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1 Introduction

Oblique corrections to gauge boson propagators have played a prominent role in the analysis

of electroweak precision data [1–7]. In an effective field theory (EFT) context, at invariant

momenta q2 smaller than the heavy new-physics mass scale (here denoted by M) the self-

energy of electroweak (EW) gauge bosons can be expanded as

ΠV (q2) = ΠV (0) + q2Π′V (0) +
q4

2
Π′′V (0) + . . . (1.1)

where the primes denote derivatives with respect to q2. When the expansions are truncated

at order q4 [8–10], the leading electroweak oblique corrections are fully described by only

4 parameters, called Ŝ, T̂ , Ŵ , Ŷ .1 These parameters contribute to physical amplitudes at

1Usually Ŵ and Ŷ are called simply W and Y , but we prefer a notation that avoids confusion between

oblique parameters and gauge fields or hypercharge.
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different orders in q2. In particular, one finds T̂ = O(q0), Ŝ = O(q2), and Ŵ , Ŷ = O(q4).

This explains why Ŝ and T̂ are the key parameters for LEP1 analyses, while Ŵ and Ŷ

play a critical role when LEP2 data are considered [10]. Recently the Ŵ and Ŷ parameters

have received renewed attention, due to the fact that their energy-growing contribution

to amplitudes can be strongly constrained at high energy hadron colliders, allowing for

precision EW probes at the LHC and beyond [11–13].

In this work we focus on O(q4) terms and, since the Higgs boson has now become a

core component of the electroweak sector, we seek to add the Higgs analogue of the Ŵ and

Ŷ parameters, the Ĥ-parameter, to the oblique dictionary.2 Defined within a dimension-6

EFT, the Ŵ , Ŷ , and Ĥ parameters are

LŴ = − Ŵ

4m2
W

(DρW
a
µν)2 , LŶ = − Ŷ

4m2
W

(∂ρBµν)2 , LĤ =
Ĥ

m2
h

|�H|2 , (1.2)

where mh is the physical Higgs mass. The operator O� = |�H|2, where � ≡ DµDµ, is the

sole one that modifies the form of the Higgs boson propagator at dimension six. Hence a

constraint on the Ĥ-parameter can, in this basis, be thought of as a constraint on how the

SM Higgs boson propagates.3

The paper is organised as follows. As a prelude to our discussion, in section 2 we

derive general information on UV corrections to two-point functions, such as the Higgs

boson self-energy, by studying the Källén-Lehmann representation. These results are em-

ployed to determine consistency conditions on the sign of the Ĥ-parameter as well as the

momentum expansion. The physical interpretation of these results is also illustrated with

some examples.

In section 3 we discuss the EFT interpretation of O� from a number of directions.

Our analogy begins with the precision EW parameters, which have an obvious UV inter-

pretation in the context of scenarios in which all new physics interacts primarily with the

gauge and Higgs sector, known as the ‘Universal’ class of EFTs. We also show that, even

within the restricted class of Universal theories, the on-shell Higgs coupling measurements

alone cannot unambiguously constrain the Ĥ-parameter, making it a prime and challeng-

ing phenomenological target for future Higgs studies. In section 4 we then provide explicit

examples of UV completions that illustrate how O� emerges at low energy together with

other operators involving the Higgs field.

In section 5 we study phenomenological aspects of O� and show that, whenever an

EFT description is valid, the commonly considered process for off-shell Higgs physics gg →
h∗ → ZZ is in fact insensitive to the energy-growing contribution from the Ĥ-parameter,

making this a poor probe of off-shell Higgs behaviour in this context. On the contrary,

we demonstrate that tt̄tt̄ production provides a complementary future probe of the Ĥ-

parameter and off-shell Higgs physics.

2Here we are focusing on the self-energy of the real Higgs boson, while the other three components of

the Higgs doublet, which form the longitudinal gauge degrees of freedom, were already partly included in

the EW oblique parameters.
3All of these operators may be traded for different sets of operators by field redefinitions. However, when

interpreted as arising from new physics interacting with the gauge and Higgs bosons, at leading order it is

instructive and convenient to work in this basis.

– 2 –
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2 Prelude: Källén-Lehmann and EFT

We begin in a spirit of generality, to gain some theoretical insight on features of UV mod-

ifications of the Higgs propagator without yet committing to specific examples. Consider

the renormalised Higgs field in the broken phase. Since it is a quantum operator, it must

have a Källén-Lehmann representation and, since it is renormalised, it has a pole of unit

residue at p2 = m2
h. In momentum space the two-point function is

∆h(p2) = −i
∫
d4z eipz〈0|T{h(z)h(0)}|0〉 . (2.1)

This Green’s function has a Källén-Lehmann representation [14, 15], given by

∆h(p2) =

∫ ∞
0

dq2 ρh(q2)

p2 − q2 + iε
, (2.2)

where the spectral density function must be real and positive definite: ρh(q2) > 0.4 Assume

that the operator h has, in addition to the usual SM contributions, non-vanishing matrix

elements with heavy BSM states X with invariant mass above a certain mass gap M . This

is simply the assumption that an EFT treatment below M is appropriate. Under these

general conditions we can split the sum over Hilbert space,

ρh(q2) = ρSM(q2) + ρX(q2) , (2.3)

where ρSM is the contribution to the spectral density function from the pure SM states,

while the new-physics contribution is such that

ρX(q2 < M2) = 0 . (2.4)

For p2 < M2 we may expand ∆h(p2) to find

∆h(p2) = ∆SM(p2)− 1

M2

∞∑
n=1

cn

(
p2

M2

)n−1

, (2.5)

where ∆SM is the Higgs propagator including quantum corrections from SM degrees of

freedom and

cn = M2

∫ 1

0
dx ρX(M2/x)xn−2 . (2.6)

Thus, even though we do not know the nature of the states that the Higgs may be coupled

to, we can conclude that for p2 �M2 all new-physics corrections to the Higgs propagator

are expressed as a polynomial in p2/M2, as expected from an EFT description.

2.1 Consistency conditions

From the result in eq. (2.6) we can derive some general consistency conditions on the

coefficients cn of the EFT expansion that follow from the Källén-Lehmann representation.

4Note that, ρh(q2) ∝
∑
n δ(q

2 −m2
n)|〈0|h(0)|n〉|2, where |n〉 is a state in the Hilbert space.

– 3 –
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Figure 1. In the plane spanned by c1 and c2 (the two leading coefficients of the propagator deriva-

tive expansion) we show how the constraints from (i) positivity, (ii) convergence, (iii) perturbative

unitarity single out a theoretically-allowed bounded region. An experimental measurement of a1

and a2 (the first two terms in a momentum expansion) selects the curve c2 = c21 a2/a
2
1. Examples

of these curves (for different values of a2/a
2
1) are shown by solid red lines, which are generated

by varying the cutoff mass M . The value of M increases along the direction of the arrows. The

stronger bound on M comes from convergence when a2
1/a2 . 4π and from perturbative unitarity

when a2
1/a2 & 4π.

(i) Positivity. We observe from eq. (2.6) that the Källén-Lehmann representation re-

quires all coefficients of the EFT expansion to be positive

cn > 0 ∀n (positivity). (2.7)

Also, either all coefficients are strictly positive (cn > 0 ∀n) or they all vanish simultaneously

(cn = 0 ∀n).

This result is reminiscent of the positivity constraints derived in [16], and is relevant

to our study because it implies that the Higgs oblique parameter is positive (Ĥ > 0) in

typical QFT UV-completions. When applied to EW gauge bosons, the same logic implies

that the oblique parameters Ŷ and Ŵ must be positive, as observed in ref. [17]. The same

authors also pointed out that if the SM gauge group is extended in the UV, then additional

ghost states in the UV completion could contribute negatively to ρO(q2), invalidating the

positivity condition. This caveat also applies for the Higgs when the operator h has matrix

elements with unphysical negative-norm states.

