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Abstract: This paper reviews recent works on the application of nanofibers and nanoparticle
reinforcements to enhance the interlaminar fracture toughness, to reduce the impact induced damage
and to improve the compression after impact performance of fiber reinforced composites with
brittle thermosetting resins. The nanofibers have been mainly used as mats embedded between
plies of laminated composites, whereas the nanoparticles have been used in 0D, 1D, 2D, and 3D
dimensional patterns to reinforce the matrix and consequently the composite. The reinforcement
mechanisms are presented, and a comparison is done between the different papers in the literature.
This review shows that in order to have an efficient reinforcement effect, careful consideration
is required in the manufacturing, materials selection and reinforcement content and percentage.
The selection of the right parameters can provide a tough and impact resistant composite with cost
effective reinforcements.

Keywords: matrix nanomodification; nanofibers; nanoparticles; composites; impact loading;
delamination

1. Introduction

The usage of composite laminates has become more widespread and attracted the interest of
many industries such as marine, automobile and aerospace. The higher strength-to-weight ratio
in comparison with metallic alloys helps to reduce the weight of the automobile or of the aircraft,
consequently improving the fuel efficiency. The usage of composite laminates can decrease the number
of parts in a structure and they may have a longer life cycle compared with metallic components,
which reduces the maintenance and replacement costs.

Currently, the most widely used composite materials are made of thermoset resins, such as
epoxy, phenolic and polyester, which demonstrate great mechanical and good thermal properties.
Despite these valuable properties, due to their low toughness, they tend to be weak, particularly
in the transversal direction when subjected to impact loading [1]. The use of thermoplastic-based
laminates can decrease this drawback significantly [2] as their toughness is much higher than thermoset
polymers. However, the manufacturing cost is higher for thermoplastic composites and they provide
lower stiffness, compared with the reinforced thermosets.

Fiber-reinforced composites are notch sensitive and lose much of their structural integrity when
damaged. Damage can be caused during service and may be introduced by machining of fastener’s
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holes, stress concentrations near designed cutouts, or accidentally dropping tools on the composites.
In-service damage of composite airframes may also result from impact by runway debris, hailstones,
bird strike, ground service vehicles, ballistics, etc. In many instances, the damage caused by such
impacts may be invisible or barely visible on the surface but can significantly reduce the strength of the
composite component. Such damage can cause significant reduction in the compression after impact
(CAI) strength, which is a typical measure of the damage tolerance of fiber-reinforced composites.
Many factors determine the damage resistance and damage tolerance of fiber-reinforced composites.
Among these factors, mechanical properties of fiber and matrix, interface/interphase properties and
fiber configurations play important roles in determining impact damage resistance and damage
tolerance of composites [3].

Up to now, various methods have been suggested to improve the interlaminar strength and the
impact resistance of composite laminates. Some of these strategies are: Z-pinning [4], tufting [5],
3D weaving [6], stitching [7] and matrix toughening [8,9]. The last of these methods has attracted the
researchers’ attention as the others can significantly decrease the in-plane mechanical properties [10,11].
Matrix toughening can be done by adding micro- or nano-sized fillers into the matrix or by interleaving
film, fibers, or particles between the composite layers. In this review paper, the focus will be on the
behavior of toughened composite laminates under impact loading using nano fillers (in the form of
particle or fiber).

A search on Scopus made using the keywords: Nano, impact, composite laminate, shows that at
least 144 papers have been published in this field (Figure 1). As seen in this figure, about 70% of the
papers have been published after 2012.
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Figure 1. Indexed papers in Scopus (12 September 2018) using the keywords: nano, impact and
composite laminate.

This review study is divided into two main parts. In the first part, the effect of different nanofibers
types, such as Nylon66 (NY66), carbon, and Polycaprolactone (PCL) on impact response of laminated
composites are presented. The effectiveness of each type of nanofiber and their toughening mechanism
are also considered. In the second part, laminates toughened by nanoparticles, such as carbon
nanotubes and nano-clay, are reviewed. It is shown that some geometrical factors such as nanofibrous
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mat thickness and impact energies affect the efficiency of the toughening mechanism. The nanoparticles
considered may have 0D, 1D, 2D, and 3D dimensional reinforcing patterns.

