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Using light to improve commercial value
Matthew Alan Jones1

Abstract
The plasticity of plant morphology has evolved to maximize reproductive fitness in response to prevailing
environmental conditions. Leaf architecture elaborates to maximize light harvesting, while the transition to flowering
can either be accelerated or delayed to improve an individual’s fitness. One of the most important environmental
signals is light, with plants using light for both photosynthesis and as an environmental signal. Plants perceive different
wavelengths of light using distinct photoreceptors. Recent advances in LED technology now enable light quality to be
manipulated at a commercial scale, and as such opportunities now exist to take advantage of plants’ developmental
plasticity to enhance crop yield and quality through precise manipulation of a crops’ lighting regime. This review will
discuss how plants perceive and respond to light, and consider how these specific signaling pathways can be
manipulated to improve crop yield and quality.

Introduction
The effective application of light is essential for plant

husbandry, but the demands of modern, intensive horti-
culture often conflict with the optimal planting strategy
for plant growth. Dense planting regimes induce shading
throughout the canopy, with individual plants striving to
optimize light harvesting at the expense of their neigh-
bors. This intra-crop competition leads to a varied light
environment that has consequences for crop uniformity
and total yield, which is exacerbated by changing light
availability over the course of the year1. Historically,
horticulturalists have sought to mitigate these effects
through the development of varieties with altered devel-
opmental responses that improve harvest. Alternatively,
enclosed glasshouses enable control of light, temperature,
humidity, and CO2, each of which can alter plant devel-
opment. The recent advent of commercially-viable LED-
based lighting provides an additional opportunity to
optimize plant development through the application of
specific light wavelengths at times most appropriate to
optimize crop traits. These manipulations will be of
immediate benefit for glasshouse-grown plants where
supplemental light can be readily provided, although as
LED technology advances there will be opportunities to

apply similar approaches in the field. This review will
summarize our understanding of plant perception and
photomorphology and how this can be applied to opti-
mize plant growth.

Plant photoreceptors
As photosynthetic organisms, plants need to harvest

sufficient light energy to sustain growth and reproduce.
However, it is not sufficient to simply irradiate plants with
a single quality of light. Although monochromatic red or
blue light sources (as chlorophyll predominantly absorbs
light in the red and blue portions of the spectrum) can be
used to cultivate crops, such plants develop atypically.
This is likely because of the imbalanced activation of
different photoreceptors which ultimately impairs pho-
tosynthesis either through inappropriate stomatal beha-
vior or incorrect accumulation of photosynthetic
pigments2,3. Plants sense light both through specific
photoreceptors as well as by monitoring the metabolic
consequences of photosynthesis4,5, thereby allowing light
to be used as a predictive environmental indicator as well
as an energy source. Shortening days imply the onset of
winter and subsequent reductions in temperature whilst
the spectrum of light provided by the sun is enriched in
the blue portion of the spectrum at dawn and dusk rela-
tive to midday6. Given these environmental character-
istics, plants have evolved sophisticated mechanisms to
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determine light availability and quality. Decades of
research have revealed a complex network of photo-
sensory pathways that enable plants to precisely respond
to light quantity, quality, and duration5,6. Perhaps more
importantly, plants are able to respond and adapt to each
of these stimuli. In an evolutionary context, plants
responses to light have been selected to maximise their
survival; the challenge facing horticulturalists is how these
existing light-responsive traits can be modified or selec-
tively activated to increase yield and crop quality.
In contrast to animals, which have evolved specialized

light sensing organs, plants perceive light in a cell-
autonomous fashion. Plants have evolved a suite of pho-
toreceptors (Fig. 1), each of which provide sensitivity to
different portions of the light spectrum by binding a light
absorbing co-factor (referred to as a chromophore7). Red
and far-red light (600–750 nm) is primarily detected by
the phytochrome family8 while blue and UV-A light
(320–500 nm) is sensed by cryptochromes, phototropins,
and members of ZEITLUPE/ADAGIO family7,9–11. UV-B
light (290–320 nm) is perceived by the UVR8 photo-
receptor12. In addition to these characterised photo-
sensors, plants are also able to respond to ‘green’ light
(500–600 nm), although the photoreceptors responsible
for these responses have not been elucidated13. The
existence of distinct photoreceptor families provides
opportunities to selectively activate individual pathways,
thereby precisely controlling plant development.

