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ABSTRACT: In a typical untargeted metabolomics experiment,
the huge amount of complex data generated by mass
spectrometry necessitates automated tools for the extraction of
useful biological information. Each metabolite generates
numerous mass spectrometry features. The association of these
experimental features to the underlying metabolites still
represents one of the major bottlenecks in metabolomics data
processing. While certain identification (e.g., by comparison to
authentic standards) is always desirable, it is usually achievable
only for a limited number of compounds, and scientists often
deal with a significant amount of putatively annotated
metabolites. The confidence in a specific annotation is usually
assessed by considering different sources of information (e.g.,
isotope patterns, adduct formation, chromatographic retention
times, and fragmentation patterns). IPA (integrated probabilistic annotation) offers a rigorous and reproducible method to
automatically annotate metabolite profiles and evaluate the resulting confidence of the putative annotations. It is able to provide
a rigorous measure of our confidence in any putative annotation and is also able to update and refine our beliefs (i.e.,
background prior knowledge) by incorporating different sources of information in the annotation process, such as isotope
patterns, adduct formation and biochemical relations. The IPA package is freely available on GitHub (https://github.com/
francescodc87/IPA), together with the related extensive documentation.

When trying to convert raw mass spectrometry (MS) data
into useful biological information, the association of the

detected experimental features (or groups of features) to
specific metabolites plays a pivotal role. This process, called
annotation, is one of the major bottlenecks for untargeted
metabolomics,1 and the definition of what represents a valid
“metabolite identification” is still under discussion.2 The
Metabolomics Standards Initiative (MSI, http://www.
metabolomics-msi.org) defines 4 different levels of identi-
fication.3 The highest confidence is achieved with level 1,
which requires at least two orthogonal molecular properties to
be confirmed (e.g., retention time and exact mass) with the aid
of a pure standard analyzed in the same analytical conditions.
Levels 2 and 3 (putatively annotated compounds or compound
classes) are achieved with a simple comparison of molecular
properties against literature and databases. Level 4 refers to
unknown compounds. Confident and certain identification
(level 1) requires a significant effort and is not always
achievable2 for a number of reasons: it is expensive, as in many
cases, it is necessary to rebuild the database of standards when
the analytical conditions change, and often there is no

commercially available standard for the relevant metabolites.
Therefore, in most cases only a level 2 identification is
achieved, by comparing the detected m/zs with available
databases, such as KEGG,4,5 HMDB,6 ECMDB,7,8 Lipid
Maps,9 and PubChem.10 Because of the nature of the
technology, MS data show a high grade of redundancy, with
several features corresponding to the same metabolite due to
naturally occurring isotopes, adduct formation and in-source
fragmentation.11 Such redundancy negatively affects the
annotation process by increasing the number of possible
misidentifications. In the past few years, a number of different
methods have been developed in order to improve the
performance of the annotation process.12 For example, Creek
et al. successfully applied a retention time prediction approach.
Through this approach, they removed 40% of the misanno-
tated compounds, which showed inconsistency between m/z
and retention time. Other methods tried to tackle the
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annotation by grouping together the features that appear to be
related to the same compound.14−17 Such an approach reduces
the number of queries in the databases and the false annotation
of adducts, fragments and isotopes. It is noteworthy that,
regardless how sophisticated, the grouping algorithm is prone
to errors, especially when coelution is observed. Additionally,
this approach does not help in those cases where the same
feature has more than one hit in the database. An interesting
approach called CliqueMS was recently introduced by Senan et
al.18 This approach aims for the annotation of LC-MS features
by considering the similarity between coelution profiles and a
calculated natural frequency of adduct formation observed in
real complex biological samples and pure compounds from the
NIST database. Rogers et al. (2009) demonstrated that
through a Bayesian approach it is possible to improve the
annotation process by including different sources of
information. Here we present IPA (integrated probabilistic
annotation), a Bayesian annotation method building on this
earlier work, which is able to provide a statistically rigorous
assessment of our confidence in any putative annotation and is
also able to update and refine our beliefs by incorporating
different sources of information, such as isotope patterns,
adduct formation, and biochemical relations. Compared to the
original implementation of Bayesian metabolite annota-
tion,19,20 IPA provides substantial improvements. In fact, it is
able to (a) integrate retention time information in the
estimation of prior probabilities; (b) integrate the possibility
that the peak under consideration is based on an “unknown”
(i.e., not present in the database under consideration); (c)
treat each source of information separately giving different
weight to each of them; and (d) reject implausible connections
for adducts and isotopes according to several criteria (e.g.,
mismatching retention time). The method has been validated
both through a simulated data set and through two untargeted
metabolomics experiments specifically designed to provide a
reliable benchmark for annotation methods. Furthermore, the
flexibility and the modular design of our method will allow the
easy integration of additional sources of information (e.g.,
fragmentation patterns or ion mobility drift times).