2. Composite Laminates Toughened by Polymeric Nanofibers

One of the most promising methods for producing nanofibers is electrospinning which uses
electrical field to produce polymer fibers with diameters ranging from nanometers to micrometers.
The polymers for electrospinning applications can be used in solved or melted forms, however,
the solved form is more common. Generally, an electrospinning machine consists of three main parts:
1—a high voltage power supply, 2—a feeding system like injection pumps, and 3—a collector plate or
a cylinder. Figure 2 shows an electrospinning machine made by SPINBOW company (Italy). Various
factors affect the quality and final configuration of produced nanofibers including: solvent type,
applied voltage, feed rate, distance between the needle tip and the collector, polymer concentration in
the solvent, environmental temperature, humidity and etc. The identification of the best factors is very
important for conducting a fast and optimized process. For instance, there are different solvent systems
for producing Nylon 66 such as pure Formic Acid (FA) [12], mixture of FA/Chloroform [13–15] and
mixture of FA/Trifluoroethanol (TFE) [16–19]. The use of the first two solvents results in a very slow
electrospinning process (about 0.2–0.3 mL/h), while the third one allows a very fast process with about
0.8–1.2 mL/h [16,20].
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Up to now, 34 papers have been published regarding the effect of nanofibers on impact response
of composite laminates. According to Table 1, different types of Nylon (NY) nanofibers have attracted
researchers’ attention more than other nanofibers (with 15 published papers). Shivakumar and his
research group [22–26] applied Nylon 66 nanofibers between carbon/epoxy laminates to study their
behavior under low-velocity impact loading. In the first paper [22], the diameter of the nanofibers
was 65–120 nm and areal density of its mat was 0.7 g/m2. The composite laminates consisted of
24 layers with stacking sequence of [−45/90/45/0]3S. All composite layers were interleaved by
nanofibrous mats. In addition, a layer of nanofabric was placed on the top and bottom surfaces of the
laminate. The results showed that nanofibers could decrease the delaminated area significantly at lower
impact energy levels, but at higher impact energies they found the opposite phenomenon. They also
introduced the concept of “critical force” which corresponds to the damage initiation in the laminate
during impact. The application of nanofibers improved the critical force from an average of 4.5 to
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4.7 kN, representing a 4.4% improvement. CAI tests werw also conducted on impacted laminates which
showed a compression strength improved by 10% in the nanomodified laminates. A similar study was
conducted in [24] in which the areal density of nanofibers was 1.6–2 g/m2, whereas the impact energies
considered were in the range 0.46–1.8 J. The results showed that the presence of nanofibers decreased
the delaminated area considerably. The authors also proved that nanofibers increased the critical force
by about 60%, it reduced the rate of impact damage growth with impact height to one-half, and reduced
the impact damage from 0.115 to 0.105 mm2/N. In [24,25], Shivakumar et al. used the data published
in reference [24] and compared the results with commercial T800H/3900-2 composites interleaved by
Polyamide particles. The results showed that the improvements obtained by applying the nanofibers
were comparable to that of the commercial T800H/3900-2 composites, but with no thickness increase
penalty, no loss of in-plane properties and no multiple glass transition temperatures. Ahmed and
Shivakumar [26] considered the influence of the areal density of nanofibrous mat (0.5, 1.5, and 2.5 g/m2)
on impact response of carbon/epoxy laminates. By applying the thickest mat, total thickness of the
laminates increased by 2.5%. On the other hand, interleaving the laminates improved the critical force
by 8% (using the 0.5 g/m2 mat), 42% (using the 1.5 g/m2 mat), and 45% (using the 2.5 g/m2 mat).
In addition, damage growth rates decreased by 12, 32, and 48%, respectively. The University of Bologna
research group published three papers regarding the impact response of carbon/epoxy and GLARE
fiber/metal laminates interleaved by NY66 [27–29]. In the first study [27], two different nanomodified
configurations were investigated (Figure 3) and their responses were compared with virgin specimens.
Before and after low velocity impact tests, the stiffness, the harmonic frequencies and damping of all
samples were examined to consider the effect of nanofibers on these properties. Scanning electron
(SEM) and optical microscopes were also used to evaluate the toughening mechanism and damages
occurred during the impact. The results of the tests on non-damaged samples proved that the stiffness
and the first harmonic frequency of nanomodified samples were 10% lower, but the damping ratio was
160% higher than the non-modified ones. On the other hand, the post-impact analysis of non-modified
samples showed a decrease in the stiffness and harmonic frequencies, proportional to the impact
energy level. Modified samples presented unexpected effects: Both the stiffness and the first harmonic
frequency increased up to 14% and 12%, respectively, after 6 J impact. The outcomes also showed that
Nano1 configuration (Figure 3) had better damping factor than the virgin and Nano configuration
before impact test, but all these three samples had the same damping effect after impact energies of
6 and 12 J. The SEM pictures also illustrates the toughening mechanism occurred in the NY66-modified
laminates. As the curing temperature of laminates is normally less than NY66 melting point, so the
nanofibers were available with their initial configuration (Figure 4). Therefore, the nanofibers could
make bridge between composite layers and stop the crack from propagation. In the second study, the
research group focused, for the first time, on toughening fiber/metal laminates (GLARE) using NY66.
No nanofibers were put between glass/epoxy layers and only two nanofibrous mats were applied
between aluminum (AL) layers and composite laminate. The results showed that nanofibers could
increase the adhesion strength between AL and laminate, which led to a decrease of the damaged area
between 42% and 62% depending on the impact energy level (Figure 5). Anand et al. [30] used a new
method for producing nanomodified laminates. In this method, the nanofibers were firstly electrospun
on dry glass fibers, then cast resin film was transferred to them. The method is called RFI and more
details about it can be found in [31]. They conducted impact and CAI tests, but only the results of the
second test were reported. According to the outcomes, with an enhancement in the areal density of
nanofibers, an increase in the residual compressive strength was obtained; for instance, about 20%
increase was achieved by applying 0.4 g/m2 of nanofibers. Daelemans et al. [32,33] used NY6 and
6.9 for considering their areal density on impact response (14, 28, 41, 54, 67, 79 J) of glass/epoxy
laminates. The results proved that areal density did not have significant effect on impact parameters
and their efficiency on damaged area was almost similar. In the lower impact energies, the modified
and non-modified laminates had the same delaminated area, but nanofibers could decrease it up to
25% in higher impact energy levels. According to SEM pictures, the toughening mechanisms of NY
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6 and 6.9 is also like NY 6.6 and could increase the strength of laminate against the delamination by
“Bridging” phenomena.
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In addition to the experimental studies, a limited number of papers investigated the impact
response of nanomodified laminates using finite element method (FEM) [18,19,34]. Giuliese et al. [34]
used cohesive elements between composite layers and the effect of nanofiber configuration on
delaminated area was considered. Yademellat et al. [18] conducted the first numerical and experimental
studies on the virgin and NY 66-modified laminates. For the first step, cohesive parameters (K0, σmax,
and G) were obtained by conducting mode-I and mode-II fracture tests on both samples, and then
by simulating them in ABAQUS commercial software. In the next step, by applying “cohesive
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surface” technique and introducing cohesive parameters of the reference and modified samples,
the delaminated area was determined in low-velocity impact tests. By comparing the numerical and
experimental results they showed that the difference was only 0.6% [18], and that the nanofibers could
decrease the delaminated area by 34%. Therefore, it was shown that only by conducting fracture
tests and knowing the mechanical properties of laminates, it is possible to anticipate the behavior
of nanomodified laminates by FEM technique. In another study, Saghafi et al. [19] used the same
numerical method to find the best interleave sequence of nanofibers mats between composite layers.
Of course, the application of nanofibrous mats between all layers would be the best way to decrease
the damage during impact, but since producing and manufacturing nanofibers is expensive and time
consuming, it was suggested to put nanofibrous mats in one half of the composite layers’ interfaces.
In this situation, various strategies were possible: Putting nanofibers between 1—the upper layers
(near impact point), 2—the back layers, 3—the mid-layers and etc. (Figure 6). According to the results,
interleaving between the mid-layers (G or H configuration) was the best position.