Phytochromes
Phytochromes were initially identified in 1959 as the

photoreceptor that mediates plant photomorphogenesis
in response to long-wavelength visible light14. The

phytochrome family has since been found to be ubiqui-
tous amongst seed plants and cryptophytes, with
examples also being found in cyanobacteria, non-
photosynthetic bacteria, and fungi15. Phytochromes
(phy) are sensitive to irradiation by both red and far-red
light, and uniquely function by measuring the relative
quantity of each of these wavelengths15. The phytochrome
basal state (designated Pr) is sensitive to red light and
upon irradiation is converted to a far-red sensitive state
(Pfr). Reversion to the Pr form occurs either after far-red
light exposure or as a consequence of dark incubation.
The relative amounts of each of these forms determine
downstream signalling events, with the Pfr form con-
sidered to be the active signalling state16.
Higher plant genomes encode a suite of phytochrome

proteins, each with slightly diverged light-sensitivity and
function. Angiosperm phytochromes can be placed into
two broad groups based upon the stability of the red light
irradiated Pfr form. Type I phytochromes (such as phyA)
accumulate in the dark and are rapidly degraded after
illumination17. Type I phytochromes are primarily
involved in very low light responses (VLFR) or those
involving a high irradiance response (HIR), two signalling
modes that are functionally different and appear to
operate through at least partially distinct pathways18.
Type II phytochromes (such as phyB-E) remain stable in
the presence of light allowing these phytochromes to
respond persistently to fluctuations in illumination (low
fluence response, LFR19,20. LFR responses (such as shade
avoidance) are reversible and are determined by the ratio
of red and far red light used to irradiate the plant21. VLFR,
HIR, and LFR interact to facilitate light sensitivity under a
broad range of light conditions. As phyA is light-labile,
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Fig. 1 Schematic diagram illustrating major domain structure of plant photoreceptors. Domains necessary for red light detection are shown in
red, whilst those for blue light detection are shown in blue. The N-terminal phytochrome PAS and GAF domains interlink to allow binding of a
phytochromobilin chromophore whilst the cryptochrome PHR domain associates with FAD and MTHF chromophores. LOV domains bind a FMN
chromophore. Kinase domains are highlighted in orange. DAS Drosophila, Arabidopsis, Synechocystis cryptochrome domain, FAD Flavin Adenosine
Dinulceotide, FMN FlavinMono-Nucleotide, GAF cGMP specific and -regulated cyclic nucleotide phosphodiesterase, Adenylyl cyclase, and FhlA, H Kin
Histidine kinase, Jα Jα-helix, LOV Light/Oxygen/Voltage sensitive, MTHF Methenyltetrahydrofolate, PAS Per/Arnt/Sim, PD1 Phytochrome Domain 1,
PHR Photolyase Homology Region, phy-Phytochrome domain 4, S/T Kin Serine/Threonine kinase
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phyA is generally considered to be the primary photo-
receptor in etiolated seedlings, with phyB and other type
II phytochromes having greater importance in light-
grown plants with regards shade avoidance and the reg-
ulation of flowering time (Fig. 221).

Cryptochromes
Plant cryptochromes are blue light photoreceptors that

are one of five subfamilies identified in the photolyase/
cryptochrome family based on molecular phylogenetic
analyses and functional similarity22. Cryptochromes have
been identified in the model plant Arabidopsis thaliana,
the closely related Brassica napus, and in a number of
other model plant systems including pea, rice, and
tomato10. The majority of plant genomes studied encode
for two canonical plant cryptochrome proteins (CRY1 and
CRY2) and one member of the CRY-DASH subfamily,
which has been designated CRY3 (Fig. 123–26).
Cryptochromes perceive blue light via a flavin adenine

dinucleotide chromophore, with blue light irradiation

triggering conformational changes that culminate in
cryptochrome dimerization and the activation of bio-
chemical signalling pathways9,27. While CRY1 is stable
when illuminated, CRY2 is degraded after light activa-
tion25,28,29. Cryptochromes largely induce changes in
plant development through changes in gene expres-
sion30,31. These changes in gene expression induce phy-
siological changes from de-etiolation through to
flowering, and also have a role in the production of
anthocyanins (Fig. 232). Cryptochromes have been found
associated with DNA, but also activate CRYPTO-
CHROME INTERACTING BASIC HELIX LOOP HELIX
(CIB) transcription factors and the CONSTITUTIVELY
PHOTOMORPHOGENIC1 (COP1) and PHYTO-
CHROME INTERACTING FACTOR (PIF) signalling
hubs (Fig. 233,34).