■ MATERIALS AND METHODS
The typical data processing pipeline for untargeted LC/MS-
based metabolomics usually ends up with a set of several
thousands of redundant metabolic “features”, generated by the
presence of hundreds of metabolites in the biological sample
analyzed.21−25 Each of these features is defined by 3 quantities:
its average mass-to-charge ratio (m/z), average retention time
(RT), and maximum intensity. When fragmentation data is not
available, the annotation of these features is usually based on
the matching of all or some of the m/z values with different
databases, which often leads to uncertain or incorrect
assignments. When considering the association of a specific
feature to one adduct of a specific compound our confidence
could be simply based on how close the measured and
theoretical m/z values are. However, our initial belief will
change according to several observations: do we also observe
the naturally occurring isotopes of the compound considered?
Do the isotope signals show the expected relative intensity? Do
we see the expected fragments or adducts that are usually
detected in our system due to this compound? How plausible
is the presence of this compound in the analyzed sample? Is
this compound biochemically related to any of the other
compounds found in the sample, for example as a commonly

seen degradation product? The method described in this
manuscript is based on the simple assumption that each
annotation can be informed by all the others. Therefore, the
performance of the annotation process can be significantly
improved by incorporating additional information.

1. Adduct formation and in-source fragmentation: It is
well-known that each compound generates several peaks
due to in-source fragmentation and adduct formation.
Even with the softest ionization method, electrospray
ionization,26,27 in-source fragmentation is always present
and often generates fragments of identical m/z to
common metabolites.28 Ignoring this kind of informa-
tion can easily cause misannotation, and it has been
integrated into the IPA method as it can significantly
help the annotation process.

2. Isotope patterns: Even with 1 ppm mass accuracy the
information about the expected isotopes can significantly
improve the annotation process.29 Isotope peak intensity
can also be informative; in fact, given the chemical
formula, we are able to predict the isotopes’ relative
abundance30,31 and use this information during
annotation;

3. Biochemical connectivity: When analyzing a biological
sample, it is safe to assume that almost all metabolites
are members of the same metabolic network, that is,
they are connected to other compounds in the same
sample by simple (bio)chemical transformations. Con-
sidering this information during annotation helps to shift
our beliefs toward compounds that are more likely to be
part of the same metabolic network and away from more
exotic compounds. For example, the presence of a
particular compound becomes more likely if its
biosynthetic precursors are also observed in the
experiment.

All of these sources of evidence are routinely considered in the
manual annotation of LC/MS metabolomics data, and IPA
formalizes them in a unified statistical framework.

Formal IPA Description. Database. The IPA method
relies on a structured database encoding all the information
used during the annotation process. For every compound
considered, the database must contain an unequivocal
identifier, compound name, chemical formula, monoisotopic
mass, positive and negative main adducts (i.e., the adduct
known or thought to be the most intense) and positive and
negative adducts and fragments (i.e., the complete list of
adducts and/or fragments that are known or thought to be
formed by the compound). Additionally, the database can
contain a list of alternative names, a list of unequivocal
identifiers for the reactions involving the compound, a list of
alternative identifiers and a retention time range where the
compound is considered more likely to be detected. The IPA
package already includes a database containing all the
compounds found in the KEGG database4,5 with the addition
of several compounds needed for the validation examples
considered here (e.g., all the compounds involved in the
mevalonate pathway and limonene biosynthesis32). This
database has been initially populated assuming that all
compounds show the same behavior: only a handful of
adducts are generated by each compound ([M + H]+, [M +
Na]+, [M + 2H]2+, and [2M + H]+ for positive mode and [M
− H]−, [2M − H]−, [M − 2H]2−, and [3M − H]− for negative
mode) and the protonated ([M + H]+) and deprotonated ([M
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− H]−) ions are always considered as the main ions depending
on the ionization mode. It should be noted that this
assumption has only been used for the initial population of
the database, and can be adjusted by the user as considered
appropriate, given that adduct formation is different for
different metabolites and for different experimental conditions.
Moreover, the KEGG reaction database has been used to
populate the list of reactions involving each compound. The
IPA package provides the functionality for updating the
database according to previous observations. For example in
the course of this work, several standard mixes have been
analyzed and used to update the database as described in the
Supporting Information.
Prior Probabilities. Given the data set containing the

