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Abstract: Fractal descriptions of rough surfaces are widely used in tribology. The fractal 

dimension, D, is an important parameter which has been regarded as instrument and scale 

independent, although recent findings bring this into question. A thrust bearing is analyzed in the 

mixed lubrication regime while considering the fractal nature. Surface data obtained from a thrust 

bearing surface is characterized and used to calculate the fractal dimension value by the roughness-

length method. Then these parameters are used to generate different rough surfaces via a filtering 

algorithm. By comparing the predicted performance between the measured surface and generated 

fractal surfaces, it is found that the fractal dimension must be used carefully when characterizing 

the tribological performance of rough surfaces, and other parameters need to be found. 
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Introduction 

The thrust bearing is widely used in many rotary industrial applications. A thrust bearing 

is used to carry the axial or thrust load placed on a shaft. The roughness of its surface can affect 

the wear, friction and sealing behavior of contact surfaces. Typically, the study of thrust bearings 

mainly focused on the groove effects [1], its behavior under mixed lubrication or hydrodynamic 

lubrication conditions [1, 2], and the thermal effects [3, 4, 5]. Only a few studies have combined  
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A         Amplitude parameter 

D         Fractal dimension    

dr, dθ   Radius and the angle between two  

            nodes 

E         Equivalent Young’s modulus 

fc         Cut-off frequency 

H         Hurst exponent 

𝐻∗       The ratio of the nominal film           

thickness to the surface roughness  

h         Surface separation between the 

surface and the mean asperity level 

h0        Initial surface separation 

ifft2     Discrete inverse Fourier transform 

            function in Matlab 

K         Kurtosis 

L          Length of measured surface 

Ltotal     Total load carrying capacity 

Lf         Load carrying capacity from fluid    

part 

Ls           Load carrying capacity from solid 

contact part 

N        Relative sliding velocity 

nw        Total number of square windows 

P          Unit load 

p           Total pressure 

pf         Pressure from fluid part 

ps         Pressure from solid contact part 

pk
i         Pressure of the kth point in the ith  

              iteration 

q0         Cut-off wave vector 

qx, qy    Frequencies in x and y direction 

R          Asperity radius 

ro          Outer radius of the thrust bearing  

Sk         Skewness 

Ttotal      Total torque 

Tf          Torque from fluid part 

Ts          Torque from solid contact part 

u           Deflection of the surface 

w           Side length 

z            Height of the measured point 

zj           Residuals of the asperity height 

𝑧̅            Mean residual asperity height 

λ            Wavelength 

λu           Effective upper wavelength 

         Pressure flow factors in r direction 

         Pressure flow factors in θ direction 

r


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s          Shear flow factor 

μ           Expectation of surface distribution 

η           Viscosity of lubrication 

ηs          Asperity density 

σ          Standard deviation of the surface  

             height 

σs         Standard deviation of the asperity 

heights  

ω         Angular velocity 

the mixed lubrication analysis and the surface roughness effects together to analyze the behavior 

of a thrust bearing [6].  

 
Fig.1- Schematic of a Stribeck curve  

 

Fig.1 shows the Stribeck curve. It is basically a curve describing the relationship between 

the coefficient of friction and the bearing number (defined as the relative sliding velocity, N, times 

the viscosity of the lubricant, η, per unit load, P). According to the Stribeck curve, lubricated 

surface contact can be categorized by three regimes: the boundary lubrication regime, the mixed 

lubrication regime and the hydrodynamic lubrication regime. Even with the existence of a 

lubricating film between two contact surfaces, some surface asperities in the thrust bearing can 
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still come into contact because of the surface roughness. Therefore, the contact between the thrust 

bearing surfaces is often considered to be in the mixed lubrication regime.  

The fractal descriptions of rough surfaces are widely used [7-10] since Mandelbrot first 

proposed the idea of fractal geometry [11]. The fractal dimension, D, which is a parameter from 

the fractal geometry, has become an important tool in characterizing the surface roughness. The 

fractal dimension describes the space occupation of a geometry (i.e. for a perfect line, the fractal 

dimension is one (D = 1), for a surface, it is two (D = 2) and for a space, it is three (D = 3)). Fractal 

geometry can be used to describe non-Euclidean geometries in between 1, 2 and 3 with non-integer 

fractal dimension values, D.  

The aim of this work is to combine the elasto-hydrodynamic lubrication and rough surface 

contact effects together to analyze the effectiveness of the fractal methods in characterizing the 

thrust bearing surface, although the results may also be applicable to other tribological interfaces. 

