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched bacterial membranes, using previously described methods (Young and Smith, 2010). The presence of the GST-TbnSMase membrane protein was confirmed using mass spectrometry (Fig. S1). After isolating the bacterial membranes via ultra-centrifugation, it was possible to assay GST-TbnSMase activity directly from the membranes with minimal bacteria-derived background activity, removing the need for protein purification. This had also been achieved during previous research into TbnSMase activity (Young and Smith, 2010). To confirm the
241 242 243 244 245 246 247 248 249 250 251 252 253	to observe PI and IPC species (CE = 60). Spectra were acquired over or within the range of 120-1000 m/z, and each spectrum represents a minimum of 30 consecutive scans. Samples were run using a 1:1 solvent mixture of 2:1 MeOH: CHCl ₃ and 6:7:2 acetonitrile: isopropanol: dH ₂ O. RESULTS GST-TbnSMase was recombinantly expressed in <i>E. coli</i> to produce TbnSMase-enriched bacterial membranes, using previously described methods (Young and Smith, 2010). The presence of the GST-TbnSMase membrane protein was confirmed using mass spectrometry (Fig. S1). After isolating the bacterial membranes via ultra-centrifugation, it was possible to assay GST-TbnSMase activity directly from the membranes with minimal bacteria-derived background activity, removing the need for protein purification. This had also been achieved during previous research into TbnSMase activity (Young and Smith, 2010). To confirm the GST-TbnSMase recombinant protein was active, GST-TbnSMase-enriched bacterial

Parasitology Page 10 of 38

256	product is enriched for SM 36:1 (d18:1/18:0), as a natural lipid preparation the product is a
257	mixture of brain SM species. The spectra presented here are consistent with the recently
258	released Avanti Polar Lipids fatty acid distribution analysis for this product (Fig. S2)
259	(Avanti Polar Lipids, 2018). Following SM substrate incubation, reactions were biphasically
260	separated using 2:1 CHCl ₃ : MeOH to isolate the lipid-rich organic phase. ESI-MS/MS was
261	used to detect the levels of choline-containing (SM) lipid species in lipid samples derived
262	from both active GST-TbnSMase and heat-inactivated GST-TbnSMase reactions (Fig. 2A
263	and 2B, see also Fig. S3). A dimyristoyl-PC standard was added to each sample during lipid
264	extraction, allowing SM substrate peak intensities to be normalised against the intensity of
265	the internal standard. Relative peak intensities for each SM substrate species are shown
266	(Fig. 2C).
267	The catabolic activity of GST-TbnSMase towards sphingomyelin had been demonstrated
268	previously (Young and Smith, 2010), here providing confirmation that the GST-TbnSMase
269	recombinant protein was active. However, the use of ESI-MS/MS allowed the relative
270	turnover of individual SM species present in the substrate mixture to be compared (Fig. 2C).
271	The results indicate that GST-TbnSMase is active towards SM species with a range of
272	fatty acid chain lengths (C16-C24). There was a 2.6-fold (62%) decrease in
273	SM 42:1 (d18:1/24:0)/SM 42:2 (d18:1/24:1), compared to a 1.5-fold (35%) decrease in
274	SM 36:1 (d18:1/18:0), despite the latter lipid being the prevalent species in the SM substrate
275	mixture. This may indicate GST-TbnSMase preferentially degrades sphingolipid species of
276	specific fatty acid chain lengths. SM substrate catabolism was further confirmed by
277	identification of product ceramide chloride adducts [M + Cl] in negative ion mode survey
278	scans (Fig. 3). Product ceramides were observed in the active GST-TbnSMase reaction
279	(Fig. 3A), and were absent from the heat-inactivated control (Fig. 3B). Additionally, aqueous
280	fractions isolated during biphasic separation of SM substrate reactions were tested for the
281	presence of choline phosphate. The aqueous fractions were used as substrates for the
282	Amplex® UltraRed assay system. In this assay (Fig. S4), the coupling enzyme alkaline
283	phosphatase (AlkPhos) is included to dephosphorylate choline phosphate, yielding choline.
284	The choline produced then serves as a substrate for the second coupling enzyme in the
285	system: choline oxidase (ChoOx). Only the aqueous fractions from the active
286	GST-TbnSMase reactions, in the presence of alkaline phosphatase, induced significantly
287	increased rates of fluorescence change (Fig. 3C). These results confirm GST-TbnSMase is a

phosphodiesterase C enzyme, degrading SM substrates to form ceramide and choline phosphate.

290291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

288

289

Having established the GST-TbnSMase protein was active, the enzyme's activity towards a number of different sphingolipid substrates was examined. As already highlighted, T. brucei is known to produce SM, EPC and IPC. Thus, it was important to examine the activity of TbnSMase towards EPC and IPC sphingolipids. Firstly, GST-TbnSMase was incubated with an EPC substrate. The EPC substrate used was supplied by Mattreya LLC (product no. 1327), a semi-synthetic preparation derived from bovine buttermilk. No fatty acid distribution analysis is available for this product. However, the average molecular weight reported for the product (mw = 773) appears consistent with our analysis (Fig. 4A). Lipid extracts from the EPC substrate reactions were analysed in ESI-MS/MS negative ion mode survey scans. The EPC species present in the substrate (Fig. 4A) were efficiently degraded by GST-TbnSMase, yielding ceramide products (Fig. 4B). These products were absent from the heat-inactivated GST-TbnSMase control and the EPC/Triton X-100 detergent mixed micelles supplied to the reactions (Fig. 4C and 4D). Additionally, GST-TbnSMase degradative activity towards EPC was shown via HPTLC (Fig. S5). GST-TbnSMase was also incubated with a lipid substrate mixture containing equimolar concentrations of SM (d18:1/6:0, Avanti Polar Lipids product no.860582) and EPC (d17:1/12:0, Avanti Polar Lipids product no.860529). This competition assay indicated GST-TbnSMase lacks a sphingolipid substrate preference (Fig. S6). However, given the high levels of substrate turnover for both species, it is possible increasing the concentrations of both substrates may lead to a more marked preference for SM over EPC. Additionally, as EPC (d17:1/12:0) is the only pure EPC substrate commercially available, it is not possible to assess the impact of varying the sphingoid base and fatty acid composition on substrate turnover.

