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Abstract

An extension of the popular log-Gaussian Cox process (LGCP) model for spatial point
patterns is proposed for data exhibiting fundamentally di�erent behaviors in di�erent sub-
regions of the spatial domain. The aim of the analyst might be either to identify and classify
these regions, to perform kriging, or to derive some properties of the parameters driving the
random �eld in one or several of the subregions. The extension is based on replacing the
latent Gaussian random �eld in the LGCP by a latent spatial mixture model speci�ed us-
ing a categorically valued random �eld speci�ed through level set operations on a Gaussian
random �eld. This allows for standard stationary covariance structures, such as the Matérn
family, to be used to model random �elds with some degree of general smoothness but also
occasional and structured sharp discontinuities.

A computationally e�cient MCMC method is proposed for Bayesian inference and we
show consistency of �nite dimensional approximations of the model. Finally, the model is
�tted to point pattern data derived from a tropical rainforest on Barro Colorado island,
Panama. We show that the proposed model is able to capture behavior for which inference
based on the standard LGCP is biased.

1 Introduction

Cox processes, and in particular log-Gaussian Cox processes (LGCP), have been used extensively
as �exible models of spatial point pattern data [39, 38, 31, 20]. These are hierachical point process
models where the point locations are assumed to be independent given a random intensity
function

λ(s) = exp{B(s)β+ X(s)}, (1)

where B(s) is a, possibly multivariate, function of covariates and X(s) is a Gaussian random
�eld, which is typically assumed to be stationary. The random �eld captures spatial structure in
the point pattern that the given covariates cannot capture. In this work, we relax the assumption
that a single stationary Gaussian �eld can account for those remaining spatial structures and
develop a mixture model based on level set inversion.

To motivate the relevance of the approach we consider a point pattern data set formed by the
locations of the tree species Beilschmiedia Pendula, one of the species in the tropical rainforest
plot on Barro Colorado Island [12, 14, 10, 28]. The point pattern comprises 2461 point locations
in a rectangular observation window (500 m × 1000 m), see Figure 1a. This pattern has been
analysed repeatedly in the literature and is one of the example patterns in the R [1] package
spatstat [5]. Previous analyses have �tted a log-Gaussian Cox process [38] to this and related
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Figure 1: Spatial point pattern formed by the locations of trees of the species Beilschmiedia

pendula in a 500 m × 1000 m rainforest plot on Barro Colorado Island (a), a gridded version of
the data (b), and posterior mean of log intensity using a log-Gaussian Cox process model (c).

data sets to draw conclusions on the association of habitat preferences based on a number of
spatial covariates re�ecting local soil chemistry and topography [38, 31].

On close inspection, the pattern shows large areas of very low point intensity where hardly
any trees can be found. Anecdotal knowledge reveals that these regions are covered by a swamp,
where the tree species is known to be very unlikely to grow, independent of local soil covariates
and topography. However, data on the exact extent of the swamp is not available. We initially
�tted a log Gaussian Cox process to the data, with an intensity function as in (1) using 11
covariates, and the estimated posterior mean of the model also predicts large regions of low
intensity, as plotted in Figure 1c. However, when a LGCP model that ignores the presence of
swamp is �tted to this pattern, the swamp is likely to act as a confounding factor and this is
likely to impact on inference. Hence, any conclusions on habitat preferences of the species will
be heavily biased. Covariates associated with the presence of the swamp may appear to have
a signi�cant correlation with the intensity of the tree growth, or important covariates might
appear non-signi�cant as they vary indepedently of the presence of the swamp.

The approach we take here is designed to capture sharp discontinuities in the intensity surface
that result from qualitative yet unavailable covariates or environmental conditions as the one
seen in this example. Further examples where this approach could be important is ecological
data with several distinct types of habitat, spatial regions with di�erent treatment regimes in
medical data, or �nding regions of interest in biology [23]. Speci�cally, we consider a Cox process
model where the intensity surface is modeled using a Bayesian level set approach. The proposed
model is an extension of the log-Gaussian Cox process with increased �exibility resulting from a
random segmentation of the spatial region into K classes. The intensity surfaces of the regions
associated with the K di�erent classes can be modeled separately of each other by log-Gaussian
random �elds with simple covariance structures, while still maintaining �exibility. We refer to
the proposed model as the level set Cox process (LSCP).

Finding sharp discontinuities in the intensity surface is similar to the level set inversion
problem [49, 9] in the inverse problems literature, where the main objective is to �nd inter-
faces between geometrical regions based on observed data. Level set inversion has been used
extensively for segmentation [11, 36, 50], for multiphase �ow modeling [7, 19], and for statistical
modeling of porous materials [40]. The interfaces in the level set inversion approach are mod-
eled as level sets of an unknown level set function. Higgs and Hoeting [24] modeled spatially
correlated categorical data using a Bayesian level set approach, where the level set function
was modeled as a Gaussian random �eld. This probabilistic approach, which Iglesias et al. [29]
and Dunlop et al. [21] extended to more general inverse problems, has the advantage that the
level sets can be estimated through the posterior distribution of the level set function given the
observed data. The LSCP model could be viewed as an extension of these approaches to point
pattern data.
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The LSCP is, like the LGCP, a process de�ned on a continuous domain. In order to use
the model in practical inference some �nite dimensional approximations are required. We show
that the classical lattice approximation that is often used for LGCP models converges, in total
variation distance, to the continuous model as the grid gets �ner also for the LSCP models. We
further propose a computationally e�cient Markov chain Monte-Carlo (MCMC) algorithm for
Bayesian inference on the model parameters, based on preconditioned Crank-Nicholson Langevin
proposals [16].

This paper is structured as follows. A detailed model description is given in Section 2. In
Section 3, we derive the MCMC algorithm for the Bayesian inference. Section 4 analyses the
Beilschmiedia Pendula point pattern of rainforest trees with the new approach. Finally, Section 5
discusses the presented material and possible future extensions of it. The theoretical results and
proofs are given in two appendices.

2 The LSCP model and its properties

In this section, we �rst introduce the LSCP model in Section 2.1. Some examples of the model
are presented in Section 2.2 and basic properties of the model are presented in Section 2.3.
Finally, Section 2.4 introduces �nite dimensional approximations necessary for inference.

2.1 Model de�nition

The Bayesian level set inversion problem of Iglesias et al. [29] corresponds to reconstructing a
latent �eld of the form

X(s) =
K∑
k=1

Xk I (s ∈ Ek) , (2)

on a bounded domain D ⊂ R2 given noisy data. Here Ek ⊂ D is the spatial region associated with
segmentation class k, and Xk are �xed values. If the constants {Xk}Kk=1 are known, the partition
{Ek}Kk=1 characterizes X. Iglesias et al. [29] de�ned Ek as an excursion set of an unknown random
continuous level set function, X0, such as Ek = {s : ck−1 < X0(s) ≤ ck}. Here ck are constants
such that {−∞ = c0 < c1 < ... < cK+1 = ∞} and X0 is assumed to be a realization of a
Gaussian random �eld. Thus, this model corresponds to the level set problem for categorical
data by Higgs and Hoeting [24]. The level set model using a latent Gaussian random �eld is not
identi�able with regards to the parameter triplet threshold values, mean, and marginal variance

of the level set �eld, X0. Hence, we de�ne X0 to have standard normal marginal distributions
in order to make the model identi�able.

We extend the level set function of (2) by replacing the �xed constants Xk by Gaussian
random �elds and denote these by Xk(s)+µk(s), where µk is a deterministic mean function and
Xk is a centered Gaussian random �eld with covariance function Ck.

X(s) =

K∑
k=1

(Xk(s) + µk(s)) I (ck−1 < X0(s) + µ0(s) ≤ ck) . (3)

This can be regarded as a mixture model of Gaussian �elds related to the non-stationary geo-
statistical model proposed by Fuentes [22]. We use this model to specify a statistical model
for spatial point process data through a Cox process [20], modeling the number of occurrences
of some event in a subregion E ⊆ D as an inhomogeneous Poisson process conditional on a

3



realization of X, i.e.

Y(E) ∼ Pois

(∫
E
λ(s)d s

)
,

where the intensity surface is λ(s) = exp{X(s)}. For ease of notation we de�ne Zk(s) =
I (ck−1 < X0(s) + µ0(s) ≤ ck).

A common usage of point process models is to study the e�ect of covariates on observed
point patterns. A simple way of doing this is through a standard Poisson regression, where the
log-intensity of the point process is of the form log λ(s) = B(s)β, where B(s) are the covariates
of interest. This can easily be incorporated into the LSCP model by letting µk(s) = B(s)βk or
µk(s) = µ(s) = B(s)β. To avoid identi�ability issues with the threshold parameters, one should
not use an intercept term in the �xed e�ects for the mean of X0.

