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Abstract 

In this study the effect of strain rate in tension on two different types of thin-ply pseudo-ductile 

laminates is reported. These comprised Unidirectional (UD) and quasi-isotropic (QI) hybrids 

made from low strain thin-ply carbon/epoxy and high strain glass/epoxy prepreg and all-carbon 

laminates made from thin-ply [±ϴ/0]s laminates referred to as angle-ply (AP) composites. 

Laminates were designed and subjected to a range of cross-head speeds from 2 mm/min 

(0.0003 s-1) to 10 m/s (100 s-1). The designed laminates were made from single or hybrids of 

low strain and high strain unidirectional prepregs, i.e. thin-ply Carbon/epoxy and Glass/

epoxy, respectively. Dynamic stress–strain plots and details of the damage mechanisms were 

obtained for each sample and compared with the quasi-static test results. The investigated 

thin-ply UD and QI hybrid composite laminates showed excellent pseudo-ductility at 

different strain rates, whereas the AP laminates were strain rate dependent and pseudo-

ductility decreased with increasing strain rate. 
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1. Introduction

Nowadays, the use of polymer-matrix composites is increasing very rapidly due to their 

superior specific structural properties. However, these materials have a sudden brittle failure 

with a linear elastic response and little warning before failure. This drawback leads to a costly 

overdesign of composite structures.  

Hybridisation of different types of fibres has been found to be a promising method to introduce 

gradual failure and avoid sudden failure in composite materials [1–5]. Nonlinear pseudo-

ductile stress–strain responses, i.e. metal-like behaviour with distinguishable elastic and 

pseudo-plastic regions, were reported [6-9] for unidirectional (UD) and quasi-isotropic (QI) 

hybrids made of different types of low strain (glass/epoxy) and high strain (carbon/epoxy) 

prepregs, when subjected to quasi-static tensile loading condition. This pseudo-ductility was 

achieved by suppressing the catastrophic delamination and introducing damage mechanisms of 

(i) low strain material failure/fragmentation, (ii) stable delamination, and (iii) high strain 

material failure. Material properties, proportion and absolute thickness of the low strain fibre 

plies are the design parameters to achieve pseudo-ductile UD hybrids. The performance of the 

pseudo-ductile QI layups was influenced not only by the UD laminates’ design parameters but 

also by the stacking sequence of the plies [9].  

Reorientation of the fibres was used as another approach to produce a pseudo-ductile stress-

strain behaviour [10-11]. The investigated composites consisting of off-axis and unidirectional 

thin-ply carbon-fibre reinforced plastic (CFRP) prepregs, arranged as [ϴm/0n]s layups, showed 

a metal-like non-linear stress-strain behaviour under quasi-static tensile loading [11]. This 

behaviour is governed by the gradual failure, via fibre fracture of the central 0-plies and fibre 

rotation of the off-axis plies. Key parameters of these stress-strain curves, such as laminate 

modulus, pseudo-ductile strain and strength can all be controlled by adjusting the fibre type, 

the ratio of angle-ply (AP) to 0 layers and the AP fibre orientation. This gives a certain degree 



of flexibility to the performance, giving the potential for a wide range of applications where 

gradual, stable, rather than sudden, catastrophic failure is paramount. 

The response of the pseudo-ductile hybrid and AP laminates under quasi-static loading has 

been well defined, but in order to design robust and reliable structural components, it is 

essential to understand the strain rate-dependence of these pseudo-ductile composites. This 

is particularly important for laminates containing APs, as the relatively highly loaded 

epoxy matrix is rate dependent and has been shown previously to affect the stress-strain 

response of the composite [12, 13]. 

Shokrieh and Omidi [14] did tensile tests on unidirectional glass/epoxy composites at 

different strain rates, from 0.001 to 100 s−1, and reported increases in tensile strength, 

modulus, strain to failure and absorbed energy of 52%, 12%, 10% and 53%, respectively. A 

similar trend was observed for glass/epoxy composites in another study [15]. On the other 

hand, tensile tests by Taniguchi et al. [16] on unidirectional carbon fibre reinforced plastics 

under a high strain rate, from 0.001 to 100 s−1, demonstrated that the tensile modulus and 

strength in the longitudinal direction are independent of the strain rate. This is the same 

tendency as that observed in the study by Harding and Welsh [17]. There are only a few 

studies on the strain rate effect of glass-carbon/epoxy hybrid composites [18-19]. The 

combination of these two fibres in conventional hybrids has been found to be strain rate 

sensitive, due to the rate sensitivity of the glass fibres, with increased stiffness at higher strain 

rates [20-21]. 