(ii) Convergence. A further consequence of eq. (2.6) is

cn > cn+1 ∀n (convergence). (2.8)

This inequality is saturated in the case of single-state tree-level exchange in which ρX(q2) ∝
δ(q2−M2) and all cn are equal. The condition in eq. (2.8) implies that higher orders in the

EFT expansion are not only suppressed by additional powers of p2/M2 (which is smaller

than one, whenever the EFT is valid), but their corresponding Wilson coefficients cn also

– 4 –
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become progressively smaller. This means that the EFT series is absolutely convergent,

since eq. (2.8) ensures that D’Alembert’s criterion is satisfied. This is the reason for

referring to this as the ‘convergence’ condition in eq. (2.8).

The ‘convergence’ condition becomes particularly useful when one tries to infer infor-

mation on the range of validity of the EFT from the truncation of the derivative series.

We will return to this important point in section 2.2.

The ‘convergence’ condition could be in principle checked experimentally by making

precise measurements sensitive to higher-order effects in the EFT expansion. From the EFT

point of view, the Wilson coefficients cn are not observables, but only the combinations

an ≡ cn/M
2n are measurable. Suppose that one could measure two successive coefficients

an and an+1. For any set of EFT operators satisfying the Källén-Lehmann representation,

the ‘convergence’ condition in eq. (2.8) implies that the mass scale characterising the onset

of new physics must satisfy

M2 6
an
an+1

∀n (convergence). (2.9)

Thus, if consecutive powers in the EFT expansion were measured, one could in principle

place a theoretical upper bound on the value of the true cutoff which, as we will show in the

following, could be more restrictive than the constraint derived from requiring perturbative

unitarity.

(iii) Perturbative unitarity. An upper bound on the coefficients cn can be obtained

by imposing perturbative unitarity. Consider a two-to-two scattering process mediated at

tree-level by Higgs exchange. We require that the corresponding amplitude must satisfy the

unitarity constraint following from the optical theorem for any energy within the validity of

the EFT. In practice, this means setting s = M2 in the scattering amplitude and translating

the unitarity bound into a constraint on the coefficients cn.

The corresponding bound is process-dependent but roughly corresponds to a limit of

order 4π on a linear combination of the cn, leading to

cn . 4π ∀n (perturbative unitarity). (2.10)

A precise determination of the limit is not possible, since the choice s = M2 means that

we are working at the edge of the EFT validity and the expansion is not under control.

Combining the three conditions. It is interesting to compare the impact of the three

conditions (‘positivity’, ‘convergence’, ‘perturbative unitarity’) on the allowed values of

the Wilson coefficients. This can be simply done by restricting our considerations to the

first two coefficients in the EFT expansion in eq. (2.5) and visualising the conditions in

the plane c1–c2, as shown in figure 1. This figure illustrates the complementarity of the

different conditions which, when combined, single out a special region which is the only

one allowed by theoretical considerations.

Experiments cannot directly determine c1,2 but measurements of a1,2 identify a curve

in the plane of figure 1. Varying the unknown cutoff M will trace out the parabola c2 =

– 5 –
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c2
1(a2/a

2
1). This curve starts at the finite value c1 = a1E

2, where E is the typical energy of

the process at which a1 is measured.5 Lower values of c1 violate the EFT validity.

As we increase the value of M , we move up along the curve until we hit either the

‘convergence’ or the ‘perturbative unitarity’ bound. This establishes a limit on the new-

physics mass M . Whenever a2
1/a2 . 4π, ‘convergence’ gives a stronger limit on M than

the more familiar ‘perturbative unitarity’ limit, see figure 1.

2.2 From propagator to self-energy

For practical calculations of low-energy effects from new physics, one starts from the self-

energy Σh rather than the propagator ∆h. The translation — at the non-perturbative level

— can be made through the Dyson equation ∆h = ∆SM(1 + Σh∆h), which gives

Σh(p2) = ∆−1
SM(p2)−∆−1

h (p2) . (2.11)

Using the expansion in eq. (2.5) and taking for simplicity ∆−1
SM = p2−m2

h, we find the EFT

expansion for the self-energy

Σh(p2) = −(p2 −m2
h)

∞∑
n=1

ĉn

(
p2

M2

)n
, (2.12)

ĉn =

(
1−

m2
h

p2

)cn +

n−1∑
j=1

cj ĉn−j

 . (2.13)

In the following, for simplicity, we consider the case p2 � m2
h and set mh = 0.

From the recursive relation in eq. (2.13), we infer several properties of the Wilson

coefficients ĉn. First, from the positivity of cn we conclude that all ĉn are positive as well.

Second, ĉ1 = c1 and ĉn > cn(1 + cn)n−1 for n > 1, with the inequality being saturated for

single-particle tree-level exchange (corresponding to cn all equal for any n). Third, contrary

to cn which satisfy the ‘convergence’ condition, the coefficients ĉn can grow with n and

diverge. In particular, the progression of ĉn diverges (strictly violating the ‘convergence’

criterion) if any of these conditions is satisfied:6 (i) c1 > 1; (ii) limn→∞ cn 6= 0; (iii) cn
approaches zero at large n slower than cn ∼ n−1/2.

The property of ‘convergence’ guarantees that one can consistently extract information

about the validity range of the EFT from a truncation of the perturbative series, with a

precision that grows with the number of retained terms. On the contrary, this cannot

be done reliably whenever ‘convergence’ is not satisfied (as in the case of the derivative

expansion of the self-energy with c1 > 1) because higher-order terms neglected in the

truncation can be larger than the terms retained.

5The SM radiative corrections could imply some residual soft dependence on the scale M .
6These results follow directly from the definition of ĉn. Indeed, from eq. (2.13) we obtain ĉn+1 − c1ĉn =

cn+1+
∑n−1
j=1 cj+1ĉn−j > 0. Hence, we derive condition (i). Next, consider the inequality ĉn > cn(1+cn)n−1.

If either condition (ii) or (iii) is verified, then the right-hand side diverges for n→∞; hence the progression

of ĉn diverges as well. If conditions (i)–(iii) are not verified, ĉn do not necessarily diverge. For instance,

taking cn = c1/n
α, the progression of ĉn remains finite whenever c1 < 1 and α > αc, where αc starts at

1/2 for small c1 and grows with c1.

– 6 –
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h h

Figure 2. Higgs self-energy correction from the two-point function of the operator O.

As an example of this problem, consider a truncation of the self-energy expansion in

eq. (2.12), keeping only the four-derivative term corresponding to n = 1. This predicts

a ghost with mass M/
√
c1. If c1 < 1, the ghost lies above the EFT cutoff. If c1 >

1, the ghost is below the cutoff, indicating a premature breakdown of the momentum

expansion at energies below the true cutoff M . However, this prediction is unreliable since

the progression of ĉn diverges (for c1 > 1) and the conclusion is based on a truncation in

which the terms neglected are larger than those retained. To find the correct answer, we

must turn to the derivative expansion of the propagator in eq. (2.5), which is always under

control as it satisfies ‘convergence’. From this expansion, we do not find any ghost: M/
√
c1

is the energy at which new-physics effects become larger than the SM contribution, but

the derivative expansion breaks down only at the scale M . The ‘convergence’ condition

cn+1 < cn maintains validity of the momentum expansion in the amplitude until p2 = M2.

In conclusion, the correct recipe is to expand the full propagator in powers of p2/M2,

rather than keeping the expansion of the self-energy in the denominator of the propagator.

‘Convergence’ insures the correctness of the EFT interpretation of the results based on

this recipe even when c1 > 1, since higher-order terms in the derivative expansion are

consistently smaller, all the way up to the physical cutoff. In section 4.1 we will provide

an explicit extra-dimensional example where this becomes particularly apparent.