measured m/z values, retention times, and intensities
associated with all the M detected features, the function
f ind.hits() is used to identify all the database hits given a user-
defined accuracy window. With the help of the enviPat
package,31 this function also maps all the possible isotopes for
each formula identified resulting in the collection of all the C
adducts, fragments, and isotopes that could be associated with
the measured mass-to-charge ratios. When trying to associate
measured to theoretical mass-to-charge ratios, the conventional
approach relies on selecting the theoretical mass-to-charge
ratios that show an accuracy value better than an instrument-
specific threshold. In the case of multiple hits and absence of
additional information, it is reasonable to assume that the most
likely annotation corresponds to the match with the best
accuracy (closest mass match). Following this simple
reasoning, the compute.Priors() function evaluates the prior
probabilities using a Gaussian model based on the difference
between measured and theoretical mass-to-charge ratio. While
a Gaussian model appears to be the most reasonable choice,
different noise models can be considered. For example, it
would be easy to implement a model based on a uniform
distribution where all assignments showing an accuracy better
than a specific threshold have the same likelihood. Let Z be the
(C × M) binary matrix of assignments, where the single
element zc,m = 1 if the mass-to-charge ratio m is assigned to the
formula c. The likelihood is defined as

p z x y x y( 1, , , ) ( 0, )c m m c m cprior ,
2 2σ σ= = − | (1)

where yc represents the cth theoretical mass-to-charge ratio and
xm represents the mth measured mass-to-charge ratio.
Describing the measurement error as a Gaussian distribution
with zero mean requires the definition of the model standard
deviation σ, which is related to the mass accuracy of the
instrument used. A different standard deviation is computed
for each mass-to-charge ratio according to the user-provided
ppm value according to

m zppm /
2 106σ =

·
× (2)

Using eq 2 to estimate the standard deviation, we are assuming
that the instrument’s accuracy is better than the user-defined
threshold ≅ 95.45% of the times. It is reasonable to assume
that the probability of any measured mass-to-charge ratio not
being related to any of the chemical formulas contained in the
database is always greater than zero, that is, there is always a
finite probability that the observed mass-to-charge ratio
corresponds to an unexpected or novel molecule. To take
care of this, the function accepts an user-defined value for the

accuracy expressed in ppm (ppmu) associated with the
“unknown” molecule. The estimation of the prior probabilities
is then performed according to Algorithm 1. Moreover, the

prior estimation has been designed in such a way that it is easy
to include additional sources of information. For example,
there may be evidence from previous experiments or from
literature indicating that specific compounds are more or less
likely to be detected in the sample analyzed. This prior
knowledge can be easily added to the estimation of the prior as
a multiplicative term (pprior). Despite the relatively poor
reproducibility of liquid chromatography retention times
between different laboratories or experimental runs, IPA also
offers the possibility of considering information regarding RT.
In fact, for each compound contained in the database, it is
possible to provide an RT range (as broad as reasonable)
outside of which the presence of the compound is considered
to be unlikely in light of previous experimental evidence or an
RT prediction method.13,33 The multiplicative term related to
the retention time (pRT) will be equal to a user-defined value
(≤1), when the RT is found outside this range, and will be
equal to 1 otherwise. Additional multiplicative terms (e.g.,
regarding fragmentation patterns) could be easily imple-
mented.

Creating Connectivity Matrices. As mentioned in the
introduction, the IPA package improves the quality of the
annotation process by considering the relationships between
adducts, fragments, isotopes, and biochemically related
compounds. Such information is encoded in three connectivity
matrices generated by specific functions.