Angle-ply carbon/epoxy and carbon/S-glass/epoxy laminates/tubes, with [±15]2s, [±22.5]2s, 

[±30]2s, [±45]2s, [±60]2s, [±67.5]2s and [±75]2s layups, were characterized in pure uniaxial 

tension (for laminates) and internal pressure (for tubes) at strain rates ranging from quasi-static 

to over 500s-l [22]. In all the case studies, the modulus and strength increase with strain 

rate, however, ultimate strains did not show any significant trends with strain rate. The 

effect of 



strain rate varies with layup, being lowest for the fibre dominated [±15]2s laminates and 

highest for the matrix dominated [±75]2s laminates.  

Similar results were presented by Weeks and Sun [13] following high strain rate tensile testing 

of [±30]16s and [±15]2s carbon/PEEK specimens. In both cases, the laminates displayed higher 

strength and modulus with increasing loading rate (1 x 10-5 s-1 to 1000 s-1). More 

recently, tension and compression testing of [±45]4s carbon/epoxy (IM7/8552) specimens 

was carried out by Cui et al [23] to establish the rate-dependence of the in-plane shear 

response. A large increase in initial modulus and shear stress – prior to the onset of 

significant non-linearity – was demonstrated when the strain rate was increased from 5 x 

10-4 s-1 to 1300 s-1. This behaviour was displayed for both tension and compression. The 

paper also reports that fibre rotations occur at both strain rates and were incorporated into 

the calculation of shear stress-strain accordingly.  

This paper studies the effect of strain rate in tension, ranging from 2 mm/min (0.0003 s-1) to 

10 m/s (100 s-1), in a comprehensive set of tests on pseudo-ductile thin-ply composite 

laminates. These comprised UD and QI hybrids made from low strain thin carbon/epoxy and 

high strain glass/epoxy prepreg and also all-carbon laminates made from thin-ply AP [±ϴ/0]s 

laminates. The results showed that the UD and QI hybrid composite laminates have excellent 

pseudo-ductility at different strain rates. The AP laminates are found to be strain rate 

dependent, with excellent pseudo-ductility in quasi-static loading and a reduction of pseudo-

ductility with increasing strain rate.  

2. Experimental procedures

2.1. Materials and specimen design 

As listed in table 1, the materials considered in this study were thin carbon prepregs provided 

by Skyflex and North Thin Ply Technology, and conventional standard thickness glass prepreg 



provided by Hexcel. The resin systems could all be cured at 120 oC, making them compatible 

in manufacturing and chemical terms. Good integrity of the hybrid laminates was confirmed 

during test procedures and no phase separation was observed on cross sectional micrographs. 

Table 1: Characteristics of the prepregs and fibres applied. 

Prepreg type S-

glass/epoxy 

USN020A 

(T300/epoxy) 

USN020 

(TC35/epoxy) 

UIN020 

(MR60H/epoxy) 

ThinPreg120EPHTg-

402 (M55J) 

Fibre modulus 

E (GPa) 

88 230 240 290 540 

Fibre failure 

strain (%) 

5.5 1.5 1.67 1.9 0.8 

Cured nominal 

thickness (mm) 

0.155 0.029 0.022 0.027 0.032 

Fibre volume 

fraction (%) 

50 43 50 48 51 

Provider Hexcel Skyflex Skyflex Skyflex North TPT 

Information about the investigated specimen types and lay-up sequences are provided in Table 

2. Four types of UD hybrids, one type of QI hybrid and three types of AP laminates were

investigated. The UD- G/4C (with a pre-cut)/G configuration has a pre-cut perpendicular to the 

fibre direction in the T300 carbon layers to study the effect of strain rate on mode II 

delamination. The AP-[±266/0]s layup consisting of Skyflex USN020, AP-[±204/0]s, and AP-

[±22,53/02/22.53]s, both comprising Skyflex UIN020 for the ±θ plies and North Thin Ply 

Technology ThinPreg120EPHTg-402 for the 0° plies. 

Table 2: Layups of the investigated laminates. 



Type Specimen name Layup Thickness 

(mm) 

Number of 

samples (2 

mm/min) 

Number of 

samples 

(2.5m/s) 

Number of 

samples (5 

m/s) 

Number of 

samples (10 

m/s) 

UD UD-G/2C/G  [0S-glass/0C-T300/0C-T300/0S-glass] 0.368 5 - 4 4 

UD UD-G/3C/G [0S-glass/0C-T300/0C-T300/0C-T300/0S-glass] 0.397 5 - 4 4 

UD UD-G/4C/G [0S-glass/0C-T300/0C-T300/0C-T300/0C-

T300/0S-glass] 

0.426 5 - 3 4 

UD UD- G/4C(with a pre-

cut)/G  

[0S-glass/0C-T300/0C-T300/0C-T300/0C-

T300/0S-glass] 

