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a b s t r a c t 

Monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. 

This is due to the flexible nature of the interface liners used impeding the required consistent positioning 

of the temperature sensors during donning and doffing. Predicting the in-socket residual limb tempera- 

ture by monitoring the temperature between socket and liner rather than skin and liner could be an 

important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. 

In this work, we propose to implement an adaptive neuro fuzzy inference strategy (ANFIS) to predict the 

in-socket residual limb temperature. ANFIS belongs to the family of fused neuro fuzzy system in which 

the fuzzy system is incorporated in a framework which is adaptive in nature. The proposed method is 

compared to our earlier work using Gaussian processes for machine learning. By comparing the pre- 

dicted and actual data, results indicate that both the modeling techniques have comparable performance 

metrics and can be efficiently used for non-invasive temperature monitoring. 

© 2016 The Author(s). Published by Elsevier Ltd on behalf of IPEM. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Many amputees complain of increased temperature and perspi-

ation within their prosthetic socket [1, 2] . The most accurate tem-

erature reading would be obtained by placing the sensor directly

n contact with the skin, however, this would create practicality is-

ues with prosthetic use in a domestic situation such as, protrud-

ng lead wiring, consistent positioning of sensors and possible skin

rritation and discomfort. On the other hand, embedding sensors

nd wires in to the hard prosthetic socket during the manufactur-

ng process for prosthetic sockets would eliminate any issues de-

cribed earlier. In addition, there would be no damage to the de-

ice during the donning and doffing and its longevity would not be

arred. We describe the route wherein the in-socket residual limb

emperature can be accurately predicted by monitoring the tem-

erature between the liner and the socket using artificial neuro-

uzzy inference system (ANFIS). The predictive modeling results

re then compared with Gaussian processes for machine learning

GPML) previously developed by Peery et al. [3] . 
∗ Corresponding author. 
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ANFIS are a class of adaptive networks that incorporate both

eural networks and fuzzy logic principles. Neural networks are

upervised learning algorithms which utilize a historical dataset for

he prediction of future values. In fuzzy logic, the control signal

s generated from firing the rule base. This rule base is drawn on

istorical data and is random in nature. This implies that the con-

roller’s output is also random which may prevent optimal results.

he use of ANFIS can make the selection of the rule base more

daptive to the situation. In this technique, the rule base is se-

ected utilizing the neural network techniques via the back propa-

ation algorithm. To enhance its applicability and performance, the

roperties of fuzzy logic, i.e. approximating a non-linear system by

etting IF-THEN rules is inherited in this modeling technique. This

ntegrated approach, makes ANFIS to be a universal estimator [4] . 

The goal of the Gaussian process technique on the other hand

s to infer a continuous function f ( x ) from a training set of input-

utput pairs in supervised learning context. A, Gaussian process is

 collection of random variables, any finite number of which have

oint Gaussian distributions [5] . The key assumption in Gaussian

rocess modeling is that the data can be represented as a sam-

le from a multivariate Gaussian distribution. Therefore, it could

e totally specified by the mean and covariance function. A Gaus-

ian process model can be thought of as a prior probability distri-

ution over functions in Bayesian inference. This enables deducing
open access article under the CC BY license. 
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Table 1 

Experimental protocol for the amputee test subject. 

Activity Time (min) 

Resting/sitting 10 

Walking on the treadmill at self-selected 

speed of 0.62 m/s 

10 

Final rest 15 
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fined as variables whose values are words or sentences in a natural 
the hyperparameters for the model which are an indication of the

precision and relevance of the input parameters for predicting the

output. Thus, the aim in Gaussian process modeling is to select the

model parameters for which the probability of the training data is

maximized [5] .In this paper, we investigate the use of ANFIS and

Gaussian process algorithms in the context of predicting the resid-

ual limb skin temperature of the amputee. 

2. Method 

It has been recorded by Klute et al. [6] that environmental fac-

tors like temperature, humidity, and also the activity level of an

amputee affect their residual limb temperature. Also, it was sug-

gested by Klute et al. [7] that some prosthetic materials act as

insulators as restrict the transfer of heat and maybe the cause of

thermal discomfort in the residual limb. Thus, if the thermal prop-

erties of the prosthetic materials are known then the residual limb

temperature can be predicted by monitoring the temperature be-

tween the liner and the socket. In order to investigate the temper-

ature profile correlation of the residual limb and the socket-liner

interface, a 68 year-old male transitibial traumatic amputee weigh-

ing 70 kg was asked to take part in a laboratory test. The details

of investigation were similar to as described by Mathur et al. [3] .

