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Highlights 44 

• The effects of land covers’ spatial clustering on LST are quantified using Moran’s I. 45 

• Seven metropolitan areas with different climate background in the U.S. are examined. 46 

• Clustered impervious surfaces elevate LST except for Phoenix. 47 

• The cooling effect of clustered green spaces was found in Phoenix and Portland only. 48 

• Clustered water has a cooling effect during the daytime but a heating effect at night. 49 

 50 

 51 

 52 

 53 

 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 

 74 



3 

 

Impacts of Spatial Clustering of Urban Land Cover on Land 75 

Surface Temperature across Köppen Climate Zones in the 76 

Contiguous United States 77 

 78 

 79 

 80 

 81 

 82 

Abstract 83 

This study examines the effects of spatial clustering of urban land cover types on land surface 84 

temperature (LST). The potential impact of the background regional climate is also taken into 85 

consideration. To study this relationship, multiple cities, each representing a major Köppen climate 86 

region in the U.S., namely Portland, Los Angeles, Chicago, Denver, Kansas City, Orlando, and 87 

Phoenix, were selected. Urban land cover types were derived from the 2011 National Land Cover 88 

Database (NLCD); summer mean LST from 2011 was calculated using the Moderate Resolution 89 

Imaging Spectroradiometer (MODIS) LST products. Spatial clustering was quantified using 90 

Moran’s I, and was analyzed against LST using correlation and multivariate regression analyses. 91 

The results indicate that in most climate regions, clustered impervious surfaces can elevate LST 92 

for both daytime and nighttime. The cooling effect of clustered vegetation cover was only found 93 

significant in regions with dry and warm summers, such as in Phoenix and Portland. Clustered 94 

water bodies have a strong cooling effect during the daytime but have a warming effect at night, 95 

except for cities such as Los Angeles and Phoenix, which have scant large water bodies. 96 

Furthermore, policy recommendations were put forward to suggest that reducing the spatial 97 

clustering of impervious surfaces, having more spatially clustered greenspaces, and having 98 

spatially dispersed water bodies with clustered greenspaces nearby are potential strategies to 99 

reduce urban warming in most cities in the contiguous U.S. 100 

 101 

Keywords: spatial clustering; Moran’s I; urban land cover; land surface temperature; Köppen 102 

climate classification  103 
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1. Introduction 104 

Urbanization is the result of infrastructure development, built-up area expansion, and infilling 105 

driven by population growth. Currently, most of the human population resides in urban areas rather 106 

than rural areas (United Nations, 2018). This trend of increased urban living is projected to 107 

continue to 8.6 billion people projected by 2030, 9.8 billion by 2050, and 11.2 billion by 2100 108 

(United Nations, 2009). With urban population growing at this magnitude, there is a critical need 109 

to understand how massive urban land use land cover (LULC) changes affect the local climate and 110 

environment (Carlson and Authur 2000; Lambin et al. 2001). It is well understood that urban land 111 

covers elevate land surface temperatures (LST) (Yue and Xu, 2013; Zhao et al., 2015; Wang et al., 112 

2016; Chen et al., 2017; Tayyebi et al., 2018), which have a subsequent influence on the regional 113 

climate (Oke, 1982; Kalnay and Cai, 2003), plant phenology (Cleland et al. 2007; Karnieli et al. 114 

2010), human health and comfort (Kalkstein and Smoyer, 1993; Kinney et al. 2001; Macintyre et 115 

al., 2018), and energy consumption and water use (Akbari et al. 2001; Guhathakurta and Gober, 116 

2007; Kolokotroni et al. 2012). While mitigation strategies focus on reducing the area of 117 

impervious surfaces and increasing the amount of urban greenspaces, they lack details regarding 118 

the relative quantity and organization of these landscape features. 119 

Research shows that spatial composition and configuration of land cover types have an 120 

influence on LST in urban environments. Spatial composition of the urban environment refers to 121 

the different land use categories, their total area, and the relative proportions (Gustafson, 1998). 122 

The empirical relationship between LULC composition and LST is well established across many 123 

cities around the world (Li et al., 2012; Song et al., 2014; Kuang et al., 2015; Nie et al., 2015; 124 

Estoque et al., 2017; Wang, et al., 2018; Zullo et al., 2018), such as a positive relationship between 125 

increased impervious surfaces and elevated LST and its inverse relationship with increased 126 

vegetation cover (Yuan and Bauer, 2007; Li, et al., 2012; Essa et al., 2013; Morabito et al., 2016; 127 

Wang et al., 2016). On the other hand, spatial configuration describes the spatial pattern of urban 128 

LULC patches in terms of shape, density, connectivity and complexity (Gustafson, 1998), which 129 

is normally quantified using landscape metrics. Many studies have examined the relationship 130 

between spatial configuration and LST for many cities around the world and have found a strong, 131 

positive relationship between density and connectivity of impervious surfaces and LST, and 132 

negative relationship with respect to vegetation cover (Zhang et al., 2009; Zhou et al., 2011; Li et 133 

al., 2012; Fan et al., 2014; Kong et al., 2014; Zheng et al., 2014; Zhou et al., 2014; Fan et al., 2015; 134 

Myint et al., 2015; Nie et al., 2015; Estoque et al., 2017; Gage et al., 2017; Nor et al., 2017; 135 

Masoudi et al., 2019). All of these have contributed to our understandings of how LULC influences 136 

LST and urban warming in terms of spatial composition and configuration.  137 

What remains unknown about the relationship between land covers and LST is how spatial 138 

clustering of urban land cover types impacts LST and the effect of these relationships in different 139 

climate regions. Spatial clustering is different from the aforementioned spatial composition or 140 

configuration because it is a spatial structure quantity that measures how objects are spatially 141 

distributed and organized with certain dimensions (Cuzick and Edwards, 1990). Spatial clustering 142 

is often quantified using spatial autocorrelation indices, such as the widely used Moran’s I (Moran, 143 