Appl. Sci. 2018, 8, 2406 6 of 26 

 

Figure 5. The effect of nanofibers on decreasing damage in GLARE [29]. 

 

Figure 6. Different interleaf sequences used for considering their effect on delaminated area (blue 

areas belong to reference layer and red areas belong to nano-modified layer) [19].

Figure 6. Different interleaf sequences used for considering their effect on delaminated area (blue areas
belong to reference layer and red areas belong to nano-modified layer) [19].



Appl. Sci. 2018, 8, 2406 7 of 26

Table 1. Published paper regarding the influence of nanofibers on impact response of composite laminates.

Ref. Polymer Composite Type Impact Energy Stacking Sequence Curing Temperature

[22,23] NY66
(0.7 g/m2)

Carbon/epoxy
(AS4/3501-6 prepreg) 2.87 J to 13.3 J (−45/90/45/0)3S 177 ◦C

[24] NY66
(1.6–2 g/m2)

Carbon/epoxy
(AS4/3501-6 prepreg) 0.46 J to 1.80 J [0/45/90/−45]2S 177 ◦C

[24,25] NY66
(1.6–2 g/m2)

Carbon/epoxy
(AS4/3501-6 and T800H/3900-2 prepreg) 0.46 J to 0.8 J [0/45/90/−45]2S 177 ◦C

[26] NY66
(0.5, 1.5, 2.5 g/m2 )

Carbon/epoxy
(AS4/3501-6) - - 177 ◦C

[27,28] NY66
(25 µm)

Carbon/epoxy
(Woven) 3, 6, 12 J [0]10 130 ◦C

[29] NY66
(40 µm)

Glass Laminate Aluminum Reinforced
Epoxy (GLARE) 6, 12, 18 and 32 J AL+[0/90]s+AL 120 ◦C

[30] NY66
(0.1, 0.2, 0.4 g/m2)

Glass/epoxy
(Bidirectional) 35 J - -

[32] NY6, PCL
(6 g/m2)

Glass/epoxy
(Unidirectional) 67 J [0/90]2S

24 ◦C (24 h)+
80 ◦C (15 h)

[33] NY6, NY69, PCL
(6 and 12 g/m2)

Glass/epoxy
(Unidirectional) 14, 28, 41, 54, 67, 79 J [0/90]2S

24 ◦C (24 h)+
80 ◦C (15 h)

[34] NY66 Carbon/epoxy
(Unidirectional) 2.1 J [03/906/03] -

[18] NY66 Glass/epoxy
(Unidirectional) 30 J [0/90]5 120 ◦C

[19] NY66 Carbon/epoxy
(plain woven) 40.5 J [[(0/90)/(+45/−45)/(0/90)/

(+45/−45)/(0/90)/(+45/−45)]S]
24 ◦C (24 h)+
80 ◦C (5 h)

[35] PCL Glass/epoxy
(Unidirectional) 24 and 36 J [0/90/0/90]S 150 ◦C (1 h)

[36] Carbon biaxial braided carbon fiber/epoxy - - Room Temp. (24 h)+
100 ◦C (1 h)

[37] Carbon
(1.2% vol. and 1.5% vol.)

Carbon/epoxy
(twill woven) 2.17, 4.34, 6.52, 8.69 J [0/90]18

80 ◦C (4 h)
120 ◦C (2 h)
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Table 1. Cont.

Ref. Polymer Composite Type Impact Energy Stacking Sequence Curing Temperature

[38] Carbon
(10, 20, 30 g/m2)

Carbon/epoxy
(Unidirectional) 2.17, 4.34, 6.52 and 8.9

[0◦2/90◦4/0◦2]S
[0◦2/90◦2/0◦2/90◦2]S

[0◦2/45◦2/90◦2/−45◦2]S

-

[39] Carbon Glass/Polyerster - - Room Temp. (12 h)+
55 ◦C (1.5 h) +70 ◦C (1.5 h)

[40] Carbon Carbon/epoxy
(Prepreg) 10, 20 and 30 J [0]16 80 ◦C (0.5 h) + 120 ◦C (2.5 h)

[41–43] TEOS
(8 g/m2)

Glass/epoxy
(Woven) 7, 15, 23, 31, 39 J [0]10 120 ◦C (2 h)

[44] Epoxy 609 (E-03 609)
and SiC - - - -

[45]
Polyvinylidene fluoride

(PVDF)
39 and 64 µm

Glass/epoxy
(Unidirectional) 5 J [0/90/0/90]S 130 ◦C (1 h)