In summary, the subject wore a 6 mm Polyurethane liner (Otto-

Bock Technogel) with a 4 mm thick socket made of thermosetting

lay-up material and was dressed in shorts and t-shirt without any

extra layer of clothing on the prosthesis. According to Klute et al.

[7] the thermal conductivities of materials used in the prosthesis

of the amputee subject were – Polyurethane liner 0.19 W/m °K and

Thermosetting socket material 0.14 W/m °K. 

To monitor and record the residual limb and liner-socket tem-

peratures, four K –type thermocouples via a data logger (type

HH1384; Omega Engineering) were used. One thermocouple was

taped on the lateral side of the limb and the other on the medial.

The remaining two thermocouples were taped on the correspond-

ing lateral and medial positions on the liner-socket interface. The

schematic and the actual setup of the prosthesis with the sensor

placement are indicated in Fig. 1 . Data from these four thermo-

couples was recorded at a sampling rate of 0.5 Hz at a defined am-

bient temperature (dataset A). This was repeated again after two

months to confirm the influence of ambient temperature on the
a

Fig. 1. The anterior view indicating the placement of the thermocouples on the lateral an

of the amputee subject. (a) Schematic of the placement of the thermocouples in the pros
esidual limb skin temperature (dataset B). Details of the 35 min

xperimental protocol are as indicated in Table 1. 

The temperature profiles of the liner and the residual limb skin

ere recorded in a climate controlled chamber with zero wind ve-

ocity and 40% humidity levels for ambient temperatures of 10 °C,

nd then the same protocol was repeated for 15 °C, 20 °C, and

5 °C. The results indicated that for any given ambient temper-

ture, the liner temperature profile follows that of the in-socket

esidual limb temperature. This suggested a possibility to apply su-

ervised machine learning algorithms to model the residual limb

emperature of the amputee as a function of liner temperature.

ime averaging of 5 s is done on the recorded data to help in iden-

ifying the trend better and smooth out the fluctuations. Different

odeling techniques for machine learning were utilized and the

esults from the Gaussian processes model and ANFIS technique

re compared in this study. Since, the temperature profiles of the

esidual limb are almost similar for the ambient temperature pairs

f 10 °C, 15 °C and 20 °C, 25 °C, the predictive model at ambient

emperatures of 10 °C and 25 °C are only discussed in this study. 

. Adaptive neuro fuzzy inference strategy 

ANFIS belongs to a family of hybrid system, called as the term

neuro fuzzy networks’ [8] inheriting the properties of both neural

etworks and fuzzy logic. Neural networks can easily learn from

he data. However, it is difficult to interpret the knowledge ac-

uired by it, as meaning associated with each neuron and each

eight it quite complex to comprehend. In contrast, fuzzy logic it-

elf cannot learn from the data. But fuzzy-based models are eas-

ly understood as it utilizes linguistic terms rather than numeric

nd the structure of IF-THEN rules. Linguistic variables are de-
b

d medial side of the residual limb skin and its corresponding positions on the liner 

thesis. (b) Actual placement of the thermocouples for the experimental trials. 
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Fig. 2. Block diagram of a neuro-fuzzy (ANFIS) controller. 
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Fig. 3. Architecture of a first order two rule Takagi–Sugeno type ANFIS. 
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anguage with associated degrees of membership. The fuzzy set in

hich linguistic variables belongs is an extension of a ‘crisp’ set

here an element could have full or no membership. However,

uzzy sets allow partial membership as well, which implies that

n element may partially belong to more than one set [9] . In other

ords, for a crisp set, the membership level of an element x in set

 can be expressed by a characteristic function μA (x ) , such that if

μA ( x ) = 

{
1 if x ε A implying full membership 

0 if x / ∈ A implying non - membership 

(1) 

But for a fuzzy set A the membership function μA (x ) can take

alues in the interval [0, 1].The basic structure of the developed

NFIS controller for the prediction of residual limb skin tempera-

ure consists of four parts, which are, fuzzification, rule base, infer-

nce engine and the de-fuzzification blocks as seen in Fig. 2. 

