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Abstract 

Causal inference and generalizability ​both ​matter.  Historically, systematic designs 

emphasize causal inference, while representative designs focus on generalizability.  Here, 

we suggest a transformative synthesis – ​Systematic Representative Design (SRD) ​– 

concurrently enhancing both causal inference and “built-in” generalizability by 

leveraging today’s intelligent agent, virtual environments, and other technologies.  In 

SRD, a “default control group” (DCG) can be created in a virtual environment by 

representatively sampling ​from real-world situations. Experimental groups can be built 

with systematic manipulations onto the DCG base.  Applying ​systematic design features 

(e.g., random assignment to DCG versus experimental groups) in SRD affords valid 

causal inferences.  After explicating the proposed SRD synthesis, we delineate how the 

approach concurrently advances generalizability and robustness, cause-effect inference 

and precision science, a computationally-enabled cumulative psychological science 

supporting both “bigger theory” and concrete implementations grappling with tough 

questions (e.g., what is context?) and affording rapidly-scalable interventions for 

real-world problems. 

 

Keywords: ​experimental design, representative design, systematic design, 

Brunswik, Systematic Representative Design, generalizability, virtual environments, 

games, cause and effect, virtual reality 

  

 



 

Causal Inference in Generalizable Environments: Systematic Representative Design 

 

Science and everyday life cannot and should not be separated. Science, for me, gives a 

partial explanation for life. In so far as it goes, it is based on fact, experience and 

experiment. 

Rosalind Franklin, Ph.D. 

Across science, “causality is at the crux of metaphysical, epistemological, and 

methodological issues” (Illari, Russo, & Williamson, 2011, p. 20).  Although modern 

causal analysis, involving "mathematizing causality", using causal diagrams and 

symbolic languages (e.g., ​do​-calculus) (Pearl & Mackenzie, 2018, p. 7), offers the 

capacity for valid cause-effect claims across a range of methods (Pearl & Mackenzie, 

2018), historically, classic experiments have most readily afforded such inferences.   

But, “to different degrees, all causal relationships are ​context dependent , so the 1

generalization of experimental effects [across studies, with different populations of 

individuals, settings, situations, methods, and so forth, also referred to as external 

validity] is always at issue” (Shadish, Cook, & Campbell, 2002, p. 5, material in brackets 

added, words italicized for emphasis).    2

1 Context matters; but, rarely is it defined. Van Overwalle (1997) draws on Rescorla and Wagner’s (1972, 
p. 88) definition from the animal learning literature in which context refers to the relatively constant 
“situational stimuli arising from the ...environment” (see Van Overwalle & Van Rooy, 1998 for further 
treatment of this issue).  For example, some aspects of context may provide a more or less constant 
background across individuals (e.g., a bar has different affordances than a church or a school). But, even 
there, other aspects of the “context” can be changing (e.g., whether we are in a “pick-up” situation or not 
and if so what is our role (given goals, beliefs, etc.) and where in the potential “pick-up” scenario are we)  
2 ​Rarely is a single factor,”X”, deterministic (i.e., always necessary ​and ​sufficient) in causing “Y”.  Instead, 
causal relationships tend to be probabilistic (Eells, 1991), such that “many factors are usually required for 
an effect to occur, but we rarely know all of them and how they relate to each other.” (Shadish et al., 2002, 
p. 5). Thus, across experiments “a given causal relationship will occur under some conditions but not 
universally across time, space, human populations, or other kinds of treatments and outcomes that are more 

 



 

As Brewer and Crano (2014, p. 19) note, generalizability or replicability, could be 

designed into an experimental operationalization by using ​representative ​ sampling of the 

targets to which researchers wish to generalize.  Representative sampling (e.g., of 

persons, stimuli, contexts, and their interactions) in the design phase of developing one’s 

experimental and control conditions would simultaneously “build in” a new type of 

generalizability – ​generalizability to everyday life ​(GEL).  Although historically most 

researchers have deemed it not feasible within experiments to optimize representativeness 

of the “​organism-in-situation” ​(Cronbach, 1957) to which we wish to generalize, the goal 

of the current work is to suggest that it is advantageous and feasible using today’s 

technologies to build-in the capacity for ​both ​valid causal inferences and GEL into our 

experiments.   

The argument that we should build the capacity for causal inference within 

generalizable environments fits with other emerging experimental paradigm shifts in the 

biological sciences.  Motivated by the replicability crisis and a related issue, the often 

poor transferability of findings from mice to humans, biologists are developing new 

experimental designs “in more natural habitats [with wild mice that] can deliver results 

dramatically different from those in traditional laboratories – with profound implications 

for biomedical science” (Beans, 2018, p. 3196, material in brackets added).  Rethinking 

traditional trade-offs in biology between control (e.g., controlled diet, temperature) and 

or less related to those studied.” (Shadish et al., 2002, p. 5).   Furthermore, modern causal analysis has 
broad implications, including for the transportability of experimental results to new populations (e.g., in 
observational studies), or external validity (Pearl & Bareinboim, 2014; Pearl & Mackenzie, 2018).  But, the 
generalizability of interest in these analyses (i.e., external validity) does not insure generalizability to 
everyday life (GEL).  
 