1950), which indicates if objects are clustered, dispersed or randomly distributed in a given space. 144 

With the knowledge to reduce urban heat by reducing the area of impervious surfaces, growing 145 

cities are strained by the demands for roads, buildings, and urban structures. Instead of ad hoc, 146 
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unplanned development, cities need to know how to plan for the organization of impervious 147 

surfaces combined with greenspaces. Furthermore, this needs to be done within the context of how 148 

a specific climate zone influences this relationship, building on research such as Zhao et al. (2014) 149 

who suggested that the local climate contributes to the urban heat island (UHI) effect. We therefore 150 

assert that the background climate may play an important role in influencing the relationship 151 

between the spatial clustering of land cover types and LST. We aim to build results on relationships 152 

between LST and land cover by exploring these relationships across varying background climate 153 

conditions using the Köppen climate system. 154 

The Köppen climate classification system was developed by a German botanist-155 

climatologist named Wladimir Köppen, who divided global climate into five major types, that is 156 

tropical, dry, temperate, continental, and polar climates. This system classifies climate groups 157 

based on mean temperature and precipitation (Kottek et al., 2006). In the contiguous United States, 158 

cities with a population of more than 100,000 are mostly located in dry, temperate, and continental 159 

climate regions. Researchers have been modeling and simulating urban climate change based on 160 

the Köppen climate classification (Bowler et al., 2010; Brown et al., 2015; Salata et al., 2015), but 161 

little has been done to systematically relate spatial clustering of urban land cover types and LST 162 

across different Köppen climate zones. The results can be potentially used to provide 163 

recommendations for policy makers and urban planners when planning for new constructions or 164 

urban renovation at a regional level. 165 

This study has two objectives. First, to examine the empirical relationship between the 166 

spatial clustering of urban land cover types and LST in major cities in the contiguous U.S. using 167 

Moran’s I. Second, to analyze the potential impacts of regional climate background of each city 168 

on the relationship.  169 

 170 

 171 

2. Study Areas 172 

We selected seven large metropolitan areas representing all the major climate regions in the 173 

Köppen classification system in the contiguous U.S., namely Portland, OR; Los Angeles, CA; 174 

Chicago, IL; Denver, CO; Kansas City, MO; Orlando, FL; and Phoenix, AZ. Phoenix and Denver 175 

have a dry climate (type “B”); Portland, Los Angeles, Kansas City, and Orlando have a temperate 176 

climate (type “C”), and Chicago has a continental climate (type “D”). These cities are 177 

representative of coastal (e.g. Los Angeles), inland (e.g. Kansas City), and lakeside (e.g. Chicago) 178 

regions with different climate backgrounds. They all have a metropolitan size larger than 1,000 179 

km2 and a population greater than 200,000 to ensure a large enough sample size for the subsequent 180 

statistical analyses. Selected cities and the Köppen climate classification of the contiguous U.S. 181 

are shown in Figure 1. Detailed information of each metropolitan area is summarized in Table 1. 182 

Portland and Los Angeles have a Mediterranean climate with dry summer, which is 183 

denoted by “Cs” in the Köppen climate classification system. This climate is characterized by dry 184 

summers and cool, rainy winters. Although these two cities have the same major climate type, they 185 

are in different subcategories because Los Angeles has a monthly average temperature above 22 °C 186 

during summers, while Portland has an average temperature below 22 °C for all the 12 months. 187 

Therefore, the Köppen climate classification for Los Angeles is “Csa” representing hot summer 188 

and “Csb” for Portland meaning cool summer climate. For Portland and Los Angeles, the mean 189 
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annual temperature is 12.5 °C and 17.7 °C, respectively, and the annual precipitation is 914 mm 190 

and 407 mm, respectively. 191 

Chicago has a typical continental climate with hot, humid summers and cold winters, and 192 

frequent short fluctuations in temperature, humidity, cloudiness, and wind direction. This type of 193 

climate is classified as “Dfa”. The mean annual temperature of Chicago is 10.8 °C and the annual 194 

precipitation is 991 mm. 195 

Denver features a cold semi-arid steppe climate, which is denoted by “BSk” in the Köppen 196 

climate classification system. It has very low humidity and an average annual precipitation of 360 197 

mm. The mean annual temperature in Denver is 10.4 °C. 198 

Kansas City and Orlando are both in the Köppen climate region of “Cfa”, which represents 199 

a humid, warm temperature subtropical climate. Even if these two cities have the same climate 200 

classification, they differ in annual mean temperature and precipitation. Kansas City has a mean 201 

annual temperature of 13.7 °C and an annual precipitation of 992 mm. Orlando has a mean annual 202 

temperature of 23.0 °C and an annual precipitation of 1,351 mm. 203 

The Köppen climate classification of Phoenix is “BWh” which is a hot desert climate that 204 

is characterized by long, hot summers, warm transitional seasons, and short, mild to chilly winters.  205 

The mean annual temperature is 23.9 °C and the annual precipitation is only 204 mm in Phoenix. 206 

  207 
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 208 
 209 

Figure 1. Map showing seven selected metropolitan areas and the Köppen climate classification 210 

of the contiguous United States. The legend “Köppen Climate Classification” is for the North 211 

America continent and the legend “Urban Land Cover Types” is for seven selected metropolitan 212 

inset maps. 213 

  214 
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Table 1. Population, metropolitan area and climate of seven selected metropolitan areas in the contiguous U.S. 215 