In the ANFIS controller, the crisp input signal (liner temperature

n our case) is converted to fuzzy inputs by the membership func-

ion. The membership function pattern used in our ANFIS model

s Gaussian. The fuzzy inputs along with the Gaussian membership

unction are then fed into the neural network block. The neural

etwork block consists of a rule base which is connected to the in-

erence engine. Back propagation algorithm is used to train the in-

erence engine for the proper selection of rule base. Once trained,

roper rules can be generated and fired from the neural network

lock to yield optimal output. The linguistic output from the neural

etwork block is then converted into crisp output (residual limb

kin temperature) by the defuzzifier unit [10] . The structure of

he neuro-fuzzy model consists of different adaptive layers. Each

f these layers has nodes with an associated network of transfer

unctions, through which the fuzzy inputs are processed. The out-

ut from these nodes are then combined to yield a single crisp

utput as the configuration of the ANFIS permits only one output

f the model. This crisp output is fedback as input to the model

nd compared with the set value. If there is any deviation, the er-

or signal so generated becomes the input to the ANFIS controller,

hereby maintaining stability in the system [11] . 

ANFIS, supports the Takagi–Sugeno based systems [12] . The

tructure of the adaptive network is composed of five network lay-

rs i.e. layer 1 to layer 5 (with nodes and connections) as shown in

ig. 3 . Assuming that the system is defined to have two inputs x 1 
nd x 2 , one output z and fuzzy set A 1 , A 2 , B 1 , B 2 ; then for a first

rder Takagi–Sugeno fuzzy model, having two IF-THEN rules in the

ommon rule set, can be written using the following Eqs. (2) and

 3 ) [13] . 

ule 1 : If x 1 is A 1 and x 2 is B 1 then f 1 = p 1 x 1 + q 1 x 2 + r 1 (2) 

ule 2 : If x 1 is A 2 and x 2 is B 2 then f 2 = p 2 x 1 + q 2 x 2 + r 2 (3) 

Layer 1: This layer is called as the fuzzification layer. Here

he crisp input signal is fed to the node i which is associated

ith a linguistic label A i or B i −2 . Thus, the membership function

 1 ,i (X ) determines the membership level (full, none or partial)

f the given input. The output of each node is calculated using

qs. (4) and ( 5 ). O 1 ,i (X ) is the generalized Gaussian shaped mem-
ership function used in our model development. 

O 1 ,i = μA i ( x 1 ) for i = 1 , 2 (4)

O 1 ,i = μB i −2 
( x 2 ) for i = 3 , 4 (5)

Layer 2: The nodes in this layer are fixed and labeled as O 2 ,i .

he output of each node is the product of all the incoming signals

s in the Eq. (6) . 

O 2 ,i = w i = μA i ( x 1 ) μB i ( x 2 ) for i = 1 , 2 (6)

The output of each node represents the firing strength of a rule.

lso, known as the membership layer, it acts on the input variables

rom layer 1 as membership functions to represent them in their

uzzy sets. 

Layer 3: Each node in this layer calculates the ratio of the indi-

idual rule’s firing strength to the sum of all rules firing strengths

s in the Eq. (7) . w i represents the normalized firing strength.

ence, this layer is also known as the rule layer. 

O 3 ,i = w i = 

w i 

w 1 + w 2 

for i = 1 , 2 (7)

Since, each node in this layer calculates the normalized weights,

he output signal can be thought of as the normalized firing

trength of a given rule. 

Layer 4: This layer known as the defuzzification layer. It cal-

ulates the individual output values y from the inferring of rules

rom the rule base. Individual nodes of this layer are connected to

he respective normalization node in layer 3 and also receive the

nput signal. Each node of this layer is adaptive in nature with the

ode function given by the Eq. (8) where p i , q i , r i is a set of con-

equent parameters of rule i . 

O 4 ,i = w i f i = w i ( p i x 1 + q i x 2 + r i ) (8) 

Layer 5: This layer is known as the output layer. It has only

ne node and it calculates the sum of all the outputs coming from
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Fig. 4. Epochs and training error in ANFIS for ambient temperature of 10 °C at lat- 

eral side. 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Epochs and training error in ANFIS for ambient temperature of 10 °C at me- 

dial side. 
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the nodes of the defuzzification layer to produce the overall ANFIS

output as in Eq. (9) . 

overall output = O 5 ,i = 

∑ 

i 

w i f i = 

∑ 

i w i f i ∑ 

i w i 

(9)

This architecture of the adaptive network is used to develop the

ANFIS model for the prediction of in-socket residual limb temper-

ature and is discussed in the next section. 