Phototropins
Phototropins are plasma membrane-localised protein

kinases which were initially characterised in Pisum
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Fig. 2 Photomorphogenesis is regulated by conserved signalling hubs. a In the absence of light, seedlings have an etiolated phenotype (left).
Upon perceiving light, plants initiate photomorphogensis leading to dramatic changes in plant architecture including cotyledon expansion and the
inhibition of hypocotyl elongation (right). b Cryptochromes, phytochromes, and UVR8 perceive blue, red, and UV-B light respectively (see the section
'Plant photoreceptors'). Phytochromes and cryptochromes inhibit the activity of both the COP1/SPA and PIF signalling hubs, leading to changes in
gene expression that culminate in photomorphogenesis and shade avoidance responses. Activated UVR8 modulates the function of the COP1/SPA
complex to promote photomorphogenesis. The COP1/SPA complex has additional roles in the regulation of flowering, while PIFs influence seed
germination. Cryptochromes and phytochromes also influence plant development independently of these signalling hubs; for instance CRY2 (see the
section 'Cryptochromes') accelerates flowering via CIB transcription factors whereas phyB (see the section 'Phytochromes') inhibits CO accumulation
in the morning independently of COP1 (see the section 'Shade avoidance'). CIB CRYPTOCHROME INTERACTING BASIC HELIX LOOP HELIX, CO
CONSTANS, COP1 CONSTITUTIVELY PHOTOMORPHOGENIC1, CRY Cryptochrome, HY5 ELONGATED HYPOCOTYL5, PHY Phytochrome, PIF
PHYTOCHROME INTERACTING FACTOR, UVR8 UV-B RESISTANCE LOCUS8, ZTL ZEITLUPE
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sativum membrane extracts due to their blue-light-
dependent phosphorylation35, Fig. 1). As in other photo-
receptors, blue light induces conformational changes that
generate a biologically-active state which gradually reverts
to the dark-adapted form in the absence of light9. Since
the identification of the PHOT1 locus in Arabidopsis36,
phototropins have been characterised in numerous other
dicots and monocots, as well as in lower plants such as the
fern Adiantum capillis-veneris37. Studies have identified
two primary members of the phototropin family, photo-
tropin (phot) 1 and 236,38,39, both of which are found in
Arabidopsis. The phots have partially redundant roles in
many responses in Arabidopsis, but have some diverged
functions; in general phot1 is sensitive to lower fluences of
light while phot2 acts in response to higher light inten-
sities40. Like phytochromes and cryptochromes, phots are
capable of eliciting changes in gene expression in
response to blue light stimulation, although compared to
the modulation of gene expression induced by crypto-
chrome activity this role is minor41. Instead, phots are
thought to act primarily at a post-transcriptional level to
mediate responses to blue light. Phototropins have been
shown to be the primary light receptors for a range of blue
light-specific responses including phototropism (after
which they were named), chloroplast accumulation, leaf
positioning and expansion and also stomatal opening42. In
addition, phot2 induces chloroplast avoidance movements
under high light irradiation42.
Phot1 and phot2 appear to have evolved from a single

gene duplication event after the evolution of seed
plants36,39,43. Single copies of PHOT are found in pter-
idophytes and in the single-celled algae Chlamydomonas
reinhardtii44,45 and are likely derived from the ancestral
PHOT gene43. In addition to these sequences, a chimeric
photoreceptor (neochrome 1, neo1) has been identified in
Adiantum and the alga Mougeotia scalaris which contains
the red light-sensing N-terminal region of a phytochrome
fused with a complete phototropin protein46. This fusion
event allows both red and blue light to be used to induce
what are primarily thought to be blue light-mediated
phot-dependent responses in higher plants. This is
thought to be advantageous in the shaded, low light
environments in which these plants are commonly
found47. Indeed, neochrome is thought to have arisen on
two independent occasions in cryptophytes46.

ZEITLUPE family
The ZEITLUPE (ZTL) family consists of three mem-

bers; ZEITLUPE (ZTL), FLAVIN BINDING, KELCH
REPEAT, F-BOX1 (FKF1) and LOV KELCH PROTEIN2
(LKP2)48–50. Each of these proteins have a conserved
structure consisting of an N-terminal LOV domain, an F-
box domain which allows binding to a SKP1–CUL1–FBP

(SCF) ubiquitin ligase, and a region of kelch repeats which
are also thought to allow protein–protein interactions51.
The existence of a light sensitive LOV domain coupled
with an F-box suggested that these proteins may be
involved in the light-dependent regulation of protein
stability. Indeed, recent work has shown a role for ZTL
and FKF1 in the circadian system where their light-
dependent function allows modulation of internal timing
signals52–54. This mechanism allows plants to induce
flowering at favorable times of year by responding to
seasonal changes in day length through light-dependent
modulation of circadian clock signals52,55 (see the section
'Photoreceptors contribute to temperature sensitivity and
endogenous timing signals').