2.2 Speci�c cases

Poisson regression and LGCPs are special cases of the LSCP model. For an illustration of the
�exibility of the model, Figure 2 shows the log-intensity for four special cases simulated on the
unit square. In these �gures, all Gaussian random �elds are assumed to have constant means µ
and Matérn covariance functions [37],

C(h) =
σ2

2ν−1Γ(ν)
(κh)νKν(κh),

where σ2 = Var(Xk(s)), κ =
√

8 ν
r , and ν is a smoothness parameter. Further, r is the correlation

range approximately corresponding to the value of h where the correlation is 0.1, Kν is a modi�ed
Bessel function of the second kind, and Γ is the Gamma function.

The patterns were generated using the same random seed such that the level set function is
the same for all cases, yielding comparable results. A realization of log λ(s) using two classes is
shown in panel (a). The log-intensity surface of the �rst class has µ = 2 and r = 0.1, whereas
the second class has µ = 0 and r = 0.2. Both �elds have σ = ν = 1. The level set �eld, X0, has
a threshold value at the origin, c1 = 0, and range r = 0.4. In the �gure, the regions belonging
to the two classes, and the di�erence in spatial correlation range is clearly visible.

A simpli�cation of the model is obtained by assuming that the intensity for one of the
two classes is constant (change X1(s) to a constant X1, for instance). A realization of such
a log-intensity surface can be seen in Panel (b). This model might be relevant in applications
where some unknown factor makes it unlikely to observe points in certain subregions and may
be regarded as spatially varying zero-in�ation [33]. If a standard LGCP is �tted to data of
this type some overdispersion will be unexplained and the estimated mean �eld and covariance
parameters will be biased; this is not the case for the LSCP model. We discuss an example
of this in Section 4. The two-class model can of course be simpli�ed further by assuming a
constant intensity for both classes, and log λ(s) is then of the form (2). This is identical to the
model of [41] and corresponds to a special case of the Random-set-generated Cox process [30].
A realization of this model is shown in Panel (c).

The last model example uses the structure of the level set formulation to capture e�ects on
the boundary between two regions. For a model with three classes, the second class takes on
the role of an interface layer between the �rst and third class as can be seen in Panel (d). The
log-intensity is in this case log λ(s) =

∑3
i=1 (Xi(s) + µi(s)) Zi(s). This can be used to model

e�ects present on the boundary between two regions. Examples of potential applications are
activity on shore lines between water and land or mixing regions between �uids.
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Figure 2: Realization of the log-intensity surface, log λ(s), for the four models presented in
Section 2.2. Panel a) corresponds to the model with two random classes, Panel b) with one
constant and one random, panel c) with two constant, and Panel d) is the model with two
constant and a third random boundary class.

2.3 Model properties

The intensity measure Λ = {Λ(E) =
∫
E λ(s)d s; E ⊆ D} for a Cox process is well-de�ned if λ is

almost surely �nite and integrable. The LSCP model with K = 1 is just the standard LGCP
model, which has a well-de�ned random intensity measure if realizations of the Gaussian �eld
are identi�ed with their continuous modi�cations [39]. For K > 1, a continuous modi�cation
does not need to exist but almost sure integrability follows if X0 is a.s. continuous which ensures
that the sets {s : ck−1 < X0(s) ≤ ck} are a.s. Lebesgue measurable for all k ∈ {1, ...,K}. Hence
the LSCP model is well-de�ned when the realizations of all Gaussian �elds are identi�ed with
their continuous modi�cation with respect to the Lebesgue measure. By the same argument as
in Theorem 3 of Møller et al. [39], ergodicity of the LSCP model follows from ergodicity of log λ.
Thus, the LSCP model is ergodic if all latent Gaussian �elds are ergodic.

The following proposition gives semi-explicit formulas for the �rst and second order product
densities.

Proposition 2.1. For an LSCP with log-intensity (3), where {Xk}Kk=1 are zero-mean stationary

random �elds with covariance functions {Ck}Kk=1, the �rst moment of the intensity function

equals

ρ1(s) = E [λ(s)] =
K∑
k=1

exp

(
µk(s) +

Ck(0)

2

)
(Φ (ck − µ0(s))− Φ (ck−1 − µ0(s))) ,

where Φ is the CDF of a standard normal distribution. Further, the second moment of λ,
ρ2(s1, s2), corresponding to the second order product density equals

ρ2(s1, s2) =

K∑
k=1

exp (µk(s1) + µk(s2) + Ck(0) + Ck(| s1− s2 |)) pkk

+
K∑
k=1

∑
l 6=k

exp

(
µl(s1) + µk(s2) +

Ck(0) + Cl(0)

2

)
plk.

Here

plk = Φd(ck−µ0(s1), cl−µ0(s2))− Φd(ck−1−µ0(s1), cl−µ0(s2))

− Φd(ck−µ0(s1), cl−1−µ0(s2)) + Φd(ck−1−µ0(s1), cl−1−µ0(s2)),
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where Φd is a CDF of a standard bivariate Gaussian distribution with correlation d =
C0(| s1− s2 |).

The proof is given in Appendix B. Both Φ and Φd can be evaluated using software for
scienti�c computations. The pair-correlation function is de�ned as g(s1, s2) = ρ2(s1,s2)

ρ1(s1)ρ1(s2) , and
can hence be expressed using �rst and second product densities as given in Proposition 2.1.

Finally, the inhomogeneous empty space function [6, 17], F (r), for the general model is given
in the following proposition.

Proposition 2.2. For an LSCP with log-intensity (3) where Xk are zero-mean stationary ran-

dom �elds with covariance functions Ck, the inhomogeneous empty space function is given by

F (s0, r) = 1− E

[
K∏
k=1

exp

(
−
∫
Dk ∩B(s0,r)

eµk(s)eXk(s)d s

)]
,

where for a given realization of X0, Dk is the region classi�ed as k.

The proof is given in Appendix B.

2.4 Finite dimensional approximation

As for standard LGCP models, some �nite dimensional approximation of the LSCP model is
needed if it is to be used for inference. The discretization we use here is a classical lattice
approximation. The observational domain is discretized into N subregions Di of a regular
lattice over the domain, and the point locations are replaced by counts Yi of the number of
observations within each subregion Di. This yields the discretized model Yi ∼ Pois(λi), where
λi =

∫
Dj λ(s)ds and the information on the �ne-scale behaviour of the point pattern behavior

is lost. The stochastic integral in the de�nition of λi is not Gaussian and generally di�cult
to handle. Therefore, a common approximation is to use λj ≈ |Dj |λ(sj), for some location
(usually the center) sj ∈ Dj [39].

For any �xed lattice approximation there is a positive probability that the level set �eld takes
values in several of the intervals {ck, ck+1} in any �xed lattice cell. Since the spatial information
about the level set �eld on a �ner scale than the lattice discretization are lost we propose adding
a �nugget� e�ect, ξj , for each lattice cell Dj . The �nugget� e�ect will model the within-cell
classi�cation uncertainty. This gives the discretization λj ≈ |Dj |λ̃(sj), where

log λ̃(sj) =

K∑
k=1

I
(
ck−1 < X0(sj) + µ0(sj) + ξj < ck

)
(Xk(sj) + µk(sj)) ,

and ξj ∼ N(0, σξ
2). The nugget variance, σξ2, controls the amount of mixing between the classes

for a given realization of X0. This classi�cation mechanism is equivalent to the ordered probit
model discussed in Dunlop et al. [21]. In practice, it is typically di�cult to objectively discern
an appropriate value for σξ and hence we therefore let σξ be a regular parameter to be estimated
for a �xed discretization.

In Appendix A, we show consistency of this �nite dimensional approximation of the likelihood
for the LSCP model. More precisely, we show that the posterior distribution for the latent �elds
{Xk}k computed using the lattice approximation converges, in total variation distance, to the
posterior distribution of the continuous process.

6



3 Inference

A popular approach for Bayesian inference is through Markov chain Monte Carlo (MCMC)
methodology, for instance using the Metropolis adjusted Langevin algorithm (MALA) [46] which
was suggested for LGCP models by Møller et al. [39]. Another approach is through integrated
nested Laplace approximation (INLA) [31, 48, 52], which when applicable can have bene�cial
computational properties. Unfortunately the level set construction cannot be handled by INLA.