Theory 

Normally, the mixed lubrication contact can be divided into hydrodynamic lubrication and 

solid contact. In our work, the flow-factor modified Reynolds equation [12, 13] is used to model 

the hydrodynamic lubrication part of the contact and the Greenwood & Williamson (GW) model 

[14] is used to calculate the pressure from solid contact.  

According to Patir and Cheng [12, 13], the fluid pressure, pf, generated by the 

hydrodynamic part can be calculated by the modified Reynolds equation in the cylindrical 

coordinates [15]: 
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                                             𝜙𝜃 = 𝜙𝑟 = 1 − 0.9exp⁡(−0.56𝐻∗)                                                 (2) 
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                                     𝜙𝑠 = {
1.899𝐻∗0.98𝑒𝑥𝑝(−0.92𝐻∗ + 0.05𝐻∗2)⁡⁡⁡⁡⁡𝐻 ≤ 5

⁡1.126 exp(−0.25𝐻∗) ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐻 > 5⁡⁡
⁡                       (3) 

where  and  are the pressure flow factors and  is the shear flow factor (they are all 

calculated according to [16]); 𝐻∗ = h/σ is the ratio of the surface separation between the surface 

and the mean asperity level h to the standard deviation of the surface height σ; η is the viscosity of 

the lubricants. The flow factors consider how the roughness obstructs the flow between surfaces 

in close proximity. The work assumes that the surfaces are isotropic. Therefore, the equations of 

flow factors for isotropic surfaces are used based on Patir and Cheng [12, 13]. The Reynolds 

equation is solved by the finite difference method in our work (identical to the method used in [6]). 

The expression of the solid contact pressure, ps, calculated by the Greenwood & 

Williamson (GW) model [14] is: 

                                      𝑝𝑠 =
4

3
𝜂𝑠𝐸

′√𝑅 ∫ (𝑧 − ℎ)
3

2
∞

ℎ
𝜑(𝑧)𝑑𝑧                                             (4) 

                                       𝜑(𝑧) =
1

√2𝜋𝜎𝑠
𝑒𝑥𝑝 (−

𝑧2

2𝜎𝑠
2)                                                           (5) 

where 𝜑(𝑧)  is called the probability function; ηs is the asperity density; E  is the equivalent 

Young’s modulus; σs is the standard deviation of the asperity heights, 𝜎𝑠 = (1 −
0.8968

𝛼
)
0.5

𝜎 and 

α is called the bandwidth parameter introduced by Nayak [17]; R is the same radius of all asperity 

summits had, which means the asperity summits have the same radius of curvature. Eq. (4) is 

solved by the Simpson quadrature in our work. 

The negative pressure is set to be zero during the calculation of the pressure, which means 

the Reynolds Boundary condition for cavitation is used. After the pressure and shear stress are 

obtained from the calculation above, the torque and load carrying capacity of the measured surface 

from the thrust bearing and the generated surfaces can be calculated and compared. Fig.2 shows 

r  s
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the flow chart of the numerical process for the mixed lubrication analysis. The fluid lubrication 

and solid contact are solved simultaneously as a coupled problem using this iterative process 

according to Fig.2.  

 
Fig.2 - Flow chart of the mixed lubrication analysis 

 

As we discussed in the references [18, 19], the roughness-length method appears to be the 

most effective and reliable method in calculating the fractal dimension, so the 3D roughness-length 
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method [20] is used to calculate the fractal dimension of the measured thrust washer surface in this 

work. The roughness here is described by the standard deviation. For the 3D rough surfaces, the 

power law relationship between S(w) (the standard deviation of the surface height) and w (the 

sampling length window size) can be calculated by the equation below [20]:  

                                                    
HAwwS =)(                                                                  (6) 

where H is the Hurst exponent and A is a constant defined as a measure of amplitude of a profile 

(amplitude parameter). By dividing the rough surface into a grid of squares with the window length 

w, S(w), which can also be regarded as the root-mean-square roughness of the divided squares, and 

can be calculated according to the following equation [20]: 

                             
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11
)()(                                 (7) 

where nw is the total number of square windows with the side length, w; mi is the total number of 

points in the square window, wi; zj is the residuals of the asperity height on the trend, and z  is the 

mean residual asperity height in each square window. For surfaces, the Hurst exponent, H, is 

related to the fractal dimension, D, with the equation D = 3-H. H can be obtained from the slope 

of the log-log plot of S(w) and w.     

Thrust bearing model 

In our model, a polymer thrust bearing surface is scanned with a Bruker NPFLEX system. 