 216 

City State 
Population 

in 2010a 

Metropolitan 

area 

(km2)b 

Annual 

maximum 

temperature 

(°C)c 

Annual 

minimum 

temperature 

(°C)c 

Annual mean 

temperature 

(°C)c 

Annual 

precipitation 

(mm)c 

Annual mean 

dew point 

(°C)d 

Köppen 

climate 

classification 

Chicago Illinois 2,695,598 6,326.7 15.2 6.3 10.8 991 4.4 Dfa1 

Denver Colorado 600,158 1,730.0 18.3 2.4 10.4 360 -1.1 BSk2 

Kansas City Missouri 459,787 1,755.6 18.8 8.5 13.7 992 6.7 Cfa3 

Los Angeles California 3,792,621 4,496.3 22.1 13.2 17.7 407 10.6 Csa4 

Orlando Florida 238,300 1,548.0 28.0 17.9 23.0 1,351 17.2 Cfa3 

Phoenix Arizona 1,445,632 2,969.6 30.3 17.4 23.9 204 4.4 Bwh5 

Portland Oregon 583,776 1,358.2 17.3 7.6 12.5 914 7.2 Csb6 

1 Csa: Mediterranean climate with warm, dry summer 217 

2 Dfa: Continental climate with hot, humid summer 218 
3 Bwh: Hot desert climate 219 
4 BSk: Cold semi-arid climate 220 
5 Csb: Mediterranean climate with cool, dry summer 221 

6 Cfa: Humid subtropical climate with hot summer 222 
Data source: a U.S Census Bureau, 2018; b U.S. Census Bureau, 2015; c U.S. Climate Data, 2019; d ClimaTemps, 2017. 223 

  224 
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3. Data and Methods 225 

3.1 Land cover data 226 

This study derives major urban land cover types from the 2011 National Land Cover Database 227 

(NLCD) products that are produced using Landsat imagery by the Multi-Resolution Land 228 

Characteristics (MRLC) Consortium, which include land cover classification, percent developed 229 

imperviousness, and tree canopy percentage for the entire United States. These products provide 230 

nationwide data at 30 m spatial resolution derived from Landsat 5 images. The land cover 231 

classification has 20 classes using the USGS Anderson classification system (Anderson, 1976). 232 

The overall classification accuracy is 82% at Level II and 88% at Level 1 classes (Wickham et al., 233 

2017). NLCD imperviousness product quantifies urban impervious surface percentage as a 234 

continuous variable using the general classification and the regression tree algorithm (Yang et al., 235 

2003). The tree canopy percentage product represents the area that is proportional to tree canopy 236 

coverage of each pixel, which is produced using a random forest regression algorithm (Coulston 237 

et al., 2012). 238 

 239 

3.2 Land surface temperature (LST) data 240 

Moderate Resolution Imaging Spectroradiometer (MODIS) LST 8-day composite product 241 

(MOD11A2.V006, version 6) was used during June, July, and August 2011, producing a total of 242 

12 images. MODIS provides an average, 8-day, per pixel LST for both day and night with a spatial 243 

resolution of 1,000 m. MODIS LST has been validated within 1 K accuracy using in situ 244 

measurements in the range of 263-322 K at an atmospheric column water vapor range of 0.4-3.0 245 

cm (Wan et al., 2002). Only images from 2011 were used to match the NLCD land cover data. 246 

Summer months were used because all the cities have relatively warm, dry, clear, and calm weather 247 

conditions in the summer, which helps avoid poor data quality due to heavy cloud cover. 248 

  249 

3.3 Methods 250 

The method used in this study was to build explanatory models based on the relationship between 251 

the clustering of land covers and LST. We chose the explanatory model rather than a predictive 252 

model because we wanted to focus exclusively on this one relationship. A predictive model would 253 

aim to comprehensively incorporate all factors known to influence LST as independent variables. 254 

To build our explanatory model, each of the study area cities were divided into 0.98 km2 square 255 

grids to serve as the basic unit of analysis. This created a set of local-area units where the clustering 256 

of land cover could be calculated. To test the relationship of land cover clustering to LST, the 257 

Moran’s I value for each square grid were used for the regression analysis. The following part of 258 

this section describes image processing and data analysis (Figure 2). 259 

To simplify the process and to make cities comparable to each other, similar land cover 260 

types were grouped together and the focus was mainly on human constructed elements (impervious 261 

surface), soil-vegetation continuum (vegetation and open soil), water body, and mixed other types 262 

to represent the major elements of an urban landscape, as suggested in the study by Wentz et al. 263 

(2018). The reason for grouping vegetation and open soil together is that large areas of pure pixels 264 

of barren land and open soil are rarely found in urban developed areas and are more likely to be 265 

found in rural areas, such as fallow cropland. Mostly, vegetation cover (e.g. shrub, grass, and scrub) 266 
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grows on open soils in urban areas; thereby influencing the surface thermal and biophysical 267 

properties (Wentz et al., 2018). 268 

The flowchart of image processing and data analysis is shown in Figure 2. A binary image 269 

of water body was created by extracting all the water pixels (Class 11) from the NLCD land cover 270 

image (MRLC, 2011). A binary impervious surface image was made by selecting all the pixels 271 

that have an impervious surface percentage greater than or equal to 60% from the NLCD percent 272 

developed imperviousness image, which is considered as a “pure” pixel of imperviousness 273 

(Goldblatt et al., 2018). The same rule was also applied to the NLCD tree canopy percentage image, 274 

and a binary tree cover image was created using 60% tree cover as the threshold. The tree cover 275 

binary image was then combined with NLCD land cover classification Class 52 (shrub/scrub) and 276 

Class 71 (grassland/herbaceous) (MRLC, 2011) to create a binary image for vegetation cover. All 277 

the other land cover classes in the NLCD classification image were combined together to create a 278 

binary image named “mixed”. 279 

A summer mean LST image was calculated for both daytime and nighttime by averaging 280 

all the 12 MODIS LST images. Summer mean LST images were then resampled to 990 m so that 281 

every single LST pixel contained 1,089 land cover pixels (30-m resolution) from the NLCD data. 282 

The unit of analysis in this study was therefore a 0.98 km2 square grid that is converted from 283 