313314

315

316

317

318

319

320

321

Currently, pure IPC lipid species are only available commercially through custom synthesis. GST-TbnSMase was shown to catabolise a custom synthesised NBD-conjugated IPC substrate (**Fig. S7**). However, the synthetic nature of this IPC substrate makes it difficult to draw conclusions regarding the physiological relevance of this activity. It is well established that the prevalent sphingolipid in procyclic form *T. brucei* is IPC (Richmond *et al.*, 2010). Therefore, a lipid extract from procyclic parasites was used to form a mixed micelle IPC substrate for GST-TbnSMase. Negative ion mode scans to detect inositol-containing lipids (precursors of m/z 241) were used to identify the IPC species present in the procyclic

322	T. brucei extract (Fig. 5A). Negative ion mode survey scans were then employed to search
323	for ceramide chloride adducts [M + Cl]. Significant peaks corresponding to ceramide species
324	were observed in the active GST-TbnSMase reaction (Fig. 5B), and were only observed at
325	low levels in the heat-inactivated control (Fig. 5C, see also Fig. S8). Taken together, these
326	results suggest GST-TbnSMase is also capable of catabolising natural IPC species to form
327	ceramide and inositol-1-phosphate.
328	
329	The ability of GST-TbnSMase to degrade SM, EPC and IPC indicates the enzyme does not
330	distinguish between its sphingolipid substrates based upon headgroup identity. To further
331	explore this finding, GST-TbnSMase was incubated with a ceramide-1-phosphate
332	(d18:1/16:0) substrate (Avanti Polar Lipids product no. 860533). A ceramide (d18:1/16:0)
333	chloride adduct [M + Cl] was apparent in the lipid extract from the active GST-TbnSMase
334	reaction (Fig. 6A), and was absent from the control (Fig. 6B). This result suggests lipid
335	headgroups are not involved in GST-TbnSMase substrate recognition. However,
336	GST-TbnSMase does not appear to degrade glycosphingolipids, as no apparent catabolism
337	was observed upon incubating GST-TbnSMase with a mixture of galactosylceramide
338	substrate species (Sigma product no. C4905) (data not shown). This indicates that although
339	GST-TbnSMase does not require a headgroup for lipid substrate turnover, features of the
340	headgroup can impede substrate catabolism. It was also observed that the enzyme cannot
341	degrade S-1-P (d18:1, Avanti Polar Lipids product no. 860492), as the level of the substrate
342	species remained unchanged in lipid extracts from an active GST-TbnSMase reaction and
343	controls (data not shown). This finding indicates ceramide is a crucial component of
344	GST-TbnSMase sphingolipid substrates.
345	
346	Finally, GST-TbnSMase activity towards choline-containing phospholipids was reassessed.
347	During previous research into TbnSMase, catabolic activity towards PC and <i>lyso</i> -PC lipid
348	substrates could not be detected (Young and Smith, 2010). Re-assessing GST-TbnSMase
349	activity towards PC (16:0/16:0) using ESI-MS/MS analysis failed to establish any substrate
350	turnover (Avanti Polar Lipids product no. 850355) (data not shown). However, precursors of
351	m/z 184 scans in positive ion mode revealed that GST-TbnSMase does turnover <i>lyso</i> -PC
352	species (Fig. 7). There was a marked reduction in <i>lyso</i> -PCs (16:0) and (18:0) only in the
353	presence of active GST-TbnSMase (Fig. 7A), relative to a PC (10:0/10:0) standard included

in all lyso-PC reactions. This decrease did not occur in the control (Fig. 7B). Additionally,

354

355	the <i>lyso</i> -PC analogues miltefosine and edelfosine were previously shown to inhibit
356	GST-TbnSMase (Young and Smith, 2010). This led to speculation that the previously
357	observed inhibition of the enzyme's activity by lyso-PC analogues may be due to these
358	compounds acting as competing substrates. Testing miltefosine as a potential substrate for
359	GST-TbnSMase (5-50 nmoles) in the Amplex® UltraRed assay system did not produce any
360	data to suggest this lyso-PC analogue is turned over by GST-TbnSMase (data not shown).
361	This indicates lyso-PC analogues are not competitive substrates for GST-TbnSMase.
362	However, the possibility remains that these compounds may be tightly bound to the enzyme's
363	active site, preventing the ChoP release required for assay detection.
364	DISCUSSION
365	Sphingolipid metabolism in kinetoplastid parasites has long been established as a potential
366	target for anti-parasitic drug development (Smith and Bütikofer, 2010; Mina and Denny,
367	2017). However, research has focused almost exclusively on the pathways involved in
368	sphingolipid biosynthesis. Initial research into the nSMase found in <i>T. brucei</i> showed this
369	enzyme has sphingolipid catabolic activity (Young and Smith, 2010). TbnSMase is the only
370	currently identified T. brucei protein that displays this function. Unusually, the parasites
371	appear to lack phospholipase D activity, which generally facilitates eukaryotic SM and PC
372	catabolism. The substrate specificity of TbnSMase was examined to improve understanding
373	of <i>T. brucei</i> sphingolipid catabolism and salvage.
374	
375	TbnSMase is now known to turnover SM, EPC and IPC sphingolipid species. This is
376	consistent with the established sphingolipid composition of T. brucei (Richmond et al., 2010;
377	Guan and Mäser, 2017): IPC predominates in procyclic parasites, whilst almost equal
378	proportions of SM and EPC species are found in the bloodstream form
379	(Guan and Mäser, 2017). In light of this knowledge, it may seem unsurprising that TbnSMase
380	is active towards all three of these sphingolipid classes, only distinguished structurally by
381	their headgroup (choline, ethanolamine and inositol). However, to our knowledge, this
382	breadth of sphingolipid substrate specificity has not been documented previously for a lipid
383	catabolic enzyme. It is possible that other sphingolipid degradative enzymes (especially those
384	found in other kinetoplastids) share this ability but have not been tested. If this wide-ranging
385	substrate specificity is not found in mammalian nSMase homologues, it may be possible to
386	exploit these differences to create TbnSMase-specific substrate analogue inhibitors. The