In this work we propose an MCMC algorithm for �tting the LSCP model and perform
predictions. Speci�cally, we propose a method based on the preconditioned Crank-Nicholson
Langevin (pCNL) algorithm [16]. The algorithm is developed for the case when the target
distribution (the posterior) has a Gaussian prior and a non-Gaussian likelihood, as is the case
for the LSCP model. An important property of the pCNL algorithm is that it is discretization
invariant [8]. This implies that as the �nite dimensional approximation is made �ner the mixing
of the Markov Chain does not deteriorate. This is important since we utilize a rather �ne
discretization and thus one should expect poor mixing for an algorithm without this property,
like for instance MALA.

We now present in more detail how we implement the MCMC algorithm for the LSCP model.
Denote the set of parameters associated with class k as θk. For the level set �eld, X0, we also
include the nugget variance, σξ, and the thresholds, {ck}k in the set θ0. By introducing an

auxiliary �eld Z de�ned such that P (Z(sj) = k) = Φ
(

ck −X0(sj)
σξ

)
− Φ

(
ck−1−X0(sj)

σξ

)
, we have

log λ̃(s)
d
=

K∑
k=1

I (Z(s) = k) (Xk(s) + µk(s)) .

This means that parameters and latent �elds of di�erent classes, {Xk, θk}, are conditionally
independent given Z. We use this to construct a Metropolis-within-Gibbs algorithm [45] to
sample from the joint posterior. In the ith iteration of the algorithm, the following three steps
are performed

1. Sample from Z |{Xk, θk}k,Y. The sampling can be performed exactly since Z(si) ⊥
Z(sj),∀i 6= j given {Xk, θk}k,Y and P (Z(si) = k) is known.

2. Sample from θk|Z,Xk using the MALA algorithm. Since parameters from di�erent classes
are conditionally independent, the sampling for each θk can be performed in parallell.

3. Sample from Xk |Z, θk,Y using the pCNL algorithm. Also here, the updates for di�erent
k can be done in parallel since the �elds, {Xk}Kk=0, are conditionally independent.

The computational bottleneck of the algorithm is the third step, where the latent Gaussian
�elds are sampled. This is computationally expensive since the spatial discretization in two
dimensions will correspond to a high dimensional distribution. However, since we are using a
spatial lattice discretization with N subregions, e�cient sampling from the prior Gaussian �eld
is possible with a computational complexity of O(N logN) using spectral methods [34] (that
is, using Fast Fourier transforms). Working in the spectral domain also allows for e�cient
computation of all gradients and acceptance probabilities needed, making the spectral approach
and the pCNL-algorithm in combination very favorable. Using the Fast Fourier transform relies
on truncating the spectral basis expansion of the �elds, In Appendix A we justify this additional
approximation theoretically by showing that convergence of the lattice approximation still holds
given certain bounds on the spectral densities.
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4 Application

To further illustrate our approach we return to the tropical rainforest data example in Section
1 to compare the e�ect of considering LSCP models instead of simple Poisson regression or the
LGCP model.

4.1 Data

The dataset consists of 2461 locations of trees of the species Beilschmiedia pendula in a 50
ha rectangular study plot (500 x 1000 meter) on the island of Barro Colorado in Panama,
Figure 1a. The data were acquired from the �rst census of a major ongoing ecological study
that started in the 1980s, designed to understand the mechanisms maintaining species richness,
consisting of the observed positions of a large number of tree species ([28, 27, 13]). The study
deliberately considers a spatially mapped rainforest community, arguing that population and
community dynamics occur in a spatial context [26]. In addition to the spatial pattern formed
by the tree locations, measurements of topographical variables and soil nutrients that potentially
in�uence the spatial distribution of the trees are available [32, 51, 18], with the aim of linking
spatial patterns to spatial environmental variations, re�ected by observed topography and soil
nutrients. Some of the point patterns derived from this material has been studied in, for instance,
[38, 52, 31, 44] and the Beilschmiedia pendula data are available in the spatstat package [5] for
the R project [1].

Elevation was measured and sampled on a 5x5 meter grid, and based on this an approximation
of the slope at each of these grid points was calculated using a Sobel �lter [54]. Soil samples
were taken at 300 locations, for which the amount of 12 soil constituents (Al, B, Ca, Cu, Fe, K,
Mg, Mn, N, Nmin, P, Zn) as well as the pH level were measured; these were interpolated to yield
spatially continuous covariates. Since the covariates derived from the soil samples and elevation
were not sampled at grid resolution they had to be interpolated to a common lattice. In this
example, the model was discretized to 30× 60 subregions over the observational window, giving
a spatial resolution of 16.7× 16.7 meters. The soil samples and elevation data was interpolated
to the very same resolution. The number of observed points in each subregion is shown as a two
dimensional histogram in Figure 1b. The spatial interpolation of the covariates to this lattice
grid was performed using bi-cubic splines with the function interp2 in Matlab (R2016a); Figure
3 shows the standardized covariates.

To avoid problems with multicollinearity among the covariates, covariates were discarded
based on high variance in�ation factors (VIF) [42]. The covariates were discarded iteratively by
�rst computing the VIF for all covariates, removing the covariate corresponding to the highest
VIF value if it exceeds 5 and then starting over on the new reduced set of covariates. The
algorithm was stopped when none of the VIFs exceeded 5. By this procedure, the covariates B,
Ca, K, and Zn were discarded, leaving 11 covariates for further analysis.

4.1.1 Models

It is obvious from Figure 1a that there is a large area in the middle of the domain where hardly
any trees are growing. It is likely that some inhibitory factor prevents the trees from growing
in that region. As mentioned earlier, we have anecdotal evidence that this area is covered by
a swamp and that the tree species is known to be very unlikely to grow there. We test four
di�erent models to see how the confounding factor will a�ect inference., as sumarised in Table
1.

The �rst is a simple Poisson regression model on the covariates, i.e. an inhomogeneous
Poisson process with linear �xed e�ects de�ning the log intensity as B(s)β. We will refer
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Figure 3: The standardized covariate values on the observational domain.

to this model as the Fixed model. The second model includes a Gaussian �eld to capture
the variability not explained by the covariates. More precisely, we use a LGCP model with
log-intensity log λ(s) = X(s) + µ(s). Here X(s) is a zero-mean Gaussian �eld with Matérn
covariance with standard deviation σ and range r and µ(s) = B(s)β.

Looking at the data, we might expect the LGCP model to explain the variation in point
intensity well, except for the complete lack of observations in the central region coupled with
the discontinuity in the observed intensity at the border between the large empty area and the
other parts of the plot. If the habitat dependence of the trees is signi�cantly di�erent in these
two separated regions, a LSCP model with a separate class for each of the two regions might
provide a better �t. Therefore, the third model is a two-class LSCP model where the �rst class is
de�ned as in the LGCP model and the second class has a constant intensity �xed to a low value.
That is, log λ(s) = Z1(s) (X1(s) + µ1(s)) + Z2(s)C2, where Zk(s) = I (Z(s) = k). This choice of
model is tailored to partition the spatial domain in to one partition with trees and one partition
with a very small probability of trees growing. Since it is hard to distinguish between di�erent
values of very low intensity when studying a point pattern, the low intensity class might as well
be modeled with a �xed intensity. We �x the intensity to C2 = 0.0268, which is one tenth of the
mean intensity among the grid cells with at most 1 tree. We refer to this as the LGCPM model.
Finally, we consider a simpli�ed version of this model where log λ(s) = Z1(s) B(s)β+ Z2(s)C2.
That is, no random e�ects in any of the two classes. This will be referred to as the FixedM

model.

FIXED: log λ(s) = B(s)β
LGCP: log λ(s) = X(s) + B(s)β
LGCPM: log λ(s) = Z1(s) (X(s) + B(s)β) + Z2(s)C2

FIXEDM: log λ(s) = Z1(s) B(s)β + Z2(s)C2

Table 1: The four models and their corresponding log intensity functions.
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The posterior distributions of the parameters and latent �elds were estimated using the
proposed MCMC method of Section 3. In order to reduce boundary e�ects, the lattice was
extended by 350 m for the level set �eld and by 220 m for the latent Gaussian �elds of the
classes (implicitly assuming correlation ranges smaller than 350 m for classi�cation and 220 m
within classes). The smoothness parameters of the Gaussian �elds were �xed at ν = 1 and
the following independent prior distributions for the model parameters (when applicable) were
used: i) N(0, 10)-priors for the �xed e�ects; ii) N(0, 4)-priors for the threshold parameters; iii) an
exponential prior with mean 2, Exp(2) for σk except that σ0 = 1 is �xed due to the identi�ability
issues discussed in Section 2.1; iv) Exp(200)-priors truncated from below at the lattice distance
and from above at the lattice extension range for rk; this ensures that no wrap-around artifacts
were introduced and that the correlation range was not smaller than the discretization distance;
v) an Exp(0.1) prior truncated from above at 1 for the nugget standard deviation; this yields an
expected a priori standard deviation of approximately 0.1 and ensures that the nugget variance
does not dominate the spatial dependency in the level set �eld.