0.426 5 - 4 4 

QI QI [60S-glass/-60S-glass/0S-glass/0C-T300/60C-

T300/-60C-T300]s 

1.104 5 - 2 3 

AP AP-[±266/0]s [±266C-TC35/0 TC35]s 0.572 3 3 3 3 

AP AP-[±204/0]s [±204C-MR60/0C-M55]s 0.396 3 3 3 3 

AP AP-[±22.53/02/22.53]s [±22.53C-MR60/02C-M55/±22.53C-MR60]s 0.616 3 3 3 3 

The layups were chosen using appropriate values of relative thickness (i.e. proportion of the 

low strain fibre plies) and absolute thickness of the carbon fibre plies to suppress catastrophic 

delamination and to obtain three different damage modes of (i) low strain material 

failure/fragmentation, (ii) delamination, and (iii) high strain material to generate pseudo-

ductile response [7-8]. The UD, QI and AP laminates were designed using the damage 

mode map developed for pseudo-ductile composites [7] to predict their damage 

mechanisms in quasi-static tension. As an example, the damage mode map with calculated 

boundaries between the different regions is illustrated in Figure 1, for the investigated UD 

specimens by considering GIIc=1 N/mm. Regarding the damage mode map of the QI and 

AP laminates, the multi-directional glass and carbon sub-laminates were assumed to be 

homogenised before crack development. Cracks are assumed to propagate through the 

thickness of the whole carbon/ epoxy laminate. The failure strain of the homogenised 

materials is assumed to be equal to the fibre failure strain of the 0° layers. This is an 

acceptable assumption as the stiffness reduction in the deterioration process of the 

homogenised QI laminate is mainly due to 0° carbon layer 



fragmentation. Although this assumption may not be completely accurate due to hybrid effects, 

it is a reasonable basis to design the configurations. 

Figure 1. Pseudo-ductile strain and failure mechanisms for the investigated UD specimens, n is the number of 

carbon layers in the UD configurations (G/Cn/G) 

2.3. Specimen manufacturing 

All the laminates were manufactured via hand layup and autoclave cured as per their resin cure 

cycles, all having a 120 °C to 125 °C recommended cure temperature by the suppliers. The 

cured samples were examined using microscope and no phase separation/delamination was 

observed. Specimens were cut using a diamond-coated cutting wheel. End tabs made of 2 mm 

thick woven glass/epoxy plates, supplied by Heathcotes Co. Ltd., were bonded to the specimens 

using a two component Araldite 2000 A/B epoxy adhesive supplied by Huntsman, cured for 

120 minutes at 80 oC. The nominal specimen dimensions for the specimens were 240/160/16/h 

mm overall length/free length/width/variable thickness, respectively. 

2.4. Test procedure 



Quasi-static testing of the hybrid laminates was performed under uniaxial tensile loading and 

displacement control using a crosshead speed of 2 mm/min on a computer controlled 

Instron 8801 type 100 kN rated universal hydraulic test machine with wedge-type hydraulic 

grips. For better resolution in the expected load range, a 25 kN load cell was attached and 

used for the measurements. The reason for choosing 2mm/min was to obtain quasi-static 

behavior of the investigated samples and to compare this behavior with their high strain rate 

behaviors. 

The high-speed tests, run at the strain rates indicated in Table 2, are performed using an 

Instron VHS 1000, servo-hydraulic test machine, as shown in Figure 2a. The required 

cross-head displacement speed is achieved by suddenly releasing, through proportional valves, 

pressurised oil into the actuator. To mitigate the inertial effect, a slack adaptor is placed 

between the specimen and the actuator allowing the required cross-head displacement speed 

to be achieved before loading the specimen, as shown in Figure 2b [22]. 

The load was recorded with a 100kN Kistler 9071A washer type piezoelectric load cell 

attached to the crosshead and coupled with a Kistler Type 5011B charge amplifier. 

Imetrum video extensometry was used to record strain for the quasi-static tests, whereas all 

strain field data was recorded using stereo DIC during high strain rate testing. The DIC was 

performed using a Photron SA-Z camera, fitted with a LaVision Image Doubler that allows 

stereo images to be captured by a single sensor via mirror and prisms systems. Details about 

the measurement are provided in Table 3. As a uniform strain field is expected over the 

specimen surface the strain is calculated as the average of the strain over the whole specimen 

surface. 

It is worth noting that the high rate of the test, coupled with the desire to image the entire 

specimen that necessitated a frame rate of only 20 kHz (Table 3), limits the number of 

data points captured by the DIC from initial loading to specimen failure. This can lead to 

apparent fluctuations in the load-displacement response. Despite these limitations, the data 

acquired 



gives an adequate representation of the response of each specimen, which when considered 

alongside the image analysis and X-ray CT scanning provides a useful dataset.  