Parasitology

Page 14 of 38

387	TbnSMase activity reported here precludes the need for other sphingolipid degradative
388	enzymes in the ER and rationalises the constitutive expression of this enzyme in both
389	procyclic and bloodstream forms. However, no activity towards glycosphingolipids was
390	observed, indicating phosphate groups may be an obligatory feature of TbnSMase substrates.
391	It has been reported that <i>T. brucei</i> possess trace levels of glycosphingolipids,
392	glucosylceramide species having been identified in several studies (Uemura et al., 2006;
393	Fridberg et al., 2008; Richmond et al., 2010). These could be endocytosed host
394	glycosphingolipids, as no glycosphingolipid biosynthetic enzymes have been formally
395	identified in T. brucei (Uemura et al., 2006; Richmond et al., 2010; Guan and Mäser, 2017).
396	Only galactosylceramide species were tested as possible substrates for TbnSMase, thus it
397	remains possible the enzyme is active towards other glycosphingolipids. Alternatively,
398	another (other) unidentified enzyme(s) may be responsible for T. brucei glycosphingolipid
399	catabolism, possibly within the lysosome.
400	
401	ESI-MS/MS analysis indicates that TbnSMase preferentially catabolises SM species with
402	specific fatty acid chain lengths. A more significant decrease in SM 42:1 (d18:1/24:0)/
403	SM 42:2 (d18:1/24:1) occurred relative to SM 36:1 (d18:1/18:0), despite the latter species
404	being more prevalent in the substrate mixture. This suggests that TbnSMase activity may be
405	geared towards recycling specific long-chain fatty acids, which can then be utilised in other
406	biosynthetic processes. Defining a crystal structure for TbnSMase may reinforce these
407	preliminary observations, particularly if the structure provides insight into substrate binding
408	and potential regulation. Few crystal structures for nSMase proteins are currently available,
409	and most studies have focused on the binding of choline phosphate to the active site
410	(Openshaw et al., 2005; Ago et al., 2006). However, TbnSMase does not seem to distinguish
411	between its substrates based on headgroup identity, instead appearing to preferentially
412	degrade substrates with specific fatty acids. This finding indicates that the fatty acid
413	composition of lipid substrates may be of greater interest when considering enzyme-substrate
414	interactions. In support of this view, TbnSMase was shown to actively degrade
415	ceramide-1-phosphate, which lacks a polar alcohol headgroup entirely. However, the enzyme
416	was unable to catabolise sphingosine-1-phosphate, indicating the presence of an amide bound
417	fatty acid at the sn-2 position is vital for sphingolipid substrate recognition. Indeed, in the
418	case of TbnSMase, the critical aspect of lipid substrate recognition appears to centre on the
419	binding of the phosphate and fatty acid moieties to sphingosine or glycerol backbones.
420	The SMase is now known to degrade hyso-PC in addition to sphingolinids. This aspect of

421	TbnSMase activity brings the enzyme in line with the nSMase found in <i>Plasmodium</i>
422	falciparum parasites (PfnSMase) (Hanada et al., 2002). Both PfnSMase and TbnSMase are
423	inactive towards PC substrates, despite their ability to degrade lyso-PCs. This points to the
424	diacylglycerol moiety of phospholipids impairing substrate binding to these SMase enzymes,
425	and that removal of the fatty acid at the $sn-2$ position alleviates this inhibition. Thus, the
426	requirements for glycerophospholipid recognition are the inverse of sphingophospholipid
427	recognition.
428	
429	TbnSMase is the first identified <i>T. brucei</i> enzyme shown to be capable of degrading
430	lyso-PCs, which are believed to be a primary source of parasite choline during bloodstream
431	infection (Bowes et al., 1993; Smith and Bütikofer, 2010; Macêdo et al., 2013). This is due to
432	the parasites lacking a choline de novo biosynthesis pathway (Smith and Bütikofer, 2010),
433	and lyso-PC concentration in the blood being 10-fold greater than choline (Macêdo et al.,
434	2013). Mammalian bloodstream <i>T. brucei</i> require an abundant source of choline, as over 50%
435	of their lipid complement consists of choline-containing lipids (Smith and Bütikofer, 2010).
436	The T. brucei phospholipase A ₁ was shown to degrade PC, but not lyso-PC species
437	(Richmond and Smith, 2007a; b). A plasma membrane phospholipase that degrades lyso-PC
438	has been postulated (Bowes et al., 1993) but has yet to be identified. This activity in
439	TbnSMase indicates the enzyme may be responsible for lyso-PC turnover in the ER. Research
440	into the essentiality of TbnSMase showed that compromised enzyme function led to a
441	concomitant decrease in the parasite's rate of endocytosis (Young and Smith, 2010). This
442	could have wide-ranging effects on the parasites, but was thought to have particularly
443	impacted <i>T. brucei</i> choline homeostasis due to the parasites' dependence upon endocytosed
444	and recycled choline-containing lipids. This impact was indicated by a marked decrease in
445	phosphatidylcholine (PC) and increased intracellular diacylglycerol (DAG), suggesting
446	PC de novo biosynthesis via the Kennedy pathway had been disrupted (Young and Smith,
447	2010). The newly discovered ability of TbnSMase to degrade <i>lyso-PC</i> and SM species aligns
448	with these observations, indicating decreased enzyme activity has a direct impact on choline
449	homeostasis. This underlines the importance of TbnSMase function in sustaining the
450	intracellular choline metabolite levels required for parasite survival and propagation.
451	
452	Further research is required to identify and characterise other enzymes that underpin lipid
453	catabolism and salvage in these kinetoplastid parasites, which represent a valuable model

454	system for eukaryotic lipid metabolism (Serricchio and Bütikofer, 2011). As in the case of
455	TbnSMase, the activity of these enzymes may prove vital, opening new areas of <i>T. brucei</i>
456	biochemistry to drug development.
457	ACKNOWLEDGEMENTS
458	NBD-inositol-phosphoceramide (NBD-IPC) was kindly gifted by Dr. K. Zhang (Texas Tech
459	University).
460	FINANCIAL SUPPORT
461	This work was supported primarily through the European Community's Seventh Framework
462	Programme under grant agreements No. 602773 (Project KINDRED), with additional support
463	from Wellcome Trust Project grant (086658); Medical Research Council (MR/Mo20118/1)
464	and the School of Chemistry (The University of St Andrews).
465	
	and the School of Chemistry (The University of St Andrews).