2.3 Perturbative perspective

More practically, to compute new-physics effects, one often performs a perturbative cal-

culation, relying on the assumption that the new-physics sector is weakly coupled to the

Higgs. To this end, consider a generic interaction of the bare Higgs h0 with other new BSM

fields

L = LSM + Lint , (2.14)

where in Lint we couple the Higgs boson to some additional external operator O as

Lint = κh0O . (2.15)

We take the coupling constant κ to be dimensionless and absorb all dimensionful parameters

in the definition of O. The correction to the Higgs boson self-energy,

Σ0
h(p2) = κ2∆O(p2) = −iκ2

∫
d4z eipz〈0|T{O(z)O(0)}|0〉 , (2.16)

occurs atO(κ2) (see figure 2). The self-energy correction is related to the two-point function

for O, which also has a Källén-Lehmann representation, given by

∆O(p2) =

∫ ∞
0

dq2 ρO(q2)

p2 − q2 + iε
. (2.17)

– 7 –
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Now one can proceed with a derivative expansion, identical to the analysis performed at

the beginning of this section for ∆h.

Depending on the form of the operator O, the lowest order terms in the p2 expan-

sion of Σ0
h(p2) may not be finite. However, we will assume that the underlying theory is

renormalisable, such that only Σ0
h(0) and dΣ0

h(p2)/dp2
∣∣
p2=0

contain divergences which are

absorbed by mass and wavefunction renormalisation for the Higgs. This restricts the set

of UV theories under consideration because, unlike the case of 2 → 2 S-matrix amplitudes,

here we have no strict upper bound on the number of subtractions that may be required in

a general quantum field theory (QFT). Put another way, for two-point Green’s functions

we do not have a constraint analogous to the Froissart bound [18]. Furthermore, even

for 2 → 2 S-matrix elements where one can apply the Froissart bound it is not, in full

generality, possible to rule out the requirement for a subtraction which corresponds to a

dimension-6 operator in the EFT. As a result, typically only dimension-8 EFT operators

can be constrained with analyticity arguments. Nonetheless, assuming less generality, it is

still possible to set bounds on dimension-6 operators, as was considered in [19–22].7 Here

by assuming that mass and wavefunction counterterms suffice, as this hypothesis applies

to the renormalisable QFTs we typically encounter in weak-scale models, the scope of

applicability is limited to specific classes of UV theories.

Nonetheless, proceeding with this assumption, we write the renormalised self-energy

as8

Σh(p2) = Σ0
h(p2)− δm − (p2 −m2

h) δp , (2.18)

and choose to canonically normalise the Higgs field and set its mass to the physical value

through the choice

δm = Σ0
h(m2

h) , δp =
dΣ0

h(p2)

dp2

∣∣∣∣
p2=m2

h

. (2.19)

Including the mass gap and the renormalisation conditions, the renormalised self-energy

takes the twice-subtracted form

Σh(p2) = κ2

∫ ∞
M2

dq2

(
p2 −m2

h

q2 −m2
h

)2
ρO(q2)

p2 − q2 + iε
. (2.20)

For p2 �M2, which is the case of interest for EFT considerations, we have that Σh(p2)

is real. By Taylor expanding we find

Σh(p2) = −
(
p2 −m2

h

) ∞∑
n=1

Cn

(
p2

M2

)n
fn

(
m2
h

p2

)
, (2.21)

Cn = κ2

∫ 1

0
dx

ρO(M2/x)

M2
xn , (2.22)

fn(y) =
1− (n+ 1)yn + nyn+1

1− y
. (2.23)

7For further related discussion see [23].
8This expression is finite at one loop in perturbation theory. BPHZ prescription for eliminating superficial

divergences is to be used beyond.

– 8 –
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Since they are obtained from a Källén-Lehmann decomposition, the coefficients Cn satisfy

the same conditions of positivity and convergence that were derived for the coefficients cn
in section 2.1. Note that, for p2 � m2

h and at O(κ2), cn = ĉn = Cn. To conclude, at leading

order in κ, both the propagator and the self-energy expansion in p2/M2 obey convergence

criterion.

These observations are made with a view towards practical calculations of the Higgs

boson two-point function, which concerns the rest of this paper. However, the discussion in

terms of the Källén-Lehmann representation for composite operators opens the door to ex-

tending these results beyond two-point Green’s functions. In particular, it may be possible

to derive similar convergence conditions for the case of forward scattering amplitudes, since

they have dispersion relations, somewhat analogous to that of Källén-Lehmann, where pos-

itivity follows from the optical theorem. This would be advantageous as it would elevate

the convergence relations to the level of scattering amplitudes, eliminating the need for any

consideration of EFT bases. For illustration, in appendix A we include a jovial application

of convergence to string theory amplitudes.

2.4 Scherzando: gedanken measurements

In this spirit we will present some examples of how experimental measurements combined

with the ‘convergence’ condition can lead to stringent constraints on the cutoff mass M ,

derived from a purely low-energy perspective. Although these example are fictitious, as

they are based on EFT of which we already know the UV completion, they illustrate the

procedure that can be in principle applied to future experiments where the SM plays the

role of the EFT. These examples also explain how the ‘convergence’ condition can be of

utility in scenarios that go beyond two-point functions.

Muon decay. As a purely academic (albeit hopefully instructive) exercise, imagine a

civilisation that has never performed experiments at energy higher than a few hundred

MeV and instead measured muon decay ad nauseam. With impressive theoretical insight,

the physicists of this unlucky civilisation assume that muon decay is mediated by a charged

vector operator involving unknown UV dynamics that couples to leptons as

LOµ = Jαe Oα + JαµOα + h.c. , (2.24)

where

Jαe = eγα(1− γ5)νe , Jαµ = µγα(1− γ5)νµ . (2.25)

One can integrate out this operator using the Källén-Lehmann prescription, which for a

vector operator gives

∆αβ
O (p2) =

∫ ∞
M2

dq2
gαβρTO(q2)− ρVO(q2)p

αpβ

q2

p2 − q2 + iε
. (2.26)

When calculating the matrix element for µ→ eνµν̄e, mediated by this propagator, the

pαpβ terms will generate powers of me which can be ignored since me � mµ. As a result,

the two leading terms of the generated tower of higher-dimension operators are

LEFT = Jα†e
(
−a1 + a2 ∂

2
)
Jµα + h.c. . (2.27)

– 9 –
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While terrestrial physicists have the privilege of knowing the SM result a1 = g2/8m2
W ,

a2 = g2/8m4
W , our fictitious physicists can only make the following inference from the

‘positivity’ and ‘convergence’ criteria in eq. (2.7) and (2.9)

a1 > 0 , a2 > 0 , m2
W 6

a1

a2
, (2.28)

where mW is the cutoff mass. However, our gedanken civilisation can benefit from precise

experimental measurements of the differential muon decay rate, which is given by

dΓµ
dx

=
a2

1m
5
µ x

2

48π3

[
3− 2x+ x(2− x)m2

µ

a2

a1

]
, (2.29)

where x = 2Ee/mµ with Ee being the electron momentum in the LAB frame and the

electron mass has been neglected.

Suppose one had a measurement of the decay rate with a fractional uncertainty which

is about a factor 6 stronger than what is known today. Then, by binning in the final

state electron energy, one could extract a 90% CL lower bound on m2
µa2/a1 at the level of

3 × 10−7. Using the ‘convergence’ criterion in eq. (2.28), one derives a theoretical upper

bound on the EFT cutoff of mW . 190 GeV.

Note that this constraint on mW is much stronger than the bound from ‘perturbative

unitarity’ of the Fermi theory (mW .
√

4π v ∼ 900 GeV), as it could have been guessed

from the start since the condition a2
1/a2 . 4π is amply satisfied in the SM.