1. A d d u c t s m a t r i x ( W a d d ) : T h e
build.add.connenctivity.matrix() creates a (C × C) binary
matrix containing the relationships between adducts and
fragments. By default, this matrix connects each
monoisotopic adduct to its related main ion, typically
the protonated or deprotonated version of the molecule.
Alternatively, the user can select the fully connected
parameter, and Wadd will connect all adducts related to
the same compound with each other.

2. Isotope matrix (Wiso): The build.iso.connectivity.matrix()
function creates a (C × C) matrix connecting each m/z
to its two (or one) isotopologues showing the highest
predicted abundance. If the ith and jth m/z values are
connected by an isotope relationship, the wi,j element
contains the expected intensity ratio between the two.
Thanks to this information, the package can filter out
isotope connections showing inconsistent intensity
ratios.

3. B i o t r a n s f o r m a t i o n m a t r i x (W b i o ) : t h e
build.bio.connectivity.matrix() creates a (C × C) binary
matrix connecting only the main adducts of those
compounds thought to be involved in the same reaction.
The function can achieve this by considering the list of
reaction IDs provided in the database for each
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compound or by considering a limited number of
biochemical reaction classes that usually occur in a
metabolic network.34

Posterior Probabilities. When annotating by simply
querying a database, finding more than one possible hit is
common. In such cases, the identification of the most
reasonable assignment can be aided by the assignments of
the other m/z values detected. For example, the presence of
isotopes consistent with the predicted abundance ratios helps
to reduce the number of plausible compounds.35 This can be
easily achieved when the assignments of the isotopes are
considered as certain and independent. In reality, all
assignments are potentially interdependent, which makes the
incorporation of the information about possible connections
between m/z values (i.e., computing the posterior proba-
bilities) very challenging, as all the possible assignments have
to be considered at once. It is possible, however, to define a
prior distribution for one mass conditioned on the current
assignments of all the other masses and this can be used to
build an efficient Gibbs sampling scheme19 which allows us to
draw samples from the posterior distributions. Such condi-
tional priors can be defined according to different sources of
information (i.e., different networks of possible interactions).
For example, the conditional prior probability of the mth m/z
being assigned to the cth formula, given the network of all the
possible biochemical connections defined in the Wbio binary
matrix is defined as

p z
C

Z( 1, , )c m
cm

c c m
bio , B

B

B
δ

β δ
δ β

= =
+

· + ∑ ′ ′ (3)

where C is the number of chemical formulas in the database,
while the parameter δB can be thought of as the parameter for a
Dirichlet prior on a multinomial distribution over βcm and
expresses our confidence on the information encoded by the
connectivity matrix considered (Wbio). In fact, the smaller is δB,
the higher is the effect of the connections on the conditional
prior and consequently on the posterior probabilities. βcm
represents the number of relationships the cth compound
shows with all the other formulas that are currently assigned to
all the other m/z values. It can be computed as

W Z 1 W Zcm c c mβ = · · − ·• • • (4)

where 1 is the (M × 1) vector of ones and Wc
• and Z•

m
represent respectively the cth row of the connectivity matrix W
and the mth column of the assignments matrix Z. Similarly to
eq 3, it is also possible to define the conditional prior related to
the adducts and isotope relationships

p z
C

Z( 1, , )c m
cm

c c m
add , A

A

A
δ

η δ
δ η

= =
+

· + ∑ ′ ′ (5)

p z
C

Z( 1, , )c m
cm

c c m
iso , I

I

I
δ

ω δ
δ ω

= =
+

· + ∑ ′ ′ (6)

The computation of the number of connections for adducts
and isotopes is slightly more complicated. In fact, both adduct
and isotope relationships should be considered only between
m/z values that might be generated from the same molecule. If
two detected m/z values do not appear to be related to the
same compound (e.g., they show a very different RT), not all
possible adduct or isotope connections should be counted
when computing the conditional prior. The IPA package can

handle this problem in three different ways, according to the
information available.

1. If the RT for each measured m/z is provided, the only
connections considered are the ones between mass-to-
charge ratios showing an RT difference lower than a
user-defined threshold.

