Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells

Zenke, M., Steinlein, P., Wagner, E., Cotten, M. , Beug, H. and Birnstiel, M.L. (1990) Receptor-mediated endocytosis of transferrin-polycation conjugates: an efficient way to introduce DNA into hematopoietic cells. Proceedings of the National Academy of Sciences of the United States of America, 87(10), pp. 3655-3659. (doi: 10.1073/pnas.87.10.3655) (PMID:2339110) (PMCID:PMC53961)

Full text not currently available from Enlighten.

Abstract

Most current gene transfer methods function satisfactorily in specialized systems involving established cell lines but are often not applicable with nonadherent, primary hematopoietic cells, which are notoriously difficult to transfect. To approach this problem, we have investigated an alternative method of gene transfer, "transferrinfection," in which DNA complexed to transferrin-polycation conjugates is introduced into cells by receptor-mediated endocytosis [Wagner, E., Zenke, M., Cotten, M., Beug, H. & Birnstiel, M. L. (1990) Proc. Natl. Acad. Sci. USA 87, 3410-3414]. We show here that transferrin-polylysine and transferrin-protamine, when complexed to plasmid DNA containing a luciferase reporter gene, is efficiently bound and moved into avian erythroblasts by endocytosis. Successful transfer and expression of the luciferase reporter gene depends on specific interaction of the transferrin-polylysine-DNA complex with the transferrin receptor and occurs in a significant fraction (greater than 95%) of the cells. Gene transfer efficiency by transferrinfection is lower than with an optimized DEAE-dextran transfection method but reaches similar efficiencies when the cells are treated with chloroquine. Because the procedure in the absence of chloroquine is completely nontoxic to cells, a constant expression level of transferred genes may be maintained by repeated additions of transferrin-polylysine-DNA complex. In addition, the usefulness of transferrinfection for gene transfer into primary hematopoietic cells is demonstrated.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Cotten, Professor Matthew
Authors: Zenke, M., Steinlein, P., Wagner, E., Cotten, M., Beug, H., and Birnstiel, M.L.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
College of Medical Veterinary and Life Sciences > School of Infection & Immunity > Centre for Virus Research
Journal Name:Proceedings of the National Academy of Sciences of the United States of America
Publisher:National Academy of Sciences
ISSN:0027-8424
ISSN (Online):1091-6490

University Staff: Request a correction | Enlighten Editors: Update this record