MODIS LST pixels. The spatial clustering of land cover was quantified using Moran’s I within 284 

each unit square and then analyzed against the corresponding LST value (Figure 2 and Figure 3). 285 

This study is only limited to the use of Moran’s I rather than landscape metrics and other spatial 286 

pattern indicators because the focus was only on spatial clustering of land cover in a small localized 287 

urban area. Spatial composition, such as percent area, and pattern analyses, such as fragmentation, 288 

were not within the scope of this study. 289 

Moran’s I is a widely used spatial statistic technique that measures spatial autocorrelation 290 

of features based on their locations and attributes (Moran, 1950). Moran’s I value ranges from -1 291 

to +1, with -1 indicating a perfect dispersion (checkerboard pattern), 0 representing spatial 292 

randomness, and +1 meaning a perfect clustering (Table 2). In order to avoid negative values in 293 

the subsequent regression analysis and to simplify interpretation, we rescaled original Moran’s I 294 

values to an 8-bit data (on a scale of 0 to 255) using linear interpolation, with values of 0, 127.5, 295 

and 255 representing -1, 0, and +1, respectively (Table 2). 296 

As Moran’s I is calculated for vector data sets, all the binary land cover rasters (water, 297 

impervious surface, vegetation, and mixed) were converted to points in the ArcMap software 298 

(version 10.6). A Moran’s I value of each set of land cover points within each 0.98 km2 square 299 

unit of analysis was then calculated. Figure 3 illustrates the relationship between LST and each 300 

land cover type and the method to calculate Moran’s I. 301 

Correlation and multivariate regression analyses were then performed using the summer 302 

mean LST as the dependent variable and Moran’s I values of each land cover as the independent 303 

variable. The correlation analysis was done to examine one-to-one relationships, while the 304 

multivariate regression was performed to study the combined effects of all the land cover types on 305 

LST. The regression equation is formulated as: 306 

 307 

𝐿𝑆𝑇𝑑,𝑛 = 𝛽0 + 𝛽1𝐼𝑖 + 𝛽2𝐼𝑣 + 𝛽3𝐼𝑤 + 𝛽4𝐼𝑚 + 𝜀, 308 

 309 
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where LSTd,n represents daytime and nighttime summer mean LST; Ii, Iv, Iw and Im represent 310 

Moran’s I values of impervious surface, vegetation, water, and mixed type of land cover, 311 

respectively; β0, β1, β2, β3, and β4 are regression coefficient estimates; and ε is the error term. Only 312 

those observations that contained all four land cover types were used in the regression analysis, 313 

thereby resulting in less than 2,500 observations for each selected metropolitan area. 314 
  315 
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Figure 2. Flowchart of image processing and data analysis. 316 
 317 

 318 
  319 



13 

 

Figure 3. Four hypothetical units of analysis at 0.98 km2 are shown here to illustrate the relationship 320 
between the LST value and land cover points and how Moran’s I values are calculated and rescaled.  321 
 322 

 323 
  324 
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Table 2. Illustrations of original and rescaled Moran’s I values. 325 
 326 

Spatial Clustering Original Moran’s I Rescaled (8-bit) Moran’s I Graphic example 

Perfectly dispersed -1 0 

 

Random 0 127.5 

 

Perfectly clustered +1 255 

 
  327 
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4. Results 328 

4.1 Summary statistics 329 

Table 3 shows the summary statistics of calculated Moran’s I values and area of each land cover 330 

type in each metropolitan area. All the land cover types from all the selected cities have a mean 331 

Moran’s I value greater than 127.5 (e.g., a perfect randomness in Table 2), suggesting highly 332 

clustered land covers. However, the spatial composition of land cover types varies significantly 333 

across cities. Generally, vegetation cover is the dominant land cover type and its area is larger than 334 

impervious surface and water bodies combined, in most cities. The exceptions are Chicago and 335 

Los Angeles, which have a larger impervious surface area.  336 

Summary statistics of summer mean LST for each metropolitan area are shown in Table 4. 337 

It was found that the range of daytime LST was greater than the range of nighttime LST in all the 338 

cities. Phoenix has the highest LST for both daytime and nighttime in the summer because of the 339 

hot desert climate, while Portland has the lowest LST among all the cities due to its cool summer 340 

Mediterranean climate. 341 

 342 

4.2 Relationship between spatial clustering of land cover types and LST 343 

The correlation coefficients between the spatial clustering of land cover types and LST are shown 344 

in Table 5. Moran’s I of impervious surface has a highly significant positive relationship with LST 345 

for both daytime and nighttime, indicating a strong warming effect of clustered impervious 346 

surfaces. Moran’s I of vegetation cover is negatively correlated with LST for both daytime and 347 

nighttime, which indicates that the spatially clustered vegetation cover has a cooling effect. 348 

Moreover, in most cities, clustered water bodies have a cooling effect during the day, but a 349 

warming effect at night, except for Phoenix. Mixed types of land cover generally show a negative 350 

correlation with LST in most cities but not many results are statistically significant. 351 

Table 6 shows multivariate regression analysis results, and Figure 4 is the visualization of 352 

coefficient estimates that are statistically significant at the 0.05 level only. This is the combined 353 

effect of spatial clustering of all the land cover types on LST, which is different from the 354 

relationships examined in the correlation analysis. The coefficient of determination (R2) indicates 355 

the percentage of variation in LST that can be explained by the regression model built using urban 356 

land cover Moran’s I values. The R2 values are <0.3, and all the models are statistically significant 357 

at the 0.05 level except the nighttime model for Los Angeles, which is only significant at the 0.1 358 

level. The variance inflation factor (VIF) of all the variables is between 1 and 2, which means that 359 

the models are unlikely to have a multicollinearity issue. The models, which focus exclusively on 360 

the relationship between land cover clustering and LST exclude predictive variables, such as the 361 

areas of land covers. This means that the R2, which might be considered low for predictive models, 362 

shows a percentage of the variation that is explained by spatial clustering. Thus, 15% to 33% of 363 

the variation in LST can be explained simply by the clustering effects of land covers (Table 6). 364 