2. It is possible to group the detected mass-to-charge ratios
that are more likely to be related to the same compound
with a correlation based approach.14 IPA is able to
consider this grouping through an (M × 1) group label
vector.

3. Alternatively, it is possible to provide an (M × M)
correlation matrix. If two m/z values show a correlation
lower than a user-defined threshold, all possible adduct
of isotope connections between them are not consid-
ered.

Regarding the isotopes, it is also possible to consider
information about peak intensity to filter out connections. As
mentioned before, it is possible to estimate the expected
intensity ratio between isotopes, and this information is stored
in theWiso matrix. If the measured intensities are provided, IPA
is able to filter out isotope connections between m/z values if
the observed intensity ratio is different from the theoretical one
(given a user-defined tolerance). The Gibbs sampler has been
implemented by considering the following distribution:

p z x p p p pZ y( 1 , , , , , , )c m m B A I prior bio add iso,
2δ δ δ σ= | ∝ · · ·

(7)

Normalizing over C, it is finally possible to obtain a proper
discrete distribution. The functionality described in this section
is available through the function IPAposteriors(), where the
Gibbs sampler is implemented as described in Algorithm 2.
Here, the user has to define both the number of iterations (N)
and the number of initial iterations (burnin) that will be
ignored when computing the posterior probabilities.

Spectral Acquisition and Data Availability. Two

untargeted metabolomics experiments are considered in this

study. The biological samples were analyzed on a QExactive

Plus equipped with an Ultimate 3000 UHPLC (Thermo-

Fisher, UK). The complete description of the procedure used

for both experiments can be found in Supporting Information.
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Figure 1. Mevalonate pathway with limonene synthesis. The compounds highlighted in blue have been included in the synthetic experiment.

Figure 2. Estimation of the posterior distributions for the simulated feature for the [M + 2H]2+ adduct of NADP+ (A) and for the [M + H]+

adducts of isopentenyl pyrophosphate (B). The annotation of the first feature is informed by an adduct connection (blue) and one isotope
connection (green). The annotation of the second feature is instead informed by several adduct connections (blue) and biochemical connections
(yellow). The circles clustered together represent the possible annotation associated with the same feature. The probabilities reported in the graph
are the posterior probabilities estimated by the IPA method when considering all the sources of information.
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■ RESULTS AND DISCUSSION

Synthetic Example. To evaluate the performance of our
approach, a simulated metabolomics experiment has been
considered.
This synthetic experiment contains 15 compounds involved

in the mevalonate pathway and limonene synthesis32

(specifically, the compounds highlighted in blue in Figure 1).
Several adducts were simulated for each of the considered
metabolites ([M + H]+, [M + Na]+, [M + 2H]2+, and [2M +
H]+ for positive mode and [M − H]−, [2M − H]−, [M −
2H]2−, and [3M − H]− for negative mode). Additionally, all
the possible isotopes with a predicted relative abundance
higher than 5% were included in the data set. Including all
adducts and isotopes, a total of 83 m/z values were simulated
for the positive mode, and 95 were simulated for the negative
mode. A realistic experimental outcome was simulated by
adding Gaussian noise to the m/z values ( (0, )2σ ), where
appropriate σ values were computed for each m/z assuming an
instrument accuracy of 10 ppm (see eq 2). For each detected
m/z, the measured intensities were chosen to be coherent with
the theoretical abundance of the isotopes, and the same RT
value (±2 s) was assigned to all the simulated m/z values
related to the same compound. With the goal of showing that
every source of information can positively affect the annotation
process, the IPA method was applied in three settings: (1) only
considering isotope relationships, (2) considering isotopes and
adducts relationships, and (3) considering isotopes and
adducts relationships and biochemical connections. The scripts
used for the generation of the data sets and for the analysis
with the IPA package are provided as Supporting Information.
Even considering this simple toy example, several simulated
features do not have a clear annotation. For example, the
feature simulated for the [M + 2H]2+ adduct of NADP+