4. Model generation and prediction 

The ANFIS model is designed using MATLAB’s Fuzzy Logic Tool-

box and the GUI editor which was used for analyzing its per-

formance [14] . The optimized sets of rules were generated using

the grid partition method. The architecture of the realized AN-

FIS model had the following specifications; number of nodes: 84,

number of linear parameters: 20, number of nonlinear parameters:
Fig. 5. Illustration of prediction with ANFIS for ambient temperature of 10 °C at 

lateral side. The predicted FIS output is indicated by red and the test data is rep- 

resented by the blue crosses. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

F

m

r

fi

0, number of training data pairs: 210, number of test data pairs:

9 and number of fuzzy rules: 20. The adaptive network utilizes

he hybrid method to optimize the membership functions and the

arameters so that the prediction error is minimized. Dataset A

s used to train the model and the predictive ability of ANFIS is

ested on dataset B. During the training process of the model, the

nput data is mapped a number of times to minimize the predic-

ion error. The number of iterations required for mapping is known

s epochs. It is observed from Fig. 3 that 50 iterations (epochs)

re required to train the model on dataset A with a minimal error

f 0.15341. It can be observed from Fig. 4 that the trained model

s then tested on 100 data points from dataset B to validate it.

igs. 4–7 illustrate the predictive ability of ANFIS for ambient tem-

erature of 10 °C at lateral and medial side of residual limb. They

re generated in the similar way for lateral and medial side of the

esidual limb at 25 °C. 
ig. 7. Illustration of prediction with ANFIS for ambient temperature of 10 °C at 

edial side. The predicted FIS output is indicated by red and the test data is rep- 

esented by the blue crosses. (For interpretation of the references to color in this 

gure legend, the reader is referred to the web version of this article.) 
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a

b

Fig. 8. Predicted residual limb skin temperature from ANFIS model is shown along with the actual skin temperature at lateral and medial sides in (a) and (b), respectively, 

at ambient temperature of 10 °C. The actual measured residual limb temperature is indicated as the checking data whereas the predicted residual limb temperature is the 

FIS output. The axis labels imply: index is the time in seconds and the output is the temperature in Celsius. 
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e  
. Obtained results 

Our aim was to use the model to predict the residual limb skin

emperature from the liner temperature and compare the results

ith direct skin temperature measurements. Hence, the input to

he model is the liner temperature obtained from running the ex-

eriment in the climate chamber and the output of the model

ould be the predicted residual limb skin temperature. To test the

redictive capability of a model we developed, the model is first

trained’ on one set of data and then is ‘tested’ on previously un-

een data we collected independently. Finally, the results are com-

ared for its accuracy. 

It is seen from that the skin temperature is dependent on the

mbient temperature. Hence, individual Gaussian process models

nd ANFIS models for the lateral and medial side of the residual

imb were designed, using the principle as described in the previ-

us section for ambient temperatures of 10 °C and 25 °C. 
The actual skin temperature obtained by the ANFIS model is

hown in Figs. 8 and 9 for two very different ambient tem-

eratures of 10 °C and 25 °C, respectively. For both these exper-

ments, done at different ambient temperatures, our predictive

odel using ANFIS provides a simple, effective, and practical ap-

roach to determine the unknown skin temperature of the sub-

ect within the prosthetic device from the actual liner measure-

ents. Both the developed predictive models lead to results which

ave an accuracy of ±0.5 °C. However, this study needs to be

xtended on a greater population in order to define a generic

ehavior. 

. Discussion and test results 

In this study, both the GPML and ANFIS were trained on the

ntire dataset A and tested for predicting the residual limb skin
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a

b

Fig. 9. Predicted residual limb skin temperature from ANFIS model is shown along with the actual skin temperature at lateral and medial sides in (a) and (b), respectively, 

at ambient temperature of 25 °C. The actual measured residual limb temperature is indicated as the checking data whereas the predicted residual limb temperature is the 

FIS output. The output label implies temperature in Celsius. 

Table 2 

Performance comparison of ANFIS and GPML models. 

MAE RMSE 

ANFIS GPML ANFIS GPML 

Training data 0.1427 0.0879 0.1534 0.0910 

Test data 0.07412 0.0946 0.07583 0.102 

 

 

 

 

 

Table 3 

R 2 criteria comparison of ANFIS and GPML 

models. 