UVR8
Although not detected by the human eye, sunlight

contains a small proportion (<0.5%) of UV-A (315–400
nm) and UV-B (280–315 nm) light56. Plants perceive light
via the UV-B RESISTANCE8 (UVR8) photoreceptor57,58,
with loss of this photoreceptor leading to enhanced sus-
ceptibility to UV-B radiation59. UVR8 disassociates from
its homodimer in the presence of UV-B light, with the
resultant monomers binding with partners such as COP1
to induce changes in gene expression60–63. Although
damaging in large quantities, UV-B induced signalling via
the UVR8 pathway also has important benefits, promoting
pest resistance, increasing flavonoid accumulation in
fruits, improving photosynthetic efficiency, and serving as
an indicator of direct sunlight and sunflecks56,64–68.

Photoreceptors contribute to temperature
sensitivity and endogenous timing signals
Activated photoreceptors contribute to temperature
perception
Although light serves a vital role in plant development it

is important to consider how photoperception is integrated
with other environmental information such as ambient
temperature and time of day. Although a thorough dis-
cussion of plants responses to temperature are outside the
scope of this review (see69,70 for recent overviews) it is
becoming apparent that photoreceptors directly contribute
to temperature perception. Recent work reveals that the
stability of the light-activated states of phytochromes and
phototropins is prolonged at lower temperatures through
retardation of dark reversion71–73. This modulation of light
signalling pathways by temperature allows immediate
integration of these important environmental signals. This
is particularly important in the context of LED lighting
systems where the utilization of monochromatic light
sources may have unintended consequences for plants
perception of temperature through the specific activation of
individual families of photoreceptors.
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Plants responses to light are informed by the circadian
system
While we have characterized many of the photo-

receptors utilized by plants (see the section 'Plant pho-
toreceptors') it is also apparent that biological timing
mechanisms have arisen that regulate plants’ responses to
these signals4,74. The circadian system is an internal
timekeeping mechanism that consists of interlocking
transcription/translation loops that generate an approx-
imate 24-h cycle75. Approximately one third of the
expressed transcriptome is regulated by the circadian
system, with transcription of phytochromes, crypto-
chromes, phototropins, and UVR8 each being regulated
by the circadian system76–78. In addition, the clock
modulates photosensory pathways such that plants per-
ception of light also varies during the day, a concept
known as circadian gating74,79. The biological clock allows
plants to anticipate daily environmental changes as well as
acting as a reference to measure seasonal changes in day
length75,80, consequently contributing to flowering time in
photoperiod-sensitive species (see the section 'Photo-
periodic control of flowering time').
Conversely, the circadian system is highly responsive to

light, a quality necessary to ensure accurate perception of
changing day lengths during the year. The loss of cryp-
tochromes, or the removal of individual or multiple
phytochromes, alters the progression of the circadian
cycle under constant blue or red light respectively81–83.
The ZTL family of blue light photoreceptors, named after
the predominant member ZEITLUPE (ZTL), have simi-
larly been shown to have a role in regulating the circadian
system, with the other two ZTL family members, LKP2
and FKF1, providing partial redundancy for ZTL func-
tion84,85. The temporal regulation initiated by the clock,
and its sensitivity to light, provide additional opportu-
nities to precisely control crop development in response
to light and should be considered when designing optimal
lighting regimes for crops.

Plant development is controlled by light
Light is perhaps the most important consideration for

optimizing plant growth, with light being utilized as both
an energy source and as a developmental signal. All
aspects of plant development are responsive to light, from
germination through to the transition to flowering and
fruit ripening86. The process by which developmental
alterations occur in response to the changing light
environment is referred to as photomorphogenesis6. In
the absence of light newly-germinated seedlings have an
etiolated phenotype with an extended hypocotyl (primary
stem), an apical hook, and unopened cotyledons
(embryonic leaves, Fig. 2a)86. These traits enable the
seedling to rapidly emerge from the soil into the light at
which point de-etiolation occurs, with dramatic