The scanned thrust bearing surface is shown in Fig.3(a) (the coordinate values are normalized by 

the outer radius value of the thrust bearing (ro)). The rough surface of a single pad with 2048

2048 nodes is chosen from this thrust bearing surface as shown in Fig.3(b) (the coordinate values 

are normalized by the outer radius value of the thrust bearing (ro)), and the surface data is leveled 

to make sure the average slope of the surface is zero before calculating the surface parameters. The 
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reason we choose 2048 2048 nodes on the measured surface is that the Fast Fourier transform 

(FFT) method will be used in the analysis, it is the most efficient when the number of samples is 

a power of 2. In addition, other common statistical parameters, like root mean square roughness 

(σ), skewness (Sk) and kurtosis (K), are also calculated based on [21 - 23] and listed in Table 1. 

The fractal dimension value of the measured rough surface is calculated by the roughness-length 

method [15]. The calculated fractal dimension value is also listed in Table 1.  

      
                                      (a)                                                                              (b) 

Fig.3 - Scanned thrust bearing surface and the chosen rough surface. Shown are (a) scanned thrust 

bearing surface; (b) rough surface with 2048 2048 nodes from thrust bearing 

 

The surface data is measured in Cartesian coordinates, while the Reynolds equation used 

is in the cylindrical coordinates (see Eq.(1)) because the thrust bearing geometry is annular. 

Therefore, a coordinate transformation is performed. When the collected surface data is used in 

the Reynolds equation to calculate the fluid pressure, they are mapped back onto the cylindrical 

coordinate, so that the nodes match the geometry of the bearing. A bilinear interpolation is used 

for the coordinate transformation. 

After the thrust bearing surface data are collected, the surface is deconstructed into small 

scale roughness and large scale roughness via a filtering algorithm according to a cut-off frequency 

(a frequency equals to the reciprocal of a specific cut-off wavelength of the rough surface). The parameters 


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of the rough surface contact and the flow factors can be calculated according to the small scale 

roughness. Fig.4 shows the process of surface deconstruction. By combining the small scale 

roughness part via rough surface contact and flow factors and the large scale geometry part from 

Reynolds equation and bulk deflection together, our bearing model is formed.  

 
Fig.4- Process of surface deconstruction 

 

The bulk deflection of a node on the surface in the large scale geometry part induced by an 

arbitrary pressure distribution in our work is calculated by using the influence coefficient method 

[24]: 

                                                             kl

N

k

M

l

ijklmij pku =
= =1 1

)(                                                       (8) 
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where miju )( is the bulk deflection of the calculated point, ijklk is the influence coefficient，it is 

only valid for half-space which is only an approximation to the normal deflection of an annular 

shaped washer, p is the uniform pressure applied on the discrete points of the surface. 

    
                                 (a)                                                                                (b) 

 
(c) 

Fig.5 - Pressure distribution on the thrust bearing (fc = 33,300 m-1, h0 = 1 µm, ω = 0.14 rad/s). 

Shown are the (a) solid contact pressure distribution; (b) fluid pressure distribution; (c) total 

pressure distribution 

 

According to Eq. (1) and Eq. (4), the fluid pressure and solid contact pressure can be 

calculated, and then the total pressure on the thrust bearing can be obtained by adding them 

together. The solid contact pressure distribution, the fluid pressure distribution and the total 

pressure distribution for a specific case are shown in Fig.5. In this specific case, the cut-off 
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frequency is fc = 33,300 m-1(the wavelength, λ, is 30 µm), the initial surface separation is h0 = 1 

µm and the angular velocity (the velocity of the thrust bearing rotated around the intermediate 

shaft) based on an application of this bearing is ω = 0.14 rad/s. After the pressure and shear stress 

are obtained, the torque and load carrying capacity of the thrust bearing can be calculated.  

Surface Generation 

Two different methods are used to artificially generate rough surfaces with the same fractal 

dimension, D, calculated from the measured rough surface. One is the 3D PSD-iFFT method (the 

inverse Fourier transform based on a prescribed Power Spectral Density). The other one is the 

midpoint displacement method, which can be abbreviated as MDM. The fractal dimension value 

used to generate the surface is 2.23, and is from the complete surface.  

a) 3D PSD-iFFT method 

 
Fig.6 - Surface generated by using Eq. (9)  
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                                  (a)                                                                        (b) 

 
(c) 

Fig.7 - Pressure distribution on the PSD generated surface (fc = 33,300 m-1, h0 = 1 µm, ω = 0.14 

rad/s). Shown are the (a) solid contact pressure distribution; (b) fluid pressure distribution; (c) total 

pressure distribution. 