 



 

generalizability (e.g., better transferability when wild mice live under more natural 

organism-environmental conditions), some argue a paradigm shift in experimental design 

is imminent (Garner, Gaskill, Weber, Ahloy-Dallaire, & Pritchett-Corning, 2017).  Like 

the biologists above, we argue for new experimental paradigms in more real-world 

representative contexts with more “organism-in-situation” interactions (Cronbach, 1957, 

p. 682) to which we wish to generalize.   

Both ​ the capacity for valid causal inference  ​and​ generalizability  matter: But, 3 4

why do psychologists need to worry about building causal inference capacity into 

generalizable​ environments?  For many decades, researchers have complained about the 

generalizability of college samples (Gergen, 1973; Sears, 1986).  Recently, psychology 

may have reached its own tipping point: A meta-analysis made it shockingly clear that 

WEIRD (Western, Educated, Industrialized, Rich, and Democratic) samples are often 

outliers and their behavioral and response patterns are among the least representative 

across human samples, raising concerns about making broad claims about human nature 

using WEIRD samples in (Henrich, Heine, & Norenzayan, 2010).  Unfortunately, 

participant sampling is only part of the generalizability problem.   

3 Historically, the capacity for causal inference within experiments is defined in terms of a series of 
procedures that eliminate alternative explanations for differences in the dependent variable between, for 
example, the experimental and control groups, other than as due to the prior manipulation of the 
independent variable (see below in the section on systematic design and the promise of causality; see also, 
Brewer & Crano, 2014).  
4 Generalizability to everyday life (GEL) is a new concept that is defined as the “built in” capacity to 
generalize the results of a study.  We do so by first identifying-- using formative research -- what for the 
persons of interest (POI) are the situations and sequences of interest (SOI) leading up to  the  behaviors of 
interest (BOI).  Using sampling theory we representatively sample from these SOI for BOI to which we 
wish to generalize,  ​implementing ​these SOI and BOI in the default control group (DCG), for example in a 
digital game (see Miller et al,, 2019; Appendix).  External validity has historically been used as a measure 
of generalizability in experiments: It is defined in terms of the capacity to generalize the cause-effect 
relationship found in one study to the effects found in another with a different sample (e.g., of participants; 
or stimuli, etc.). External validity, however, does not insure GEL (see below for further discussion).  

 



 

Currently, generalizability across experimental operationalizations of ​social 

contexts ​ can also be problematic (Ceci, Kahan, & Braman, 2010).  It is not surprising that 

context similarity was associated with the success of exact replication efforts in a sample 

of 100 replication study attempts (Van Bavel, Mende-Siedlecki, Brady, & Reinero, 

2016). But, even with similarity in location, time, or culture, emerging examples from the 

psychological literature suggest that moving from more traditional, less representative 

stimuli and contexts to more naturalistic and representative contexts can 

fundamentally alter ​ patterns of findings:  The underlying mediational processes 

implicated for the target behavior of interest can be dramatically different (Gendron, 

Mesquita, & Barrett, 2013; Levine, Blair, & Clare, 2013).  

How did we end up in this situation? Historically, the presumption was that 

“tight” experimental control (e.g., often using denatured stimuli or atypical contexts in 

operationalizations that might separate a potential “X” causal variable from others) 

enhanced internal validity (capacity to make valid causal inferences from “X” to “Y”). 

More stripped-down stimuli might afford more “clean” systematic manipulations with 

fewer potential third variables (affording an alternative explanation)  (Aronson, 5

Ellsworth, Carlsmith, & Gonzales, 1990).  Many argued that design elements that 

increased internal validity (and operationalizations that reduced third variable 

explanations) should be prioritized over generalizability (Berkowitz & Donnerstein, 

1982; Calder, Phillips, & Tybout, 1983; Campbell, 1957; Mook, 1983).  However, by 

generalizability here, what was meant was external validity (Campbell, 1957; Campbell 

5 But, because they were stripped down, they might produce smaller effects (i.e., such stimuli might be less 
involving and impactful) (Aronson, Ellsworth, Carlsmith, & Gonzales, 1990). 

 



 

& Stanley, 1966). This involved demonstrating that a cause-effect relationship found in 

one, typically experimental study, is found when the population of individuals, settings, 

methods, and so forth are changed, often in a non-systematic, piecemeal fashion, with 

similar narrow operationalizations.  The logic went: demonstrate cause-effect first, then 

external validity, and if need be, moderators.  But, there is a fundamental problem here: 

Demonstrating external validity does ​not​ mean that these cause-effect relationships 

necessarily generalize to everyday life.   6

Situations that are not, by design, representative in the first place, may 

demonstrate external validity (e.g., cause-effect relationship in one experiment found in a 

second with a different population) but not generalizability to everyday life (GEL): ​ ​The 

extent of the problem ​ ​( ​i.e., that our findings may not have GEL) ​ ​is unknown ​.  When 

operationalizations are unrepresentative, laboratory effects and processes may be their 

own kind of “weird” (Ceci, Kahan, & Braman, 2010).  Social interactions, including 

across diverse groups/targets, are a critical part of the social context.  However, social 

psychologists do not typically have participants interact with a range of partners in 

experiments, with few exceptions (e.g., speed dating, see Finkel & Eastwick, 2008), let 