consequences for seedling morphology. Light induces
cotyledon expansion and the development of chloroplasts,
thereby enabling photosynthesis, while hypocotyl elon-
gation is curtailed. While this is perhaps the most dra-
matic light-induced developmental transition, light
continues to be monitored throughout vegetative growth.
Light intensity, duration, and spectral quality influence a
range of vegetative characteristics including branching,
internode elongation, leaf expansion, and orientation,
with each of the photoreceptor families contributing via
the photosensory network6,87. Light is also a fundamental
signal necessary for the transition to flowering6, while the
effects of light upon fruit development are also beginning
to emerge.
Following photoperception phytochromes, crypto-

chromes, and UVR8, induce photomorphogenesis by
inducing comprehensive changes in gene expression30,88.
Much of plant photomorphogenesis is regulated via con-
served modules, which are named after the originally
identified components (Fig. 2). In the first module, COP1
acts with SUPPRESSOR OF PHYA (SPA) proteins to
degrade a positive regulator HY5 in the dark89–91. In the
presence of red or blue light, the COP1/SPA complex is
inactivated by phytochromes and cryptochromes89,92, lead-
ing to the accumulation of HY5 and the induction of
photomorphogenesis. Interestingly, UVR8 promotes pho-
tomorphogenesis through an alternative mechanism
whereby UV-B activated UVR8 monomers associate with
the COP1/SPA complex to promote HY5 accumulation93.
The COP1/SPA complex also degrades CONSTANS, an
essential component of the photoperiodic flowering path-
way (see the section 'Photoperiodic control of flowering
time'), and PIFs94. PIFs form the second regulatory hub94

and are also directly bound and inactivated by both phy-
tochromes and cryptochromes; UVR8 indirectly inhibits PIF
accumulation by repressing PIF transcription95–101. PIFs
have important roles in regulating genes necessary for
photomorphogenesis, but are rapidly degraded in the pre-
sence of light94. In addition, the light-induced degradation
of PIFs can be limited by far-red light, thereby allowing PIFs
to direct aspects of the shade avoidance response102,103. In
combination, the COP1 and PIF signalling hubs integrate
environmental information to control gene expression89,94.

Light-induced pigments
Phenylpropanoids
Fruit quality is typically dependent upon the health of

the bearing plants, although direct light irradiation also
alters their biochemical composition66. One of the prin-
ciple determinants of fruit quality is the accumulation of
phenylpropanoids (including flavonols, anthocyanins, and
proanthocyanidins), which alter the color, aroma, astrin-
gency, and antioxidant properties of fruit104. Importantly,
light can have dramatic effects upon the quantity and
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types of flavonoids that accumulate (reviewed by66),
although it should be noted that centuries of selective
breeding have altered the specific responses of our crops
(for example red vs. green apples105).
The spatial and temporal induction of phenylpropanoid

metabolism occurs both post-transcriptionally and post-
translationally via a conserved agglomeration of R2R3 MYB,
bHLH, and WDR transcription factors known as the MBW
complex (Fig. 366,106–109). Regulation of the MBW complex
by light subsequently leads to the altered accumulation of
phenylpropanoids, although additional R3 MYBs are also
capable of binding to the MBW complex to limit its
activity110. For example, the R2R3 MYB transcription factor
PAP1 is degraded by the COP1/SPA complex in the dark,
leading to reduced anthocyanin accumulation (Figs. 2 and
3111), while UV-B light (via UVR8) induces transcription of
R2R3 MYBs that induce flavonol accumulation in Arabi-
dopsis and grape112,113. Interestingly, accumulation of
phenylpropanoids can be increased by manipulating pho-
toreceptor abundance in transgenic tomato and strawberry
fruits, suggesting that activation of these photoreceptors
using specific wavelengths of light could improve the
nutritional value of fruits114,115.

Carotenoids
In addition to the regulation of phenylpropanoids, light

also regulates the production of carotenoids as part of
photomorphogenesis116,117. While carotenoids play a vital
role in photosynthesis as part of the light harvesting
complex118, they have also been adopted as photo-
protectants, and have additional roles in growth and
development118. In horticulture, carotenoids are valued as
a valuable source of anti-oxidants and essential dietary
precursors that accumulate in fruits and vegetables as
they ripen118,119.
Light has been observed to affect carotenoid biosynth-

esis in a number of species during fruit ripening and
flower development120,121. The carotenoid biosynthetic
pathway is complex, and thoroughly reviewed else-
where118. It is important to note, however, that one of the
rate-limiting enzymes necessary for carotenoid biosynth-
esis, PHYTOENE SYNTHASE (PSY), is regulated by light.
PSY activity is reversibly induced by red light, suggesting a
role for phytochromes in this response122. It is likely that
this regulation acts via COP1 (Fig. 2), as transgenic
tomato fruits with reduced COP1 or HY5 transcript
accumulation had altered carotenoid content123, although
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R3 MYB 
repressor