Table 3: Digital Image correlation measurement properties 

Technique Digital Image Correlation 

Software DaVis 8.3.1 

Subset Size 27 x 27 pixels 

Step Size 7 pixels 

Camera Photron SA-Z, 8-bit 

Lens Nikon Nikkor - 50 mm f/1.4D 

Filters LaVision Image Doubler 

Resolution 473 x 1032 pixel 

Field of View 80.36 x 175.33 mm 

Frame Rate 20 kHz 

Spatial Resolution 1.19 mm 

Strain Resolution 298 με 

Figure 2: a) The SA-Z camera, with image doubler fitted. b) The slack adaptor is shown, 

detailing the high-pressure cylinder that accelerates the crosshead. 



3. Results and discussion

The results are presented in two parts. The first part presents stress-strain behaviour of each 

configuration at different strain rates. The observed failure modes, microscopy and CT-scans, 

for the different configurations and strain rates are summarised in the second part. 

3.1. Mechanical results 

3.1.1. UD and QI samples 

Figure 3 shows the in-plane tensile stress–strain results obtained for the UD specimens under 

quasi-static strain rate. The stress-strain curves show the desired pseudo-ductile behaviour with 

a linear elastic region, an obvious plateau and a second rising region. In the case of UD-G/2C/G 

and UD-G/3C/G specimens, the plateau was due to progressive fragmentation of the carbon 

plies and dispersed delamination of the carbon/glass interface, along the entire gauge length, 

after the strain reached the strain to failure of the carbon. For the UD-G/4C/G specimens, the 

plateau was caused by progressive delamination of the carbon/glass interface. After the plateau, 

once fragmentation and/or delamination were fully saturated, the stress started to increase and 

the contribution of the carbon plies to the specimen stiffness was diminished and the glass plies 

carried most of the load. During the second rise, for the UD-G/2C/G and UD-G/3C/G, the glass 

layers carry most of the increase in load due to saturation of the fragmentation and 

delamination, and for the UD-G/4C/G the glass carries all the load as the carbon layers have 

fully delaminated from the glass. By increasing the number of carbon layers, the initial elastic 

modulus increases, whereas the yield strain/stress and maximum strain/stress show a 

decreasing trend. With the different number of carbon layers, as a result of the hybrid effect, 

the carbon plies started to fragment at different strain levels. The thinner ones have a higher 

strain due to constraint as discussed in [25] by Wisnom et al. The existence of the pre-cut did 

not have a significant effect on the UD-G/4C/G specimens’ mechanical behaviour. This is 



because the stress level for the initial carbon ply tensile failure is lower than the stress level for 

delamination initiation from the pre-cut. The load drops after the start of the plateau and the 

steady drop in stress, particularly obvious on the lower green trace on Fig. 3, are because of 

delaminations happening after fragmentation.  

Figures 4 and 5 compare the stress–strain results of the UD and QI samples when subjected to 

different strain rates. For the quasi-static loading condition, a pseudo-ductile stress-strain curve 

similar to the UD samples is observable for the QI samples loaded. Some minor damage, i.e. 

matrix cracking in the off-axis layers, causes a slight non-linearity in the initial slope of the QI 

samples under the quasi-static loading, as shown in Figure 5. 

A slightly longer plateau was observed, when comparing the UD-G/3C/G and UD-G/4C/G 

with the UD-G/2C/G and QI laminates stress-strain curves. This is because of the higher energy 

release rates of the UD-G/3C/G and UD-G/4C/G resulting in more delamination compared to 

the other specimens. Both specimen types show stress–strain curves with small load drops at 

the beginning of the plateau immediately after the first fracture in the carbon layer. 

The overall stress–strain response of the high strain rate tests is relatively similar to the quasi-

static results (Figures 4 and 5). The stress–strain trend is approximately linear elastic up to the 

knee point followed by an obvious plateau and a second rising part. The high scatter can be 

explained taking into consideration the relatively low sampling frequency that led to obtaining 

only sparsely populated stress-strain curves. In addition, the dynamic response of the load cell 

and of the slack-adaptor/specimen assembly, caused the periodic fluctuations in the load signal 

observable in Figures 4 and 5 [24]. 

The mean values of the experimental results are summarised in Table 4. For the high strain rate 

tests, the calculated results are obtained from the laminates that experienced complete cross-

sectional failure. The quasi-static tests were stopped when the glass fibres started to split from 

the edge of the samples.  



Generally, as the strain rate increases, there is a strain hardening, so there is an increase in the 

initial elastic modulus, max-strain and max-stress. It should be noted that the high strain rate 

data, for all the investigated samples, contains an amount of scatter that makes it difficult to 

draw any conclusions regarding the percentage of failure strain for the carbon layers (yield 

strain) and pseudo-ductile strain values. 