6 A manipulation’s experimental realism and social impactfulness may enhance effects but may add 
extraneous variables: But, reducing extraneous variables (adding control) may weaken (potentially reducing 
replicability of) experimental effects (Aronson, Ellsworth, Carlsmith, Gonzales, 1990).  Field research, with 
greater naturalism, is one compromise in this tension, but it neither necessarily affords the ​representative 
situational/setting and samples to which we would like to generalize nor the experimental control typically 
found in a laboratory study (Paluck & Cialdini, 2014).  Furthermore, an event in the lab may be similar to 
an event in real life (exhibiting mundane realism) (Aronson et al., 1990) without it having GEL.  To insure 
that the  effects and relationships (e.g., among variables) in the control are generalizable to everyday life, 
the virtual environment (described later) by design needs to be representative of the cues and 
settings/situations of interest (SOI) likely to lead to the behavior of interest (BOI) for the population of 
interest (POI) as in everyday life. And, a condition with high experimental realism (e.g., some conformity 
studies (Aronson et al., 1990)) may include situations that aren’t representative of challenging conformity 
situations, given the BOI, that individuals in a POI may confront in everyday life.  

 



 

alone representative partners and interactions.  Often a task (e.g., in social interaction; 

social perception) is heavily and unnaturally constrained: This may enhance experimental 

control but reduce GEL.  For example, meta-analyses of experiments involving stimulus 

videos of students instructed to lie or tell the truth, show consistent evidence across 

studies that participants are not particularly good at detecting deception (Bond & 

DePaulo, 2006), but this may not generalize to other contexts, especially natural contexts 

where deception detection has been shown to be more frequent (Levine et al., 2013).  In 

addition, psychologists’ methodological toolbox does not include validity checks to 

assess how representative or weird our conditions (and operationalizations) might be 

compared to real-world phenomena, processes, and target behaviors of interest (BOI) for 

the target population of interest (POI).  Furthermore, complacency about real-world 

generalizability undermines psychology’s relevance to the public (Cialdini, 2009). 

Federal agencies (e.g., the Defense Advanced Research Projects Agency (DARPA), 

National Institutes of Health (NIH), National Science Foundation (NSF)) increasingly 

seek designs that afford ​both c​ausal inference ​and​ real-world generalizability to serve 

public needs (Davis, O’Mahony, Gulden, Osaba, & Sieck, 2018).              

Could an experimental paradigm, affording valid causal inferences, also optimize 

GEL?  We aim here to address this question offering a new paradigm -- Systematic 

Representative Design (SRD) -- that is a synthesis of two major designs: representative 

design (Brunswik, 1943; Brunswik, 1955a, 1955b) and classic experimental or systematic 

designs (Shadish et al., 2002) with roots in Wundt (1902). Systematic designs prioritize 

designing in the capacity to make valid cause-effect inferences, while representative 

 



 

designs prioritize designing in the capacity for inferences about real-life generalizability. 

 Historically, integrating these strengths seemed impractical.  We argue that this is now 

feasible, partly due to the availability of enabling technologies.  For example, 

technologies such as intelligent agents in narrative games allow static user and partner 

features (e.g., appearance) to be systematically altered, and other parameters (e.g., agent 

goals and beliefs; agent “theory of mind” complexity) can be differentially set within and 

across studies to systematically alter agent behaviors with great precision and 

replicability, creating an array of representative interaction partners and interactions. 

 Thus, it is possible today to generate representative social interactions with diverse 

others in representative narratives (Miller et al., 2011; Miller et al., 2019).  

In making our argument, we first review the key strengths and weaknesses of 

systematic and representative designs. Second, we explicate the proposed Systematic 

Representative Design (SRD) synthesis.  For this synthesis we use classic systematic 

experimental design features (e.g., random assignment). At the same time, we build in 

GEL for our target populations via task analysis, sampling, leveraging new technologies, 

and using correlations between virtual and real-world behavior (i.e., virtual validity 

checks) to assess the achievement of GEL for our default control group (DCG).  Then, 

we design experimental groups based on that DCG base for systematic experimental 

comparisons.  Third, we discuss how SRD concurrently advances generalizability and 

robustness, cause-effect inference and precision science, and a computationally-enabled 

cumulative psychological science supporting both “bigger theory” and concrete 

 



 

implementations grappling with tough questions (e.g., what is context?) and affording 

rapidly scalable interventions for real-world problems. 

Systematic and Representative Designs 

Below, we describe and compare systematic and representative designs (Table 1).  

Each offers distinct promises and challenges concerning causality and generalizability 

and both present additional common challenges that we also address. 

Systematic Design: The Promise of Causality and the Challenge of Generalizability 

            Classic experimental designs, sometimes referred to as systematic designs 

(Brunswik, 1947), afford considerable strengths, but also have – at least as typically 

operationalized – considerable weaknesses.  Procedurally, they can afford valid ​causal 

claims ​(i.e., that “X” causes “Y”).  It has been argued that experimental designs also can 

provide ​explanatory ​inferences, that is, how, why, and under what conditions “X” causes 

“Y” (Brewer & Crano, 2014).   