R2R3
MYB

bHLH

WDR

R2R3 MYB

Phenylpropanoids

WDR
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HY5

Fig. 3 Phenylpropanoids accumulation can be induced by light. Phenylpropanoid accumulation is regulated by a conserved regulatory module
comprising a R2R3 MYB, a bHLH, and a WDR transcription factor. Together these three proteins comprise the MBW complex that activates
transcription of enzymes necessary for phenylpropanoid production. Of these three proteins, developmental and environmental induction of R2R3
MYBs is regulated to control MBW activity, in part via the transcription factor HY5. UVR8 stabilizes HY5 through modulation of the COP1/SPA complex,
while other photoreceptors promote HY5 stability indirectly or act independently of HY5 (See Fig. 2). Additional control commonly occurs via
feedback loops including closely related R3 MYBs that serve to repress MBW activity. R3 MYB transcription can be regulated by the MBW itself, or be
independently repressed by light or other environmental and developmental signals. Genes are represented by rectangles, proteins by ovals. Green
complexes activate gene expression, red components repress MBW activity. bHLH basic HELIX LOOP HELIX, HY5 ELONGATED HYPOCOTYL5, MBW
MYB/bHLH/WDR complex, UVR8 UVB RESISTANCE LOCUS8
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light induction of PSY transcript has also been reported in
some species124. Encouragingly, studies using transgenic
tomato to over-express phytochromes and cryptochromes
observed increased carotenoid accumulation in transgenic
fruits114,125, suggesting that enhancement of photo-
receptor signalling could be sufficient to induce car-
otenoid accumulation.

Shade avoidance
Modern horticulture requires plants to be grown in

close proximity so as to generate a commercially-viable
harvest, inevitably inducing a shade avoidance response as
plants seek to outcompete their neighbors. Importantly,
plants perceive and respond to changes in light quality
before they are shaded, ensuring that most crops are
responding to shade even if direct shading is avoi-
ded102,126. Plants absorb light in a wavelength-dependent
manner, absorbing light in the UV and photosynthetically
active portions of the spectrum (although comparatively
less green) while reflecting far-red and infra-red light. As a
consequence, plants are able to perceive shade as a change

in either the quality or quantity of light102,127,128. Given
phytochromes’ sensitivity to red/far-red light (see the
section 'Phytochromes'), much research regarding shade
avoidance (and consequently our understanding) con-
cerns the role of these photoreceptors in mediating this
response102,126. It is, however, important to note the role
of blue, green, and UV portions of the spectra in gov-
erning plants responses to shade63,98,128.
Shade avoidance has many consequences for plant

growth, ranging from leaf hyponasty (leaf movement),
stem or petiole elongation, and directional growth away
from shade of actively growing tissues, through to archi-
tectural changes such as reduced branching and increased
leaf senescence that reduces resources devoted to shaded
leaves102,129,130. These developmental changes ensure that
plants are able to exploit any gaps in the canopy while also
promoting vertical growth to over-shadow neighboring
plants. Such developmental changes can also culminate in
an acceleration to flowering in some species, with inac-
tivation of phytochromes by far-red enriched light
relieving repression of photoperiodic flowering

Fig. 4 The floral transition is regulated by light. a Molecular control of photoperiodic flowering has arisen multiple times during evolution, but
commonly requires circadian control of CONSTANS (CO) transcription. Post-translational stabilization of CO enables the transcription of FLOWERING
LOCUS T (FT), which induces the floral transition in the meristem. An additional pathway has been described in grasses, where PHOTOPERIOD1 (PPD1)
transcription is induced by light and the clock. Both PPD1 and CO activate FT transcription in these species. b The external coincidence model
explains how long day plants flower under inductive conditions. CO transcript (orange line, top) accumulates during the evening, but CO protein (red
line, middle) only accumulates in the presence of light, when photoreceptors are necessary to inhibit CO degradation by COP1. Stabilization of CO
protein in long days enables transcription of FT, culminating in floral transition. See also see the section 'Photoperiodic control of flowering time' and
Fig. 2. Boxes indicate transcriptional targets, ovals represent protein. CO CONSTANS, CRY cryptochrome, FKF1 FLAVIN BINDING KELCH REPEAT F-BOX1,
FT FLOWERING LOCUS T, PPD1 PHOTOPERIOD1, PHY phytochrome, ZTL ZEITLUPE
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(see the section 'Photoperiodic control of flowering
time', 131–133). In commercial applications, such beha-
vioral changes can potentially culminate in reduced yield,
or in increased crop management (e.g., pruning) to
minimize these consequences134,135, although such effects
can be mitigated through the choice of alternate varieties.