Figure 3. Quasi-static tensile test results for the UD specimens, feed rate=2 mm/min. 



Figure 4. Tensile test results for the UD specimens at different strain rates 

Figure 5. Tensile test results for the QI specimens. 



Table 4. Summary of the results. 

* Just one sample was used for the calculations.

Specimen type Nominal Strain 

Rate [s-1] 

Initial elastic modulus (GPa) Max-strain (%) Max-stress (MPa) 

UD-G/2C/G 0.00032 52.50±0.1 3.50±0.20 1,260±20 

50 56.30±2.6 4.40±0.18 1,523±30 

100 58.80±2.5 4.82±0.19 1,692±50 

UD-G/3C/G 0.00032 56.50±0.5 3.40±0.22 952±40 

50 70.05±15.0 5.07±0.38 1,334±48 

100 76.45±8.5 3.95±0.31 1,444±33 

UD-G/4C/G 0.00032 57.60±0.5 3.20±0.25 900±35 

50 64.10±7.5 3.96±0.90 1,223±155 

100 70* 4.15* 1,316* 

UD- G/4C(with a 

pre-cut)/G  

0.00032 57.60±0.5 2.66* 846* 

50 64.70±9.5 4.42±0.23 1,286±85 

100 76.70±15.0 3.96±0.24 1,215±110 

QI 0.00032 23.50±0.1 3.5±0.10 504±18 

50 23.70±0.1 3.8±0.26 585±32 

100 23.80* 4.23* 655* 

3.1.2. AP samples 

The test results from each AP configuration are illustrated in Figure 6 at different strain rates. 

Unlike the UD and QI samples, the AP samples showed strain rate dependent trends.  

3.1.2.1. AP-[±266/0]s 

For this layup the quasi-static tests produced a considerable pseudo-ductility, as detailed in 

Figure 6. Key parameters of the behaviour are given in Table 5. Figure 6 shows clearly that the 

total amount of pseudo ductility was dramatically reduced at the high strain rates. Initial stress-

strain responses are similar but overall the specimens retained stiffness and exhibited 



considerably higher strengths, with limited non-linearity. The modulus and strength increased 

by 20% and 30% respectively from the quasi-static to 100s-1 strain rate. For strain rates of 50 

s-1 and 100 s-1, the stress-strain behaviour is predominantly linear, which means it is difficult

to say with certainty if fragmentation took place prior to failure. This is unlikely for specimens 

#8 and #9, as the stress-strain curves are linear to failure.   

3.1.2.2. AP-[±204/0]s

As shown in Figure 6, the quasi-static results showed a consistent pseudo-ductility from the 

AP-[±204/0]s specimens. The rate dependence of the specimens resulted in progressively lower 

pseudo-ductile strain with the increase in strain rate (see Figure 6.). A key result is the effect 

of the strain rate on the initial modulus. Unlike the AP-[±266/0]s configuration, after an increase 

in the initial modulus from the quasi-static strain rate, there is no meaningful change for all 

further increases in strain rate. This is likely caused by the use of high modulus fibres for the 

0° plies, coupled with the low strain values in the angle-ply layers that will limit non-linearity 

in those plies. There is a large mismatch in modulus between the M55J and MR60 fibres and, 

as such, the M55J fibres dominate the initial response of the laminate. This, coupled with the 

insensitivity of carbon fibres to strain rate effects,  means that the rate dependency of the off-

axis plies in the AP-[±204/0]s specimens are much less than those in the AP-[±266/0]s 

specimens.  

3.1.2.3. AP-[±22.53/02/±22.53]s 

The results for the AP-[±22.53/02/±22.53]s laminate, Figure 6, are similar to those seen for AP-

[±204/0]s with similar fibres. In this case, the ±22.53 fibres lead to a lower level of max-strain 

for the quasi-static strain rate. The same trend of reducing pseudo-ductility with increasing 



strain rate is seen again, though in this case the pseudo-ductility is not cut so drastically. 

Unexpectedly, the highest strain rate of 100 s-1 displays more pseudo-ductility than the 50 s-1 

rate. Importantly, however, neither of these strain rates causes the same level of non-linearity 

as the specimens tested at 25 s-1. The stress-strain response, Figure 6, shows a large reduction 

in modulus at the initiation of fragmentation, which is followed by a section of further loading 

up to failure at a mean strength of 1005MPa. It should be noted that there is a significant amount 

of stress fluctuation in the response of the 25 s-1 specimens following the onset of non-linearity. 

As discussed in Section 2.4, this is considered to be an artefact from the testing machine, the 

dynamic nature of the test and the low number of data points captured by the DIC.  

Across all the AP specimens, the strains to failure at high rates were considerably less than 

observed for the quasi-static tests. The rate dependence of the epoxy resin is thought to 

contribute to this phenomenon via an increased shear stress in the angle plies. This change in 

the shear response of the off-axis plies directly affects the behaviour of the laminate as a whole. 