466 467	REFERENCES
468	Ago, H, Oda, M, Takahashi, M, Tsuge, H, Ochi, S, Katunuma, N, Miyano, M and
469	Sakurai, J (2006) Structural basis of the sphingomyelin phosphodiesterase activity in
470	neutral sphingomyelinase from Bacillus cereus. Journal of Biological Chemistry 281,
471	16157–67. doi: 10.1074/jbc.M601089200.
472	Avanti Polar Lipids (2018) 860062 Brain SM, Sphingomyelin (Brain, Porcine). Retrieved
473	from Avanti Polar Lipids website: https://avantilipids.com/product/860062 (accessed 24
474	January 2018)
475	Bligh, EG, Dyer, WJ (1959) A Rapid Method of total Lipid Extraction and Purification.
476	Canadian Journal of Biochemsitry and Physiology 37, 911–917. doi: 10.1139/o59-099
477	Bowes, E, Samad, H, Jiang, P, Weaver, B and Mellors, A (1993) The acquisition of
478	lysophosphatidylcholine by African trypanosomes. Journal of Biological Chemistry 268
479	13885–92.
480	Brun, R and Schönenberger, M (1979) Cultivation and in vitro cloning or procyclic culture
481	forms of Trypanosoma brucei in a semi-defined medium. Short communication. Acta
482	Tropica 36 , 289–292. doi: 10.5169/seals-312533.
483	De Lederkremer, RM, Agusti, R and Docampo, R (2011) Inositolphosphoceramide
484	metabolism in Trypanosoma cruzi as compared with other trypanosomatids. Journal of
485	Eukaryotic Microbiology 58 , 79–87. doi: 10.1111/j.1550-7408.2011.00533.x.
486	Denny, PW, Goulding, D, Ferguson, MAJ and Smith, DF (2004) Sphingolipid-free
487	Leishmania are defective in membrane trafficking, differentiation and infectivity.
488	Molecular Microbiology 52 , 313–27. doi: 10.1111/j.1365-2958.2003.03975.x.
489	

490	Denny, PW, Shams-Eldin, H, Price, HP, Smith, DF and Schwartz, RT (2006) The
491	protozoan inositol phosporylceramide synthase: a novel drug target which defines a new
492	class of sphingolipid synthase. Journal of Biological Chemistry 281, 28200–28209. doi:
493	10.1074/jbc.M600796200
494	Fridberg, A, Olson, CL, Nakayasu, ES, Tyler, KM, Almeida, IC and Engman, DM
495	(2008) Sphingolipid synthesis is necessary for kinetoplast segregation and cytokinesis in
496	Trypanosoma brucei. <i>Journal of Cell Science</i> 121 , 522–35. doi: 10.1242/jcs.016741.
497	Gerold, P and Schwarz, RT (2001) Biosynthesis of glycosphingolipids de-novo by the
498	human malaria parasite Plasmodium falciparum. Molecular and Biochemical
499	Parasitology 112, 29–37. doi: 10.1016/S0166-6851(00)00336-4.
500	Goren, MA, Fox, BG and Bangs, JD (2011) Amino acid determinants of substrate
501	selectivity in the Trypanosoma brucei sphingolipid synthase family. Biochemistry 50,
502	8853–8861. doi: 10.1021/bi200981a.
503	Guan, XL and Mäser, P (2017) Comparative sphingolipidomics of disease-causing
504	trypanosomatids reveal unique lifecycle- and taxonomy-specific lipid chemistries.
505	Scientific Reports 7, 1–13. doi: 10.1038/s41598-017-13931-x.
506	Hanada, K, Palacpac, NMQ, Magistrado, PA, Kurokawa, K, Rai, G, Sakata, D, Hara,
507	T, Horii, T, Nishijima, M and Mitamura, T (2002) Plasmodium falciparum
508	phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a possible
509	target for malaria chemotherapy. Journal of Experimental Medicine 195, 23-34.
510	Jenkins, RW, Canals, D and Hannun, YA (2009) Roles and regulation of secretory and
511	lysosomal acid sphingomyelinase. Cellular Signalling 21, 836–846. doi:
512	10.1016/j.cellsig.2009.01.026.
513	

514	Jenkins, RW, Idkowiak-Baldys, J, Simbari, F, Canals, D, Roddy, P, Riner, CD, Clarke,
515	CJ and Hannun, YA (2011) A novel mechanism of lysosomal acid sphingomyelinase
516	maturation: requirement for carboxyl-terminal proteolytic processing. Journal of
517	Biological Chemistry 286, 3777–88. doi: 10.1074/jbc.M110.155234.
518	Kolter, T and Sandhoff, K (1999) Sphingolipids-Their Metabolic Pathways and the
519	Pathobiochemistry of Neurodegenerative Diseases. Angewandte Chemie (International
520	ed. in English) 38, 1532–1568. doi: 10.1002/(SICI)1521-
521	3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U
522	Macêdo, JP, Schmidt, RS, Mäser, P, Rentsch, D, Vial, HJ, Sigel, E and Bütikofer, P
523	(2013) Characterization of choline uptake in Trypanosoma brucei procyclic and
524	bloodstream forms. Molecular and Biochemical Parasitology 190, 16-22. doi:
525	10.1016/j.molbiopara.2013.05.007.
526	McConville, MJ and Naderer, T (2011) Metabolic pathways required for the intracellular
527	survival of Leishmania. Annual Review of Microbiology 65, 543-61. doi:
528	10.1146/annurev-micro-090110-102913.
529	Mina, JGM and Denny, PW (2017) Everybody needs sphingolipids, right! Mining for new
530	drug targets in protozoan sphingolipid biosynthesis. <i>Parasitology</i> 1–14. doi:
531	10.1017/S0031182017001081.
532	Mina, JG, Pan, S-Y, Wansadhipathi, NK, Bruce, CR, Shams-Eldin, H, Schwarz, RT,
533	Steel, PG and Denny, PW (2009) The Trypanosoma brucei sphingolipid synthase, an
534	essential enzyme and drug target. Molecular and Biochemical Parasitology 168, 16-23
535	doi: 10.1016/j.molbiopara.2009.06.002.
536	Mugnier, MR, Stebbins, CE and Papavasiliou, FN (2016) Masters of Disguise: Antigenic
537	Variation and the VSG Coat in Trypanosoma brucei. PLoS Pathogens 12, 1-6. doi:
538	10.1371/journal.ppat.1005784.