The standard deviations of the Gaussian �elds were given exponential priors in order to
penalize model complexity, following the PC prior framework of [55, 53]. This corresponds
to penalization of the Gaussian �elds, {Xk}Kk=1, when the covariates alone can explain the
variation. The range parameters were given exponential priors using similar reasoning to the
standard deviations where no spatial dependency corresponds to the base model. However, the
distribution was truncated since no information exists on ranges below the lattice diameter due
to the spatial discretization. The covariates were standardized to mean 0 and variance 1. Hence,
the �xed e�ects prior yields a penalisation from the base model of no �xed e�ects. The nugget
for the level set �eld was considered as a deviation from the base model (without a nugget)
and hence penalised by an exponential distribution. The MCMC chains were run for 5 · 106

iterations on a standard contemporary laptop. The simulations took 2.3 hours for the Fixed
model, 11 hours for the LGCP model, 32 hours for the LGCPM model, and 24 hours for the
FixedM model.

4.1.2 Model validation

To validate the models we use a standard approach from point process literature [38, 30, 4] that
compares a summary characteristic estimated from the observed point pattern with envelopes
based on the summary characteristics estimated for point patterns simulated using the �tted
models. As a summary characteristic we choose the pair correlation function [30] which is a
second order functional summary characteristic characterizing the expected number of points at
distances close to r from an observed point.

The pair correlation function with isotropic edge correction was estimated using the function
pcf from the spatstat package [5]. An estimate from the observed data as well as estimates for
each out of 5000 point pattern realizations was acquired for each model. Here we have �rst
looked at point pattern realizations based on 5000 draws of parameter values (θ0, θ1, . . . ) from
the posterior distribution given the observed data. That is, we compare the four models with
parameter values that are reasonable given the observed trees data. Secondly we have also
looked at 5000 point pattern realizations, each one sampled from an anisotropic Poisson process
with an intensity function drawn from the posterior distribution conditioned on the observed
data for each of the four models. That is, comparing point patterns generated from the posterior
distributions of each of the four models. The draws from the posterior distributions were acquired
using the MCMC simulations.

The pair correlation function for the observed point pattern as well as 5 randomly chosen
realizations can be seen in Figure 4. The pointwise mean among all realizations and the 90% en-
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velopes (both global and pointwise) have been plotted in the �gure. The left column corresponds
to realizations from the prior models using parameter values from the posterior distributions.
The right column corresponds to realizations from the posterior point processes. For the Fixed
model, the prior and posterior model do not di�er since no random e�ects are present. Hence,
only one �gure is present in the corresponding column.

In general, the plots in the left hand (LH) column in Figure 4 re�ect how well the simulated
patterns resemble the overall pattern structure in the original data, and the plots on the right
hand (RH) side how well the simulated patterns resemble the original pattern itself. The pair
correlation function is de�ned for stationary patterns. In the current context, where we want
to assess the models' ability to capture non-smooth non-stationarity in the pattern, the values
of the summary characteristic might not be able to indicate issues with this type of structure.
Hence, we also consider some randomly chosen examples of the corresponding simulated point
patterns for each of the same scenarios as in Figure 4; these are shown in Figure 5. To assess
the models' performance we consider these two �gures together.

For the simplest model, the Fixed model, the estimated pcf for the observed point pattern
is above the envelopes for all distances (Figure 4). This clearly indicates that the model that
is based on covariates only does not su�ciently capture aggregation at any spatial scale and is
clearly inappropriate for this data set. This is not surprising since it had been anticipated that
the covariates are unable to re�ect the spatial structure resulting from the presence/absence
of the swamp. In addition, they might also not be su�cient to capture small scale clustering,
resulting from dispersal limitation. The relevant simulated pattern in Figure 5 re�ects this very
clearly; the pattern does not show any of the small scale clustering that's evident in the observed
pattern and it does not su�ciently explain the large empty area where the swamp is located.
There is an area with lower point intensity, perhaps a result of some of the covariates being
correlated with the presence of the swamp.

For the standard LGCP model, the estimated pair correlation functions in Figure 4 (LH
and RH) for the observed point pattern remain inside the global envelopes. However, for small
distances, the mean function for the patterns simulated from the �tted model is above the
function for the observed pattern in the LH plot. This is re�ected in the low values of the black
line relative to the red line for up to about 40 meters radius r. This indicates that the model
accounts for less clustering at small distances than has been observed in the pattern formed by
the rainforest trees. This is likely a result of the model attempting to average the parameters
for the Gaussian �eld across the whole plot; the Gaussian �eld in the model attempts to explain
spatial structures that the covariates cannot explain in general as well as the the e�ect of the
swamp. This is also evident in the relevant LH plot in Figure 5. The pattern shows some
empty areas, perhaps smaller than the swamp, but this is hard to discern from a single pattern
only. It also shows local clustering which is much stronger than in the original pattern. The
associated RH plot looks rather similar to the observed pattern with perhaps too many points
in the clustered areas.

For the LGCPM model, the mean line and the estimated line pair correlation functions are
very similar, even though the red line is slightly above the black line for small distances in the
LH plot of Figure 4. This might indicate that slightly more local clustering is re�ected in the
model than is exhibited by the actual pattern. The general spatial structure in the LH simulated
pattern appears to be much more similar to the general structure in the original pattern than that
simulated from the LGCP model, neither overly exaggerating the clustering nor the �emptiness�.
The RH equivalent again strongly resembles the original pattern, perhaps with slightly too many
points in the areas with local clustering as indicated by the pair correlation function.

The FixedM model underestimates local clustering, most likely behavior resulting from dis-
persal limitation, which is not accounted for by the covariates. This becomes most apparent
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Figure 4: Plots of the pair correlation function. Left column uses envelopes and realizations
from point patterns generated using the prior model with parameters drawn from the posterior
distribution. Right column uses envelopes and realizations drawn from the posterior point
processes. Each panel show the value for the observed point pattern (black), 5 randomly chosen
realizations (gray), the pointwise mean (red), 90% pointwise (blue dotted) and global (blue)
envelopes. 12
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Right column are point patterns generated from the posterior point processes.
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Figure 6: The mean (cross) and 95% credible intervals (lines) for the �eld parameters.

in the RH plot of Figure 4, where the function estimated for the observed pattern is above the
envelopes up to a distance of about 40 meters, but is also evident in the associated LH plot.
The simulated patterns in Figure 5 tell a similar story; the swamp is reasonably well accounted
for but there is a clear lack of local overdispersion in the patterns.

4.1.3 Analysis of covariates and spatial structure

The models discussed here, relating a spatial pattern to spatially continuous covariates may be
of interest for a number of reasons. Commonly, one seeks to understand habitat preferences of a
particular species as re�ected in the relationship between the point pattern and the covariates.
In addition, it might be of interest to understand the nature of the spatial structure that remains
unexplained by the covariates.

To investigate the spatial structure, we �rst look at the mean value and 95% credible intervals
for the random �eld parameters of the models. These are presented in Figure 6. Observing the
di�erence between r1, and σ1 values of the LGCP and LGCPM models show how the empty
region will a�ect the estimation of the spatial dependency structure. Here, the LGCPM model
shows a signi�cantly lower variance and clearly lower correlation range. This is natural since
the Gaussian �eld for the LGCPM model does not need to explain both the e�ect of natural
spatial dependency between growth of trees as well as the unknown inhibitory e�ect that causes
trees to not grow at all in certain regions of the forest. And �nally we note that σε has a large
e�ect (signal to noise ratio equals 1

σε
) indicating that the Matérn �eld for X0 cannot explain the

classi�cation on its own. This is clearer for the FixedM model, where classi�cation jumps more
sporadically between adjacent grid cells due to the over-simpli�ed structure of the classes.

In Figure 7 the mean posterior log intensities, {log λi}Ni=1 are presented as kriging predictions
for each of the four models. The �gure also shows the posterior probabilities P (Z(s) = 2|Y),
giving an indication of the region with very few trees. The posterior log intensity surface
of the LGCPM shows sharp boundaries contrary to the smoothly varying in the LGCP. The
classi�cation in the FixedM model is more noisy than that of the LGCPM model and a larger
proportion of the observation window is classi�ed as being the empty region. Once again, this
is connected to the larger value of σξ and caused by the FixedM having to explain the intensity
with a much simpler model.