The shear stress developed in the AP layers is linked to the off-axis angle – a larger fibre angle 

leading to higher in-plane shear stresses. At quasi-static rates, the shear stress is relatively low 

until after fragmentations and dispersed delaminations develop and fibre rotations occur. This 

means that the fibre angle mainly contributes to the final failure of the fully fragmented 

laminate. The demonstrated rate sensitivity means that the AP layup optimal for quasi-static 

loading may not the best option for a high strain rate condition.  



Figure 6: Typical stress-strain results for the tested AP specimens at each nominal strain rate. 

Table 5: Experimental values for key parameters of all the AP specimens. 

* Just one sample was used for the calculations.



Specimen type Nominal 

Strain Rate [s-

1] 

Initial elastic modulus (GPa) Max-strain (%) Max-stress (MPa) 

AP-[±266/0]S 0.00032 45±1 4.24±0.06 838±16 

25 47±2 2.50±0.14 949±24 

50 51±1 2.35±0.17 1019±24 

100 54±2 2.49±0.25 1098±27 

AP-[±204/0]S 0.00032 105±1 2.03±0.06 1262±33 

25 112* 1.62* 1291* 

50 112±2 1.31±0.05 1036±24 

100 114±1 1.09±0.03 1104±18 

AP-[±22.53/02/22.53]S 0.00032 100±2 2.29±0.19 1040±43 

25 112* 1.44* 1005±26 

50 110±1 1.24±0.06 911±8 

100 115±2 1.50±0.15 1034±26 

3.2. Damage mechanisms 

To aid understanding of the damage evolution and eventual failure process of the investigated 

laminates, high and low speed imaging (camera pictures), microscopy and X-ray computed 

tomography were performed. The results are summarised below. 

3.2.1. UD and QI samples 

The observed failure mechanisms in high-strain tests, captured using high speed videos, show 

a similar pattern to quasi-static. These damage mechanisms, i.e. dispersed fragmentation and 

dispersed delamination, are observable on the specimens’ surfaces from Figures 7 to 11. The 

delaminated back surface of the glass layer blocked the visibility of the carbon, therefore, the 



fragmentation cracks and the delaminated nearby region were visible through the translucent 

glass ply.  

The damage evolution of the UD-G/2C/G, UD-G/3C/G and QI laminates is similar to each 

other: initially the carbon fibres started to fragment just before the first smooth knee in the 

stress-strain graphs (Figures 4 and 5). This is followed by a plateau region caused by the stable 

progressive carbon plies fragmentation and localised delamination of the fragmented carbon 

plies.  

For the UD specimens with four plies (with cut and without cut) subjected to quasi-static strain 

rates, Figures 9a and 10, due to the higher energy release rate, the first carbon fragmentation is 

followed by a load-drop and progressive delamination growth, i.e. the pull-out of the carbon 

layers without further fragmentation, this translates into a slightly decreasing plateau on the 

stress-strain curves of Figure 3. The UD-G/4C/G specimens with the pre-cut (see Figure 10) 

did not show a difference in damage mechanisms as they did not delaminate from the cut. From 

this figure, it seems that a carbon layer failure occurred underneath the black painted area close 

to the grips. This could potentially be due to a small material imperfection at that cross section. 

The grip pressure was identical for all the quasi-static samples and there were no end tab 

failures or glass failures in the end tabs. 

By increasing the strain rate, the damage mechanisms for the UD-G/4C/G laminates were 

slightly different (see Figure 9). A progressive delamination growth with limited fragmentation 

was observed for the quasi-static tests, whereas more carbon ply fragmentations were observed 

for the high strain rates. This is consistent with the damage mode map prediction (Figure 12.), 

where by increasing the strain rate, mode II interlaminar fracture toughness increases, so the 

damage mode changes from overall delamination to stable fragmentation/localised 

delamination. Figure 11 shows some pictures taken from the broken QI samples after the quasi-



static and high-strain rate tests. A similar damage pattern, i.e. dispersed fragmentation and 

dispersed delamination, was observed for these applied strain rates.  

Figure 7. The load–time response of a typical UD- G/2C/G specimen, a) feed rate=2 mm/min, b) feed rate=5 

m/s, and typical appearance of its damage phases (Dark areas show bonded, light areas show damaged 

glass/carbon interface through the translucent outer glass layer). 



 

Figure 8. The load–time response of a typical UD- G/3C/G specimen, a) feed rate=2 mm/min, b) feed rate=5 

m/s, and typical appearance of its damage phases (Dark areas show bonded, light areas show damaged 

glass/carbon interface through the translucent outer glass layer). 