Here, for simplicity of presentation, we have neglected mass corrections O(m2
e/m

2
µ)

and radiative corrections O(α/π), but these can be included in a more realistic calculation

of the bound on mW . However, it is important to stress that none of these IR effects

can generate O(E4
e ) terms in dΓµ/dEe, which are instead induced by a2, see eq. (2.29).

These energy-growing terms are characteristic of a2 and are the reason for the enhanced

sensitivity on the UV features of the theory.

By improving further the precision on the measurements of the muon decay energy

spectrum and the EFT theoretical prediction by computing QED radiative corrections

up to the appropriate loop order, one could obtain tighter bounds from ‘convergence’, in

principle all the way up to saturating the physical value of mW . This example shows

how the ‘convergence’ criterion combined with precise measurements can yield information

about the EFT cutoff mass.

Lepton forward-backward asymmetry. Imagine now a slightly more advanced civil-

isation that can build high-energy colliders, although without reaching the threshold for

weak gauge boson production. Those physicists can measure the forward-backward asym-

metry in e+e− → µ+µ−, i.e. the normalised difference in the number of events in the

forward and backward hemispheres as defined by the same-charge flow. At energies below

the Z-boson resonance, the effect comes from the interference between photon exchange

and an axial-vector four-fermion interaction parametrised as

L = (ēγµγ
5e)
(
−a1 + a2 ∂

2
)

(µ̄γµγ5µ) , (2.30)
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truncating the expansion at dimension-8. In the SM at leading order, a1 = GF /2
√

2, while

a1/a2 = m2
Z . In the EFT, the forward-backward asymmetry is given by

AFB(s) = −
3 a1 s

(
1 + a2

a1
s
)

8π α2
, (2.31)

where
√
s is the centre-of-mass energy and α is the QED structure constant. The term

proportional to a2/a1 grows with the collider energy.

Just as an example, we fit all available PDG data [24] on e+e− in the range
√
s = 29–

45 GeV. Profiling over a1, we find a2/a1 > (170 GeV)−2 at 90% CL which, using the

‘convergence’ condition in eq. (2.9), translates into the bound mZ . 170 GeV. This

example, when compared to the case of muon decay, shows the importance of probing the

EFT at higher energy. Since one is after the term E2a2/a1, where E is the typical energy

of the process, similar bounds on the cutoff mass M can be obtained with limited precision

at high energy or with high precision at low energy.

We conclude this section by recalling the academic spirit of our discussion. The appli-

cation of this procedure is practically limited by the fact that other unknown new-physics

effects make the extraction of the propagator corrections in general ambiguous. Closing

this digression, we return to the case at hand, which is the SM.

3 Universal EFTs

3.1 Operator analysis

Before considering the general phenomenological picture for O�, we will discuss the broader

context into which this operator fits. Looking at the microscopic origin of dimension-6

operators in the EFT, save for one specific example we will return to later, we expect that

general new physics scenarios will not generate only the operator O� at the matching scale,

but also a variety of other operators.

With this in mind, there is a very broad class of UV theories which single out a

particular set of EFT operators at the matching scale, within which the Ĥ-parameter is

well defined as the Wilson coefficient of O�. This is none other than the class of Universal

theories [10, 25]. Here we broadly define an EFT to be Universal when there exists a field

basis in which all leading-order effects are captured at dimension 6 by operators containing

only SM bosonic fields. The complete list of these operators (up to total derivatives) is

given in table 1. Note that this definition captures all scenarios in which new heavy states

interact primarily with the bosons of the SM. It also captures scenarios in which the new

physics couples to quarks and leptons through the SM gauge currents JµW , JµB and JµG, or

to the SM Higgs scalar current JH , which we define as

JH = µ2H − 2λ|H|2H − q̄iσ2Y
†
uu− d̄Ydq − ēYe` . (3.1)

This is because, through appropriate field redefinitions, the generated operators involving

these currents can be rewritten in terms of bosonic fields only. Similarly, operators con-

taining quarks and leptons in exactly the same combination as the SM scalar current can

be redefined by using the Higgs equation of motion �H = JH .
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‘Higgs-only’

[g0∗] [g2∗] [g4∗]

O� = c�
M2 |�H|2 OH = cH

2M2

(
∂µ|H|2

)2 O6 = c6
M2 |H|6

OT = cT
2M2 (H†

←→
D

µ
H)2

OR = cR
M2 |H|2|DµH|2

‘Gauge-only’

O2G = − c2G
4M2 (DρG

a
µν)2 O2W = − c2W

4M2 (DρW
a
µν)2 O2B = − c2B

4M2 (∂ρBµν)2

‘Mixed gauge-Higgs’

OB = ig′ cB
2M2 (H†

←→
D

µ
H)∂νBµν OGG = g2s cGG

M2 |H|2Ga,µνGaµν
OW = ig cW

2M2 (H†σa
←→
D

µ
H)DνW a

µν OWB = gg′ cWB

M2 H†σaHBµνW a
µν

OWW = g2 cWW

M2 |H|2W aµνW a
µν

OBB = g′2 cBB
M2 |H|2BµνBµν

Relations between oblique parameters and Wilson coefficients

Ŝ = 4
(
cWB + cW+cB

4

) m2
W

M2 T̂ = cT
v2

M2

Ŵ = c2W
m2
W

M2 Ŷ = c2B
m2
W

M2

Ẑ = c2G
m2
W

M2 Ĥ = c�
m2
h

M2

Table 1. The complete set of CP-even operators (up to total derivatives) in the Universal basis,

as they appear in the Lagrangian, divided into three classes: ‘Higgs-only’ (operators containing

only the Higgs doublet and covariant derivatives), ‘gauge-only’ (operators containing gauge field

strengths and covariant derivatives), and ‘mixed gauge-Higgs’. The Wilson coefficients of ‘Higgs-

only’ operators carry the power of the Higgs sector couplings (generically denoted by g∗) as indicated

in the table. The Wilson coefficients of ‘gauge-only’ and ‘mixed gauge-Higgs’ operators are dimen-

sionless (in units of coupling). We also give the relations between oblique parameters and Wilson

coefficients, which are valid in the Universal basis. We have chosen v ≈ 246 GeV.

In many conventional EFT bases [26–28], for computational convenience the operator

O� is replaced with J2
H after field redefinition. Here, we prefer to work in a ‘boson-only’

basis, which more clearly matches with the UV properties of a Universal theory where new

physics is coupled only to EW and Higgs bosons.

In table 1, we have separated the Universal operators into three classes: ‘Higgs-only’,

‘gauge-only’, and ‘mixed gauge-Higgs’. The ‘Higgs-only’ operators have been ordered ac-

cording to their dimension in units of coupling constant (for notation, see section 2.1 of

ref. [29]). Note that the ordering in terms of coupling dimension is useful in charting the

space of microscopic completions. For instance, O� and O6 lie at two extremes of the

coupling spectrum. Since the Wilson coefficient for O6 is O(g4
∗), it will typically be large

in strongly coupled completions, but small in weakly coupled completions. On the other

hand, the Wilson coefficient for O� may survive even in very weakly coupled completions.
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These extremes, and the territory in between, will be discussed in section 4 in some specific

examples of UV completions.

Although covering an interesting and broad class of models, Universal EFTs do not

match to all microscopic theories. Moreover, the Universal basis is not closed under quan-

tum corrections, i.e. the RG evolution [30–32] from the matching scale to the IR scale will

typically populate operators not contained in the Universal basis [33]. Hence, next-to-

leading order effects due to degrees of freedom both within and beyond the SM are not, in

general, captured by an analysis limited to operators in the Universal basis.