Criteria for the capacity to make valid causal inferences. ​All of the following 

criteria must be met to achieve the capacity to infer valid cause-effect relationships in 

experiments: (a) the temporal order of variables is such that the potential cause or 

independent variable (IV) precedes the effect or dependent variable (DV), (b) cause and 

effect covary with one another, and (c) the elimination of plausible alternative 

explanations (e.g., participants are randomly assigned to conditions).  These criteria 

largely ensure that the cause-effect relationship claims are not undermined (Brewer & 

Crano, 2014).  Random assignment of participants is a powerful systematic design feature 

because every participant has the same chance of being assigned to any given condition 

 



 

(e.g., control versus experimental) and differences between conditions cannot be 

attributed to third variables related to the participants (e.g., participant propensities). In 

contrast, self-selection into a condition could result in a third (extraneous) variable 

responsible for outcome differences between conditions.   ​ ​Within a given research 7

setting, individual studies using these procedures are said to afford causal inferences with 

high internal validity (Campbell, 1957; Campbell & Stanley, 1966). While criteria (a) and 

(b) above do not ​require ​an experiment – a correlational study could suffice  – 8

experiments readily meet all three requirements. 

Operationalizations and construct validity. ​ ​Despite these strengths for making 

cause-effect inferences, GEL of cause-effect inferences does not depend upon the three 

basic procedural criteria or elements of systematic designs mentioned above.  Rather, it 

can be profoundly affected by how we operationalize our variables.  Operationalizations 

from a single study may vary in the extent to which they adequately represent the 

theoretical constructs or processes of interest (i.e., construct validity) (Brewer & Crano, 

2014).  For example, findings in research on emotion cue judgment suggest that the 

naturalness of stimuli and contexts in the real-world (e.g., static faces in emotion cue 

judgment research versus faces in motion or faces with bodily cues) does not merely 

7 ​As some experiments, ​within​ a condition, “self-selection” occurs, especially in long interventions.  An 
advantage of the proposed SRD is that these self-selection opportunities ​within​ conditions can be ​kept 
constant across conditions ​or systematically manipulated​. 
8 ​In correlational designs, there can be a predictor or measured independent variable “X” that ​precedes ​ a 
dependent variable “Y," where there is sufficient variability on both variables and where X and Y 
significantly covary.  Such a measured independent variable typically involves naturally occurring 
behavioral variations that are then correlated with the dependent variable.  This provides a necessary, albeit 
not sufficient basis, for causal inference (Brewer & Crano, 2014).  Causal analysis (e.g., Pearl & 
Mackenzie, 2018) suggests, however, greater causal inference potential from correlational data, especially 
for "big data" over time. 

 



 

moderate emotion cue judgment, it alters neural processing in those judgments. Indeed, 

context is always present, regardless of the researcher’s intention or awareness, and is 

arguably “integral to the emotional perception itself” (Gendron et al., 2013, p. 6).  

Another example of how operationalizations can go astray involves deception detection 

research where, in the typical design, experimentalists manipulate instructions across 

conditions, then assess human capabilities to detect others’ lies.  “Senders” (e.g., 

undergraduate participants) are ​asked ​ to lie or tell the truth, then “receivers” must try to 

discriminate lies from truths, judging only the verbal and non-verbal cues of the target on 

a videotape.  A meta-analysis investigating 206 documents indicates, “people achieve an 

average of 54% correct lie-truth judgments, correctly classifying 47% of lies as deceptive 

and 61% of truths as nondeceptive” (Bond & DePaulo, 2006, p. 214). That is, this near 

chance hit rate meant that “many lies are undetectable” (Bond & DePaulo, 2006, p. 231). 

Despite cross-study consistency, Bond and DePaulo were concerned about the denatured 

context of typical lab settings, the information available to receivers (and the information 

that was withheld from them) in making lie determinations, and the impact of that on 

real-world generalizability. Partly to address this, Levine et al. (2013) created a more 

naturalistic laboratory situation in which initial participants (IPs) could decide to go along 

with (or not) a confederate who wished to cheat on a trivia game.  Afterwards, an expert 

interviewer from the Federal Bureau of Investigations (FBI), blind to whether the initial 

participants (IPs) cheated or not, questioned and prompted diagnostic information from 

each of the IP’s in a naturalistic context: The entire interaction was recorded and shown 

to new participant observers (POs), similar to the experience of a court trial. Levine et al. 

 



 

(2013) found that new POs, blind to the IPs’ cheating, who saw a random sample of 36 

expert interviews had high detection deception accuracy (i.e., almost 94%).  Thus, more 

naturalistic set-ups (e.g., faces naturally occurring with the body versus not; 

deception-detection where target deception opportunities produce cues affording 

detection versus not) can dramatically alter researcher’s causal inferences ​. 

Representative Design:  The Promise of Generalizability and the Challenge of 

Causality  

Before discussing representative design, we introduce its theoretical foundation, 

probabilistic functionalism (see Dhami, Hertwig, & Hoffrage, 2004 for a review). Then, 

we introduce representative design as the methodological companion for this theory. 