Coefficient estimates of the Moran’s I values of impervious surfaces are statistically 365 

significantly and positive except for Phoenix. This suggests that clustered impervious surfaces 366 

could elevate LST for both daytime and nighttime in most cities, regardless of the regional 367 

background climate of a city. This result is consistent with the correlation analysis shown in Table 368 

5. Moreover, the daytime coefficient estimate is greater than the nighttime coefficient for most 369 

cities, indicating that the warming effect of clustered impervious surface is stronger during the 370 
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daytime than the nighttime. Los Angeles (β1=0.036, p<0.01) and Portland (β1=0.030, p<0.01)have 371 

the largest coefficient estimates of impervious surface Moran’s I for the daytime  among all the 372 

cities, while Kansas City (β1=0.013, p<0.01) and Chicago (β1=0.012, p<0.01) have the largest 373 

coefficient estimates for the nighttime  (Table 6 & Figure 4). 374 

Negative relationships are found between Moran’s I values of vegetation cover and LST in 375 

some cities, but the magnitude varies. Only Phoenix and Portland have a statistically significant 376 

and negative relationship between the cluster of vegetation cover and LST for both daytime and 377 

nighttime, which means the more clustered the vegetation cover is, the lower the LST would be. 378 

Moreover, the cooling effect of clustered vegetation cover is stronger in the daytime than the 379 

nighttime. The strongest cooling effect of vegetation is found in Kansas City for the daytime (β2=-380 

0.030, p<0.01) and in Denver for the nighttime (β2=-0.014, p<0.01). The cooling effect of 381 

vegetation cover in urban environments are only found in dry and temperate climate regions, but 382 

not in continental climate regions. 383 

Similar to the correlation analysis results in Table 5, Moran’s I of water body consistently 384 

shows a significant negative relationship with LST during the day, but a positive relationship 385 

during the night in most cities except for Los Angeles and Phoenix, and this effect is found in 386 

temperate, dry, and continental climate regions. This is because Los Angeles and Phoenix are both 387 

naturally scarce in water resources and large water bodies. Moreover, the cooling effect of 388 

clustered water bodies during the day is stronger than the warming effect at night, as the absolute 389 

value of the coefficient estimates for the daytime is greater than that for the nighttime. Portland 390 

has the largest coefficient value during the day (β3=-0.043, p<0.01), while Denver has the largest 391 

value during the night (β3=0.008, p<0.01).  392 

A statistically significant relationship between the spatial clustering of mixed land cover 393 

types and LST is rare but when it is significant, the relationship is negative, that is, the mixed land 394 

cover types generally have a cooling effect on LST for both daytime and nighttime. The effect, 395 

however, is weaker than that of vegetation and water during the daytime and weaker than 396 

vegetation at night. Its detailed mechanism is difficult to explain due to the uncertain spatial 397 

composition of different land cover types. 398 
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Table 3. Summary statistics of Moran’s I values (8-bit on a scale of 0 to 255, unitless) and the area of each land cover type of each 399 

metropolitan area. 400 
 401 

City Köppen climate Land cover type Max. Min. Mean Range Std. Dev. Area (km2) 

Chicago Dfa 

Impervious 244.97 127.13 203.56 117.84 21.18 697.55 

Vegetation 249.46 126.75 214.80 122.71 30.24 227.44 

Water 249.42 126.81 204.13 122.61 24.68 113.90 

Mixed 245.71 127.25 204.39 118.46 22.99 120.30 

Denver BSk 

Impervious 242.08 126.68 184.63 115.40 22.97 336.90 

Vegetation 249.82 126.62 200.73 123.19 26.69 558.41 

Water 247.89 127.31 207.17 120.58 27.76 51.48 

Mixed 249.25 127.06 200.91 122.19 22.32 398.79 

Kansas City Cfa 

Impervious 249.38 125.99 189.23 123.40 26.78 263.40 

Vegetation 243.45 126.62 196.92 116.83 26.50 402.25 

Water 248.96 127.31 205.69 121.65 26.39 55.62 

Mixed 248.40 127.31 216.59 121.09 16.99 621.83 

Los Angeles Csa 

Impervious 242.21 126.56 196.89 115.66 19.70 1,092.56 

Vegetation 240.49 127.00 184.62 113.49 21.59 289.48 

Water 241.79 126.75 188.08 115.04 28.47 5.36 

Mixed 242.76 127.37 184.44 115.39 18.71 62.00 

Orlando Cfa 

Impervious 242.25 126.68 189.96 115.56 28.17 169.81 

Vegetation 248.51 127.13 209.17 121.38 17.54 689.43 

Water 249.84 127.31 213.27 122.53 26.66 251.49 

Mixed 249.48 127.19 209.64 122.29 17.85 855.11 

Phoenix BWh 

Impervious 243.13 126.37 187.53 116.76 20.85 462.57 

Vegetation 247.04 127.31 197.14 119.73 22.83 611.49 

Water 243.36 127.31 194.64 116.05 23.54 10.32 

Mixed 248.83 127.25 204.86 121.58 23.71 250.17 

Portland Csb 

Impervious 247.63 126.62 192.31 121.01 27.99 311.29 

Vegetation 247.03 126.56 203.57 120.48 24.01 662.97 

Water 249.45 127.31 211.82 122.13 30.28 97.33 

Mixed 246.08 127.19 206.70 118.90 18.23 1,044.70 
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Table 4. Summary statistics of summer mean LST for each metropolitan area. 402 

 403 

City Köppen climate LST Max. (°C) Min. (°C) Mean (°C) Range (°C) Std. Dev. 