3.2 Physical effects

The most characteristic effect of the oblique parameter Ĥ (in the Universal basis) is a

modification of the SM Higgs boson propagator which, for a canonically normalised field

and after mass redefinition, is

∆h(p2) =
1

p2 −m2
h

− Ĥ

m2
h

. (3.2)

Note that it is important to expand the propagator to dimension-6 here since, as discussed

in section 2.2, when the Wilson coefficients are large the dimension-8 terms in the self-

energy may play an important role in cancelling the squared dimension-6 contribution.

We see the direct analogy with the definition of the EW oblique parameters Ŵ and Ŷ

through the relation with the Higgs self-energy

Ĥ = −
m2
h

2
Σ′′h(m2

h) . (3.3)

Thus we interpret the Ĥ parameter as sourcing a modification of the Higgs propagator

which, as shown in eq. (3.2), corresponds to a new contact term. This interpretation is

of course basis-dependent, much like, for example, the value of the Higgs quartic coupling

is basis dependent in an EFT. However, within Universal UV completions, this modified-

propagator interpretation is of utility.

In addition to the propagator correction, Higgs couplings are also modified. In this

section, for illustration purposes, we will focus on the effect of ‘Higgs-only’ operators. In

this regard, the interaction between a single Higgs and two gauge bosons is modified with

respect to the SM couplings as follows

L =
(
gSM
hWW W+µW−µ DW + gSM

hZZ Z
µZµDZ

)
h , (3.4)

DW = 1 + (cR − cH)
v2

2M2
− Ĥ

(
1 +

∂2

m2
h

)
, DZ = DW − 2T̂ , (3.5)

where v ≈ 246 GeV. This result has been obtained by taking into account both the Higgs

wave-function rescaling and the modification of the SM relation between v and mW due to

Universal ‘Higgs-only’ operators. Note that, because of the strong experimental constraints

on violations of custodial symmetry in EW data, the difference between DZ and DW is

negligible for the precision that can be achieved in Higgs physics. Thus, the modification

of Higgs couplings to gauge bosons is practically identical for W and Z.
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As apparent from eq. (3.5), the Ĥ-dependent correction to the coupling with gauge

bosons vanishes for on-shell Higgs bosons, where (∂2 + m2
h)h = 0. It vanishes for off-shell

Higgs as well, since the corrections to the propagators and vertex exactly cancel out, at

the order in which we are working:(
1

p2 −m2
h

− Ĥ

m2
h

)[
1− Ĥ

(
1− p2

m2
h

)]
=

1

p2 −m2
h

. (3.6)

This result simply reflects the fact that O� modifies the propagator for H in the unbroken

phase, where covariant derivatives include gauge fields. Thus the correlation between the

effects in the gauge coupling and the propagator in the broken phase is a consequence of

gauge symmetry.

A more direct way of understanding this cancellation comes from making a change

of basis through the substitution �H → JH in O�. As a result, only Higgs couplings to

fermions and self-couplings show new-physics modifications, while the Higgs-gauge coupling

or multi-gauge interactions remain SM-like (see also [34]).

An important consequence of this fact is that the one-loop process involving an off-shell

Higgs boson, gg → h? → ZZ, is insensitive to modifications of the Higgs boson propagator

within an EFT, since all dimension-6 terms cancel, leaving only the modification of the

Higgs Yukawa coupling to the top quark which is, in any case, better constrained from

on-shell measurements [35–37].

Moving now to consider fermions, we find a universal modification of the Higgs cou-

plings to quarks and leptons of the form

yf

ySM
f

= 1− Ĥ − cH
v2

2M2
. (3.7)

In the Universal basis, this effect comes purely from the canonical rescaling of the Higgs field

and the proper redefinition of mW that enters the normalisation of the SM coupling ySM
f .

Finally, the Higgs trilinear self-coupling is modified as

Ah
ASM
h

= 1− 2Ĥ −
(
cR + 3cH + 4c6

v2

m2
h

)
v2

2M2
. (3.8)

In conclusion, the ‘Higgs-only’ basis is described by 4 independent Wilson coefficients

(c�, cH , cR, c6) and leads to 3 physical observables in Higgs couplings: universal modifi-

cations of h → V V and h → f̄f , and the Higgs trilinear vertex. Therefore, even in this

restrictive class of EFT, it is not possible to unambiguously determine Ĥ by combining

on-shell Higgs coupling measurements and a measurement of the trilinear coupling.

Including the ‘mixed gauge-Higgs’ operators adds new physical effects (h → gg, h →
γγ, h → Zγ, new Lorentz structures in h → V V ) but also introduces several new free

parameters.9 The only way to break the degeneracy afflicting Higgs coupling measurements

is to consider alternative probes. This is because the hallmark of the Ĥ oblique parameter

is off-shell Higgs physics. This strategy for unambiguously determining Ĥ at high-energy

colliders will be discussed extensively in section 5.

9For a discussion of the connection between the corrections to h→ γγ and the Higgs self-energy see [38].
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4 Connecting the EFT with the UV

4.1 UV completions

Universal EFTs describe a smörg̊asbord of microscopic models. Explicit calculations of the

leading order Wilson coefficients for specific scenarios can be found in [39–41]. Some of

the examples that populate a large number of Universal operators at the same loop order,

including O�, are stops in supersymmetry [39], and scenarios with vector-like leptons [41].

An extra-dimensional example. Let us consider a simple extra-dimensional toy model

and for simplicity take the Higgs mass to be vanishing. This example reveals two key

features. The first is that Ĥ can be parametrically enhanced relative to Ŵ and Ŷ in

concrete extra-dimensional scenarios. The second is that this simple example illustrates

the importance of expanding the propagator consistently order-by-order in the EFT.

We take the Higgs and gauge bosons to propagate in the bulk, with the fermions

localised at one end of the extra dimension. For the Higgs we allow a bulk mass MBulk

and boundary conditions allowing for a massless zero mode localised away from the matter

brane, the mass spectrum is M2
n = M2

Bulk + n2/R2. Denoting the scale at which the EFT

breaks down as M = M1, the bulk mass as MBulk = αM , and writing p2 = xM2, then we

have that the full effective Higgs propagator is given by

∆(x) =
1

2αxM2

[
1− exp

(
2πα√
1− α2

)][
α−

√
x− α2 cot

(
π

√
x− α2

1− α2

)]
. (4.1)

Expanding to dimension-6 one has

c1(α) = ĉ1(α) =
1

4α2

[
1 + coth

(
απ

1− α2

)][
sinh

(
2πα

1− α2

)
− 2πα√

1− α2

]
, (4.2)

which, due to the exponential behaviour, can be arbitrarily large, saturating even the

perturbativity bound c1 ≈ 4π for a reasonably small bulk mass α ≈ 0.35. For this example,

since the bulk gauge boson masses are vanishing by gauge invariance, thus we have

Ĥ

Ŵ
= c1(α)

(
1− α2

) 3

π2

m2
h

m2
W

, (4.3)

which can be arbitrarily large in this class of model.

Now we concentrate on the gauge bosons, which describe the flat extra dimensional

example of Universal theory given in [10]. In this α→ 0 limit one has

∆(x) =
π

M2

cot (π
√
x)√

x
. (4.4)

In terms of the cutoff scale for the gauge boson propagator M = 1/R the Wilson coefficients

of the expansion are

c1 =
π2

3
, c2 =

π2

15
c1 , c3 =

2π2

21
c2 , . . . , (4.5)

ĉ1 =
π2

3
, ĉ2 =

2π2

5
ĉ1 , ĉ3 =

17π2

42
ĉ2 , . . . (4.6)
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Figure 3. The magnitude of EFT corrections to the propagator in the flat extra dimension Uni-

versal theory. Here we plot the full EFT correction to the propagator ∆EFT(x) as compared to the

using the self-energy approach ∆Σ
6 (x), for which the derivative series diverges, and the approach

advertised here, in which the propagator is expanded consistently at dimension-6 to find the cor-

rection ∆6(x) wherein the derivative expansion must converge. We also show an envelope around

the full correction within which the dimension-6 approximation is expected to fall.