 



 

Figure 9. The load–time response of a typical UD- G/4C/G specimen, a) feed rate=2 mm/min, b) feed rate=5 

m/s, and typical appearance of its damage phases (Dark areas show bonded, light areas show damaged 

glass/carbon interface through the translucent outer glass layer). 

 



 

Figure 10. The load–time response of a typical UD- G/4C (with a pre-cut)/G specimen, feed rate=2 mm/min, 

and typical appearance of its damage phases (Dark areas show bonded, light areas show damaged 

glass/carbon interface through the translucent outer glass layer). 

 

 

Figure 11.  Pictures from a QI specimen a) Before loading, no matrix cracking and fragmentation 

b) 2 mm/min and top surface, c) fragmentation pattern in the 0 carbon layer at 2 mm/min, d) feed rate=5 m/s, 

top surface, e) fragmentation pattern in the 0 carbon layer at feed rate=5 m/s. 

 



 

Figure 12. Distribution of pseudo-ductile strain for the investigated specimens at two different mode II 

delamination interlaminar fracture toughness, n is the number of carbon layers in the UD configurations. 

 

3.2.2. AP samples 

3.2.2.1. Microscopy 

Samples were taken for microscopy from tested AP-[±204/0]s and AP-[±22.53/02/±22.53]s 

specimens only. No suitable pieces could be salvaged following the failure of the AP-[±266/0]s 

specimens at any of the loading rates.  

Figures 13 and 14 show side views (0° fibres running left-right) of representative sections of 

the AP-[±204/0]s and AP-[±22.53/02/±22.53]s layups respectively. In each figure the observed 

locations of fragmentations are highlighted and in Figure 13 these are magnified for a clearer 

view. Both cases suggest that fragmentations occur sporadically with no regularity to their 

spacing. The amount of damage surrounding the fibre fractures is minimal, indicating that no 

delamination occurred at the 0/-θ interfaces following the initiation of fragmentations. 

Overall, observing fragmentations and registering their spacing was not straightforward under 

the microscope. Additionally, it was difficult in some locations to verify if a feature was indeed 

a fibre fracture caused by testing, or one induced during sample preparation. The microscopy 

does show that fragmentations occurred, though the images provide little further insight. 



 

Figure 13: Microscopy for a AP-[±204/0]s specimen tested at 50 s-1. The full width image is a 

mosaic at 10x magnification. Inset images highlight the locations of fragmentations (20x 

magnification).  

 

Figure 14: Microscopy for a AP-[±22.53/02/±22.53]s specimen. The full width image is a 

mosaic at 10x magnification. Red rectangles highlight the locations of fragmentations. 

3.2.2.2. X-ray CT scanning 

A number of specimens did not completely fail during testing and these have been imaged 

using X-ray computed tomography (CT). This was due to the slippage of the specimen in the 

grips. In total, four specimens were `saved' for CT scanning via this problem: #1 (εx = 2.4%), 

and #10 (no strain data) AP-[±266/0]s; #1 AP-[±204/0]s (no strain data); #1 AP-

[±22.53/02/±22.53]s (εx = 1.4%). All these specimens were tested at 25 s-1. Despite some 



slippage occurring, Figure 6 shows that the two specimens behaved similarly to the other 

specimens tested at that strain rate and so are acceptable representations of the overall 

behaviour. All specimens were submerged in zinc iodide solution dye penetrant for 24 hours 

prior to being wiped clean and CT scanned. 

All four specimens displayed damage in the form of fragmentations and dispersed 

delamination, as was observed in [11]. The extent of damage in each one varied but never 

covered the entire gauge length, indicating that they were not deformed sufficiently to reach 

fragmentation saturation.  

Figures 15 and 16 show the midplane of the AP-[±266/0]s specimens. There are minimal 

fragmentations and dispersed delaminations in Figure 15, with a single highlighted region 

extending across the specimen. The predominant damage in this specimen are the free edge 

delaminations, which cover much of the gauge length. These free edge delaminations have 

been shown in [11] to occur at the innermost -26/26 interfaces, propagating from the fibre 

fractures in the 0° plies. Though not visible due to the lack of dispersed delamination, it is 

understood that fragmentations should be co-located with all the free edge delaminations 

visualised. 



 

Figure 15: The CT imagery highlights development of fragmentations and dispersed 

delaminations in the 0° plies of AP-[±266/0]s #1 (25 s-1). It also shows the large free edge 

delaminations that have propagated at the -26/0 interface.  