Modelling technique R 2 

ANFIS 0.9802 

GPML 0.97 

 

a  

|  

s  

w  

r  

b  

a  
temperature from the liner temperature values of dataset B. The

performance of both the models was compared by the mean abso-

lute error (MAE), root mean squared error (RMSE), and R 2 criteria

are shown in Tables 2 and 3. 

The MAE indicates how close the predictions are to the even-

tual outcomes which is given by 

MAE = 

1 

n 

n ∑ 

i =1 

| f i − y i | = 

1 

n 

n ∑ 

i =1 

| e i | (10)
As seen in Eq. (10) , the mean absolute error can be defined

s the average of absolute errors; the absolute error given by

 e i | = | f i − y i | , where f i is the prediction and y i the true value. It

hould be noted that in MAE, all the individual errors have equal

eight in the average, making it a linear score. In order to have a

eliable statistical comparison between the mathematical models,

oth the MAE and RMSE can be used together to ascertain the vari-

tion in errors in a given set of predictions. Calculation of RMSE
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[  
nvolves squaring the difference between the predicted and corre-

ponding observed values, averaging it over the sample and then

nally taking its average. This can be written as 

MSE = 

√ 

1 

n 

n ∑ 

i =1 

e i 
2 (11) 

RMSE has a quadratic error rule, where the errors are squared

efore being averaged. As a result, a relatively high weight is given

o large errors [15] . This could be useful when large errors are un-

esirable in a statistical model. From Table 2 it can be deduced

hat for the Gaussian model the MAE and RMSE is slightly lower as

ompared to ANFIS. But in order to discriminate between the mod-

ls for their predictive performance, the error metrics should be

apable to differentiate amongst the model results. In this context,

he MAE might be affected by large average error values by ignor-

ng some large errors. The RMSE is generally better in reflecting

he model performance differences [16] as it gives higher weight

o the unfavorable conditions. The difference between the RMSE of

he Gaussian model and ANFIS is not immense and hence both the

odels have comparable performance metrics. 

Another measure of goodness-of-fit of the model is the R 2 cri-

eria. Higher values are indicative that the predictive model fits the

ata in a better way. By definition, R 2 is the proportional measure

f variance of one variable that can is predicted from the other

ariable. Thus ideally the values of R 2 to approach one is always

esirable. However, a high R 2 tells you that the curve came very

lose to the points but in reality it does not always indicate the

odel quality [17] . From Table 3 , both Gaussian and ANFIS models

ave similar R 2 values which are indicators that in both the mod-

ling techniques, the prediction capability is similar. Using the R 2 

riteria in conjunction with the MAE and RMSE, it can be fairly de-

uced that the Gaussian and ANFIS models can be accurately used

or the prediction of residual limb temperature. 

. Conclusion 

This study addresses the challenges of non-invasively measur-

ng the in-socket residual limb temperature by comparing two dif-

erent modeling techniques, namely ANFIS and Gaussian processes.

he temperature profile of the residual limb skin is dependent

n the ambient temperature and the activity level of the sub-

ect. The data obtained at ambient temperatures of 10 °C and 25 °C
ere used to develop an ANFIS model. The results from the AN-

IS model were encouraging. These were compared with the previ-

usly developed Gaussian model. The performance metrics of both

he models indicate that they are very similar in their predictive

bility with an accuracy of ±0.5 °C. However this approach has cer-

ain limitations as well. The residual limb temperature profile will

iffer for every amputee as there are variations in physiological re-

ponses (such as differences in capillary dilatation) and variations

n properties of the skin parameters (such as thickens/composition

f the skin layers). Because of the varying residual limb tempera-

ure profile in individuals, these machine learning algorithms have

o be personalized by training them with individual datasets for

ach of the amputee subjects. This study which was conducted on

ne amputee subject a number of times, verified the success of
roposed approach with an accuracy of ±0.5 °C. Thus, this work

ill be used to figure out the envelope in estimating the statis-

ical power i.e. how many people are needed to make the model

linically significant and will be useful in extending it on a greater

opulation in order to define a generic behavior. Also the tempera-

ure profile of the residual limb is dependent on the ambient tem-

erature; it puts a constraint on drawing up a generalized model

or all ambient temperatures. This could potentially be resolved by

sing interpolation or extrapolation techniques in the model at a

iven temperature to predict the residual limb temperature profile

t another ambient temperature provided that the activity state of

he subject is known. 
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