Note that c1 > 1 and thus, as expected from the general discussion in section 2.2, the coef-

ficients ĉn of the self-energy expansion grow rapidly, while the coefficients cn satisfy ‘con-

vergence’. This provides a clear example of a situation in which, if working at dimension-6,

one should expand the propagator to dimension-6 and not retain the dimension-6 term in

the denominator of the propagator since this implicitly includes, at dimension-8, a term

proportional to c2
1 which is a factor 5 larger than the true dimension-8 term of the full EFT.

This limitation of working with the self-energy in Universal theories is illustrated figure 3

where we have defined

∆EFT(x) = ∆(x)− 1

M2x
, ∆6(x) =

c1

M2
, ∆Σ

6 (x) =
1

M2

(
1

x− ĉ1x2
− 1

x

)
. (4.7)

We see in figure 3 that the ‘self-energy’ approach consistently fails to provide a good

approximation to the full EFT result. This is most notable at negative x, as found for t-

channel exchange diagrams, in which an unphysical pole appears well below the true cutoff

of the EFT and beyond this pole the ‘self-energy’ approach even predicts an incorrect sign

for the amplitude correction.

This illustrative example is only a toy model for a number of reasons. Most notably

is that the bulk does not respect custodial symmetry hence large violations of low energy

precision electroweak constraints are possible. Furthermore, all of the fine-tuning consid-

erations relevant to flat extra-dimensional models will apply here, meaning that the Higgs

is not necessarily naturally light. Nonetheless, this simple example demonstrates that a

wide range of Wilson coefficients may be possible in Universal theories, showing that it

– 16 –



J
H
E
P
0
9
(
2
0
1
9
)
0
4
1

will be important to measure all electroweak oblique parameters to fully map the space

of UV theories. Furthermore, it shows that for Universal theories if the propagator is not

consistently expanded at the appropriate dimension, the momentum expansion can break

down prematurely, invalidating the use of the EFT.

An example for large Ĥ. It is also straightforward to find examples where all of

the ‘Higgs-only’ operators, again including O�, arise at leading order, whereas the ones

involving the gauge field strengths arise one loop higher in perturbation theory.

A concrete example is a two-Higgs doublet model with all scalar sector couplings

included, which may also be extended with an additional complex scalar singlet. We may

write this class of UV-completions as

L = LSM + |DµH̃|2 + |∂µS̃|2 + κ
(
DµH̃D

µH + h.c.
)
− V (H, H̃, S̃) , (4.8)

where LSM is the SM Lagrangian including kinetic and Yukawa terms for the SM-like Higgs

doublet H. To avoid ghosts we take |κ| 6 1, and the potential V includes a mass term

parameterised as

Vmass = m2H̃†H̃ +
(
βm2H̃†H + h.c.

)
, (4.9)

as well as scalar interactions with a typical coupling strength g∗. As expected from the

coupling dimensions shown in table 1, as one takes the limit g∗ → 0 the theory generates

only O� at leading order.

At low energies, we can integrate out H̃ by using its equations of motion, finding an

effective theory described by

LEFT = LSM +H†
(
κ�+ βm2

)2
�+m2

H . (4.10)

After correcting for wave-function and mass rescaling, the tower of higher-dimension oper-

ators for a canonically normalised Higgs field is

LEFT =
(β − κ)2

m2(1 + β2 − 2κβ)
�H†

∞∑
n=0

(
−�
m2

)n
�H . (4.11)

Thus we have presented an example of UV theory in which O� emerges at low energy as

a leading effect, giving

Ĥ =
(β − κ)2m2

h

(1 + β2 − 2κβ)m2
. (4.12)

As expected, Ĥ turns out to be positive (for |κ| 6 1). Of course, by turning on the coupling

g∗, the other ‘Higgs-only’ operators will be generated as well.

To compare to the mass scale of new physical states we can start from the theory

described by eqs. (4.8)–(4.9) and diagonalise the H–H̃ system. After diagonalising, the

heavy scalar has mass

M2 =
1 + β2 − 2κβ

1− κ2
m2 , (4.13)
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where we have chosen the Higgs mass-squared such that a massless Higgs-like scalar re-

mains.10 Expressing the derivative expansion in terms of the physical cutoff mass M , we

obtain from eq. (4.11) the Wilson coefficients

ĉn =
(β − κ)2(1 + β2 − 2κβ)n−1

(1− κ2)n
. (4.14)

Using the relation in eq. (2.13) for p2 � m2
h, we find

cn =
(β − κ)2

1− κ2
, Ĥ =

c1m
2
h

M2
. (4.15)

As expected from our general discussion, the coefficients cn satisfy positivity, convergence

and are all equal, corresponding to tree-level single-particle exchange.

4.2 EFT validity

By construction, the range of EFT validity is up to energies of order M . As discussed

in section 2.2, the property of convergence is crucial to assess the correct interpretation

of the extent of the EFT validity. However, through low-energy measurements we cannot

determine the cutoff mass M and the Wilson coefficient c� separately, but only in the

combination c�/M
2 ≡ Ĥ/m2

h that appears in the definition of Ĥ. As the oblique param-

eter Ĥ leads to energy-growing effects, one is interested to know what is the maximum

energy for which the EFT prediction can be trusted when compared with an experimental

measurement. For a given value of Ĥ, the maximum value of the EFT cutoff corresponds

to the maximum possible value of the coefficient c�. Therefore, the question of the range

of the EFT validity translates into a question about the maximum value of c�.

A näıve upper bound on c� can be obtained by requiring that the coupling in eq. (2.15)

must satisfy a generic perturbative bound κ < 4π. This motivates the limit

c� . (4π)2 , (4.16)

which corresponds to the request that the maximum energy for which the EFT prediction

can be trusted is

Emax .
4π√
Ĥ
mh . (4.17)

We will refer to eqs. (4.16)–(4.17) as the näıve perturbativity constraint, since the UV-

completion which violates these simple bounds is likely to be non-perturbative.

In general, the näıve perturbativity constraint is over-optimistic and, possibly, unreal-

istic. This is because the corresponding value of c� likely violates perturbative unitarity,

as applied to some scattering process, both within the EFT itself or in the underlying

UV-completion. One particularly constraining process is tt̄→ tt̄ scattering mediated by an

off-shell Higgs. In this case, leading order perturbative unitarity is typically not violated

within the regime of validity of the EFT (p2 < M2) whenever

|c�| . 4π , (4.18)

10This simplification is taken only to remove some parametric freedom, but one can easily include the

non-zero Higgs mass.
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where the precise coefficient depends on the specific process under consideration. The

corresponding limit on the maximum energy for which the EFT can be trusted is

Emax .

√
4π

Ĥ
mh . (4.19)

We will refer to eqs. (4.18)–(4.19) as the perturbative unitarity constraint.

Both näıve perturbativity and perturbative unitarity provide useful, although qualita-

tive, constraints to guide our phenomenological study of the Ĥ-parameter.

5 Probing Ĥ at colliders

In this section we will discuss how high-energy colliders can search for the Higgs oblique

parameter Ĥ.