            Probabilistic functionalism. ​  Brunswik’s (1952) Darwinian functional approach, 

probabilistic functionalism, ​ assumed that the environment for the organism is uncertain: 

To adapt, the organism must learn, not necessarily consciously, to achieve the organism’s 

goals (distal object) using environmental (proximal) cues that provide only probabilistic 

indicators (Hammond & Stewart, 2001). Thus, psychological researchers should aim to 

discover probabilistic laws describing an organism’s adaptation (distal achievement) to 

the “causal texture of its environment” (Dhami et al., 2004, p. 962).  They could do that 

by asking, “how is an organism perceiving and responding to its probabilistic 

environment to achieve a distal variable?  Can the findings of such an experiment be used 

to predict future achievement in that environment?” (Dhami et al., 2004, p. 962). 

Visual depiction of probabilistic functionalism. ​  ​Brunswik’s (1952) theoretical 

model has been referred to as “the Lens Model” given its visualization (see Figure 1). To 

 



 

illustrate, we use an example from Dhami and Belton (2017) and start with a distal (or in 

Figure 1, environment) criterion (e.g., the public’s perception that judges are being fair). 

Imagine an available set of proximal cues in the environment and their inter-cue 

correlations that might optimally predict perceptions of a judge’s fairness. ​Ecological 

validities  refer to coefficients indicative of proximal environmental cue validity in 9

predicting to the specified distal criterion (environment) state or policy (Araújo, Davids, 

& Passos, 2007).  Taking into account a judge’s inter-cue correlations, these proximal 

cues and their relative weights, could be gleaned from that judge’s prior experience in 

making decisions in a probabilistic environment.   As Gigerenzer, Hoffrage, and 10

Goldstein (2008) note, Brunswik referred to the cues in the judge’s mind and how he or 

she uses those cues to make a judgment as the ​cue utilization validities ​(see Figure 1) and 

argued for exploring and potentially statistically controlling for covariates (i.e., inter-cue 

correlations), preferring a correlational/partial-correlation approach.   Furthermore, these 11

authors also note that Brunswik specified an achievement index, or a coefficient for the 

relationship between the optimized prediction that one might get from available cues in 

the environment and the judgment provided based on which and how cues were utilized. 

From Brunswik’s probabilistic functionalism, as Dhami et al. (2004) note (see 

also Hammond & Stewart, 2001), various system designs emerge that are presumably 

9 Brunswik's (1956) ​ecological validity (actually Brunswik refers to the validities of the cues) ​and 
representative design ​are often used incorrectly and interchangeably (Araújo et al., 2007). Here, we use 
them as Brunswik intended​. 
10 Trying to learn the ecological validities of these cues, and their intercorrelations, via experience was 
presumed, with the organism ideally learning the equivalence and substitutability of different cues (e.g., if 
one set of cues were unavailable or unreliable). 
11 Dhami and Belton (2017) argue that their Brunswikian idiographic assessments and their heuristics either 
match or outperform alternatives relevant to cue utilization in making decisions.  

 



 

called systems in part because feedback (e.g., from learning, partners) was assumed.  For 

example, “the single system” approach involves using proximal cues to predict to the 

distal stimulus/criterion (or policies) and is the most common, especially in the social 

judgment policies domain.  The “double-system design” (full Lens Model parameters, see 

Figure 1) has also been used in the social judgment domain (Dhami et al., 2004). The 

“triple-system design” involves two-person use of shared probabilistic cues and is used 

for studying interpersonal processes, whereas a “four-system design” is used for studying 

group processes (see Dhami et al., 2004; Dhami & Olsson, 2008; Hammond, 1965). One 

way to study such naturally occurring cues and their role in probability judgements that 

guide the behavior of interest (BOI) (e.g., perception, decision-making, behavior) is to 

reproduce the psychological gist of the real-world adapted-for environment, bringing it 

into the lab. But how?  

            Representative design: A methodological companion. ​  Representative design 

was Brunswik’s innovative methodology that fit with his ​probabilistic functionalism 

approach.  For Brunswik (1955b; 1956), studying these “ ​organism-environment 

relations” ​(Dhami et al., 2004, p. 959) meant representatively sampling from the 

environmental situations of interest (SOI) and implementing these in a laboratory setting 

in the study design phase of research.  The SOI include the settings, contextual features, 

narratives, situations, stimuli, and choices that might lead to a BOI for a given POI and to 

which the researcher wishes to generalize.  Researchers can only make claims about the 

extent to which a certain phenomenon (e.g., a probabilistic cause-effect relationship in 

the real-world) occurs for a given population if there is adequate random sampling of 

 



 

situational cues for the BOI (Brunswik, 1955a; Brunswik, 1955b).   Brunswik urged 12

psychologists to specify in the design phase, “To what circumstances do we wish to 

generalize, or apply, our results?” (Araújo et al., 2007, p. 72). 