 

According to Yastrobov [25] and Putignano [26], the surface topographies z(x,y) can be 

generated with a power spectral density, which is calculated by Eq. (9). 

                                                        )1(2

0

0 )()( H

q

q
CqC +−=                                                                (9) 

                                                     
L

q
2

0 =                                                                         (10) 

                                                 𝑞 = ⁡√𝑞𝑥2 + 𝑞𝑦2                                                                 

(11) 
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where C0 is a constant, q0 is the cut-off wave vector, L is the length of the measured surface, qx 

and qy are frequencies in x and y direction. After the power spectral density (PSD) is calculated by 

Eq. (9), the surface can be generated by applying the Hermitian symmetry and the inverse Fourier 

transform on the obtained PSD (which is shown in Fig.6). The same mapping process and the 

surface deconstruction process are conducted on this PSD generated surface. Some basic 

parameters and the fractal dimension value calculated by the roughness-length method [20] for the 

PSD generated surface are also listed in Table 1.  

Fig.7 shows the solid contact pressure distribution, the fluid pressure distribution and the 

total pressure distribution of the PSD generated surface based on Eq.(1) and Eq.(4) for the same 

specific case as the measured surface. Then the load carrying capacity and the torque values for 

the PSD generated surface computed based on the total pressure and shear stress can be calculated. 

b) Midpoint displacement method 

This surface generation method was first proposed by Fournier et. al.[27] in 1982 and then 

discussed by Saupe [28] and Voss [29]. The generated process of this method can be summarized 

below: 

1) Considering a square in the x-y plane, the height of four corners in the plane is from the 

Gaussian distribution N(µ, σ 2) ; 

2) Picking up the midpoint of the square, the height of the midpoint is the average value of 

the four corners plus a Gaussian random number N(0,1). Meanwhile, the RMS roughness, σi, in 

the i-th iteration need to be modified according to the fractal dimension value is calculated from 

the measured surface;      

 3) Calculating the height of midpoint in every side of the square, then the initial plane can 

be divided into four new squares; 
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4) This process is repeated for each new obtained square until we get the desired surface 

resolution.      

 
Fig.8 - Surface generated by midpoint displacement method 

 

Table 1 - Basic parameters calculated for the measured surface, the PSD generated surface and the 

MDM generated surface 

Parameters Measured surface 
PSD generated 

surface 

MDM generated 

surface 

Root mean square (σ) 1.1074×10-5 m 1.2619e×10-5 m 7.0002×10-6 m 

Kurtosis (K) 2.8980 7.2189 4.7459 

Skewness (Sk) 0.0908 -1.0941 0.0768 

Asperity radius (R) 1.1096×10-5 m 1.2370×10-5 m 4.6311×10-6 m 

Asperity density (ηs) 3.5170×1010 m-2 2.6728e×1010 m-2 7.9589×1010 m-2 

Fractal dimension (D) 2.23 2.23 2.11 

 

Fig.8 shows the surface generated from the midpoint displacement method (MDM). The 

same parameters are calculated for the MDM generated surface and listed in Table 1. Again, the 

same mapping process and the surface deconstruction process are conducted on this MDM 

generated surface. 
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                               (a)                                                                        (b) 

 
(c) 

Fig.9 - Pressure distribution on the MDM generated surface (fc = 33,300 m-1, h0 = 1 µm, ω = 0.14 

rad/s). Shown are the (a) solid contact pressure distribution; (b) fluid pressure distribution; (c) total 

pressure distribution 

 

In the MDM process, the expectation of the distribution, μ, and root mean square roughness, 

σ, values are all from the measured surface shown in Fig.3(b). Since the fractal dimension value 

D = 3-H, the fractal dimension value in step 2) is considered by using the equation below [30]:  

                                                                𝜎𝑖
2 =

1

22𝐻(𝑖+1)
𝜎2                                                           (12) 

where σi is a modified RMS roughness in the i-th iteration of the method. 

The solid contact pressure distribution, the fluid pressure distribution and the total pressure 

distribution of the MDM generated surface based on the same specific case as the measured surface 
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are calculated and plotted in Fig.9. The load carrying capacity and the torque values then can be 

computed for the MDM generated surface. 