Photoperiodic control of flowering time
As part of the maturation process, plants undergo a

transition to flowering that is largely irreversible136. The
floral transition is consequently tightly regulated, with
plants integrating day-length, age, and temperature cues
to determine flowering time. These pathways combine to
control the accumulation of FLOWERING LOCUS T
(FT), which is the florigen transported from the leaves to
the shoot apical meristem to initiate the floral transition
in numerous species137,138. Given the importance of
flowering to agriculture and horticulture, considerable
time has been spent elucidating the molecular pathways
underlying this control, although only light-induced
pathways are considered here80.
Flowering time in response to day-length is explained by

the external co-incidence model, which is conserved
across a wide-range of species (Fig. 480). Transcription of
a transcriptional activator, CONSTANS (CO), is con-
trolled by the circadian system so that the protein accu-
mulates during the late afternoon80,137,139. In particular,
CYCLING DOF FACTORs (CDFs) prevent transcription
of CO, but are degraded via a blue light-dependent
pathway mediated by FKF1 in long days, allowing CO to
accumulate under inductive conditions52. Importantly,
CO protein is stabilized by blue or far-red light, with
additional control mediated by clock-regulated factors140–
142. This light-dependent regulation ensures that CO only
accumulates in long days, and so FT transcription is
limited to these permissive conditions in long day plants.
Interestingly, red light limits CO accumulation in the
morning140,143,144 suggesting that flowering may be sup-
pressed in the absence of shade. Although Arabidopsis
CO arose from a duplication during the divergence of the
Brassicaceae, numerous examples indicate that regulation
of FT by CO orthologues is a common consequence of
convergent evolution145–147. For instance, a CO ortholo-
gue, Hd1, has been co-opted as a floral repressor in rice, a
short day species148.
Additional photoperiodic flowering pathways have been

identified in grasses such as barley and wheat (Fig. 4a). In
these species PHOTOPERIOD 1 (PPD1), a gene that arose
from a duplication of a circadian clock gene after the
divergence of the grasses, is important to integrate cir-
cadian and photoperiod information149–151. PPD1 is
expressed in the light via phytochrome C (phyC), and
subsequently acts to promote expression of the FT
homologue FLOWERING LOCUS T1 (FT1)151–153. This

pathway appears to act in addition to the CONSTANS-
mediated pathway, although the relationship between
CO-derived and PPD1-derived pathways remains to be
fully tested139. It remains to be determined whether
pathways analogous to PPD1 have arisen outwith the
grasses.

Improving crop yield using light
As light is a prerequisite for photosynthesis (and con-

sequently plant growth) supplemental lighting is typically
used to accelerate plant development154–156. Growers face
many challenges in providing optimal lighting, with shade,
cloud cover, and changing seasons introducing hetero-
geneity in both the spatial and temporal distribution of
light. Given the broad range of light qualities perceived by
plants it is apparent that at least one source of broad
spectrum light should be provided (either from natural
illumination, metal halide (MH), and High Pressure
Sodium (HPS) lights, or from white or multi-spectral LED
arrays). Beyond this requirement, many opportunities
exist to manipulate the precise light environment used for
plant growth to stimulate desirable plant development
(such as fruit quality or delaying flowering to promote
vegetative growth).
Supplemental overhead lighting has been used in

glasshouses for many years to increase crop production
during periods of low natural light, either to extend
shorter winter days or during periods of inclement
weather154,156. In general, a 1% increase in lighting pro-
vides a 1% increase in yield, although interactions between
light and other factors (such as temperature and CO2)
complicate this relationship157. Despite these obvious
opportunities, numerous studies emphasize the varied
responses of different crops to supplemental lighting
regimes. It is also important to note that periods of
darkness are often required to prevent chlorosis or
impaired leaf development158–162. As a consequence it
will be important to develop light regimes optimized for
specific crops, with consideration of the local natural
lighting environment, rather than applying a uniform
lighting regime.