To bring the gist of the real-world into the lab, Brunswik pioneered human task 

analysis, with participants in his studies estimating the size of an object (based on some 

predetermined parameters) at random time intervals over a four-week period while 

experimenters objectively measured the object, repeating this procedure over 180 

situations (see Dhami et al., 2004).  This procedure provided the data Brunswik needed 

for designing his laboratory experiments’ perceptual stimuli for designed in 

generalizability. Such adequate situational sampling frames were and are feasible 

(Gigerenzer, Hoffrage, & Kleinbölting, 1991).    13

Comparing Systematic and Representative Designs (see Table 1) 

Systematic design is focused on establishing causal connections and uncovering 

“laws” using these key “designed in” features (e.g., random assignment) to enhance 

internal validity.  In contrast, Brunswik’s goal was to discover, using primarily 

correlational methods (with statistical controls in the analysis phase), individuals’ 

probabilistic laws in making and adapting predictions using environmental cues to 

achieve real-world goals (Dhami et al., 2004).  That is why an important goal in 

representative designs is to feature variables (e.g., cues) that are chosen for their 

importance in the environment (representativeness) and naturally “tied.”  For his 

12 Nonprobability sampling techniques might require a validity check since they might not cover the 
ecology to which the researcher wished to generalize (Brunswik, 1955b; Dhami et al., 2004). 
13 Gigerenzer et al. (1991) showed that representative sampling of cities (vs. not) could dramatically impact 
inferences about bias, consistent with claims that participants’ use probabilistic mental models in making 
these inferences and judgments.  

 



 

perceptual studies, Brunswik (1944) took the naturally occurring covariations (or “ties”) 

that existed between the organism and environment in the field and recreated these in the 

lab.  Alternatively, systematic designs’ variables that are artificially “tied” in the lab, are 

not tied in naturalistically occurring contexts, and conversely variables are “untied” in the 

lab that are tied naturally in the real-world. For instance, researchers may provide a face 

without the rest of a body as a stimulus, thereby “untying” naturally occurring body parts

. Similarly, a researcher may manipulate whether someone is asked to lie or tell the 14

truth without regard to whether this instruction naturally occurs, and if so, whether it does 

so with the same frequency and whether it covaries with expressed deceptive behavior.  

Thus, variables are not necessarily relevant to the natural ecology in systematic designs 

making them artifactually “untied” (or “tied”) and limiting researchers’ ability to assess 

psychological processes as they function for organisms in the environment for which the 

organism is adapted, i.e., reducing generalizability (Dhami et al., 2004). 

Systematic and representative designs have complementary strengths and 

weaknesses: The former more readily affords the capacity for valid experimental causal 

inferences and the latter more readily affords the capacity for generalizability.  However, 

currently neither researchers taking a systematic design approach nor researchers taking a 

representative design approach seriously consider ​context ​. Yet, doing so, and trying to 

address the question of, “what is the context here,”  is essential to adequately implement 

SRD.  Context is often defined in terms of situations (e.g., Van Overwalle & Van Rooy, 

1998).  Unfortunately, we still do not have adequate definitions and taxonomies of those 

14 We can not even assume that across studies with faces, the same cause-effect relationships will result. 
For example, the orientation of the face can affect social perception (Witkower & Tracy, 2019).  

 



 

either (see below). Understanding how people think about situations is key to 

understanding how humans structure social meaning and therefore, key to our ability to 

create SRDs.  Of course, it is not enough to understand how individuals categorize only 

the current situation, we need to understand when, why, and how for whom the situation 

changes.  Narratives, as we argue below, help ​s ​tructure understanding and prediction of 

social interaction within a situation and across situations over time.  

Missing Pieces: Structuring the Dynamics of Social Interaction 

            What is a situation?​  Social situations, including the presence or implied 

presence of others (Allport, 1968), and a taxonomy of them, have long been thought to be 

critical to the very definition of social psychology (Baron, Byrne, & Suls, 1989; Hilton, 

2012; Milgram, 1965). For example, Milgram said, “Ultimately, social psychology would 

like to have a compelling ​theory of situations ​which will, first present a language in terms 

of which situations can be defined; proceed to a typology of situations; and then point to 

the manner in which definable properties of situations are transformed into psychological 

forces in the individual ​” ​(1965, p. 74). But, despite advances in defining situations 

(Argyle, Furnham, & Graham, 1981; Rauthmann et al., 2014; Yang, Read, & Miller, 

2006), ​ there is neither consensus on what a situation is nor a “matrix” or “taxonomy” 

within which these “situations” or combinations of features composing situations are 

arranged , which would tell us something fundamental about how changes in key 15

15 This situation may be analogous to the situation in chemistry before the development of The Periodic 
Table that is used as the basis for predictions, hypothesis testing, and theory in chemistry that some have 
argued moved chemistry from a pre-paradigmatic science to a science as physicists would think of it (see 
Scerri, 2007).  

 



 

underlying parameters alter behavior (Kenny, Mohr, and Levesque, 2001; Reis, 2008; 

Swann & Seyle, 2005).  

However, agreement regarding defining situations, or identifying situations’ 

underpinning features, may be emerging. For example, key to situations are their 

affordances for goal pursuit (Argyle et al., 1981; Baron & Boudreau, 1987; Argyle, 

Furnham, & Graham, 1981; Grant & Dweck, 1999; Miller, Cody, & McLaughlin, 1994; 

Miller & Read, 1991; Read & Miller, 1989a,1989b; Reis, 2008; Yang et al., 2006).  