Results and Discussions 

It can be found from Fig.5, Fig.7 and Fig.9 that the pressure contribution from the fluid is 

very small compared to the values from solid contact, so that the contribution of load carrying 

capacity from fluid is also very small for this application case. As we mentioned previously, these 

cases are for a relatively low angular velocity of 0.14 rad/s based on the actual application of this 

bearing. Therefore, the influence of angular velocity at values larger than this on the load carrying 

capacity and the torque are also investigated. With the constant cut-off frequency (fc = 33,300 m-

1) and the same initial surface separation (h0 = 1 µm), the angular velocity is changed from 0.14 

rad/s to 419 rad/s. Figs. 10(a) and 11(a) show the relationships between the total load carrying 

capacity (Ltotal) and the total torque (Ttotal) as a function of the angular velocity (ω) for these three 

surfaces. The changing trends of the ratio for the contribution of the fluid part and the solid contact 

part on the load carrying capacity and the torque with the changing of the angular velocity (ω) for 

these three surfaces are shown in Figs. 10(b) and 11(b).  

Fig.10(a) indicates that with the increase of the angular velocity, the load carrying capacity 

increases, which is in agreement with typical hydrodynamic bearing behavior. Again note that the 

original surface separation is held constant, but the actual surface separation can increase due to 

deformation. The slope of the load carrying capacity with speed is the steepest for the PSD 

generated surface, while it is the least for the measured surface. Meanwhile, for the same angular 

velocity, the load carrying capacity value from the PSD generated surface is larger than the other 

two surfaces when the angular velocity is larger than 20 rad/s. 
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                                        (a)                                                                        (b) 

Fig.10 - Influence of the angular velocity on the load carrying capacity. Shown are (a) relationship 

between the total load carrying capacity (Ltotal) and the angular velocity (ω); (b) relationship 

between the ratio of the load carrying capacity from the fluid part (Lf) and the load carrying 

capacity from the solid contact part (Ls) and the angular velocity (ω) 

 

The proportion of the load carrying capacity also increases with the growth of the angular 

velocity, which means that the proportion of the load carrying capacity from the fluid has become 

significant. The ratio for the MDM generated surface is the smallest at the low angular velocity, 

but the ratio (Lf/Ls) from the measured surface becomes the smallest when the angular velocity 

becomes much larger. It should also be noted from Fig.10(b) that the ratio (Lf/Ls) for the measured 

surface is not larger than one, but the ratio (Lf/Ls) for the other two generated surfaces all become 

larger than one with the increase of the angular velocity. It means much of the load is carried more 

by the fluid if the ratio (Lf/Ls) is larger than one. This is more desirable for a typical fluid-film 

bearing. This may be due to clear differences in the larger scale geometries of the generated 

surfaces compared to the measured surface. 

The same phenomena have also been predicted for the torque according to Fig.11. The 

torque values from these three surfaces increase with the increase of the angular velocity, the 

measured surface increases the most, while the PSD generated surface is the least. The contribution 
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of the torque from the fluid has increased with the growth of the angular velocity for these three 

surfaces.  

 
                                        (a)                                                                        (b) 

Fig.11 - Influence of the angular velocity on the torque; Shown are (a) relationship between the 

total torque (Ttotal) and the angular velocity (ω); (b) relationship between the ratio of the torque 

from the fluid part (Tf) and the torque from the solid contact part (Ts) and the angular velocity (ω) 

 

The ratios (Lf/Ls and Tf/Ts) from the PSD generated surface is the largest for all cases. The 

proportion of the load carrying capacity and the torque from the fluid increases significantly with 

the growth of the angular velocity and becomes much larger than the load carrying capacity and 

the torque from solid contact for the PSD generated surface. The increase of the ratios (Lf/Ls and 

Tf/Ts) with the angular velocity for the measured surface and the MDM generated surface is much 

less. The ratios (Lf/Ls and Tf/Ts) from the measured surface becomes the smallest gradually, which 

means the contact area in the measured surface is larger than the contact area in the other two 

generated surfaces at the same angular velocity.  

It can be concluded from the analysis above that the angular velocity has a different 

influence on the two generated surfaces from the measured surface. Therefore, the two surface 

generation methods are not suitable in representing the measured surface. 