Chicago Dfa 
daytime 37.04 19.09 32.68 17.96 2.65 

nighttime 23.58 18.12 21.29 5.46 0.87 

Denver BSk 
daytime 42.81 26.48 38.63 16.33 2.38 

nighttime 20.68 13.10 17.34 7.59 1.47 

Kansas City Cfa 
daytime 38.28 27.72 32.58 10.56 2.15 

nighttime 25.09 20.31 22.95 4.78 1.06 

Los Angeles Csa 
daytime 44.24 26.93 38.76 17.31 3.39 

nighttime 19.73 14.87 17.69 4.85 0.82 

Orlando Cfa 
daytime 39.31 26.39 33.30 12.91 2.60 

nighttime 26.61 20.84 23.37 5.77 0.98 

Phoenix Bwh 
daytime 54.06 43.36 48.84 10.70 1.51 

nighttime 32.29 25.09 29.03 7.21 1.17 

Portland Csb 
daytime 36.05 18.28 27.91 17.77 3.57 

nighttime 17.33 10.37 13.11 6.96 1.04 

  404 
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Table 5. Correlation coefficients between Moran’s I values of different land cover types and LST. 405 

 406 

City Köppen climate Land cover type 
Correlation coefficient 

(daytime LST) 

Correlation coefficient 

(nighttime LST) 

Chicago Dfa 

Impervious 0.191** 0.266** 
Vegetation -0.354** -0.292** 

Water -0.230** 0.193** 
Mixed -0.005 -0.041 

Denver BSk 

Impervious 0.179** 0.306** 
Vegetation -0.121** -0.223** 

Water -0.346** -0.046 
Mixed 0.164** -0.068** 

Kansas City Cfa 

Impervious 0.400** 0.449** 
Vegetation -0.540** -0.425** 

Water -0.047 0.165** 
Mixed -0.045 -0.120** 

Los Angeles Csa 

Impervious 0.204** 0.182** 
Vegetation -0.033 -0.161** 

Water -0.012 0.200* 
Mixed -0.248** -0.006 

Orlando Cfa 

Impervious 0.270** 0.232** 
Vegetation -0.070** -0.098** 

Water -0.168** 0.198** 
Mixed -0.139** -0.081** 

Phoenix BWh 

Impervious 0.179** 0.073** 
Vegetation -0.136** -0.054* 

Water 0.030 0.012 
Mixed -0.084** -0.141** 

Portland Csb 

Impervious 0.328** 0.423** 
Vegetation -0.208** -0.248** 

Water -0.317** 0.2068** 
Mixed 0.030 0.0230 

 407 
** Correlation coefficients that are statistically significant at the 0.01 level. 408 

* Correlation coefficients that are statistically significant at the 0.05 level.  409 
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Table 6. Multivariate regression analysis results. 410 

 411 

City 
Köppen 

climate 
LST 

Impervious 

Moran's I, 

β1 

Vegetation 

Moran's I, 

β2 

Water 

Moran's I, 

β3 

Mixed 

Moran's I, 

β4 

R² 
Model 

p-value 

VIF 

Impervious Vegetation Water Mixed 

Chicago Dfa 
daytime 0.027** -0.007 -0.018** -0.004 0.164 <0.01 

1.01 1.06 1.01 1.06 
nighttime 0.012** 0.000 0.006** -0.001 0.167 <0.01 

Denver BSk 
daytime 0.011* -0.006 -0.021** 0.003 0.133 <0.01 

1.01 1.00 1.01 1.01 
nighttime 0.011** -0.014** 0.008** 0.001 0.203 <0.01 

Kansas City Cfa 
daytime 0.022** -0.030** -0.004 -0.013** 0.304 <0.01 

1.04 1.05 1.01 1.01 
nighttime 0.013** -0.003 0.005** -0.011** 0.303 <0.01 

Los Angeles Csa 
daytime 0.036** -0.028 -0.018 0.003 0.330 <0.01 

1.07 1.07 1.02 1.00 
nighttime 0.009* -0.006 0.000 0.007 0.163 <0.1 

Orlando Cfa 
daytime 0.018** 0.001 -0.009** -0.025** 0.136 <0.01 

1.00 1.81 1.04 1.81 
nighttime 0.005** -0.002 0.004** -0.008** 0.157 <0.01 

Phoenix BWh 
daytime 0.000 -0.016** 0.006 -0.002 0.058 <0.05 

1.01 1.02 1.89 1.93 
nighttime 0.004 -0.008* 0.010 -0.017** 0.148 <0.01 

Portland Csb 
daytime 0.030** -0.027** -0.043** 0.015 0.236 <0.01 

1.03 1.25 1.00 1.22 
nighttime 0.009** -0.011** 0.004** -0.000 0.188 <0.01 

 412 
** Coefficient estimates that are statistically significant at the 0.01 level. 413 

* Coefficient estimates that are statistically significant at the 0.05 level.414 
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Figure 4. The visualization of regression coefficient estimates for each metropolitan area. 421 

 422 
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5. Discussion 423 

The intent of this study was to quantify the effects of urban land cover clusters on LST in small 424 

localized area across cities in the contiguous U.S. with different background climate conditions. 425 

Multivariate regression analysis results in Table 6 show that all the models are statistically 426 

significant, which indicates that these models can be used to explain the empirical relationship 427 

between spatial clustering of land covers and LST. Given the specific focus to understand the role 428 

that spatial clustering plays on LST, variables known to potentially influence LST, such as spatial 429 

composition (e.g. land cover area or percent area) and spatial configuration variables (e.g. 430 

abundance, shape, connectivity, etc.) were excluded. Including these variables would likely result 431 

in higher R2 values but diminish the ability to examine the effect of spatial clustering. In the 432 

following sections, the effect of spatial clustering of each land cover on LST have been examined 433 

and policy recommendations have been put forward based on the results. 434 

 435 

5.1 Spatial clustering of impervious surfaces and LST 436 

Spatial clustering of impervious surfaces plays an important role in controlling LST for both day 437 

and night in small localized urban areas. It was found that clustered impervious surfaces elevate 438 