539	Openshaw, AEA, Race, PR, Monzó, HJ, Vázquez-Boland, J-A and Banfield, MJ (2005)
540	Crystal structure of SmcL, a bacterial neutral sphingomyelinase C from Listeria.
541	Journal of Biological Chemistry 280, 35011-7. doi: 10.1074/jbc.M506800200.
542	Richmond, GS and Smith, TK (2007a) A novel phospholipase from Trypanosoma brucei.
543	Molecular Microbiology 63 , 1078–1095. doi: 10.1111/j.1365-2958.2006.05582.x.A.
544	Richmond, GS and Smith, TK (2007b) The role and characterization of phospholipase A1
545	in mediating lysophosphatidylcholine synthesis in Trypanosoma brucei. Biochemical
546	Journal 405, 319–29. doi: 10.1042/BJ20070193.
547	Richmond, GS, Gibellini, F, Young, SA, Major, L, Denton, H, Lilley, A and Smith, TK
548	(2010) Lipidomic analysis of bloodstream and procyclic form Trypanosoma brucei.
549	Parasitology 137, 1357–92. doi: 10.1017/S0031182010000715.
550	Serricchio, M and Bütikofer, P (2011) Trypanosoma brucei: a model micro-organism to
551	study eukaryotic phospholipid biosynthesis. FEBS journal 278, 1035–46. doi:
552	10.1111/j.1742-4658.2011.08012.x.
553	Sevova, ES, Goren, MA, Schwartz, KJ, Hsu, F-F, Turk, J, Fox, BG and Bangs, JD
554	(2010) Cell-free synthesis and functional characterization of sphingolipid synthases
555	from parasitic trypanosomatid protozoa. <i>Journal of Biological Chemistry</i> 285 , 20580–7.
556	doi: 10.1074/jbc.M110.127662.
557	Shaw, APM, Cecchi, G, Wint, GRW, Mattioli, RC and Robinson, TP (2014) Mapping the
558	economic benefits to livestock keepers from intervening against bovine trypanosomosis
559	in Eastern Africa. Preventive Veterinary Medicine 113, 197-210. doi:
560	10.1016/j.prevetmed.2013.10.024.
561	Smith, TK and Bütikofer, P (2010) Lipid metabolism in Trypanosoma brucei. Molecular
562	and Biochemical Parasitology 172, 66–79. doi: 10.1016/j.molbiopara.2010.04.001.
563	

564	Sutterwala, SS, Hsu, F-F, Sevova, ES, Schwartz, KJ, Zhang, K, Key, P, Turk, J,
565	Beverley, SM and Bangs, JD (2008) Developmentally regulated sphingolipid synthesis
566	in African trypanosomes. Molecular Microbiology 70, 281–96. doi: 10.1111/j.1365-
567	2958.2008.06393.x.
568	Tidhar, R and Futerman, AH (2013) The complexity of sphingolipid biosynthesis in the
569	endoplasmic reticulum. Biochimica et Biophysica Acta 1833, 2511-8. doi:
570	10.1016/j.bbamer.2013.04.010.
571	Uemura, A, Watarai, S, Kushi, Y, Kasama, T, Ohnishi, Y and Kodama, H (2006)
572	Analysis of neutral glycosphingolipids from Trypanosoma brucei. Veterinary
573	Parasitology 140, 264–272. doi: 10.1016/j.vetpar.2006.04.028.
574	Wirtz, E, Leal, S, Ochatt, C and Cross, GA (1999) A tightly regulated inducible expression
575	system for conditional gene knock-outs and dominant-negative genetics in Trypanosoma
576	brucei. Molecular and Biochemical Parasitology 99, 89–101.
577	World Health Organization (2017a) Trypansomiasis, human African (sleeping sickness).
578	Retreived from the World Health Organization website:
579	http://www.who.int/mediacentre/factsheets/fs259/en/ (accessed 25 August 2017)
580	World Health Organization (2017b) Integrating neglected tropical diseases into global
581	health and development: fourth WHO report on neglected tropical diseases. Geneva,
582	Switzerland: World Health Organization.
583	Xu, W, Xin, L, Soong, L and Zhang, K (2011) Sphingolipid degradation by Leishmania
584	major is required for its resistance to acidic pH in the mammalian host. Infection and
585	Immunity 79, 3377–87. doi: 10.1128/IAI.00037-11.
586	Young, SA and Smith, TK (2010) The essential neutral sphingomyelinase is involved in the
587	trafficking of the variant surface glycoprotein in the bloodstream form of Trypanosoma
588	brucei. <i>Molecular Microbiology</i> 76 , 1461–82. doi: 10.1111/j.1365-2958.2010.07151.x.

Parasitology Page 22 of 38

389	Znang, K, Pompey, JM, Hsu, F-F, Key, P, Bandnuvula, P, Saba, JD, Turk, J and
590	Beverley, SM (2007) Redirection of sphingolipid metabolism toward de novo synthesis
591	of ethanolamine in Leishmania. EMBO journal 26, 1094–104. doi:
592	10.1038/sj.emboj.7601565.
593	Zhang, O, Wilson, MC, Xu, W, Hsu, F-F, Turk, J, Kuhlmann, FM, Wang, Y, Soong, L,
594	Key, P, Beverley, SM and Zhang, K (2009) Degradation of host sphingomyelin is
595	essential for Leishmania virulence. PLoS pathogens 5, e1000692. doi:
596	10.1371/journal.ppat.1000692.
597	Zhang, O, Xu, W, Balakrishna Pillai, A and Zhang, K (2012) Developmentally regulated
598	sphingolipid degradation in Leishmania major. <i>PloS one</i> 7, e31059. doi:
599	10.1371/journal.pone.0031059.
600	
601	FIGURE LEGENDS
602	Fig. 1: Trypanosoma brucei sphingolipid metabolism. A) The currently proposed pathway for T. brucei
603	de novo sphingolipid biosynthesis is shown. SPT-serine-palmitoyltransferase (Q580D0);
604	3-KSR – 3-ketosphinganine reductase (Q38BJ6); CerS – ceramide synthase (Q57V92, Q583F9);
605	DES – dihydroceramide desaturase (Q583N4); TbSLSs 1-4 – <i>T. brucei</i> sphingolipid synthases 1-4 (Q38E53;
606	Q38E54; Q38E55; Q38E56). Biosynthesis of ceramide (36:1) has been used here as an example.
607	B) A simplified overview of eukaryotic sphingolipid degradation is provided (omitting glycosphingolipid
608	catabolic pathways). A representative sphingolipid species (sphingomyelin (36:1)) is degraded in a step-wise
609	process involving sphingomyelinases (SMases) and ceramidases (CDases). Lipid headgroups, such as choline
610	phosphate, and sphingosine can be recycled to participate in de novo biosynthesis via the salvage pathway
611	(green dashed arrows). Products ceramide and sphingosine can also be phosphorylated to produce signalling
612	$molecules\ ceramide-1-phosphate\ and\ sphingosine-1-phosphate\ respectively.\ ATP-adenosine\ triphosphate;$
613	ADP – adenosine diphosphate; CERK – ceramide kinase; SphK – sphingosine kinase.
614	Fig. 2: ESI-MS/MS analysis of sphingomyelin substrate reactions. Spectra are ESI-MS/MS precursor ion
615	scans to detect choline-containing lipids (precurors of m/z 184) in positive ion mode.
616	A) GST-TbnSMase-enriched bacterial membranes plus SM substrate. B) heat-inactivated GST-TbnSMase
617	enriched bacterial membranes plus SM substrate. (†) Highlights the dimyristoyl-PC (28:0) standard
618	(500 pmoles). C) Peak intensities (cps), normalised against the intensity of the dimyristoyl-PC (28:0) standard,