[46]
Styrene Acrylonitrile

(SAN)
(1 g/m2)

carbon fiber/epoxy
(unidirectional) Izod impact [0]6

Room Temp. (18 h)+
60 ◦C (0.5 h)

[47] polyvinyl alcohol (PVA)
(7.1 g/m2)

carbon fiber/epoxy
(unidirectional) Charpy-impact [0]4

Room Temp. +
80 ◦C (12 h)

[48] polyacrylonitrile (PAN) carbon fiber/epoxy
(unidirectional and woven)

1-Charpy test (2 J)
2-drop-weight impact test (0.6 J)

Woven: [0/90]4
Unidirectional: [0]3, [0]6

25 ◦C (6 h) + 60 ◦C (4 h)



Appl. Sci. 2018, 8, 2406 9 of 26

PCL nanofibrous mat is another possible choice for toughening composite laminates and three
papers were published in this field. Daelemans et al. [32,33] used PCL nanofibers and compared their
effectiveness with PA6 and PA6.9. Their results showed that PCL could decrease the delaminated
area of about 50% which is significantly better than the other two nanofibers. This was due to the
low adhesion between the PA6 and PA6.9 nanofibers and the epoxy matrix causing debonding of the
nanofibers. On the contrary, PCL nanofibers do have a good adhesion with the epoxy matrix resulting
in much better load transfer to the nanofibers. A very important point regarding toughening by PCL is
that the melting point of this polymer is about 60 ◦C. Therefore, if the curing process temperature is
lower than this critical temperature, the nanofibers will be present between the composite layers and
the toughening mechanisms will be similar to the one of NY, i.e., bridging between the layers. On the
other hand, if the curing temperature is higher than the melting point, a heterogeneous morphology
can be observed in which spherical particles of PCL are uniformly dispersed in the continuous matrix
(phase separation) [49] (Figure 7). In Daelemans’s study, the maximum curing temperature (80 ◦C) was
higher than the melting point, but toughening mechanism was “Bridging”. This was due to the fact that
after the first curing stage, the epoxy resin had already reacted to such extent that complete dissolution
of the PCL was prevented during the second curing stage. In the third study, Saghafi et al. [50] cured
the PCL-modified laminates at 150 ◦C. Therefore, phase separation was the toughening mechanism.
Their results showed about 25% improvement, which is less than Daelemans’s outcomes. Therefore,
it can be concluded that the bridging mechanism is more powerful than the other mechanisms in
toughening composite laminates.
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The effect of adding carbon nanofibers (CNF) on impact response of laminates was considered
in eight papers [37–40,51,52]. In almost all these studies, the vapor grown carbon fiber (VGCF)
method was used for the production of the nanofibers. The diameter was between 20 to 150 nm
and length of the nanofiber was 10–200 µm and the nanofibers were mixed with the resin before
manufacturing the composite sample. Parimala and Jabarajb [36] used various percentages of CNF
(0.2%, 0.5%, and 1%) in biaxial carbon braided composites and conducted Izod impact test. CNF were
in the form of nanoparticles and mixed with epoxy before producing the laminate by hand layup
technique. Because of the brittle nature of the carbon fiber, the impact strength slowly increased with
the increase of percentage of CNF (0.2% and 0.5%) and decreased for higher percentage of CNF (1%).
Arai et al. [37] conducted almost the same study and considered the influence of volume fraction
(1.2 vol % and 2.5 vol %) of CNF on absorbed energy, damaged area, CAI elastic modulus, and CAI
strength. The results showed that the damaged area decreased significantly (about 50%) and CAI
strength increased about 1.5 times by the addition of CNF. The same group [38] comprehensively
studied this topic with different stacking sequences of laminates and various fractions of CNF (Table 1).
The interesting point about this research is that CNF was interleaved between prepreg layers (not
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mixed with epoxy before manufacturing the samples). The most important results highlighted the fact
that CNF could decrease the delaminated area up to 90% percent and their effect were significantly
better at higher impact energies. Monto et al. [39] investigated electro-mechanical characterization
of CNF-modified laminates and showed that a variation in the electrical resistance of the laminate
took place in correspondence with the impact induced damage. The impact tests were conducted
several times and each time electrical resistance increased as function of the increase of the damaged
area. The important point is that by raising the fraction of CNT from 0.5% to 1%, the authors obtained
a decrease of the electrical resistance. Oxidized carbon nanofibers (O-CNF) were also applied by
Rahman et al. [40] for toughening CFRP prepreg. One important point which was not considered
by others is the toughening mechanism by CNF. Bridging between epoxy matrix and O-CNFs, and
thus, a better adhesion between them was observed due to crosslink interaction as found by FESEM
investigation of composites (Figure 8). The results showed that the damage area decreased with the
incorporation of O-CNFs at all the impact energy levels (10, 20, and 30 J) and a maximum reduction of
68% in the damage area was obtained at 20 J.
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Figure 8. FESEM micrographs of fracture surfaces in 1.0 wt % O-CNFs incorporated composites
showing nanofibers impregnation and bridging with epoxy [40].

Kelkar and his research group [41–43] proved that the Tetra Ethyl Orthosilicate (TEOS) chemically
engineered glass nanofibers are not suitable choices for toughening laminates. Drop-weight impact
tests showed that the modified laminates had about 9% larger damaged area in comparison with the
unmodified ones [41]. In the second step, they used numerical modeling (by means of LSDYNA)
and compared the outcomes with the experiments [42]. There was good agreement between them in
lower impact energies while the simulated impact loads were smaller than the experimental impact
loads which resulted in a smaller bending stiffness and a weaker laminate in higher impact energies.
Finally, CAI test results were reported in reference [43]. As it is expected, compressive residual strength
was decreased significantly in nanomodified laminate, for instance, a 50% reduction occurred in the
specimens impacted by the higher energies.