The relationship between the tree intensity and the covariates is also of interest, and in
practice is often the focus of a study. Recall that 12 covariates of the original 16 covariates are
considered here; 11 true covariates and one intercept term. Figure 8 shows the mean and 95%
credible intervals for each of these covariates for all models. The �rst question is which of the
covariates have a signi�cant impact on the spatial distribution of the trees and hence re�ect a
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Model Covariates
Fixed Int, Elev, Slope, Al, Mn, NMin, P, pH, Cu, N
LGCP Int
LGCPM Int
FixedM Int, NMin, Elev, Mn

Table 2: Signi�cant covariates on a 5% level for the covariates using Holm-Bonferroni correction
to correct for multiple hypothesis tests.

habitat preference of the species. To answer this we asses which of the regression coe�cients in
β that are signi�cantly di�erent from zero. Empirical p-values are computed from the sampled
posterior distributions. Since there are 12 �xed e�ects, the p-values were adjusted using Holm-
Bonferroni correction [25] to account for multiple testing. Table 2 shows the covariates that
were considered signi�cant, at a signi�cance level of 5%, for each of the four models.

The FixedM model identi�es a smaller number of signi�cant covariates than the Fixed model.
This is not surprising since the covariates do not need to explain the lack of trees in the empty
domain anymore. It should be noted that we found that the Fixed and FixedM models did
not �t the data, see Figure 4. Hence, �nding signi�cant covariates could be due to model
misspeci�cation rather than an actual relationship with the observed point pattern. For the
LGCP and LGCPM models, only the intercepts are signi�cant.

5 Discussion

We have considered the problem of Bayesian level set inversion for point process data. The
proposed model can be seen as a generalization of the LGCP model where the latent Gaussian
�eld is extended to a level set mixture of Gaussian �elds. We derived basic model properties and
in Appendix A showed consistency of the posterior probability measure of �nite-dimensional ap-
proximations to the continuous model. A computationally e�cient MCMC method for Bayesian
inference, based on the preconditioned Crank-Nicholson Langevin algorithm, was presented.
A topic of further research could be to investigate other, potentially even quicker, estimation
methods such as based on INLA in combination with variational Bayes.

We modelled a point pattern formed by the locations of the trees from a species in a tropical
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Figure 8: The mean (cross) and 95% credible intervals (lines) for the posterior marginal distri-
bution of �xed e�ect for the four di�erent models.

rainforest. The example was relevant in the current context since the point pattern shows clear
signs of being a�ected by some confounding factor (mainly re�ecting the presence or absence of
a swamp). Soil and topography covariates are at most slightly correlated with the swamp and
hence cannot explain the nearly complete absence of points in that area. A standard LGCP
model accounts for remaining spatial structures through a single smooth Gaussian �eld. The
LSCP model we propose here can have a level set mixture of two Gaussian �elds, one component
explaining local spatial structures (such as those resulting from dispersal limitation) and another
constant component explaining the absence or presence of the �emptiness�.

We �tted 4 di�erent models to the data, which all could be viewed as special cases of the
LSCP models, a simple model with only covariates (Fixed), a standard LGCP process model,
a LSCP model with one constant class and one class modeled using a Gaussian �eld (LGCPM)
and a simpli�ed version of this which only had �xed e�ects in the �rst class (FixedM). We
compared the performance of the four models using simulations from the �tted models to the
observed data, both based on summary characteristics from repeated simulation and by visually
comparing the resulting spatial structures in the simulated patterns to those in the observed
pattern. The di�erences in model performance were most evident in the visual comparison of
the generated patterns. The LGCPM clearly reproduced the original pattern structure better
than the other models, with the Fixed model neither showing local clustering nor a meaningful
empty area, the LGCP model exhibiting exaggerated local clustering and the FixedM model not
accounting for local clustering. The pair correlation function re�ected these features as well,
but not in as an obvious way. The analysis of the tropical rainforest showed that inference on
both the Gaussian �eld parameters and covariates were a�ected by allowing for a second class
in the model. It suggests that the inference drawn based on the LGCP model were biased by
the confounding factor and that no covariates can be considered statistically signi�cant.

Patterns simulated from the model might also be useful for aiding the interpretation and
understanding of underlying ecological mechanisms. For instance, simulating patterns based on
the parameters estimated from the LGCPM but not involving the component relating to the
swamp in the simulation � as it is clear that it leads to low point intensities � would provide an
insight into what spatial structures looked like if the swamp was not present. This is interesting,
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as the �swamp e�ect� trivially leads to spatial structures that are uninteresting but very obvious
on visual inspection.

Future analysis could consider using �xed e�ects also with the level set �eld, X0, in order
to investigate which covariates explain the classi�cation, a feature of the proposed model that
we have not yet investigated. Further, multi-type point patterns may also be analyzed with the
proposed model class for instance for the joint analysis of several species of plants. This could be
performed by introducing multivariate Gaussian random �elds for the classes, i.e. for {Xk}Kk=1.
Another possibility is letting several species share the same level set �eld, X0, or classi�cations
�eld, Z, but use independent class �elds, {Xk}Kk=1. In this way, information about X0 could be
pooled from several point patterns jointly.

Furthermore, the approach may also be relevant in larger scale studies, for example in the
context of species distribution modelling, where data collection e�ort varies in space and whole
spatial areas have not been surveyed or only very few surveys have taken place, despite providing
potentially suitable habitat for a species. This would create large areas relatively empty of points
for which spatial covariates are available. In particular, if suitable covariates were available that
might be linked to survey e�ort, such as population density or accessibility, a suitable level set
mixture model could account for this.

A problem with the spectral approach used in this work is that the spatial discretization
has to be on a lattice. In applications where such restrictions are problematic, the sampling
of the Gaussian �elds could be performed with a di�erent method. Generally this requires
(KN3) operations. A possible approach to remedy this would be to acquire a Gaussian Markov
random �eld approximation of the problem. This idea has been studied by [35, 47, 52] revealing
computationally attractive properties on arbitrary domains. An adaptation of the method by
Simpson et al. [52] to the LSCP model would reduce the computational cost to O(KN3/2) while
still allowing for arbitrary spatial discretizations.

Another issues that needs further investigation relates to the prior choice for the parameters
of the Gaussian random �eld as these can substantially in�uence the smoothness and, as a result,
the signi�cance of the spatial covariates. A spatial �eld that is too �wiggly� can easily lead to
over�tting, rendering any covariates insigni�cant, while a �eld that is too smooth de�es its very
purpose. Some work has been done on investigating this in the context of pc priors for log
Gaussian Cox processes [55], but there is room for further investigation.
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A Theoretical results

In this section, we will theoretically justify the two approximations of the LSCP process that
are needed for inference. The �rst is the �nite dimensional approximation from Section 2.4 and
the second is the truncation needed for the fast Fourier transform in Section 3.

For k = {0, ...,K}, let Xk be a Gaussian random �eld on the spatial domain D = [0, 1]d ⊂ Rd,
de�ned on a complete probability space. We will show the results using methods similar to those
in [15, 29, 52] and for this it is convenient to represent the �elds as Gaussian measures µ(k)

0 . To
simplify the presentation, we will assume a speci�c covariance operator, C, related to the Matérn
covariance function. However, the results can be extended to more general densely-de�ned, self-
adjoint, positive de�nite operators and to more general bounded domains.

Let µ(k)
0 = N (0, C), where C = τ2A−α with A = κ2 − ∆. Here τ, κ2 and α are positive

parameters and A : D(A) ⊂ L2(D) → L2(D), here D(A) denotes the domain of A. Further
we impose periodic boundary conditions. Denote the eigenvalues of A as {λj}j∈N , which are
arranged in a nondecreasing order, and the corresponding eigenfunctions as {ej}j∈N, which form
a complete orthonormal basis for L2(D). The fractional power operator Aα : D(Aα) → L2(D)
is de�ned by

Aαu =
∑
j∈N

λαj 〈u, ej〉 ej .

For any α, the subspace Hα := D(Aα/2) is a Hilbert space

Hα = {u :
∑
j∈N

λαj | 〈u, ej〉 |2 <∞},

with respect to the inner product 〈φ, ψ〉α =
〈
Aα/2φ, Aα/2ψ

〉
and corresponding norm ‖φ‖α =∑

j∈N λ
α
j 〈φ, ej〉

2.
With this choice of covariance operator, we have that if u ∼ µk0, then u ∈ Hs for any s <

α−d/2 µk0-almost surely [21, Theorem 1]. Furthermore, u is almost surely p-times di�erentiable
if α− d/2 > p. We will need this di�erentiability and we formulate it as an assumption.