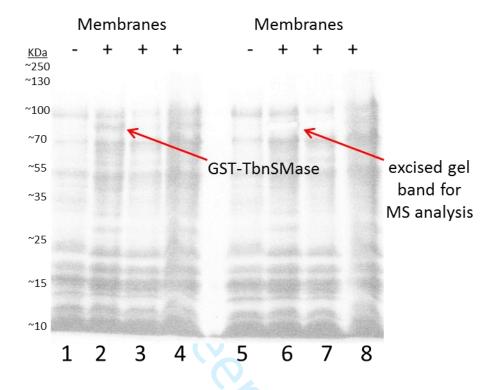
619	for each significant sphingomyelin (SM) substrate lipid species are depicted. Values are mean intensities for
620	triplicate reactions (n = 3). Error bars represent the standard error of each mean (\pm) .
621	Fig. 3: GST-TbnSMase catabolism of sphingomyelin yields ceramide and choline phosphate. Spectra are
622	ESI-MS/MS survey scans in negative ion mode. A) GST-TbnSMase-enriched bacterial membranes plus SM
623	substrate. B) heat-inactivated TbnSMase-enriched bacterial membranes plus SM substrate. Annotated ceramides
624	have formed chloride adducts [M + Cl] ⁻ . (*) Highlights previously identified significant contaminants of
625	negative ion mode surveys thought to be associated with the detergent. C) Aqueous fractions of sphingomyelin
626	substrate reactions were used as substrates for the Amplex® UltraRed assay system, plus (+) or minus (-) the
627	coupling-enzyme alkaline phosphatase (AlkPhos). Change in fluorescence (millirelative-fluorescence units per
628	minute (mrfu min-1)) was monitored spectrophotometrically. Values represent average rate of fluorescence
629	change for aqueous fractions derived from triplicate reactions (n = 3). Error bars represent the standard error of
630	each mean (±).
631	Fig. 4: ESI-MS/MS analysis of ethanolamine-phosphoceramide substrate reactions. Spectra are
632	ESI-MS/MS survey scans in negative ion mode. A) EPC only (minus Triton X-100 detergent).
633	B) GST-TbnSMase-enriched bacterial membranes plus EPC substrate. Annotated ceramides have formed
634	chloride adducts [M + Cl] ⁻ . C) heat-inactivated GST-TbnSMase-enriched bacterial membranes plus EPC
635	substrate. D) EPC/ Triton X-100 detergent mixed micelle substrate only. (*) Highlights previously identified
636	significant contaminants of negative ion mode surveys thought to be associated with the detergent.
637	Fig. 5: ESI-MS/MS analysis of <i>T. brucei</i> procyclic-extract (inositol-phosphoceramide) substrate reactions.
638	A) ESI-MS/MS precursor ion scan of the procyclic lipid extract (IPC substrate) to detect inositol-containing
639	lipids (precursors of m/z 241), in negative ion mode. The extract contains dihydroxylated ceramides, as well as
640	trihydroxylated ceramides, the later denoted as't-'. B) ESI-MS/MS negative ion mode survey scans were used to
641	detect ceramides in GST-TbnSMase and C) heat-inactivated GST-TbnSMase-enriched bacterial membranes
642	plus IPC substrate reactions. Annotated ceramides have formed chloride adducts [M + Cl] ⁻ .
643	Fig. 6: GST-TbnSMase catabolism of ceramide-1-phosphate yields ceramide. Spectra are ESI-MS/MS
644	survey scans in negative ion mode. A) GST-TbnSMase-enriched bacterial membranes plus
645	ceramide-1-phosphate (C-1-P) substrate. B) Non-TbnSMase-expressing bacterial membranes plus
646	ceramide-1-phosphate substrate. The annotated ceramide (Cer) product species has formed a
647	chloride adduct [M + Cl] ⁻ .
648	Fig. 7: ESI-MS/MS analysis of <i>lyso</i> -PC substrate reactions. Spectra are ESI-MS/MS precursor ion scans to
649	detect choline-containing lipids (precursors of m/z 184) in positive ion mode. A) GST-TbnSMase-enriched
650	bacterial membranes with <i>lyso</i> -PC substrate. B) non-TbnSMase-expressing bacterial membranes with <i>lyso</i> -PC
651	substrate. (†) Highlights the didecanoyl-PC (20:0) standard (500 pmoles). (*) Highlights previously identified
652	significant contaminants of positive ion mode scans thought to be associated with the detergent.

SUPPLEMENTARY MATERIAL

Full title: Investigating the Substrate Specificity of the Neutral Sphingomyelinase from *Trypanosoma brucei*

Emily A. Dickie¹, Simon A. Young and Terry K. Smith

Biomedical Sciences Research Complex, Schools of Biology and Chemistry, University of St Andrews, Fife, KY169ST, UK


Running title: T. brucei neutral sphingomyelinase substrate specificity

Correspondence should be addressed to Terry K. Smith. Address: Biomedical Sciences Research Complex, Schools of Biology and Chemistry, University of St Andrews, Fife, KY169ST, UK. Telephone: +44(0)1334 463412. Email: tks1@st-andrews.ac.uk

Policy.

¹ Current address: Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK

Page 25 of 38 Parasitology

Fig. S1: Presence of GST-TbnSMase in bacterial membranes was confirmed by mass spectrometry analysis. pLysSGold *E. coli* membrane fractions were separated via SDS-PAGE and stained with Coomassie. Fractions were run in duplicate (lanes 1-4 and again, in lanes 5-8). '-' indicates the non-TbnSMase-expressing control bacterial membranes. '+' signifies membrane fractions were derived from *E. coli* expressing GST-TbnSMase. The band thought to correspond to GST-TbnSMase (annotated, lane 2) was excised (annotated, lane 6) and submitted for mass spectrometry analysis, which confirmed its identity as GST-TbnSMase.