One way that the term situation has been construed is in terms of settings and situational 

awareness in those settings (Killingsworth, S. A. Miller., & Alavosius, 2016).  A setting, 

like a church or an emergency room, constrains the likely goals and tasks, as well as 

likely scenarios and actions. Endsley (1995) conceptualized situation awareness in terms 

of three levels of consideration: (a) perception, (b) comprehension, and (c) projection. At 

the perceptual level, there is a focus on perceptual cues and stimuli that are relevant to 

successfully performing tasks or understanding the situation (e.g., if changes are slow or 

rapid); Brunswik’s theory and approach were most focused at this level (Brunswik, 

1955b).  At the comprehension (or meaning) level, humans learn the organizing 

structures (e.g., narratives, scripts, pattern matches) to make sense of what is happening 

(e.g., an emergency).  At the projection level, humans anticipate and predict future 

situations (e.g., given a shooting and numerous causalities, a hospital low on staff) based 

on what is happening and the rate with which it is changing.  Top-down models and 

organizing structures can facilitate this future projection.  

 



 

            What is happening here over time? Why and how do I respond to it?  ​Social 

interactions are complex and dynamic. For example, to understand how people extract 

meaning from the current, as well as prior and potentially future interactions, and then to 

respond to the situation, draws us into diverse literatures (e.g., in contextual sequence 

analysis, see Cornwell, 2015). Participants in our studies, as well as intelligent agents in 

some games (Marsella, Pynadath, & Read, 2004), are trying to do two things 

concurrently: (a) understand “what is happening here” (e.g., social perception, 

comprehension-meaning; projection into the future using theory of mind about self and 

other and prior experience/learning), and (b) understand “why and how should I respond 

to it” (decision-making and enactment of behavior).  This is based on often automatic 

inferences involving theory of mind (e.g., about beliefs about self, other (e.g., Marsella, 

Pynadath, & Read, 2004)) and considerations of one’s own goals and plans, as well as 

resources to achieve them, given prior experiences and what the individual/agent thinks 

might happen if he/she made various choices now and with unfolding choices by all 

parties involved. 

In probabilistic functionalism, Brunswik focused on how people use perceptual 

cues to predict what was going to happen, but perceptual cues are unlikely to suffice in 

complex social interaction without a way to structure such data.  How could streams of 

cues be structured to constrain and make sense of these cue utilizations over time? 

Brunswik and his followers did not answer that question. Others, especially those 

concerned with narrative structure, however, have tried to address it. 

 



 

Narratives help structure understanding and prediction of social interaction 

over time. ​ ​ Stories or narratives provide a coherent way to understand the meaning of an 

action by ​contextualizing ​ or ​situating ​the action in relation to the other actions or events 

involving self and others (e.g., Pennington & Hastie, 1986).  Whether involving human 

behavior (e.g., Barker, 1963; Barker & Wright, 1955; Forgas, 1979; G. A. Miller, 

Galanter, & Pribram, 1960) or text processing (e.g., Mandler, 1978; Rumelhart, 1977), 

most action sequences have four components, including the sequence’s goal, actions 

making up the plan to achieve the goal, initiating conditions, and the outcome.  Evidence 

suggests that this source-goal-plan-unit structure facilitates memory (Abbott & Black, 

1986).  As Read (1987) notes, the action sequence alone is insufficient to provide this 

information; additional detailed information is required (e.g., knowledge of the actors’ 

goals and how these actions fit together into a plan for goal achievement) or inferred, 

which forms the basis of a coherent mental representation that can be used to answer 

questions about what happened and why (e.g., Black, Galambos, & Read, 1984; Graesser, 

1981; Schank & Abelson, 1977).  Read’s (1987) narrative-based model of attribution 

argued that humans use social knowledge structures (e.g., scripts, plans, goals, and 

themes) in constructing causal scenarios for causal reasoning and explanation.  Often 

these structures are hierarchically nested (Figure 2), such that subgoals are achieved in 

the service of the goals most heavily activated in a given moment in the interaction, due 

to both within-person changes (e.g., due to situational or interoceptive state changes) 

(Read & Miller, in press; Read, Smith, Droutman, & Miller, 2017) and between-person 

differences (e.g., in chronic relative goal activations) (Read & Miller, in press). 

 



 

            Communication patterns and narratives can help frame the causal structure of 

social interaction. ​In social interactions, humans or actors typically take “turns” (e.g., 

alternating speaker and receiver roles).  These “turns” of one social actor vis à vis another 

could potentially signal new situations and pertinent cues that involve inferences about 

“why” (e.g., Why did person A do or say that to Person B? Why did person B grimace 

when A said that to him/her?).  As suggested above, these inferences leverage knowledge 

structures, (e.g., self and others’ goals and beliefs; Miller & Read, 1987, 1991): 

Narratives or stories can frame and structure causal scenarios and meaning (Read & 

Miller, 1995; Schank & Abelson, 1977; Schank & Abelson, 1995).  Indeed, narratives, 

which can facilitate interpersonal as well as group communication, may be so 

fundamental because of their capacity to fulfill core social motives, which are tied to 

identity (Costabile, Shedlosky-Shoemaker, & Austin, 2018).   