5.1 On-shell probes

As shown in section 3.2, the oblique parameter Ĥ affects the on-shell Higgs couplings only

with a universal modification of the interaction to fermions (usually parametrised by the

coefficient κf )

κf = 1− Ĥ . (5.1)

We recall that the positivity condition discussed in section 2 requires Ĥ > 0, so κf is always

reduced with respect to the SM value. The latest combined fit of the ATLAS collaboration

on fermionic Higgs couplings, involving both Higgs production and decay processes and

using up to 80 fb−1 of 13 TeV data [42], gives

Ĥ < 0.16 at 95% CL (LHC today), (5.2)

where the bound is obtained by assuming that κf is the only new-physics effect in Higgs

physics. Recent estimates of the projections of Higgs coupling measurements at the HL-

LHC with 3 ab−1 [43] translate into a future bound

Ĥ < 0.04 at 95% CL (HL-LHC projection). (5.3)

5.2 Off-shell probes

Off-shell Higgs exchange can affect a physical process with contributions that, at the am-

plitude level, scale as Ĥ p2/m2
h. Thus, even if the measurement of such a process at high

energies is not as precise as a low-energy measurement, it may still be competitive with

high precision low-energy constraints, such as those from on-shell observables. Moreover,

while the reach of on-shell probes given in eq. (5.3) offers a useful benchmark, we stress

that off-shell probes should be carried out independently. Indeed, as shown in section 3.2,

contributions from other operators generally present in a Universal EFT can affect, and

even cancel out, modifications of SM Higgs couplings. On the contrary, the search for

off-shell effects is a unique and clean test of the Higgs oblique parameter Ĥ.

As shown in section 3.2, the study of the process pp→ h∗ → V V is futile for testing Ĥ,

since its energy-growing effects exactly vanish in the corresponding amplitude. The next
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Figure 4. A sample of Feynman diagrams with an off-shell Higgs contribution to four-top produc-

tion at the LHC (pp→ tt̄tt̄).

obvious place to look for energy-growing contributions in proton colliders is tt̄ production

mediated by an off-shell Higgs. However, while the signal comes from a loop-induced

process, the tt̄ SM background is a tree-level QCD process. Thus, this channel gives an

inefficient probe of Ĥ.

Moreover, the Ĥ contribution to tt̄ production comes from various one-loop Feynman

diagrams, some of which contain a modified Higgs propagator inside the loop. This can

potentially lead to a logarithmic sensitivity on the cut-off which obscures the data inter-

pretation and introduces a model dependence.

The next process to consider is Higgs pair production. In this case, the modified Higgs

propagator does not run inside the loop and there is no model-dependent cutoff sensitivity.

However, the cross section falls rapidly due to the top-loop form factor, and this counteracts

the energy-growing behaviour from Ĥ. For instance, the total di-Higgs cross section at the

14 TeV LHC, with the cut mhh < 1.5 TeV, is modified by Ĥ = 0.04 at the 23% level. Given

the limited sensitivity to Higgs pair production at the HL-LHC, this channel is unlikely to

be competitive with on-shell constraints on the Ĥ-parameter at the LHC.

It transpires that the most promising channel for off-shell probes of Ĥ is a more exotic

process: four-top production.

Four-top production. Here we consider the role of the process pp→ tt̄tt̄ as a probe of

the Higgs boson off-shell, see figure 4. Four-top production at the LHC is a rare process

in the SM with cross section of 15.8 ± 3.1 fb at 14 TeV collider energy (NLO QCD +

EWK) [44, 45]. The dynamical scale choice µR = µF = HT /4 is particularly effective in

stabilising the distribution corrections from LO to NLO [44] and will be employed in the

analysis below. Here, HT is defined as the total transverse energy of the four-top system,

HT =
∑4

i=1

√
m2
t + p2

T (ti).

Due to statistics, systematics and background, the four-top final state is challenging to

observe [46]. Nonetheless, significant progress by the experimental collaborations has been

made recently. Both ATLAS and CMS analysed about 36 fb−1 of 13 TeV data each [47, 48],

with constraints approaching the SM rate. Interestingly, ATLAS reported comparable sen-

sitivities in the combination of single lepton plus opposite-sign dilepton searches when com-

pared to the combination of same-sign dilepton plus three lepton searches. The first class of

searches selects more signal events but suffers from larger systematic uncertainties. In fact,

these are already now becoming a limiting factor. Therefore, to derive future projections

we will focus on the second class of searches, which feature rarer but cleaner signatures.
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Figure 5. The 3 ab−1 HL-LHC and 30 ab−1 FCC-hh sensitivity projections for the Ĥ parameter

in four-top production (pp→ tt̄tt̄). The solid and dashed black curves show the expected sensitivity

at 95% CL as a function of the kinematic variable Mcut for a different systematic uncertainty δsys.

Superimposed to this plot are three dashed brown lines showing the corresponding values of c�
assuming M = Mcut. The regions above the lines c� = 4π and c� = (4π)2 are incompatible with

the criteria of perturbative unitarity and näıve perturbativity, respectively.

ATLAS and CMS have also studied projections for four-top production at the HL-

LHC [49, 50] (see also [51]). Both reported the expected statistical uncertainty of 9%

on the SM signal strength modifier (µ = σ/σSM). However, ATLAS quotes an expected

sensitivity including systematics of 16%, while the CMS estimate ranges from 18% to 28%.

The major source of systematic uncertainty comes from the theoretical uncertainty on

signal and background normalisation. Hence, it is reasonable to expect that improved

theoretical calculations of pp→ tt̄tt̄, tt̄V and tt̄H will considerably reduce this uncertainty.

Nevertheless, to be conservative, here we show results for two benchmark scenarios, δsys =

5% and δsys = 20%.

The same-sign dilepton and trilepton projection analysis by ATLAS [49] exploits three

particularly clean categories with at least 6 jets, out of which 3 or 4 are b-jets, yielding

S/
√
B ∼ 10 and S/B in the range of 2.3 to 5.5. The total expected number of events in

these categories at 14 TeV and 3 ab−1 is about 120.

We use MadGraph5 aMC@NLO [52] to perform leading-order parton-level studies

of pp → tt̄tt̄ including the Higgs oblique parameter Ĥ. We adjusted the SM UFO model

files to incorporate the Higgs boson propagator modification — according to eq. (3.2) —

and the modification of the top Yukawa interaction — keeping only the Ĥ correction in

eq. (3.7). To cross check the results in a different field basis we also implemented an

equivalent modified top Yukawa and four-top operator in the FeynRules [53], exported

to UFO, and confirmed agreement between the two procedures. We find that at 14 TeV
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the fractional modification to the inclusive tt̄tt̄ production cross section is

δσtt̄tt̄ ≡
σĤ − σSM

σSM
≈ 0.03

(
Ĥ

0.04

)
+ 0.15

(
Ĥ

0.04

)2

, (5.4)

showing competitive sensitivity to the on-shell probes already at this level. The inter-

ference effects between SM and Ĥ-induced diagrams are sub-leading given the expected

experimental reach.

We perform kinematical cuts in two variables, HT and m4t, both of which can be

reasonably well-approximated in a realistic analysis setup. Here, m4t is the total invariant

mass of the four-top system, while HT is the total transverse energy defined before. We

have checked explicitly that the simulated events satisfy |p2
h| < m2

4t, where |p2
h| is the

maximal momentum flow in the Higgs propagator for all Feynman diagrams.

Shown in figure 5 is the expected sensitivity (at 95% CL) on Ĥ for a given upper limit

on m4t ≤ Mcut, after optimising the HT cut. The number of events in the final selection

bin is described with Poisson distribution. The black solid (dashed) line corresponds to

the overall systematic uncertainty of 5% (20%). We repeat this exercise with the exact

same procedure for 100 TeV proton-proton collider and 30 ab−1 of luminosity, assuming

the systematic uncertainties of 5% and 1%, respectively. Based on extrapolations of higher

order perturbative calculations a 5% systematic error seems realistic, whereas 1% may be

optimistic, depending on future progress.

To assess the reliability of the EFT prediction in the plane of figure 5 we recall the

discussion in section 4.2. Since the energy flowing in the Higgs propagator never exceeds

Mcut, we can interpret Mcut as the minimum possible value of the EFT cutoff and therefore

c� > ĤM2
cut/m

2
h. We then plot in figure 5 the corresponding values of c�, identifying

the regions in conflict with the criteria of perturbative unitarity (c� & 4π) and näıve

perturbativity (c� & (4π)2).