There are considerably more fragmentations and dispersed delaminations in AP-[±266/0]s 

specimen #10 (Figure 16). Data recording issues meant that the strain was not captured, but the 

specimen certainly reached a higher deformation than #1 (Figure 15). The extent of dispersed 

delaminations shown in Figure 16 is consistent with the damage accumulation seen in quasi-

static specimens that have experienced strains in excess of 2.5% [11]. Similarly to specimen 

#1, #10 shows multiple free edge delaminations that coincide with fragmentations. The paths 

of the fragmentations can be identified as thin lines of bright white that are within regions 

bounded by thicker lines of brightness. In between these areas the 0/- 26 interface has not 

delaminated. 



 

Figure 16: Fragmentations and dispersed delaminations in the 0° plies are much more 

widespread in this image of AP-[±266/0]s #10. The central area is densely damaged, including 

the propagation of free edge delaminations. 

The appearance of the fragmentations and dispersed delaminations in the AP-[±204/0]s and AP-

[±22.53/02/±22.53]s specimens, as shown in Figures 17 and 18, is different from that discussed 

for the AP-[±266/0]s specimens. The fragmentations are less inclined to the loading direction 

and spaced further apart. The majority of the visualised damage does not extend across the 

entire specimen width. Figure 17 shows that many dispersed delaminations seem to propagate 

from the edges but do not meet in the middle. This suggests that the fragmentations also do not 

extend the entire specimen width. It is, however, very likely that the fragmentations do cover 

the entire width [11]. Without dispersed delaminations to aid the penetration of dye, there is 

insufficient resolution in the presented scans to confirm this. 



 

Figure 17: The images show the locations of fragmentations and dispersed delaminations for 

a AP-[±204/0]s specimen (#1). The inset image highlights how only two fragmentations are 

seen to extend the entire width. 

Images have been captured of both the 0° ply blocks in the AP-[±22.53/02/±22.53]s specimens. 

The thickness location of the scans, indicated by green arrows in Figures 18a and 18b, are at 

approximately the middle of the 0° two-ply block in the lower and upper halves of the laminate, 

respectively. The morphology of the damage in this specimen is similar to the last, but there 

are numerous free-edge delaminations observed, with some large areas in Figure 18b. The 

extent of the damage in each of the 0° ply blocks is very similar. The spacing of the fractures 

is consistent, though they cover more of the specimen width in Figure 18b and do not occur in 

the same location along the gauge length. 



                   

(a) Lower zero position.                      (b) Upper zero position. 

Figure 18: The CT images highlight that fragmentations and delaminations occurred in both 

zero ply blocks of the AP-[±22.53/02/±22.53]s specimen. 

4. Conclusions 

In this work, the effect of strain rate on the tensile behaviour of pseudo-ductile thin-ply UD, 

QI and AP composites was studied and the following conclusions are drawn. 

• UD and QI hybrid composite laminates have excellent pseudo-ductility responses both 

in the quasi-static and high strain rates through fragmentation and stable pull-out of the 

carbon layers, however the angle-plies are strain rate dependent and pseudo-ductility 

decreases with increasing strain rate. 

• For the UD and QI hybrids, all the specimens showed a slight stiffening, in the elastic 

part of the tests, at high strain rates compared to the quasi-static case. In addition, max-

strain and max-stress values were slightly higher for the high strain rates compared to 

the quasi-static tests. 

• Comparing the observed damage mechanisms for the quasi-static and high strain rates, 

a similar type of damage occurred for the UD and QI specimens, except for the UD-



G/4C/G laminates, where with increasing strain rate, the observed damage mode 

changes from pure delamination to stable fragmentation/delamination, believed to be 

due to the increase in mode II interlaminar fracture toughness.  

• In the case of the AP configurations, all specimens showed similar initial moduli but 

then a reduced loss of stiffness compared to the quasi-static case. The rate dependent 

behaviour was most pronounced for the AP-[±266/0]s specimens with TC35 carbon 

fibre. The increased off-axis angle leads to higher shear stresses in the AP layers and 

so more influence from the matrix. The effect of the rate dependence on the stiffness of 

the AP layers was lessened by the use of high modulus fibres (M55J) in the 0° plies, 

which dominate initial loading. Additionally, a reduced strain in the laminate limited 

the non-linearity of the AP layers compared to the AP-[±266/0]s case.  

• Across all the AP specimens, the strains to failure at high rates were considerably less 

than recorded for the quasi-static tests. This reduction is thought to be due to the rate 

dependence of the epoxy matrix that leads to a modification of the shear response of 

the laminate.  

• Microscopy and X-ray CT analysis of the AP specimens that were not loaded to failure, 

clearly showed evidence of fragmentations and dispersed delaminations. The presence 

of these mechanisms indicated that damage developed as previously observed in quasi-

static testing. Hence, it can be concluded that pseudo-ductility is achievable in thin ply 

[±θm/0n]s laminates loaded at high strain rates. Rate effects, however, led to a change in 

behaviour at the highest rates that affected the development of non-linearity and 

therefore do need to be taken into account in designing layups. 
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