There are some other types of nanofibers, such as epoxy 609 [44], Polyvinylidene fluoride
(PVDF) [45], Styrene-acrylonitrile (SAN) [46], Polyvinyl alcohol (PVA) [47], Polyacrylonitrile (PAN) [48],
that were reported only in one paper each. Liu et al. [44] utilized co-axial epoxy 609 and SiC nanofibers
for increasing impact strength of composite laminates. Lateral impact tests were conducted, and
the outcomes showed that the mechanical performances of the composite laminates do not change
remarkably when the interfacial nanofibrous membranes have a proper thickness and a suitable
content of SiC. PVDF nanofibers were the second choice for toughening the laminates, but according
to the results it was not successful enough and could decrease the absorbed energy about 13%. As the
melting point of PVDF is about 170 ◦C and curing temperature is 130 ◦C, the bridging between the
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composite layers is the main mechanism of toughening, similar to PA66. It is worth mentioning that
recently it was proved by Saghafi et al. [21,50] that a curing temperature higher than the melting point
can increase the fracture toughness significantly. Therefore, it was suggested to study the effect of
this method of providing PVDF-modified sample on damaged area under low velocity impact test.
Interleaving composite laminates using SAN nanofibers and investigating its toughening effect was
presented by Esmaeely Neisiany et al. [46]. These results showed that presence of the electrospun
SAN nanofibers could deflect the created microcracks, leading to direct them along more tortuous
paths, and consequently, increasing the resistance of resin rich area to crack propagation. Hence the
microcracks broke away from the SAN nanofibers; they induced kinked fracture surfaces, which
offered more strain energy to be dissipated. In this way, the absorbed energy during impact (Izod
impact test) was increased by 8%. The toughening effect of PVA on composite laminates was studied
by Beylergil et al. [47]. Although this nanofibrous mat had a significant effect on compressive strength,
its effect during Charpy impact test was not so good and could enhance impact strength by about 11%
as compared to those for the unmodified specimens. Molnar et al. [48] interleaved CFRP (Unidirectional
and woven) laminates by PAN nanofibers and cured the sample at 60 ◦C. Therefore, the nanofibers
were available with their initial configuration between composite layers. They conducted various
mechanical tests, but according to topic of this review, the Charpy impact and drop-weight tests are
reported. The results showed that all impact parameters were improved by incorporating nanofibers,
but the effect of nanofibers was higher in unidirectional laminates in comparison with the woven
one during Charpy impact test and the absorbed energy was increased by 31% in woven laminate in
drop-weight impact test.

The decrease of the damaged area is one of the important parameters that can be used as a reference
for finding the efficiency of a nanofiber type. Figure 9 summarizes this parameter for various nanofibers
to understand which nanofibrous mat has the best effect on toughening the laminate during impact.
In the figure, PCL-1 shows the laminates toughened by PCL using “Bridging” mechanism while
PCL-2 presents the other toughening mechanism (Phase separation). As can be seen, the best choice is
applying carbon nanofibers, which is followed by NY66 and PCL-1.
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3. Composite Laminates Toughened by Nano-Particles

Over the past decades, considerable research efforts have been devoted to disperse nanoparticles
into polymeric composites in order to enhance their toughness [53]. As illustrated in Figure 10, a brittle
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polymer (GIC less than 200 J/m2) has more improvement in the fracture toughness of composite,
compared with a tough polymer [54]. For the brittle polymer, the increased toughness in the composite
was attributed to the fiber breakage and pullout that generally accompany composite crack growth.
The low transfer efficiency of resin fracture toughness into delamination fracture toughness, for very
ductile resins, is the result of the constraint on the development of a larger plastic zone in the resin-rich
region between plies by the fibers in the adjacent plies [55].
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Figure 10. Mode I interlaminar fracture toughness of composites and matrix toughness [54].

A positive relationship is reported between the improvement fracture toughness, the increase
of impact performance and the enhancement of the residual strength of composite materials [56],
as the onset and propagation of delamination are largely affected by fracture toughness values of
composite laminates.

This section reviews some recent developments in the use of nanoparticles as additional reinforcing
phases in fiber-reinforced epoxy matrix composites, addressing the effects of nano-modified epoxy
matrices on impact and CAI strength of fiber-reinforced laminates. The behaviors of nanoparticles
strongly depend on the sizes, shapes, dimensionality and morphologies. A highlighted summary
of recent works on improving the toughness and impact performance of composites is shown in
Table 2. Reinforcing nanoparticles are classified into zero-, one-, two- and three-dimensional (3D)
structures [57,58] as exemplified in Figure 11, and the related works are summarized in the following.
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Table 2. Published paper regarding the influence of nanoparticles on fracture toughness and impact response of composite laminates.

Ref. Particle Type Composite Type Test Method Improvement (%) Content

[59] Nanosilica Epoxy Compact tension
ASTM Standard D5045–02 Gc value increased by more than 140% 5 vol %.