(C00006) shows several hits in the database when the
annotation process is based on mass only. As shown in Figure
2A, the IPA method changes our initial belief toward the
correct annotation by considering that it is the only one
showing any kind of relationship with the other possible
annotations.
The example reported in Figure 2B is slightly more

complicated. When considering the measured m/z values as
the sole source of information, the feature considered
(simulated for the [M + H]+ adduct of isopentenyl
pyrophosphate (C00129)) has three possible annotations in

our database. Two of them (C00129 [M + H]+, isopentenyl
pyrophosphate and C00235 [M + H]+, dimethylallyl
pyrophosphate) are equally likely as they have the same
chemical formula. It should be noted that both these
compounds are actually present in the simulated data set.
The third possible annotation (C18875 [M + 2H]2+,
novaluron) is initially the most likely having a m/z closer to
the measured one. By considering all the possible connections
with the other features present in the data set, this latter
annotation becomes extremely unlikely despite being the one
with the smallest difference between theoretical and measured
m/z. Having one biochemical connection more, the C00129
[M + H]+ annotation becomes slightly more likely than
C00235 [M + H]+. One should notice that all these
assignment are interconnected, therefore this little advantage
also increases the posterior probabilities associated with the
other adducts associated with C00129. A couple of cherry
picked examples cannot be used as an assessment of the
annotation performance of the method.
For a comprehensive assessment, the logarithmic predictive

score (LPS) was computed as

pLPS log( )
i

M

i
1

∑=
= (8)

where pi is the probability given to the correct assignment for
the ith measured m/z. In the best case scenario, all the
probabilities considered by eq 8 are equal to 1, that is, all
features are correctly identified, therefore LPS = 0. In all other
situations, LPS assumes a negative value. As shown in Figure 3,
the integration of each of the additional sources of information
drastically improves the predictive power of the annotation
method for both simulated data sets.

Escherichia coli Data Set. To show the value of our
method in real-life conditions, we designed two different
untargeted metabolomics experiments. In the first experiment,
a cell extract of a culture of Escherichia coli was chosen as a
biological matrix and divided into 4 groups. With the aim of
providing a data set that could also be used easily as a
benchmark for biomarker discovery methods, three of the
groups were spiked with different amounts of 30 standards as
described in Supporting Information. The data processing
performed through xcms36 and the mzMatch pipeline21 led to
a data set containing 1961 features. The IPA method was
applied to the obtained data set with default parameters and

Figure 3. Logarithmic predictive score computed for the synthetic experiment. The number of burn_in iterations is always the 20% of the total.
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using the updated database described in Supporting
Information. Additionally, during the estimation of the prior
probabilities, the multiplicative term pprior was used to take into
account our initial belief on the presence of the considered
compounds in the biological samples here considered.
Specifically, the pprior is equal to 1 when the compound is
also present in the E. coliMetabolome database,7,8 and equal to
0.8 otherwise. After removing the features for which no hit was
found considering a maximum accuracy of 15 ppm, the 1093
remaining features went through 5000 iterations of the Gibbs
sampler (1000 burn_in). The Gibbs sampler represents the
most computationally demanding step of the method

described here, and with this data set, took ∼4 h (an average
of 2.89 s per iteration) on a Linux desktop with 32 Gb memory
and 8-core Intel Xeon E5-2620 2.1 GHz processor. As shown
in Figure 4, one of the features detected in this experiment
could be associate to the [M + H]+ adducts of 3 different
compounds: (1) L-proline (C00148), (2) D-proline (C00763),
and (3) 3-acetamidopropanal (C00763). Having the same
chemical formula, these three annotations should show the
same initial probability when considering the mass as only
source of information. The estimated prior probability
estimated by the IPA package is slightly higher for L-proline
(≃38.5%) since it is the only one, among the three

Figure 4. One of the features detected in this experiment has 3 possible annotations. According to the IPA method (and common sense), L-proline
is the most likely annotation.