To summarise figure 5, future HL-LHC four-top searches will provide a competitive

probe of Ĥ in the off-shell Higgs regime, giving meaningful constraints on a wide class of

theories featuring moderate to strong coupling constants. The FCC-hh collider has a poten-

tial to probe weakly coupled theories and, at large cutoff, potentially supersede the FCC-ee

precision constraint on an Ĥ-only scenario, which would be at the level of |Ĥ| . 0.5% [54].

While this simple analysis already illustrates the importance of the four-top production

in the context of Higgs physics, it is far from unlocking the full potential of this process.

We envisage a number of possible improvements. For example, tt̄tt̄ angular distributions

could help disentangle signal from the background. In this context, we identify a suitable

parton-level variable, ∆ = ηt1 + ηt2 − ηt̄1 − ηt̄2 which could be employed to further enhance

the sensitivity. However, a realistic collider analysis is beyond the scope of this paper and

the simulation of decays, showering, hadronisation and detector effects, possibly employing

advanced machine learning techniques for optimised results, is left for future work.
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6 Conclusions

The future of Higgs physics will have a course charted by precision calculations and a des-

tination mapped by a new frontier of experimental measurements. The resulting landscape

will be translated into fundamental questions: what is the nature of the Higgs boson? How

does the Higgs boson interact with other particles and with itself? In this work we have

advertised and studied an orthogonal, yet important, question for this programme: how

does the Higgs boson propagate? Framed within a general EFT context the answer to this

question is unphysical and basis-dependent. However there is a broad class of microscopic

theories (called Universal theories) which single out a specific EFT basis in which this ques-

tion not only becomes well-defined, but also plays a key role in mapping out the boundaries

of the UV. Leading order modifications of the Higgs propagator are captured by the Ĥ-

parameter, which is the coefficient of the operator O� = |�H|2 in the Universal basis.

The Ĥ-parameter provides a Higgs-boson analogue to the oblique electroweak parameter

programme and, since it measures the high-momentum corrections to the propagator, thus

is the hallmark of off-shell Higgs physics.

In section 2 we set course by studying the general properties of propagators in QFT.

Starting from the non-perturbative Källén-Lehmann representation, we derive some con-

sistency conditions that must be satisfied by the Wilson coefficients of the EFT expansion.

In particular, we discuss a positivity condition for the coefficients of the two-point function

and a so-called convergence condition, governing the relation between successive coeffi-

cients. Convergence can be used to place upper bounds on the scale of new states if

successive Wilson coefficients are measured. With regard to the Higgs boson, the Källén-

Lehmann representation can be used to constrain the sign of the Ĥ-parameter in a very

broad range of UV-completions.

Even within the limited territory of Universal EFTs, in section 3 it was shown that

the physical effects of the Ĥ-parameter cannot be unambiguously constrained by on-shell

Higgs coupling measurements alone. Off-shell Higgs physics becomes the natural arena

to test the oblique Ĥ-parameter. This promotes precision measurements involving an off-

shell Higgs boson to a key exploratory role within the precision Higgs era. The off-shell

processes provide information that cannot be accessed simply with on-shell measurements

and is crucial to break degeneracies between Wilson coefficients in order to fully explore

the space of Universal EFTs. To illustrate the possibilities to which such measurements

are sensitive, a small sample of UV possibilities were discussed in section 4.

Finally, after exploring a variety of different off-shell processes and showing that energy-

growing effects in gg → h∗ → V V cancel exactly, in section 5 four-top production was

demonstrated to be a promising probe of the Ĥ-parameter, competing quantitatively with

on-shell coupling measurements for moderately and strongly-coupled microscopic models.

In conclusion, future HL-LHC studies of four-top production would provide important com-

plementary information on Higgs-sector modifications arising in a wide range of microscopic

theories, forming a crucial component in the wider effort to determine the microscopic na-

ture of electroweak symmetry breaking.
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A Bernoulli, Veneziano, and π

Suppose we have a general form of a propagator ∆(s) or forward scattering amplitude M,

which may be described by l-subtracted dispersion relations of the form

∆(s) =

∫ ∞
0

dq2 ρO(q2)

s− q2 + iε
+ Poly(s) , (A.1)

and

M(s) =

∫ ∞
0

dq2

(
F (q2)

s+ q2 + iε
− F (q2)

s− q2 − iε

)
+ Poly(s) , (A.2)

where any poles or branch cuts begin at some fixed scale M , such that ρO(q2 < M2) = 0 and

F (q2 < M2) = 0. Here Poly(s) is a polynomial function of s up to order l− 1, with coeffi-

cients chosen to render the final result finite and consistent with observations. Let us define

an>l =
1

n!

dn∆(s)

dsn

∣∣∣∣
s=0

, bn>l/2 =
1

2n!

d2nM(s)

ds2n

∣∣∣∣
s=0

, (A.3)

where in both instances we implicitly assume enough derivatives such that the subtractions

are no longer relevant. Consider the ratios

Tn = M2an+1

an
, Rn = M4 bn+1

bn
. (A.4)

From the dispersion relation we have the convergence condition

Tn 6 1 , Rn 6 1 . (A.5)

Furthermore, for ρO(q2) and F (q2) which grow sufficiently slowly, as may be determined

from, for example, the optical theorem and the Froissart bound, we observe the limiting

behaviour

Tn→∞ → 1 , Rn→∞ → 1 . (A.6)

This has an important consequence, which is that as we take the limit n→∞ then, for any

dispersion relation, including those involving loops or strongly coupled sectors, the Wilson

coefficients must asymptotically approach the value for tree-level exchange.

As an amusing application of this observation, consider the tree-level scattering ampli-

tude for gauge boson scattering in string theory at lowest order in the gs expansion [16, 55]

A ∝ gsK(εi, pi)

[
Γ(−α′s)Γ(−α′u)

Γ(1− α′s− α′u)
+ (s→ t) + (u→ t)

]
, (A.7)
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where the string scale is M2
S = 1/α′ and the functional form is proportional to the Veneziano

amplitude. The forward limit is11

M(s) ∝ s tan
(
α′
πs

2

)
. (A.10)

Expanding this forward amplitude we have

Rn = − π2

(2n+ 2)(2n+ 1)

22n+2 − 1

22n − 1

B2n+2

B2n
. (A.11)

Hence, from convergence, we find upper bounds on ratios of Bernoulli numbers

− B2n+2

B2n
6

(2n+ 2)(2n+ 1)

π2

22n − 1

22n+2 − 1
, (A.12)

and from the convergence limit we can connect the rational Bernoulli numbers to the

irrational number π as

lim
n→∞

(2n+ 2)(2n+ 1)
22n − 1

22n+2 − 1

B2n

B2n+2
= −π2 . (A.13)

The identity in eq. (A.13) is a well-known result in number theory and the inequality (A.12)

has been recently obtained in ref. [56]. It is curious that one can turn around the argument

and find these two results on Bernoulli numbers starting from the convergence criterion

applied to the EFT expansion of the Veneziano amplitude.

Note that we have only worked at leading order in gs, however higher order corrections

would likely also contribute.12 At O(g2
s) one also has a contribution from closed string

exchange, which includes a t-channel singularity from the massless graviton. Since we are

concerned with higher orders in s in the forward limit this singularity does not affect the

discussion above some low power in sn.

11To confirm that this amplitude may be written with the desired dispersion relation, using the identity

π cot(πx) = lim
N→∞

N∑
n=−N

1

x+ n
, (A.8)

we find that this forward amplitude is described by a once-subtracted dispersion relation with

F (q2) ∝
∞∑
n=0

(2n+ 1)δ

(
q2 − 2n+ 1

α′

)
. (A.9)

12We thank Brando Bellazzini for discussions on this aspect.
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