[60] Nanosilica Epoxy

Un-notched Charpy
DIN-ISO-179-2

Compact tension
ASTM Standard D5045–02

Kc value increased 78% with 14 vol % (23 wt %).
Impact resistance increased 23% with 3% vol -

[61] Fullerene-like tungsten
disulfide Epoxy

DCB (ASTM D-3433)
T-peel joints (ASTM D-1876)

Charpy impact (ASTM D-950)

Impact strength improved more than 200%.
GC increased by 3 to more than 10 times compared to

neat epoxy.
3 wt %

[62] Aluminum oxide Epoxy Flexural testing ENISO 178 GC increased by 120% 10 vol %

[63] Alumina Nanofillers Epoxy Tensile ASTM D-638
Compact tension ASTM D5045–02 About 50% and 80% increases of KIC and GIC 18.4 wt %

[64] Rubber Carbon/epoxy
DCB (BSS 7273)

ENF (BMS 8-276)
Impact and CAI (BSS 7260)

GIIC improved about 250%
GIC improved about 33%

Impact induced damage area decreased 82%
38%

[65] Nanosilica and
Nano-rubber Carbon/epoxy DCB ASTM Standard D5528 GIC improved about 250% for the nano-rubber particle

GIC improved about 20–30% for the nano-silica 10 wt %

[66] Nano-silica Carbon fiber/epoxy DCB ASTM Standard D5528
ENF

GIC improved about 22%
GIIC improved about 70% 20 wt %

[67] Nanosilica Epoxy The single-edge notch bend (SENB) test
ISO-13586 GIC improved about 360% 13.4 vol %

[68] Rubber and silica
nanoparticles Carbon/epoxy

DCB ASTM D5528,
ENF DIN EN 6034
SENB ISO 13586

The laminate made from the rubber-only resin shows an
increase in GIc, a slight reduction in GIIc and ILSS as well
as a reduction of the delaminated area in impact testing

alongside with an increase in CAI.

5–10 wt %

[69] Nanosilica Glass/epoxy Charpy impact tests

Impact energy and impact toughness were improved by
38.02%, 30.86% for edgewise-notched specimens and

32.83%, 27.1% for flatwise-unnotched specimens,
respectively.

1.5 wt %

[70] Nanosilica Carbon/epoxy Ballistic impact The absorbed impact energy per unit damage area
increased by 90–155%. 25 wt %.
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Table 2. Cont.

Ref. Particle Type Composite Type Test Method Improvement (%) Content

[71]

Powders of aluminum,
gamma alumina, silicon

carbide, colloidal silica and
potato flour

Kevlar/epoxy and AA
5086-H32 aluminum hybrid

Ballistic impact NATO standards using
a caliber 270 Winchester rifle

The highest impact energy absorption capacity was
achieved by deposition of aluminum powder followed be
colloidal silica and silicon carbide powder in that order.

Addition of gamma alumina powder and potato flour has
produced the least effect of enhancing the impact energy

absorption capability of the laminates.

Variable

[72] Carbon nanotubes (CNTs) Carbon/epoxy DCB ASTM D5528-01
Impact

23% decrease in GIC
6% improvement in absorbed impact energy

0.025, 0.05, and
0.1 wt %)

[73] Functionalized
SWCNT Carbon/epoxy Impact, CAI, DCB, ENF

5% reduction of the area of impact damage,
3.5% increase in CAI strength

13% increase in Mode I fracture toughness,
28% increase in Mode II interlaminar fracture toughness

0.1 wt %

[74] Graphene oxide Carbon/epoxy
Glass/epoxy

Impact
CAI ASTM D7137

Improved residual compressive properties, with the glass
fiber laminates showing the highest improvement of 55% 0.3 and 0.5 wt %

[75] Multi-walled
carbon-nanotube (MWCNT) E-glass/epoxy Ballistic impact A relatively small increase in the ballistic-protection

performance -

[76] CNT,
MOS2 Polyimide (PI) composites Izod notched impact strength The impact strength of the composites decreased by 40%

when CNT reached 1%. 1 to 5 wt %

[77] Nanoclay Carbon/epoxy DCB GIC improved about 85%. 4 phr nanoclay
in epoxy

[78] Nanoclay Carbon/epoxy Impact
CAI

Smaller damage area, higher residual strength and higher
threshold energy level. 3 wt %

[79] Nanoclays Kevlar/epoxy Impact
The maximum load increased about 4.5% for laminates
filled by cork, 10.4% for laminates filled by cork/clays

and 16.1% for laminates filled by clays.
1.5 wt %

[80] Nanoclay Glass/epoxy Medium velocity projectile impact A 42% increase of ballistic limit 5 wt %

[81] Nanoclays Kevlar/epoxy Impact Residual tensile strength Impact load and the damaged area increases.
Elastic recuperation and penetration threshold increases 6% wt %

[82] Carbon aerogel Epoxy SENB ISO-13586 The maximum measured GIC value improved 100% 0.3 wt %

[83] Carbon aerogel Carbon/epoxy Impact
CAI ASTM D7137

CAI improved 10%
Impact force 4% 0.3 wt %
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3.1. Zero-Dimensional (0D)

A rich selection of physical and chemical procedures have been developed to fabricate 0D
NMSs with well-controlled dimensions, for instance by in situ sol–gel methods or by polymerization
promoted directly from their surfaces [59,60,84], carbon black [85], fullerene [61], TiO2 and alumina
particles [62,63].

Positive effects of 0-D Nano particulates such as rubber [64], nanosilica [65,66,86–89], carbon
black [90], fullerene [91], and alumina [67] on fracture toughness of composite laminates have been
reported. A localized inelastic matrix deformation in form of shear banding between particles, void
nucleation and growth as well as crack deflection at agglomerates have frequently been cited as the
key mechanisms leading to the increases in fracture toughness. For nano-particulate materials, such
as nanosilica, debonding and subsequent plastic void growth were most likely to be responsible for
the increase in fracture toughness [92]. The nanoparticles were also found to reduce the damage area
and increase the absorbed energy resulting from low velocity impact [64,68,69,90,93,94] and ballistic
impact [70,71,95], with more tangible effects in the ballistic impact compared with quasi-static loading [96].
A higher residual shear strength after impact resulted by the Nano particles modification [70], however,
the ultimate laminate compression strength after impact was not necessarily improved [64,68], most
probably due to agglomerates of nanoparticles found in the cured resin systems. Nanoparticles were also
used for multi-functionality purposes, where they improved the impact performance, and the electrical
resistivity tomography was introduced as an impact damage detection method in composites, due to
conductive nature of the nanoparticles [90].