Assumption A.1. The classi�cation �eld X0 is almost surely a Morse function with strictly

positive variance at all locations in the domain, and for k > 0 the Gaussian �elds Xk are almost

surely di�erentiable.

The di�erentiability assumption is satis�ed by assuming α > 2. The Morse function re-
quirement is slightly stronger than C2, but is implied by α > 4 [2]. Furthermore, we can use
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a theorem equivalent to the Sobolev embedding theorem for our Hs space [56, Theorem 2.10].
That is, ‖Xk‖L∞ ≤ C‖Xk‖s if Xk ∈ Hs and s > d/2. For our case with periodic boundary
conditions the space Hs is even equivalent to the Sobolev space Hs.

We thus have that Xk is represented as a Gaussian measure, µ(k)
0 , onHα and we can choose an

appropriate σ-algebra such as the probability space (Hα,Σk, µ
(k)
0 ) becomes complete (see [29]).

Likewise X = {X}Kk=0 can be represented by a product measure µ0 on the complete measure
space X = (Ω,Σ, µ0), where Ω is the product space of each Hα and Σ is the corresponding
product σ-algebra.

Since the LSCP model de�nes the point process as a non-homogeneous Poisson process
conditioned on X, the likelihood potentials for the continuous and �nite dimensional models,
de�ned in Section 2.4, are

Φ(X; Y) =

∫
D
λ(s; X)ds−

∑
sj∈Y

log λ(sj ; X), (4)

ΦN (X; Y) =
∑
i∈N

(| Di |λ(s̃i; X)−Yi log λ(s̃i; X)) . (5)

Here, N is the number of discretized regions in the lattice approximation and Yi denotes the
number of observations in Di. Further, s̃i is the midpoint of each Di, and sj is the location
of the jth point in the point pattern Y. Based on these likelihoods, we can now de�ne the
corresponding posterior measures as follows.

Proposition A.2. If Assumption A.1 holds, we can de�ne posterior measures using Radon-

Nikodym derivative with respect to µ0:

dµ

dµ0
(X) =

1

Cµ(Y)
exp (−Φ(X; Y)) ,

dµN

dµ0
(X) =

1

CµN (Y)
exp

(
−ΦN (X; Y)

)
,

(6)

where Cµ(Y) and CµN (Y) are normalizing constants.

The proof is given in Appendix B. Since only the discretized model can be used for inference,
it is important to know that the approximation µN converges to the true posterior, µ, as the
discretization becomes �ner. The following theorem shows that this indeed is the case with
respect to the total variation distance, dTV(µ, µN ) = 2 supE∈FX |µ(E)− µN (E)|.

Theorem A.3. Let Assumption A.1 hold and let µN and µ be the posterior measures de�ned

in (6). Then dTV(µ, µN )→ 0 as N →∞.

The proof is given in Appendix B. Also the latent �elds, X, need to be approximated by �nite
dimensional representations for inference. We will do this by truncating the basis expansion of
the �eld to p terms:

X ≈ X̃ =

p∑
j=1

ξjλ
α
j ej ,

where ξj are independent standard normal variables. We will refer to the model using a dis-
cretization of the observational domain and �nite dimensional approximations of X as the fully
discretized model. The advantage with using this truncation is that we can use the fast Fourier
transform for simulating the �eld. To show that we still have convergence under this approxi-
mations, note that the �nite dimensional approximation of X can be viewed as an orthogonal
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projection of X on to the space spanned by the eigenfunctions {ej}j≤p as is done in Cotter et al.
[15]. We de�ne the projection operator P p such that X̃(s) = P p X(s). It is now possible to
de�ne a posterior probability measure for µ̃N by it's Radon-Nikodym derivative as

dµ̃N

dµ0
(X) =

1

Cµ̃N (Y)
exp

(
−ΦN (P p X; Y)

)
. (7)

An important consequence of this de�nition is that the posterior measure is absolutely continuous
with respect to µ0 and measurable with respect to Σ. The interpretation of µ̃N is that the data
will only a�ect the projection, P p X. We can now show that also under this approximation, we
get convergence to the true posterior.

Theorem A.4. Let the measure µ̃N be de�ned by (7), and let the measure µ be de�ned by (6).
If µ0 satis�es Assumption A.1, then dTV(µ, µ̃N )→ 0 as N →∞ and p→∞.

The proof is given in Appendix B.

B Proofs

Proof of Proposition 2.1. For the �rst moment, note that

E [λ(s)] = E [exp(X(s))]

=

K∑
k=1

E [exp(Xk(s) + µk(s))|X0(s) + µ0(s) ∈ (ck−1, ck]]P (X0(s) + µ0(s) ∈ (ck−1, ck])

=

K∑
k=1

E [exp(Xk(s) + µk(s))]P (X0(s) + µ0(s) ∈ (ck−1, ck])

=
K∑
k=1

exp

(
µk(s) +

Ck(0)

2

)
P (X0(s) + µ0(s) ∈ (ck−1, ck]) ,

where the �nal equality follows from the explicit form of the expectation of a log-normal random
variable.

The second moment follows by similar calculations when considering that both points in
space can be part of one of the K classes. Using the covariance of a bivariate log-normal
distribution and de�ning

plk := P (X0(s1) + µ0(s1) ∈ (ck−1, ck] ∩X0(s2) + µ0(s2) ∈ (cl−1, cl])

=

∫ ck

ck−1

(
Φ

(
cl − µ∗(u)

σ∗(u)

)
− Φ

(
cl−1 − µ∗(u)

σ∗(u)

))
e
− (u−µ0(s1))

2

2 C0(0)
√

2π
du,

where µ∗(u) = µ0(s2) + C0(| s1− s2 |)
C0(0) (u − µ0(s1)) is the conditional expectation of X0(s2) +

µ0(s2)|X0(s1)+µ0(s1) = u and σ∗(u) =
√
C0(0)− C0(| s1− s2 |)2

C0(0) is the corresponding conditional
standard deviation.
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Remember that C0(0) = 1 to make the model identi�able with respect to the threshold
parameters. plk can then be de�ned through

∫ ck

−∞
Φ

(
cl − µ∗(u)

σ∗(u)

)
e−

(u−µ0(s1))
2

2

√
2π

du

=

∫ ck

−∞
Φ

(
cl−µ0(s2)

σ∗(u)
+ µ0(s1)

C0(| s1− s2 |)
σ∗(u)

− uC0(| s1− s2 |)
σ∗(u)

)
ψ (u− µ0(s1)) du

=

∫ ck

−∞
Φ (a+ ub)ψ (u− µ0(s1)) du =

∫ ck −µ0(s1)

−∞
Φ (a+ bµ0(s1) + yb)ψ (y) dy,

where the variable substitution, y = u−µ0(s1), was used. Here, a = cl−µ0(s2)
σ∗(u) +µ0(s1)C0(| s1− s2 |)

σ∗(u) ,

and b = −C0(| s1− s2 |)
σ∗(u) . Using 10, 010.1 from [43] then yields

∫ ck −µ0(s1)

−∞
Φ (a+ bµ0(s1) + yb)ψ (y) dy =

1

2π
√

1− d2

∫ ck −µ0(s1)

∞

∫ a+bµ0(s1)√
1+b2

∞
e
−x

2+y2−2xyd

2(1−d2) dxdy,

where d = −b√
1+b2

. Finally, 1 + b2 = 1 + C0(| s1− s2 |)2
σ∗(u)2

= 1
σ∗(u)2

and hence a+bµ0(s)√
1+b2

= cl − µ0(s2)

and d = C0(| s1− s2 |).
This last integral corresponds to evaluating a cumulative distribution function of a bivariate

centered Gaussian distribution with correlation d and unit marginal variances.
�

Proof of Proposition 2.2. The inhomogeneous empty space function, F (s0, r) is de�ned as the
probability of having at least one point inside a ball of radius r centered at s0, i.e. F (s0, r) =
P (N(Y;B(s0, r)) > 0). Here, N(Y;A) is the number of points inside the domain A for a real-
ization of the point process, Y. Hence F (s0, r) = 1− P (N(Y;B(s0, r)) = 0). Now,

P (N(B(Y; s0, r)) = 0) = E

[
exp

(
−
∫
B(s0,r)

e
∑K
k=1 Zk(s)(Xk(s)+µk(s))d s

)]

= E

[
exp

(
−
∫
B(s0,r)

K∑
k=1

Zk(s)e
Xk(s)+µk(s)d s

)]

= E

[
K∏
k=1

exp

(
−
∫
Dk ∩B(s0,r)

eµk(s)eXk(s)d s

)]
.