Parasitology Page 26 of 38

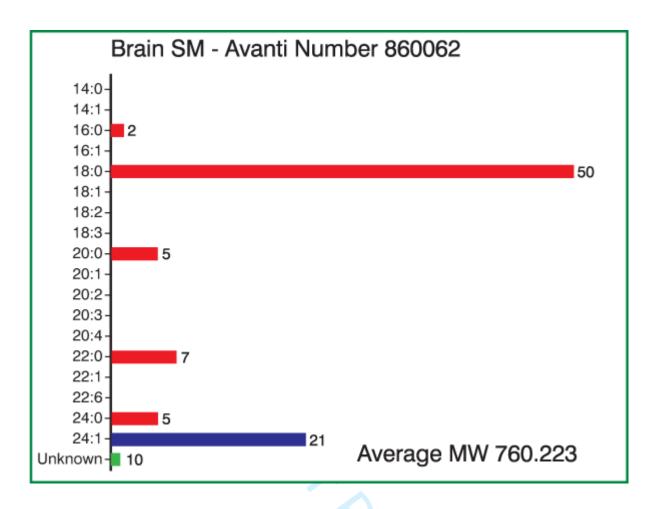
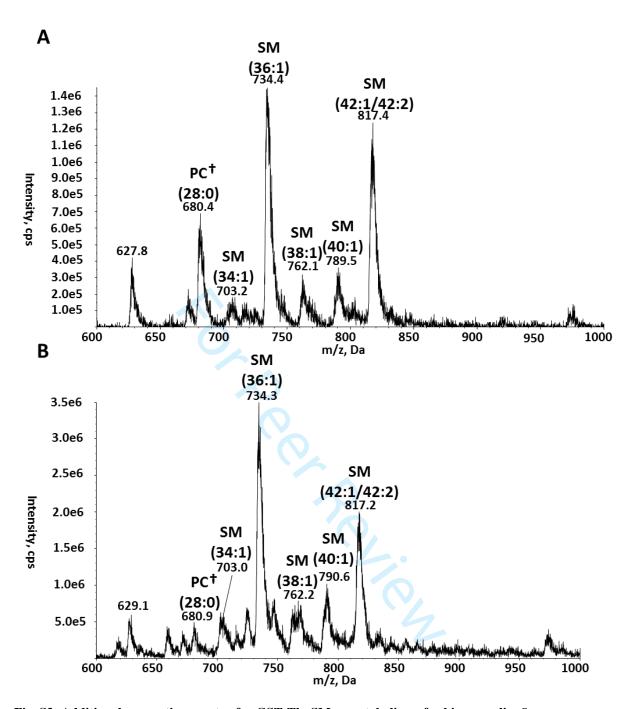



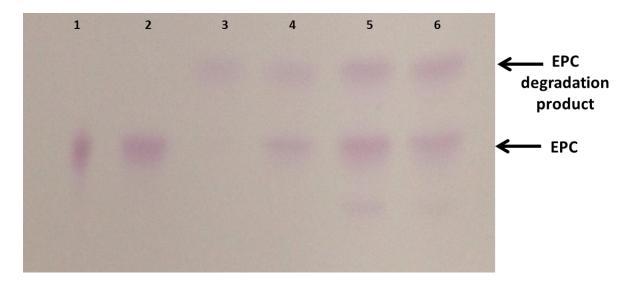
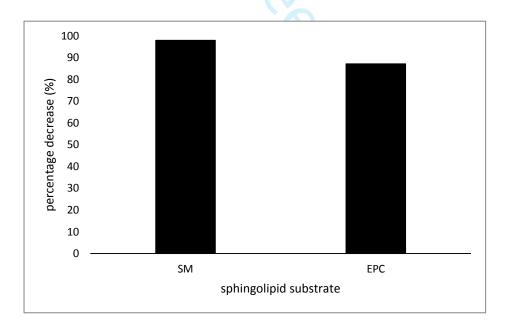
Fig S2: Avanti fatty acid analysis of brain SM product 860062. This product (https://avantilipids.com/product/860062) was used as an SM substrate for GST-TbnSMase (see Fig. 2 and Fig. S3). Average fatty acid distribution for SM (d18:1/y) lipid species within the product are shown.

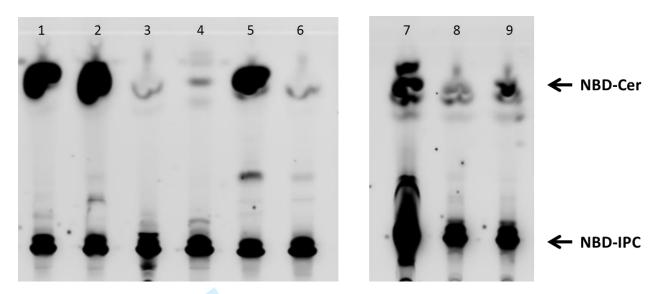
Page 27 of 38 Parasitology

Fig. S3: Additional supporting spectra for GST-TbnSMase catabolism of sphingomyelin. Spectra are ESI-MS/MS precursor ion scans to detect choline-containing lipids (precursors of m/z 184) in positive ion mode. A) SM/Triton X-100 mixed micelle substrate only. B) Non-TbnSMase-expressing bacterial membranes plus SM substrate. (†) Highlights the dimyristoyl-PC (28:0) standard (500 pmoles).

Parasitology Page 28 of 38

Fig. S4: Amplex® Red assay system. Sphingomyelinase (SMase) activity results in sphingomyelin substrate catabolism, producing ceramide and choline-phosphate (ChoP). ChoP is then hydrolysed by the assay coupling enzyme alkaline phosphatase (AlkPhos), forming choline (Cho). Choline oxidase (ChoOx) oxidises choline to yield betaine and hydrogen peroxide (H₂O₂). As the ChoOx used in the assay is isolated from *Alcaligenes sp.*, Cho is fully oxidised to betaine, via a betaine-aldehyde intermediate (not shown), and 2 moles of hydrogen peroxide (H₂O₂) are produced for every mole of Cho. The H₂O₂ is the oxidising agent for horseradish peroxidase (HRP) that catalyses the conversion of Amplex® Red to red-fluorescent resorufin. The rate of this conversion can be monitored spectrophotometrically (Ex. 560 nm, Em. 587 nm). For the work described here, Amplex® UltraRed, an optimised version of Amplex® Red, was used. However, no chemical structure or formula is available for Amplex® UltraRed and its red-fluorescent conversion product.


Fig. S5: HPTLC analysis of ethanolamine-phosphoceramide substrate reactions.

- 1) EPC stock solution (no Triton X-100 detergent); 2) EPC/Triton X-100 detergent mixed micelle substrate in reaction buffer; 3) GST-TbnSMase-enriched bacterial membranes plus EPC substrate;
- 4) non-TbnSMase-expressing bacterial membranes plus EPC substrate; 5) heat-inactivated GST-TbnSMase-enriched bacterial membranes plus EPC substrate; 6) heat-inactivated non-TbnSMase-expressing bacterial membranes plus EPC substrate.

Fig. S6: Sphingomyelin and ethanolamine-phosphoceramide substrate competition assay. A substrate mixture, containing equimolar concentrations (25 nmoles) of sphingomyelin and ethanolamine-phosphoceramide, was incubated with GST-TbnSMase. The percentage decreases (%) in the level of each substrate, relative to a TbnSMase negative control, are shown.