For 0-D nanoparticles, the localized inelastic matrix deformation such as shear banding between
particles, debonding in the particle/resin interface and subsequent void nucleation, plastic void
growth, nanoparticle-induced dimples, as well as crack deflection at agglomerates (see Figure 12
as an example) were most likely to be responsible for the increase in fracture toughness [60,84,92].
For instance, as shown in Figure 13 the brittle fracture in a pure epoxy was overwhelmed by extensive
plastic deformation in the nano-silica modified epoxy, when subjected to a compact tension test [84].
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Figure 13. SEM micrographs of fracture surfaces near crack tips (a) pure epoxy, and (b) 8 wt %
nano-silica [84].

3.2. One-Dimensional (1D)

1D nanoparticles have stimulated an increasing interest as reinforcing nanoparticles for the research
on toughening in composites. 1D nanoparticles are used in different forms of fibers or tubes such
as double-walled CNTs, multi-walled CNTs [86,97–99], cup-stacked carbon nanotube (CSCNT) [100];
vertically-aligned CNT (VACNT) forest grown directly on fiber surface [101] or on Si substrate and then
transfer-printed onto prepregs [102]; vapor-grown carbon nanofiber (VGCNF) [103,104]; and halloysite
nanotube (HNT) [105,106].

Significant increase was reported using 1-D nanoparticles as reinforcement for matrix-dominated
mechanical properties such as mode-I and mode-II fracture toughness, albeit with substantially varying
degrees [72,73,107–110].

Most of the studies reported a positive effect on low-velocity impact [40,72–74,108,109,111–116]
and ballistic velocity impact energies [75,117]. However, some of the researchers reported no
improvements in the impact and CAI behaviors [118,119], or even a negative effect was reported by
others [76]. These differences were because of the type and content of the nanoparticles and different
manufacturing methodologies that were found to be very important factors in impact performance
of composite materials. Aligned CNTs offer excellent mechanical toughness improvements for
traditional composite laminates, and additionally enable multifunctional capabilities; i.e., to improve
the impact performance (reduced damage area and better CAI) [73,120] and also as a promising damage
monitoring technique of the carbon fiber laminated composites [118,120,121]. The compression strength
and compression–compression fatigue after impact performance was improved [111].
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The reason behind the increase in fracture toughness was linked to the extraordinary high interface
area of the 1-D nanoparticles [97] and the bridging mechanism of the 1-D nanoparticles that suppresses
the growth of nano-pores, as well as the propagation of cracks that contributes positively to the increase
in fracture toughness [67]. Figure 14 shows SEM images of the fracture surfaces of a baseline and
a nano-modified specimen at which micro-cracks and hackles, which are both related to microscale
matrix failure modes are dominant toughening mechanisms involved with Mode II fracture tests [73].
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3.3. Two-Dimensional (2D)

2D nanoparticles have two dimensions outside of the nanometric size range. These layered
particles are in the form of single or multiple layers of sheets such as junctions (continuous islands),
branched structures, nanoprisms, nanoplates, nanosheets, nanowalls, and nanodisks [122]. Fully or
partially exfoliated clays and silicates belong to this family. The effects of 2D nanoparticles on mode-I
and mode-II fracture toughness of composites laminates have been studied mainly with nanoclay and
occasionally by graphene [77,78,123,124].

Better low-velocity impact properties [79,125–132], CAI [74,78], residual tensile strength after
impact [133], post-fire low velocity impact behavior [80,134,135] were reported using nanoclays, with
more effect on low-energy levels [125]. The dispersion of clay in polymer matrix shows considerable
improvement in energy absorption and ballistic limit of the composite laminates [81,133,135,136].
The fracture toughness and the threshold to crack initiation under cyclic loading were also interestingly
improved for the clay modified matrix [127]. Improved toughness and impact behavior was attributed
to the change in the failure mechanisms, that shifted from interlaminar failure to a mostly intralaminar
failure [125] and increased the stiffness and the resistance to damage progression of the nanophased
laminates [137]. The formation of massive microvoids/cracks and the increase of the fracture surface
area due to crack deflection were identified as the major toughening mechanisms in highly exfoliated
epoxy/clay nanocomposites [93]. Figure 15 shows the fracture morphologies after interlaminar shear
tests for a carbon/epoxy laminate modified with nanoclay, indicating a strong adhesion between the
fiber and matrix by adding the nanoclay [78]. High content of nano clay causes agglomeration and
leading towards limiting the improvement in impact resistance [78,138]. So there is an optimal content
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reported for the highest damage resistance and CAI, and the improvement was linked to the transition
of failure mechanisms during the CAI test, from the brittle buckling mode to more ductile, multi-layer
delamination mode [78].

Appl. Sci. 2018, 8, 2406 18 of 26 

adhesion between the fiber and matrix by adding the nanoclay [78]. High content of nano clay causes 

agglomeration and leading towards limiting the improvement in impact resistance [78,138]. So there 

is an optimal content reported for the highest damage resistance and CAI, and the improvement was 

linked to the transition of failure mechanisms during the CAI test, from the brittle buckling mode to 

more ductile, multi-layer delamination mode [78].  