�

Due to the product space interpretation of X as the collection {Xk}k, we de�ne norms on X
as ‖X ‖(·) =

∑K
k=0 ‖Xk ‖(·). That is, a norm on realizations of all Gaussian random �elds jointly

are de�ned as the sum of the norm for each of the K + 1 �elds.
To simplify the proofs we note that the potential Φ can be written as a composition of two

functions: The potential Φ(X; Y) = ΦP (G(X); Y) where ΦP : L2(D)×Y → R is the continuous
Poisson log-likelihood function and G : Hα → L2(D) is

G(X) =

K∑
k=1

πk(·)Xk(·) = log(λ(·)),
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where πk is the classi�cation function, πk(s) = I (ck−1 ≤ X0(s) < ck). Similarly ΦN (X; Y) =
ΦN
P (G(X); Y) where ΦN

P is the Poisson log-likelihood function for the discretized domain.
To prove Proposition A.2, we will need two lemmas, where the �rst gives bounds for the

likelihood potentials.

Lemma B.1. Let ‖Y ‖Y denote the number of points in a given point pattern. For Φ in (4) and
ΦN in (5) we then have that:

(i) For every r > 0, ε > 0, and s > 1 with X ∈ Hs and Y ∈ Y with ||Y ||Y ≤ r, there exists a

constant M(ε, r) ∈ R such that Φ(X; Y) ≥M(ε, r)− ε||X ||2s.

(ii) For every r > 0, and s > 1 all X ∈ Hs and all Y ∈ Y with max{||X ||s, ||Y ||Y} < r we

have Φ(X; Y) ≤ |D |eCr + C2r2.

Proof. To show (i) note that

ΦP (G(X); Y) =

∫
D

exp (G(X)) ds−
∑
sj∈Y

G(X) ≥ −
∑
sj∈Y

G(X) ≥ −‖Y ‖Y‖G(X)‖L∞(D)

≥ −r‖G(X)‖L∞(D).

By Assumption A.1 and the Sobolev embedding theorem we have that ‖X ‖L∞(D) ≤ C‖X ‖s.
Thus ‖G(X)‖L∞(D) ≤ ‖X ‖L∞(D) ≤ C‖X ‖s and we have ΦP (G(X),Y) ≥ −rC‖X ‖s. Now,

0 ≤ ( Cr
2
√
ε
−
√
ε‖X ‖s)2 = C2r2

4ε + ε‖X ‖2s − Cr‖X ‖s. Hence

Cr‖X ‖s ≤ ε‖X ‖2s +
C2r2

4ε
= ε‖X ‖2s −M(ε, r).

By the same argument,

ΦN
P (G(X); Y) =

∑
i∈IN

(| Di | exp (G(X)(s))−YiG(X)(si)) ≥M(ε, r)− ε‖X ‖2s.

Statement (ii) holds for Φ since

ΦP (G(X); Y) =

∫
D

exp (G(X)(s)) d s−
∑
sj∈Y

G(X)(sj)

≤ |D |e‖G(X)‖L∞(D) + ‖Y ‖Y‖G(X)‖L∞(D)

≤ |D |eCr + Cr2 ≤ |D |eCr + C2r2,

and the same for ΦN since

ΦN
P (G(X),Y) =

∑
i∈IN

(
| Di |e‖G(X)‖s −YiG(X)(si)

)
≤ |D |eCr + C2r2.

�

The second lemma we need concerns the regularity of the level sets of X0. Let S0
k(X0) =

{s : X0(s) = ck} be the level set of X0 for the level ck and set S0(X0) = ∪Kk=1S
0
k(X0). Further,

let Js denote the set of indices for all subregions Dj that do not intersect with S0(X0), that
is, j ∈ Js if Dj ∩D0

k = ∅ for all 1 ≤ k ≤ K, and de�ne S(X) = ∪j∈Js Dj as the set of all
subregions where the level sets are not included. We then have the following result about S(X),
and Ld(S(X))where Ld denotes the Lebesgue measure in dimension d.
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Lemma B.2. Let Assumption A.1 hold, then

• L2(S0(X)) = 0 a.s.

• E
[
L2(SC(X))

]
→ 0 as N →∞.

• For any �nite set of points Y, E
[
‖SC(X) ∩Y ‖Y

]
→ 0 as N →∞.

Proof. That L2(S0(X)) = 0 a.s. follows from Proposition 2.8 in Iglesias et al. [29].
We will now show that E

[
L2(SC(X))

]
goes to zero. Note that a curve segment of length

l can at most cover 4( lh + 1) subregions Dj . Hence, the number of subregions Dj that have a
level crossing, N − |Js|, is bounded by

∑N∗

i=1 4(li/h+ 1), where N∗ is the number of disjoint line
segments in S0(X0) and li the length of ith segment. This gives that

E
[
L2(SC(X))

]
≤ h2

(
4

h
E
[
L1(S0(X0))

]
+ 4E [N∗]

)
≤ 4h(E

[
L1(S0(X0))

]
+ hN∗).

Thus, the result follows if we can bound E
[
L(S0(X0)))

]
and E [N∗]. By assumption X0 satis�es

the conditions of Rice Theorem [3], which gives that E
[
L1(S0(X0)))

]
<∞. Let Nk denote the

number of local maxima of X0 over the level ck and let N0 =
∑

kNk. Since E [N∗] is bounded
by E

[
N0
]
, and Rice Theorem bounds E

[
N0
]
, the result follows.

Finally, we show that E
[
‖SC(X) ∩Y ‖Y

]
goes to zero. We only consider the case K = 1 and

Y = {y}, as the general result follows directly given that the claim holds for this special case.
Let B(y, εN ) be a ball centered at y, where εN is chosen so that the subregions covering y are
contained in the ball. To prove the result we need to show that P(Li(B(y, εN )∩X−1

0 (c1)) > 0)→
0 as N → 0, for both i = 0, 1, where Li are the Lipschitz-Killing curvatures. Since X0 is a Morse
function and Li(B(y, εN ))→ 0, Theorem 15.9.4 in [2] shows that E[Li(B(y, εN )∩X−1

0 (c1)))]→ 0
for i = 0, 1. Thus P(L1(B(y, εN )∩X−1

0 (c1)) > 0)→ 0 as L1(B(y, εN )∩X−1
0 (c1)) is non-negative

random variable. Since any B(y, εN ) converges to a point, it follows that L0(B(y, εN )∩X−1
0 (c1))

(the Euler characteristic) converges to a non-negative random variable, and thus P(L0(B(y, εN )∩
X−1

0 (c1)) > 0)→ 0.
�

Proof of Proposition A.2. We only state the proof for µ since the proof for µN follows similarly.
To show the result we must show that the Φ is a measurable function, and then that the measure
is normalizable. To prove measurability it su�ces, by Lemma 6.1 in Iglesias et al. [29], to show
that that Φ is continuous µ0-almost surely. Thus for X̂, X̃ ∈ Hs, s > 1, we must show that
|Φ(X̂)− Φ(X̃)| → 0 as ‖X̂− X̃‖s → 0. Note that

|Φ(X̂)− Φ(X̃)| ≤
∫
D
|eG(X̂)(s) − eG(X̃)(s)|d s+

∑
sj∈Y

|G(X̂)(sj)−G(X̃)(sj)|. (8)

We show continuity of the two terms separately. For the �rst term in (8) it follows that∫
D
|eG(X̂)(s) − eG(X̃)(s)|d s ≤

∫
D

exp
(
|G(X̂)(s)|+ |G(X̃)(s)|

)
|G(X̂)(s)−G(X̃)(s)|d s

≤ C| D |eC‖X̂‖s+C‖X̃‖s‖G(X̂)−G(X̃)‖s.

Here the �rst inequality is due to the mean value theorem, and the second inequality comes
from using Sobolev's embedding theorem, and Hölders inequality. Since ‖G(X̂) − G(X̃)‖s ≤∑K

k=1 ‖X ‖s‖πk(X̂0)−πk(X̃0)‖s+‖X̂− X̃‖s, it su�ces to show that πk is continuous. By Lemma
B.2, L(S0(X)) = 0 a.s. and since πk(·) is constant on S0(X)C it is also a.s. continuous. By
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Proposition 2.6 in Iglesias et al. [29], πk(·) is therefore continuous on L2(D) and thus also on
H1 since it is a.s. constant.