19 
 

       
                                        (a)                                                                        (b)  

Fig.12 - Influence of the cut-off frequency on the load carrying capacity. Shown are (a) relationship 

between the total load carrying capacity (Ltotal) and the cut-off frequency (fc); (b) relationship 

between the ratio of the load carrying capacity from the fluid part (Lf) and the load carrying 

capacity from the solid contact part (Ls) and the cut-off frequency (fc) 

 

       
                                        (a)                                                                        (b) 

Fig.13 - Influence of the cut-off frequency on the torque; Shown are (a) relationship between the 

total torque (Ttotal) and the cut-off frequency (fc); (b) relationship between the ratio of the torque 

from the fluid part (Tf) and the torque from the solid contact part (Ts) and the cut-off frequency (fc) 
 

In the case we discussed above, the cut-off frequency we used to deconstruct the surface is 

fc = 33,300 m-1. More cases with different cut-off frequencies (changing from 333 m-1 to 33,300 m-

1) are run for these three different surfaces (the angular velocity is held constant during this process 
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at ω = 250 rad/s and the initial surface separation is h0 = 1 µm), and the plots of the influence of 

the cut-off frequency on the load carrying capacity and the torque for these three surfaces are 

shown in Figs. 12 and 13. Note that as the cut-off frequency is increased, more of geometry is 

included deterministically in the model rather than by using the Greenwood & Williamson (GW) 

model [14] and Patir and Cheng roughness model [12, 13]. 

It can be seen from Figs. 12(a) and 13(a) that the total load carrying capacity value and the 

total torque value from the two generated surfaces are very large when the cut-off frequency is 

very small. Whereas, the total load carrying capacity value and the total torque value from two 

generated surfaces decrease with the increase of the cut-off frequency. Meanwhile, the predictions 

of these two values from two generated surfaces become coincident with the values for the 

measured surface if the cut-off frequency becomes large enough. The total load carrying capacity 

and the total torque values from the MDM generated surface are much closer to the values from 

the measured surfaces than the PSD generated surface. It should also be noted that the change of 

the total load carrying capacity value and the total torque value from the measured surface is 

relatively small with the increase of the cut-off frequency. However, the points at the highest cut-

off frequency (33,300 m-1) are not in reasonable agreements, which is the same case shown in 

Fig.11. 

In addition, Fig.12(b) shows the influence of the cut-off frequency on the ratio (Lf/Ls) of 

the load carrying capacity from the fluid part and the load carrying capacity from the solid contact 

part. The ratio (Lf/Ls) for all these three surfaces increases with the increase of the cut-off frequency, 

which means much of the load is carried by the fluid when the cut-off frequency becomes large. 

The slope of the increase speed of the ratio (Lf/Ls) from the PSD generated surface is the steepest 

compared with the measured surface and the MDM generated surface with the increase of the cut-
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off frequency. The increase trend for the measured surface and the MDM generated surface is 

much closer. Same phenomena have happened for the influence of the cut-off frequency on the 

ratio (Tf/Ts) of the torque from the fluid part and the torque from the solid contact part shown in 

Fig.13(b). 

From the analysis above, when the cut-off frequency used to deconstruct the surface is 

small, both of the PSD generated surface and the MDM generated surface are not very suitable in 

representing the measured surface. However, these two generated surfaces can represent the 

measured surface when the cut-off frequency becomes large and the MDM generated surface 

seems much more suitable in representing the measured surface compared with the PSD generated 

surface. It means that the characterization ability of the generated surfaces depends heavily on the 

cut-off frequency. 

By comparing the parameter values in Table 1, the σ values of the measured surface, the 

PSD generated surface and the MDM generated surface have little difference between the surfaces. 

The Sk and K values for the MDM generated surface are much closer to the measured surface than 

the PSD generated surface, but the values of asperity radius, R, and asperity density, ηs, calculated 

from the MDM generated surface are not as consistent as the values calculated by the PSD 

generated surface when comparing with the values of the measured surface. Clearly, these two 

regenerated fractal surfaces are structured fundamentally different than the measured surface. 

It should be noted that both of the two generated surface methods consider the fractal 

dimension value when generating the surface, and the generated surfaces based on these two 

methods are not very consistent in characterizing the measured surface. Therefore, it should be 

considered carefully if a generated surface based on the fractal dimension can be used to represent 

a measured surface. Since the differences of the predicted results, the fractal dimension is not a 
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reliable value to solely characterize the measured surface. However, if other parameters could be 

considered in the generated process as well, improvement might be made. In addition, since only 

a few generated surfaces are evaluated due to the computational limitations, the results cannot be 

considered generalized. 

                  
                          Surface A                                                          Surface B 

Fig.14 - Two new generated surfaces based on the measured surface data and the PSD generated 

surface data 

 

Meanwhile, two new surfaces (surface A and surface B) are also constructed based on the 

small scale roughness and the large scale roughness of the measured surface and the PSD generated 

surface using the following method (see Fig.14): 

(1) Surface A: combine large scale roughness from the measured surface with small scale 

roughness from the PSD generated surface; 

(2) Surface B: combine small scale roughness from the measured surface with large scale 

roughness from the PSD generated surface. 