Significant improvement in low-velocity impact performance was noticed for the hybrid 

nanoparticle-reinforced composite samples (hybrid of 1D multi-walled carbon nanotubes and 2D 

nanoclay Nanoparticles) compared with their individual reinforcement [139]. 

 

Figure 15. Photographs of fracture surfaces after an interlaminar shear test for CFRPs composites with 

different clay contents: (a) 0 wt %; (b) 3 wt % and (c) 5 wt % [132]. 

3.4. Three-Dimensional (3D) 

3D nanostructures are important materials owing to the large specific surface area and other 

superior properties arising from quantum size effect. Nanocarbon aerogels are 3D nanoparticles with 

a high electrical conductivity, high porosity, controllable pore structure and high specific surface 

area. Nanocarbon aerogels are used to improve toughness and impact performance of composite 

materials. Significant improvement in the fracture toughness of the relatively low (0.3 wt %) aerogel 

concentration composites are reported [82,140]. The impact and CAI properties of the CFRP laminates 

were improved by adding the Nanocarbon aerogels and an optimum content was reported for the 

best performance [83].  

Crack pinning, crack deflection, and plastic void growth are reported as the mechanisms for the 

toughness improvement of the carbon aerogel/epoxy polymers [82]. These mechanisms are caused 

by the obstruction of crack propagation by agglomerated carbon aerogels (see Figure 16).  

 

Figure 16. FEG-SEM images of the fracture surfaces of a composite with a carbon aerogel content of 

0.5 wt %. The surfaces show (a) crack pinning and (b) crack deflection [82]. 

4. Suggested Research Directions 

Although many papers have been published in the reviewed topic, there are still many 

unanswered questions about the use of nanofibers and nanoparticles as tougheners in composite 

laminates. Here it is a list of future research works that are recommended in this area: 
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Significant improvement in low-velocity impact performance was noticed for the hybrid
nanoparticle-reinforced composite samples (hybrid of 1D multi-walled carbon nanotubes and 2D
nanoclay Nanoparticles) compared with their individual reinforcement [139].

3.4. Three-Dimensional (3D)

3D nanostructures are important materials owing to the large specific surface area and other
superior properties arising from quantum size effect. Nanocarbon aerogels are 3D nanoparticles
with a high electrical conductivity, high porosity, controllable pore structure and high specific surface
area. Nanocarbon aerogels are used to improve toughness and impact performance of composite
materials. Significant improvement in the fracture toughness of the relatively low (0.3 wt %) aerogel
concentration composites are reported [82,140]. The impact and CAI properties of the CFRP laminates
were improved by adding the Nanocarbon aerogels and an optimum content was reported for the best
performance [83].

Crack pinning, crack deflection, and plastic void growth are reported as the mechanisms for the
toughness improvement of the carbon aerogel/epoxy polymers [82]. These mechanisms are caused by
the obstruction of crack propagation by agglomerated carbon aerogels (see Figure 16).
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4. Suggested Research Directions

Although many papers have been published in the reviewed topic, there are still many
unanswered questions about the use of nanofibers and nanoparticles as tougheners in composite
laminates. Here it is a list of future research works that are recommended in this area:
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1. Studying the influence of nanofiber interleaving in high-velocity impact response of
laminated composites.

2. Some papers have shown that thermoplastic polymers like Phenoxy and Polysulfone (PSF) [141,
142] are suitable choices for toughening epoxy-based laminates, but more work needs to be done
on these polymers.

3. The effect of geometrical features of nanofibers and nanofibrous mats, such as nanofiber
orientation, on the impact response of nano-modified laminates should be investigated.

4. To achieve practical applications of nanoparticle reinforced composites, a number of technical
issues need to be solved, including the uniformity of the dispersion and the alignment of the
nanoparticles, to avoid morphological changes like re-agglomeration [143], the optimal interface
between nanoparticles and matrix, and the viscosity of nanoparticle-modified matrix resins for
ease of fabrication of high fiber volume fraction (>60 vol %) composites.

More studies are finally needed regarding the reinforcement of composite laminates with hybrid
particles (mix of micro- and nano-scales) to obtain synergetic effects in toughening, strengthening or
even multi-functionality such as sensing and shielding.

5. Conclusions

In this paper, the effect of nanomaterials including nanofibers and nanoparticles on impact
response of composite laminates is considered. The following conclusions can be drawn from the
reviewed papers:

• Electrospun nanofibers are suitable choices for toughening thermoset based laminates. Various
types of polymers have been applied for interleaving composite laminates including NY6,66,69,
PVDF, PCL, Carbon.

• Each nanofiber type has its specific mechanism for toughening laminates; for instance, NY
activates bridging mechanism while PCL utilizes two different mechanisms depend on curing
temperature. If PCL melts during the curing process, the phase separation mechanism
predominant; if not, the bridging between the composite layers is the main mechanism
of toughening.

• According to the published results, Carbon, NY66, and non-melted PCL are the best choices for
toughening the laminates.

• A positive effect of nanoparticles to enhance interlaminar fracture toughness, impact performance
and CAI strength of composite laminates is reported, especially for brittle resin systems.

• There is a higher improvement in interlaminar shear values (GIC and GIIC) compared with
the impact and CAI behavior. On the other hand, some authors reported a negative effect of
the nanoparticles on impact and CAI, which was mainly related to insufficient solvent of the
nanoparticles in the resin that led to agglomeration of the nanoparticles.

• Manufacturing methods, reinforcement content and type, material property and many other
parameters are affecting the performance of nanoparticle modified composites. Therefore, careful
consideration must be done when choosing these parameters to target desired properties.
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