Parasitology Page 30 of 38

Fig. S7: HPTLC analysis of NBD-IPC substrate reactions. 1) bloodstream form *T. brucei* lysate with NBD-IPC substrate; 2) stumpy form *T. brucei* lysate with NBD-IPC substrate; 3) procyclic form *T. brucei* lysate with NBD-IPC substrate (stored prior to use); 4) NBD-IPC substrate only; 5) GST-TbnSMase-expressing *E. coli* lysate with NBD-IPC substrate; 6) non-GST-TbnSMase-expressing *E. coli* lysate with NBD-IPC substrate; 7) procyclic form *T. brucei* lysate with NBD-IPC substrate (freshly prepared); 8) promastigote form *L. major* lysate with NBD-IPC substrate; 9) epimastigote form *T. cruzi* lysate with NBD-IPC substrate.

Page 31 of 38 Parasitology

Fig. S8: Additional supporting spectra for *T. brucei* procyclic-extract (inositol-phosphoceramide) reactions. ESI-MS/MS precursor ion scans to detect inositol-containing lipids (precursors of m/z 241) in negative ion mode. A) GST-TbnSMase-enriched bacterial membranes plus procyclic extract (IPC) substrate. B) heat-inactivated GST-TbnSMase-enriched bacterial membranes plus IPC substrate. The substrate contains dihydroxylated ceramides, as well as trihydroxylated ceramides, the later denoted as 't-'.C) ESI-MS/MS survey scan, in negative ion mode, of the IPC/Triton X-100 detergent mixed micelle substrate only.

FIG 1 190x275mm (192 x 192 DPI)



FIG 2 190x275mm (192 x 192 DPI)

Parasitology Page 34 of 38

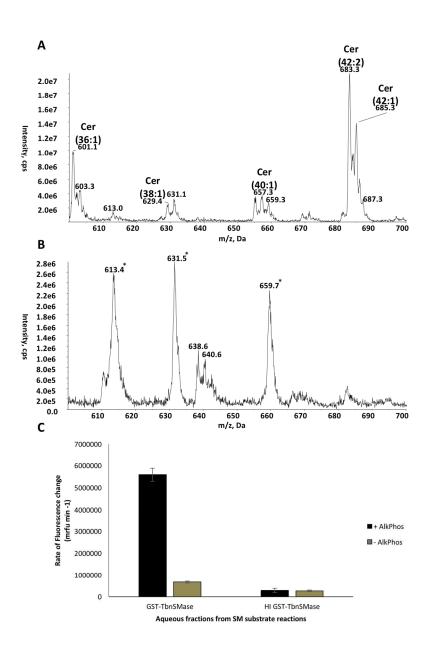


FIG 3 190x275mm (192 x 192 DPI)

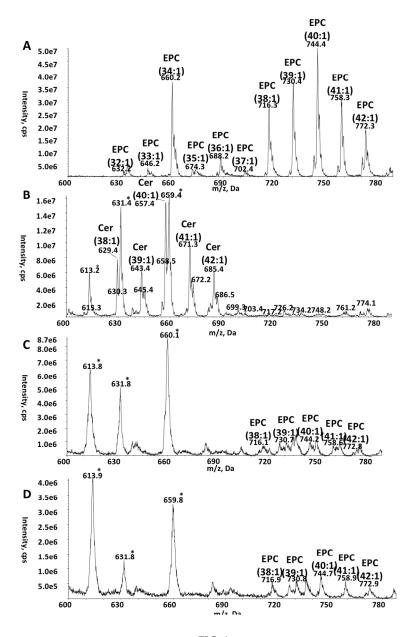


FIG 4 190x275mm (192 x 192 DPI)

Parasitology Page 36 of 38

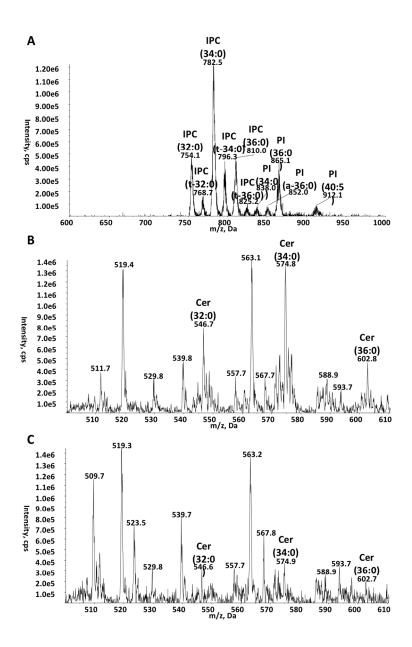
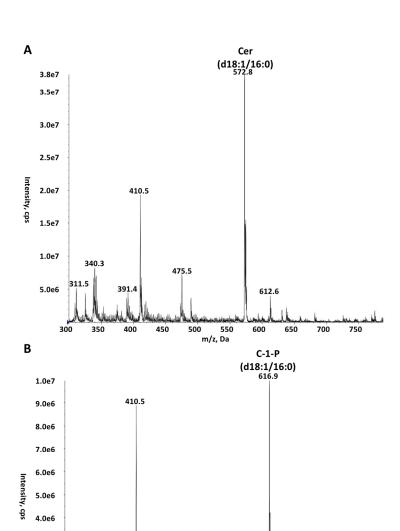



FIG 5 190x275mm (192 x 192 DPI)

473.8 *63.7 400 450 500 550 600 650 700 m/z, Da fig 6 190×275mm (192 × 192 DPI)

3.0e6 2.0e6 1.0e6

300

350

Parasitology Page 38 of 38

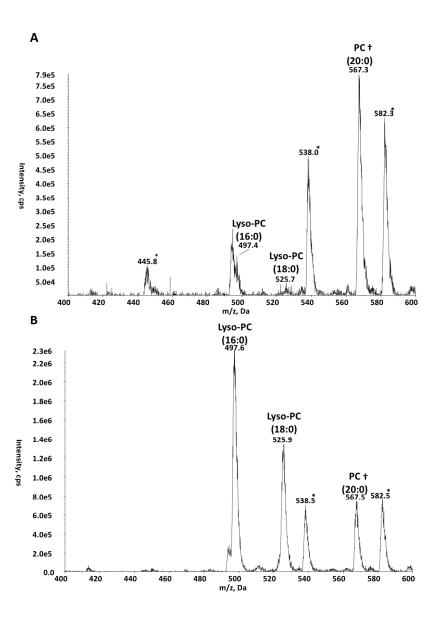


fig 7 190x275mm (192 x 192 DPI)