Small scale roughness and large scale roughness are determined based on the cut-off 

frequency. Surface A and surface B shown in Fig.14 are generated when the cut-off frequency is 

33,300 m-1. For these two shown surfaces, the same basic parameters and the fractal dimension 

value from the roughness-length method [20] are calculated (see Table 2).  
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The measured surface and surface A have similar values of σ, Sk and K, and the values of 

σ, Sk and K for the PSD generated surface and surface B are similar based on Table 1 and Table 2, 

which means large scale roughness tends to dominate the calculation process of the statistical 

parameters. 

 

Table 2 - Related parameters calculated for surface A and surface B 

 Surface A Surface B 

Root mean square (σ) 1.1063×10-5 m 1.2617×10-5 m 

Kurtosis (K) 2.9026 7.2077 

Skewness (Sk) 0.0941 -1.0911 

Asperity radius (R) 1.2375×10-5 m 1.1096×10-5 m 

Asperity density (ηs) 2.6728×1010 m-2 3.5170e×1010 m-2 

Fractal dimension (D) 2.51 2.16 

 

In addition, it is important to understand the physical meaning of different values of the 

fractal dimension when discussing the results. According to Majumdar and Bhushan [8], the 

surface fractal dimension (Ds) can be related to the profile fractal dimension (Dp) by using Ds = 

1+Dp. Self-affinity defines a geometry that repeats over many scales for which the scaling ratio 

are not the same in different directions, while the scaling ratio for a self-similar object is the same 

in all directions. It has already been proven in our previous work [18, 19] that the fractal dimension 

value for a self-similar surface profile is 1. Therefore, the fractal dimension for a self-similar 

surface should be 2. Note that a surface profile is one line of a 3-D surface.  

 

Table 3 - Some parameters calculated based on different cut-off frequencies 

  surface A surface B 

fc (m
-1) σ (m) Sk K D σ (m) Sk K D 

50,000  1.1067×10-5 0.0939 2.9026 2.5895 1.2619×10-5 -1.0917 7.2096 2.3775 

33,300  1.1063×10-5 0.0941 2.9026 2.5074 1.2617×10-5 -1.0911 7.2077 2.1587 

25,000 1.1060×10-5 0.0942 2.9030 2.4358 1.2615×10-5 -1.0906 7.2059 2.1646 
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20,000 1.1057×10-5 0.0944 2.9035 2.4127 1.2613×10-5 -1.0902 7.2043 2.1400 

16,700 1.1055×10-5 0.0945 2.9037 2.3962 1.2610×10-5 -1.0899 7.2028 2.1235 

14,300 1.1053×10-5 0.0945 2.9037 2.3713 1.2607×10-5 -1.0897 7.2016 2.1134 

12,500 1.1051×10-5 0.0945 2.9039 2.3532 1.2604×10-5 -1.0897 7.2017 2.1034 

11,100 1.1049×10-5 0.0944 2.9043 2.3414 1.2600×10-5 -1.0894 7.2000 2.0810 

10,000 1.1047×10-5 0.0943 2.9045 2.3414 1.2596×10-5 -1.0896 7.1997 2.0717 

5000 1.1039×10-5 0.0924 2.9065 2.3018 1.2547×10-5 -1.0920 7.2059 2.0559 

3330 1.1036×10-5 0.0882 2.9008 2.2932 1.2485×10-5 -1.0986 7.2266 2.0620 

2500 1.1036×10-5 0.0814 2.8894 2.2816 1.2411×10-5 -1.1041 7.2697 2.0648 

2000 1.1042×10-5 0.0745 2.8700 2.2799 1.2324×10-5 -1.1253 7.2823 2.0725 

1670 1.1045×10-5 0.0647 2.8484 2.2848 1.2235×10-5 -1.1428 7.2957 2.0900 

1430 1.1049×10-5 0.0532 2.8149 2.2826 1.2090×10-5 -1.1562 7.5180 2.1101 

1250 1.1061×10-5 0.0310 2.7518 2.2869 1.1898×10-5 -1.2293 7.7008 2.1328 

1110 1.1061×10-5 0.0310 2.7518 2.2869 1.1898×10-5 -1.2293 7.7008 2.1328 

1000 1.1082×10-5 -0.0035 2.6532 2.2870 1.1601×10-5 -1.2700 7.8841 2.2058 

500 1.1479×10-5 -0.1753 2.7466 2.2768 8.9553×10-5 -1.6790 11.685 2.2861 

333 1.1479×10-5 -0.1753 2.7466 2.2768 8.9553×10-5 -1.6790 11.685 2.2861 

 