LST, indicating a warming effect in most climate regions. This warming effect is stronger during 439 

the daytime than the nighttime in all the temperate and continental climate regions, especially in 440 

Mediterranean climate regions such as Csa (Los Angeles) and Csb (Portland) (Table 6). This is 441 

because clustered impervious surfaces increase ground heat fluxes and sensible heat fluxes during 442 

the daytime by efficiently converting shortwave radiation from the solar energy into longwave 443 

radiation to heat up the lower atmosphere quickly, but reduce latent heat fluxes by decreasing 444 

evapotranspiration from soil-vegetation systems (Oke, 1982; Ma et al., 2016). Furthermore, 445 

clustered impervious surfaces can also indirectly augment anthropogenic heat emissions from 446 

transportation, industries, and building infrastructure, all of which lead to increased LST (Zhang 447 

et al., 2010; Zhou et al., 2014; Kuang et al., 2015). During the night, anthropogenic heat becomes 448 

impervious surfaces’ main energy source due to the loss of solar energy, which significantly 449 

decreases the efficiency of energy transfer. Therefore, LST drops significantly after sunset. 450 

This phenomenon is not found in the dry desert climate region of Phoenix. This result 451 

contradicts Myint et al. (2015), who studied spatial patterns of paved surfaces and buildings in 452 

desert cities and found significant positive relationships of impervious clusters with elevated LST. 453 

It is anticipated that this difference is related to the convection efficiency in dry climates. Zhao et 454 

al. (2014) found that rough urban land can enhance convection efficiency and lower aerodynamic 455 

resistance in dry climate zones, resulting in a cooling effect, while convection is less efficient at 456 

dissipating heat from urban land in the humid climate, leading to a warming effect. Although our 457 

findings do not suggest a cooling effect of clustered impervious surface in dry climate regions, 458 

such as BSk and BWh, the warming effect is much weaker than other climate regions and this effect 459 

is not even statistically significant in the hot desert climate (BWh).  460 

 461 

5.2 Spatial clustering of vegetation cover and LST 462 

It is widely accepted that clustered vegetation cover effectively lowers LST in urban environments 463 

(Yokohari et al., 1997; Zhang et al., 2009; Li et al., 2012). In this study, however, clustered 464 

vegetation cover only showed significant cooling effect for Phoenix and Portland for both daytime 465 
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and nighttime; this was not significant in other cities in other Köppen climate regions. Therefore, 466 

understanding the impact of spatial clustering of greenspaces on LST in urban environments is a 467 

more complicated mechanism (Bowler et al., 2010; Armson, 2012; Zhang et al. 2017; Zhao et al. 468 

2018). 469 

The findings in this study agree with other studies, indicating that the influence of 470 

vegetation clusters on LST does exist in the desert climate. Zhang et al. (2017) demonstrated that 471 

in the hot desert climate, clustered greenspaces enhance the cooling effect at a local scale, such as 472 

in small urban parks, but dispersed greenspaces show a better local cooling effect, overall. Zhao 473 

et al. (2018) showed that both clustered and evenly arranged trees provide significant cooling 474 

benefits to the entire residential area. Myint et al. (2015) also found a negative relationship between 475 

Moran’s I values and LST in Phoenix for grass and trees. Fan et al. (2015) used different 476 

percentages of tree cover and grass cover in Phoenix and found negative relationship between 477 

Moran’s I and LST for all the percentage categories.  478 

The results also showed that clustered vegetation cover does not effectively lower LST 479 

during the day or night in Chicago, Los Angeles, and Orlando. Zhou et al. (2011) claimed that a 480 

clustered woody vegetation would even elevate LST when quantifying the spatial pattern using 481 

mean nearest neighbor distance (MNND) method. Although, a positive relationship between 482 

clustered vegetation and LST was not established in this study, the actual effect of the spatial 483 

clustering of greenspaces on LST really depends on the background climate. In climate regions 484 

with hot, humid summer, such as Chicago and Orlando, higher atmospheric moisture and highly 485 

clustered vegetation cover could slow down the overall evapotranspiration rate and offset the 486 

cooling benefits from vegetation. Similar results are also reported for Hong Kong (Tan et al., 2016) 487 

and Singapore (Hwang et al., 2015). 488 

 489 

5.3 Spatial clustering of water bodies and LST 490 

The effects of spatial clustering of water bodies on LST is reversed because of the higher specific 491 

heat capacity of water compared to other materials in urban environments, such as anthropogenic 492 

materials and open soils. These materials’ surface temperature far exceeds water bodies during the 493 

daytime by quickly absorbing shortwave radiation from solar energy. Moreover, they emit heat 494 

through longwave radiation after sunset and their temperature drops quickly. Water bodies’ 495 

temperature remains relatively constant during the entire day. Therefore, the spatial clustering of 496 

water bodies shows a cooling effect during the daytime, but a potential warming effect at night, 497 

especially during the winter (Oke, 1982; Kim, 1992; Wang et al., 2018). Furthermore, the warming 498 

effect of clustered water bodies during the night is much weaker than that of impervious surface 499 

in all the cities (Figure 4b). Even though clustered water elevates LST during the night, it has a 500 

more positive impact in reducing daytime LST in urban environments. 501 

There is no evidence from this study to show that clustered water bodies can influence LST 502 

in the daytime or nighttime in drier climates, such as Los Angeles or Phoenix. In Los Angeles, 503 

water bodies are naturally scare, and the atmospheric humidity reaches the lowest during summers. 504 

This is due to its Mediterranean climate with dry, warm summers. Despite its desert location, 505 