The second term in (8) can be bounded by C‖Y ‖Y‖X̂−X̃‖s a.s. since |G(X̂)(s)−G(X̃)(s)| ≤
‖X̂ − X̃‖L∞(D). Finally, by Lemma B.1 the function Φ is bounded from above and below, and
thus the measure can be normalized. �

From here on we will simplify the notation by omitting the observed point pattern from the
likelihood potential and the constants, i.e. Φ(X) = Φ(X; Y) and Cµ = Cµ(Y).

Proof of Theorem A.3. By Stuart [56, Lemma 6.36], the Hellinger distance bounds the total
variation norm, so it su�ces to show convergence in Hellinger distance. Take X ∈ Hs, s > 1.
By the triangle inequality,

2dHell(µ, µ
N )2 =

∫ (√
dµ

dν
−
√
dµN

dν

)2

dµ0(X) =

∫ (
e−

1
2

Φ(X)√
Cµ

− e−
1
2

ΦN (X)√
CµN

)2

dµ0(X)

≤ 1

Cµ

∫ ∣∣∣e− 1
2

Φ(X) − e−
1
2

ΦN (X)
∣∣∣2 dµ0(X) +

∣∣∣∣∣ 1√
Cµ
− 1√

CµN

∣∣∣∣∣
2 ∫

e−ΦN (X)dµ0(X)

= I1 + I2,

where Cµ =
∫
e−Φ(X)dµ0(X) and CµN =

∫
e−ΦN (X)dµ0(X). We now �rst show that I2 can be

bounded by I1 and then show that I1 → 0 as N →∞. Note that

I2 ≤ (Cµ − CµN )2 1

4

(
min{Cµ, CµN }

)−3
CµN

=

∣∣∣∣∫ e−Φ(X) − e−ΦN (X)dµ0(X)

∣∣∣∣2 1

4

(
min{Cµ, CµN }

)−3
CµN

≤
CµN

4 min{Cµ, CµN }3

(∫ ∣∣∣e−Φ(X) − e−ΦN (X)
∣∣∣ dµ0(X)

)2

≤
CµN

4 min{Cµ, CµN }3

∫ ∣∣∣e− 1
2

Φ(X) − e−
1
2

ΦN (X)
∣∣∣2 dµ0(X)

∫
eε‖X ‖21−M(ε,‖Y ‖Y )dµ0(X)

≤ CI1.

Here the third inequality is due to Hölder's inequality and Ferniques theorem [15, Theorem A.3].
Now to bound I1 note that

I1 ≤
1

4Cµ

∫
eε‖X ‖2s−M(ε,‖Y ‖Y )|Φ(X)− ΦN (X)|2dµ0(X).

Since the function G is Lipschitz continuous on S(X) (see Lemma B.2) we get∣∣Φ(X)− ΦN (X)
∣∣ ≤ CeC‖X ‖s | D |h+ C‖Y ‖Yh

+ C‖X ‖s(eC‖X ‖sL(SC(X)) + ‖SC(X) ∩Y ‖Y),

and thus

I1 ≤
2

4Cµ
C

∫
e3ε‖X ‖2s−3M(ε,1+‖Y ‖Y )(| D |+ ‖Y ‖Y)2h2dµ0(X)

+
2

4Cµ
C

∫
e3ε‖X ‖2s−3M(ε,1+‖Y ‖Y )(L(SC(X)) + ‖SC(X) ∩Y ‖Y)2dµ0(X).

27



Now the �rst integral on the right hand side clearly goes to zero as N →∞. The second integral
can be bounded by√

E
[
e6ε‖X ‖2s−6M(ε,‖Y ‖Y )

]√
E [(L(SC(X)) + ‖SC(X) ∩Y ‖Y)4]

≤ C2

√
E [(L(SC(X)) + ‖SC(X) ∩Y ‖Y)4]

≤ C2(L(D) + ‖Y ‖Y)3
(
E
[
L(SC(X))

]
+ E

[
‖SC(X) ∩Y ‖Y

])
,

and as N →∞ this also goes to zero by Lemma B.2. �

Proof of Theorem A.4. Denote the posterior measure for the fully discretized model by µ̃N . The
TV distance between the posterior measures can be bounded as

dTV (µ, µ̃N ) ≤ dTV (µ, µN ) + dTV (µN , µ̃N ),

where the �rst term goes to zero by theorem A.3. Clearly, µ̃N as given in (7) de�nes a posterior
measure with respect to µ0 by the same arguments as in the proof of Proposition A.2, and it
coincides with µN on the span of {ej}j>p+1. We can therefore bound dTV (µN , µ̃N ) using the
same method as in the proof of theorem A.3, this gives that 2dHell(µ

N , µ̃N )2 ≤ I1 + I2, where
now,

I1 =
1

CµN

∫
X

∣∣∣e− 1
2

ΦN (X) − e−
1
2

ΦN (P p X)
∣∣∣2 dµ0(X)

I2 =

∣∣∣∣∣ 1√
CµN

− 1√
Cµ̃N

∣∣∣∣∣
2 ∫

e−ΦN (P p X)dµ0(X).

We can again bound I2 by CI1, so what remains to be shown is that I1 goes to zero as p→∞.
Let X ∈ Hs, s > 1. Since P p is a projection, we then clearly have that ‖P pX‖s ≤ ‖X‖s. By
Lemma B.1(i) and Hölders inequality

I1 ≤
1

4Cµ

∫
eε‖X ‖2s−M(ε,‖Y ‖Y )|ΦN (X)− ΦN (P p X)|dµ0(X)

≤ C

√∫
eε‖X ‖2s−M(ε,‖Y ‖Y )dµ0(X)E

[
|ΦN (X)− ΦN (P p X)|2

]
.

We will now focus on bounding the expectation above. Using Ferniques theorem

∣∣ΦN (X)− ΦN (P p X)
∣∣ =

N∑
i=1

| Di |(eG(X)(si) − eG(P p X)(si))−Yi(G(P p X)(si)−G(X)(si))

≤ eε‖X ‖2s−M(ε,‖Y ‖Y )
N∑
i=1

(| Di |+ Yi)|G(P p X)(si)−G(X)(si)|.

Using the inequalities

|G(P p X)(s)−G(X)(s)| ≤
K∑
k=1

|πk(X0)(s) Xk(s)− πk(P p X0)(s)P p Xk(s)|

≤
K∑
k=1

(|Xk(s)− P p Xk(s)|+ C‖X ‖s |πk(X0)(s)− πk(P p X0)(s)|)
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yields that

E
[
|ΦN (X)− ΦN (P p X)|2

]
≤ CE

∑
i∈IN

(| Di |+ Yi)
K∑
k=1

|Xk(si)− P p Xk(si)|

2
+ CE

∑
i∈IN

(| Di |+ Yi)

K∑
k=1

|πk(X0)(si)− πk(P p X0)(si)|

2 .
(9)

Note that |Di| ∝ N−1 and that X(s) is bounded for each s ∈ D almost surely. Let QpX =
X − P pX and note that QpX for each s ∈ D is a mean-zero Gaussian variable with a variance
σ2
p that goes to zero as p→∞. Thus, the �rst term in (9) clearly goes to zero as p→∞. Since
|πk(X0)(si)− πk(P p X0)(si)| is bounded by one, the second term in (9) can be bounded by

C
N∑
i=1

(| Di |+ Yi)E

[
K∑
k=1

|πk(X0)(si)− πk(P p X0)(si)|

]
.

Here the expectation can be bounded as

E

[
K∑
k=1

|πk(X0)(si)− πk(P p X0)(si)|

]
≤ K max

k
{ P (X0(si) ≤ ck ∩P p X0(si) > ck)

+P (X0(s) > ck ∩P p X0(s) < ck)} .

We now show how to bound the �rst probability, and the second probability is bounded by similar
calculations. De�ne the events A = {X0(si) ≤ ck ∩P p X0(si) > ck} and B = {P pX0(si) ∈
[ck, ck + ε]}. It follows that

P(A) = P(A|B)P(B) + P(A|BC)P(BC) ≤ P(B) + P(A|BC)

≤ P(P pX0(si) ∈ [ck, ck + ε]) + P(QpX0(si) ≤ −ε).

Now set ε =
√
σp and recall that P (Z > t) < 1√

2πt
e−t

2/2 if Z ∼ N(0, 1). This gives that

P (A) ≤ P
(
0 < P p X0(si) ≤

√
σp
)

+ P
(
Qp X0(si) ≤ −

√
σp
)
≤ C√σp +

√
σp√
2π
e
− 1

2σp ,

which goes to zero as p→∞, and thus so does the �nal expectation in (9).
�

29