Supplemental lighting and spectral manipulation
The development of LEDs that are cost effective to

install at commercial scales exponentially increases the
options available to growers as they seek to improve crop
yield, with the opportunity to specify the quality, quantity,
uniformity, and duration of light used163. LEDs also
irradiate much less heat that their metal halide (MH) and
high pressure sodium (HPS) predecessors, enabling novel
strategies such as intra-canopy lighting to provide more
uniform light throughout the canopy. Numerous studies
demonstrate the utility of supplemental lighting, with
improvements in crops ranging from lettuce leaves to the
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fruits of strawberries, cucumbers, sweet peppers, and
tomatoes164–167. For instance, illumination of peppers
with light was sufficient to induce color break, greatly
improving commercial value168, while altering the ratio of
blue and red light used to irradiate lambs lettuce (Valer-
ianella locusta) improved yield and both sugar and phenol
content of harvested leaves165. The individual sensitivities
of plant photoreceptor families enables plant growth and
development to be precisely controlled by changing the
proportion of red/far-red/blue/UV LEDs used, with these
light conditions changing plant architecture and flowering
via pathways summarized in the ̔Plant development is
controlled by light ̕ section. In future it will be necessary
to refine our understanding of photoreceptor function in
crops so that light regimes (including the precise light
spectra used) can be optimized to improve yield and
quality.

Photoperiod extension
Perhaps the simplest utilization of supplemental lighting

is to extend day length during the winter months. In some
day neutral species, such as sweet peppers, day length
extension photoperiod increased fruit yield, although
comparable increases were not observed in closely related
Solanaceae, such as tomatoes160. Interestingly, light
quality has a profound effect on plant growth. For
instance, the use of blue LEDs at the end of day improve
tomato quality (although not yield169). As a consequence,
it will be of great benefit to understand how photo-
receptors contribute to these yield and quality pheno-
types. Such knowledge will enable more a systematic
approach to specifying light regimes for specific crops.
This specification will depend upon both the local light
environment and the qualities desired in the crop.

Intracanopy lighting
The higher energy efficiency of LEDs ensures that they

are much cooler than their MH and HPS equivalents170.
This allows LEDs to be interspersed within a canopy to
ensure greater light distribution throughout a densely
planted crop. This has multiple benefits, ranging from
greater light use efficiency (and therefore reduced energy
consumption171), to increase uniformity, quality, and yield
of fruit166,167. Intracanopy lighting could also be used to
control plant architecture; for instance supplemental red
light could be used to minimize internode elongation and
leaf drop as part of a shade avoidance response. This has
particular relevance for leaf crops such as lettuce, where
supplemental lighting has been used to limit senescence,
thereby enhancing yield172.

Night breaks
Beyond the utilization of supplemental lighting to

extend day length and increase the distribution of light in

the canopy, short periods of light during the night have
been successfully used to manipulate plant development.
In short day plants, such as Chrysanthemum and Ipomoea
nil, night breaks using red light can be used to delay
flowering173–175. Conversely, night breaks can be used to
accelerate flowering in long day plants176. In tomato, red
light night breaks induced a delay in flowering and
decreased plant height while also improving tomato fresh
weigh shortly after flowering177. These differences in
flowering and plant morphology are most likely derived
from activation of phytochromes (which would otherwise
revert to their inactive state in the dark—see the section
'Phytochromes') and it is likely such phenomena will also
be observed in other species.

Post-harvest lighting regimes
Supplemental lighting can also be used after harvesting

to prolong shelf-life or to alter the biochemical properties
of the crop. For instance, irradiation with white LEDs was
sufficient to delay senescence and therefore promote the
shelf life of harvested sprouts178, whereas irradiation of
sweet peppers after harvesting was sufficient to induce
color break, thereby enhancing market value179. Inter-
estingly, maintenance of circadian rhythms through the
utilization of light:dark cycles delays senescence com-
pared to constantly lit conditions, demonstrating the need
for further research to more thoroughly understand how
complex lighting regimes can be utilized to improve sto-
rage of harvested crops180.

Future perspectives
Plants have evolved a sophisticated network of photo-

receptors that enable them to perceive and respond to
environmental change. As commercial scale installation of
LEDs becomes viable, the on-going challenge facing
commercial growers will be the optimization of lighting
regimes to promote desirable qualities for glasshouse
management and crop quality, while also considering the
economic costs of LED installation and the specific pho-
toresponsive traits of their crop. Although there are
numerous examples of diversification of regulatory path-
ways, it is reassuring that the photoreceptors and key
downstream regulatory modules regulating flowering
time, phenylpropanoid biosynthesis, and carotenoid pro-
duction are conserved. Such conservation demonstrates
that it will be possible to utilize the understanding gained
from model species to design tailored light regimes opti-
mized for many glasshouse-grown crops, leading to
improved yield and quality in the future.
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