Phoenix has more water bodies across the metro area (Table 3), mostly in the form of small 506 

artificial lakes in golf courses, parks, private gardens and residential communities. Even though 507 

these small water bodies are spatially clustered, they are not sufficient to have a significant 508 
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influence on local climate and to cool down surface temperature because of the subtropical desert 509 

climate with extremely hot summer, low annual rainfall, low relative humidity, and low dew point.  510 

 511 

5.4 Policy recommendations 512 

Recently there have been substantial resources devoted to exploring and implementing mitigation 513 

strategies for urban heat. Many studies suggest that building larger greenspaces but smaller size of 514 

impervious surface when planning new developed areas can potentially reduce urban warming and 515 

mitigate the UHI effect (Buyantuyev and Wu, 2010; Zhou et al., 2011; Li et al., 2012; Kong et al., 516 

2014; Taleghani et al., 2014; Zheng et al., 2014; Fan et al., 2015; Myint et al., 2015; Wang et al., 517 

2016; Yang et al., 2016; Estoque et al., 2017; Gage and Cooper, 2017; Nor et al., 2017; Yang and 518 

Wang, 2017). This study built on these policy guidelines by suggesting means to spatially organize 519 

greenspaces, impervious surfaces, and water bodies in the face of urban population growth. This 520 

requires housing, workspace, transportation, and infrastructure development. Additionally, the 521 

authors added to these recommendations by quantifying how the regional climate background of 522 

different cities should be considered when assessing the spatial clustering of urban land covers. 523 

Whereas, a smaller impervious surface area, which is deemed as ideal by other studies, is often 524 

impractical. This study found that more dispersed impervious surface patches can potentially 525 

alleviate excessive urban warming in most cities of the U.S. This is also evident across different 526 

climate regions, but is less effective for hot desert cities such as Phoenix and Las Vegas. Similarly, 527 

building more clustered greenspaces can potentially reduce LST in warm, dry, and temperate 528 

regions, but may not work well in some regions with continental (e.g. Chicago), cold semi-arid 529 

(e.g. Denver), and humid subtropical climates (e.g. Orlando).  530 

Urban sprawl has been described as a “territorial disease” because of the rampant growth 531 

effect (EEA, 2006; Worldwatch Institute, 2013; Barrington-Leigh and Millard-Ball, 2015; Paleari, 532 

2017; Romano et al., 2017). Even though building smaller area and more dispersed impervious 533 

surfaces can potentially reduce urban heating and alleviate the UHI effect, it is still unsustainable 534 

as it may threaten both the natural and rural environments, raising more greenhouse gas emissions, 535 

creating more air and noise pollutions, and causing less efficient energy use (EEA, 2006). Thus, 536 

this study suggests that cities should adopt sustainable practices, such as green roofs when planning 537 

for new development areas. Green roofs can not only provide cooling in build environment, but 538 

also have great potentials in protecting water resources and conserving energy (Deardorff, 1978; 539 

Del Barrio, 1998; Theodosiou, 2003; DeNardo et al., 2005; Kumar and Kaushik, 2005; Sailor, 540 

2008). 541 

Building cities around spatially clustered water bodies can be a double-edged sword due to 542 

its significant warming effect at night, but it could be a good practice for reducing urban warming 543 

during the daytime. Therefore, this study suggests that urban areas should include greenspaces 544 

around dispersed water bodies and clustered greenspaces so that the vegetation’s cooling effect at 545 

night would somewhat offset the warming of water bodies nearby. However, this strategy may not 546 

work well for cities with warm and dry summers, such as Los Angeles and Phoenix. It is more 547 

challenging to adapt the above policy recommendations to existing developed areas, but it can be 548 

effectively applied when planning for new urbanized areas. 549 

 550 

 551 
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6. Conclusions 552 

Previous studies have quantified the relationship between spatial composition and configuration 553 

of land covers and LST for many cities around the world; however, the impact of spatial clustering 554 

of land covers on LST remains less understood. The concept of spatial clustering is essential to 555 

urban planning and design because it measures the spatial distribution and organization of urban 556 

land covers, which has been suggested to have a potential influence on urban climate. In addition, 557 

the regional climate background of a city also plays an important role in influencing the 558 

relationship between the spatial clustering of land covers and LST, which is another factor that is 559 

often neglected by numerous studies. Thus, this study makes a new contribution to the literature 560 

and knowledge by exploring the empirical relationship between spatial clustering of urban land 561 

cover types and LST in seven large metropolitan areas in the contiguous United States having 562 

different climate backgrounds. The goal was to build results and to develop strategies that are 563 

generalizable across a larger geographic region than what can be derived from one case study of a 564 

city within a limited area. 565 

Results show that the actual impact of spatial clustering of urban land covers on LST varies 566 

significantly across different Köppen climate regions in the U.S. Based on research findings, this 567 

study suggested that the spatial arrangement of impervious surfaces, greenspaces, and water bodies 568 

is another important factor that controls urban heating and cooling, which can be considered as a 569 

new mitigation strategy to the UHI effect. Policy recommendations have also been provided to 570 

urban planners, developers, and managers with respect to optimizing the spatial organization of 571 

different land covers when planning for new developed areas. However, the implementation of 572 

such a policy has to take the regional climate background into consideration as well. These 573 

suggestions may not only be useful to the cities in the U.S., but may also have the potential to be 574 

applicable to other cities around the world having similar climate background. 575 

Future studies are needed to explore the engineering and physical mechanisms behind these 576 

findings to understand why and how spatial clustering of urban land covers influence LST at a 577 

local scale. This requires a significant amount of interdisciplinary efforts from climatologists, 578 

meteorologists, environmentalists, physicists, engineers, and geographers. In addition, more 579 

research should be done to understand how urban morphology, such as building height and shape, 580 

influences urban warming. Furthermore, with the availability of remotely sensed data that cover 581 

the entire world, on the methodology of this study can be applied to a global scale to provide a 582 

further understanding of how spatial clustering of urban land cover influences urban warming in 583 

cities with different climate backgrounds. 584 

 585 
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