Figure 5. One of the features detected in this experiment have 8 possible annotations. According to the IPA method, L-tyrosine is the most likely
annotation.
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possibilities, that is also present in the ECMDB database.
Moreover, the estimation of the posterior probabilities further
shifts our belief toward this annotation (posterior probability
associated with L-proline ≃ 64.5%). As mentioned before, 30
different compounds were spiked in these samples. In positive
mode, only 24 were detected and for 22 of them the IPA
method increased the probability associated with the correct
annotation of their main adduct (see Table S6). In negative
mode, 20 of these compounds were detected and the IPA
method shifted the probabilities toward the correct annotation
for 18 of their main adducts (see Table S7). When dealing with
real-life data, a comprehensive assessment of the method
performance is not easy. In contrast to what is possible with
the synthetic experiment, the correct annotation in real-life
data will only be known for a very small fraction of the
detected features. This makes the calculation of a meaningful
LPS value impossible. Nevertheless, it is possible to quantify
the impact of IPA on the annotation. Out of the 929 features
showing more than one possible hit in the database, 268
(≃29%) showed a maximum difference between prior and
posterior probabilities higher than 10%. More importantly, for
186 of these features (≃20%), the IPA method changed the
most likely annotation or was a tie-breaker in the case of equal
prior probabilities. The full results of this analysis together with
the data set are available as Supporting Information.
Beer Data Set. In the second experiment, IPA was tested

in another untargeted metabolomics experiment where 21
different beers (7 indian pale ales, 7 lagers, and 7 porters) were
analyzed as previously described (see Supporting Information
for details). After the data processing, a data set containing
3042 features was obtained. The IPA method was applied to
this data set using the same parameters and the same database
used in the previous example. During the estimation of the
prior probabilities, the multiplicative term pprior was again used
to take into account our initial belief on the presence of the
considered compounds in the samples here considered.
Specifically, the pprior is equal to 1, when the compound
considered has been previously detected in published
metabolomics studies involving beers,37−42 and equal to 0.8
otherwise. After removing the features for which no hit was
found considering a maximum accuracy of 15 ppm, the 2139
remaining features went through 5000 iterations of the Gibbs
samples (1000 burn_in). The Gibbs sampler represents the
most computationally demanding step of the method
described here, and with this data set set took ∼9 h (an
average of 6.4 s per iteration) on a Linux desktop with 32 Gb
memory and 8-core Intel Xeon E5-2620 2.1 GHz processor.
Also in this case, the IPA method is able to provide a
probabilistic assessment of our confidence in each annotation.
For example, Figure 5 shows one of the detected features,
which m/z could be associated with 8 different compound all
having the same chemical formula. The prior probability
associated with L-tyrosine by IPA is slightly higher than the
other possible annotations (≃15.2%) because it has previously
been detected in a similar experiment.38 After the estimation of
the posterior probabilities, IPA makes this annotation
extremely more likely (≃67.5%). Also in this case, it is
possible to quantify the impact of the IPA method. Out of the
1846 features showing more than one possible hit in the
database, 683 (≃37%) showed a maximum difference between
prior and posterior probabilities higher than 10%. More
importantly, for 618 of these features (≃33%) the IPA method
changed the most likely annotation or was a tie-breaker in the

case of equal prior probabilities. The full results of this analysis
together with the data set are available as Supporting
Information. The examples shown in Figures 4 and 5 might
seem obvious to an expert in metabolomics, but they are not to
the traditional automated annotation methods. They have been
chosen to highlight how the IPA approach is able to replicate
the reasoning of an expert. Two additional examples in the
Supporting Information (Figures S1 and S2) further highlight
the value of isotope and adduct connections in the automated
annotation. To the best of our knowledge, no other method
provides the same kind of functionalities introduced by IPA
(i.e., a rigorous statistical integration of evidence, with real p-
values rather than arbitrary scores). For this reason, a
comparison with other methods is not straightforward. To
validate the annotation precision, IPA has been compared with
the xMSannotator package.17 The results are reported in the
Supporting Information.

■ CONCLUSION
The IPA method here presented implements a Bayesian-based
approach able to incorporate several sources of information
within the annotation process. This leads to a significant
increase of the predictive power for assigning measured m/z
values to putative formulas. Not only does IPA provide more
reliable annotations of compounds, it is also able to quantify
our confidence in such annotations and re-evaluate them when
new information is provided. The IPA package provides a
rigorous and comprehensive probabilistic assessment of the
confidence in each annotation, which will be highly valuable
for the downstream interpretation of the results. Moreover,
IPA is also able to store and successfully utilize the additional
information gained from previous experiments, thus leading to
an iterative improvement of annotations, especially for data
sets collected on the same experimental setup and similar
biological samples. This “continuous learning” ability of the
IPA approach mimics one of the most important features of
human manual annotations and ensures that insights from
earlier data sets are maintained for future exploitation.
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