By comparing the fractal dimension values in Table 1 and Table 2, it can be seen that the 

measured surface, the PSD generated surface, the MDM generated surface and surface B tend to 

be self-similar, but surface A tend to be self-affine. Nonetheless, the parameter values listed in 

Table 2 are based on the specific case (fc = 33,300 m-1), different cut-off frequencies are changed 

to verify the influence of cut-off frequency on some parameters listed in Table 2 and the values 

are listed in Table 3.  

It can be found from Table 3 that values of σ, K and Sk for surface A and surface B do not 

change significantly along with the changing of the cut-off frequency, except at low cut-off 

frequencies, which are near to the macro scale geometry and would not typically be used. However, 

the fractal dimension value is influenced significantly by the changing of the cut-off frequency. 
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Fig.15 shows the relationship between the cut-off frequency and the parameter values for surface 

A and surface B based on Table 3. 

     
                                          (a)                                                                       (b) 

 

     
      (c)                                                                         (d) 

Fig.15 - Relationship between the cut-off frequency and the parameter values in Table 3  

 

According to Fig.15 (a), (b), and (c), the values of σ, Sk and K do not have significantly 

change when the cut-off frequency becomes larger, though these three values have changed at the 

lower cut-off frequency. For the relationship between the cut-off frequency and the fractal 

dimension shown in Fig.15(d), fluctuation happens in the fractal dimension value with the increase 

of the cut-off frequency. It can be concluded that fractal dimension, D, actually varies more than 

roughness or statistical values with scale, which means that the fractal dimension depends on the 
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chosen cut-off frequency and it is not always a reliable parameter in characterizing the rough 

surface.  

Conclusions 

In this work, a mixed lubrication bearing model is proposed and used to evaluate different 

realizations of the same surface. With the increase of the angular velocity, the load carrying 

capacity and the torque values from the real surface, the PSD generated surface and the MDM 

generated surface all increase, but at different amounts. The proportions of the load carrying 

capacity and the torque from fluid have also increased for the measured surface, the PSD generated 

surface and the MDM generated surface with the growth of the angular velocity. However, the 

ratios (Lf/Ls and Tf/Ts) from the PSD generated surface has been the largest for all angular velocities 

and the ratios (Lf/Ls and Tf/Ts) from the measured surface becomes the smallest for larger angular 

velocities. Therefore, when the angular velocity increases large enough, the contact area of the 

measured surface is larger than the other two generated surfaces at the same angular velocity value. 

This suggests that the angular velocity has a greater influence on the two generated surfaces and 

that the two generated surfaces are not suitable in representing the measured surface.  

When the cut-off frequency used in deconstructing the surface is small, the load carrying 

capacity value and the torque value from the PSD generated surface and the MDM generated 

surface are much larger than the values from the measured surface. Whereas, when the cut-off 

frequency becomes larger, the values of the load carrying capacity and the torque decrease and 

become closer to the values from the measured surface. Meanwhile, the MDM generated surface 

is relatively better in representing the measured surface than the PSD generated surface. It can be 

concluded that the cut-off frequency also has different influences on the two generated surfaces 
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from the measured surface and these two generated surfaces should be considered carefully in 

representing the measured surface. 

The load carrying capacity value and the torque value calculated for the measured surface, 

the PSD generated surface and the MDM generated surface are not the same and the load carrying 

capacity ratio from the fluid and from solid contact for these three surfaces increases differently, 

which means it should be considered carefully whether the generated surface based on the fractal 

dimension can be used to represent a measured surface. It should be mentioned again that only a 

few generated surfaces are evaluated due to the computational limitations, therefore the results 

cannot be considered generalized. 

Meanwhile, this work suggests that the fractal dimension is unreliable when it is the only 

parameter used to characterize the measured surface, since the results for the fractal surface and 

the measured surface differ significantly and it also changes with the chosen angular velocity and 

the cut-off frequency. Even considering the RMS roughness does to appear to resolve this issue. It 

should also be noted that large scale roughness appears to dominate the calculation process of the 

statistical parameters.  

Although the input parameters for the generation rough surfaces are from the measured 

rough surface, some surface properties changed during the generation procedure, which implies 

that the surface generation methods we used in our work needs to be improved and new methods 

need to be developed. 
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