Identity and cultural framing of the meaning of actions. ​ Developmental and 

personality psychologists have argued that cultural and self-understanding (Bruner, 1987; 

Bruner, 1990; Fivush, Habermas, Waters, & Zaman, 2011; McAdams, 1990, 2001, 2008; 

Nelson & Fivush, 2004; Thorne & McLean, 2003) is not just about sequences of actions, 

but importantly about how action sequences are framed (e.g., in terms of the goals, 

beliefs, meaning of what just happened).  Parental scaffolding of children’s narrative 

framing of the world starts early--by 16 months of age (Reese, 2002). The neural basis of 

these stories about self and others, often implicating values, is gaining attention (e.g., 

D’Argembeau et al., 2014).  Narrative is critical to the construction of meaning and 

therefore critical to representative design in the study of human behavior: Narrative ties 

 



 

together one’s immediate and long-term experience pertaining to self- and 

cultural-identities, and projects expectancies regarding self, others, and the unfolding 

situation into the future.  

Systematic Representative Design (SRD): A Unifying Design Framework 

Systematic Representative Design (SRD) is an experimental approach that 

attempts to optimize the strengths and mitigate the weaknesses of systematic and 

representative designs, better affording ​both ​ valid causal inferences and greater GEL (see 

Table 1).  In addition, SRD uses representative narrative structures and other 

considerations (e.g., cueing based on cultural scripts) to grapple with “missing pieces” in 

past experimental designs that do not adequately contextualize the POI’s everyday 

experiences and behavioral choices.  To achieve this end, we leverage the power of new 

enabling technologies including virtual environments and games, intelligent agents, 

mobile technologies and sensors. Below, we first discuss the features that SRD adopts 

from standard systematic and representative designs, as well as additional innovations in 

research design.  Then, we discuss these enabling technologies in the following section 

and how they enable SRD. 

Optimizing Systematic Design Strengths in SRD 

A strength of systematic designs, compared to representative designs, is the 

ability to more easily afford valid cause-effect relationship inferences.  SRDs leverage 

those strengths by meeting the standard criteria of classic systematic design experiments. 

For example, in a standard two-cell between-subjects experimental design, SRD 

participants would be ​randomly assigned ​to the “default control group” (DCG) or one 

 



 

alternative experimental condition built upon the DCG base (E ​1​DCG).  The experimental 

and control groups would be the same, except for the manipulation of the independent 

variable (e.g., in a two-cell design) or independent variables (in a multifactor design) 

after which the dependent BOIs are assessed.  Therefore, differences in participant 

behavior after random assignment between conditions can be attributed to the 

manipulation of the independent variable.  Thus: (a) the potential cause ​precedes ​ the 

effect, (b) cause and effect covary with one another, and (c) important plausible 

alternative explanations are eliminated by random assignment, helping ensure that the 

conditions do not differ from one another except on the variables manipulated.  The 

difference between an SRD and a systematic design is the DCG, which is designed to be 

representative of the settings, situations, and stimuli to which we wish to generalize for 

the POI and target BOI.   16

Optimizing Representative Design Strengths in SRD 

In systematic designs, neither control nor experimental groups are typically 

designed to be representative of the SOI to which the researcher wishes to generalize for 

the POI.  In representative designs, researchers typically attempt to representatively 

16 Procedurally, in classic experimental designs, participants do not self-select themselves into condition. 
Instead, they are randomly assigned to conditions, to eliminate the possibility that differences between 
conditions are due to participants’ pre-existing differences instead of the manipulation. Procedurally, in 
SRD, participants are randomly assigned to the DCG or a given experimental condition; participants then 
make choices (e.g., in a virtual environment game) just like in classic designs. Others (e.g., virtual 
intelligent agents) subsequently respond to the participants’ responses, and those responses are adjusted 
given the participant’s behavior.  Different agent responses can then affect the participant’s subsequent 
options and choices, creating interactional sequences into which participants “self-select” that are 
narratively designed to be more generalizable to everyday life (see below; Appendix; Miller, Wang, Jeong, 
& Gillig, 2019).  However, there are not​ between group differences ​in self-selection opportunities in SRD, 
unless systematically manipulated by design with all other variables held constant or controlled as a source 
of alternative explanations. Thus, this type of “self-selection” during the course of a game does not present 
a threat to internal validity. 
 

 



 

sample SOI and then assess cue utilizations in predicting some decision or response 

outcome (e.g., Gigerenzer et al., 1991).  Research using representative designs has mostly 

been conducted in domains involving perception, decision-making, or social perception 

and judgment.  In such contexts, there is typically one decision (e.g., setting bail) for a 

given individual (e.g., a judge in a given case).  Task analysis enabling representative 

designs and conceptualizing cue utilization with new heuristics can require considerable 

formative work, but the payoff may be more evidence-based psychological models in line 

with how humans make decisions and respond to their actual environment.  Such models 

can be more predictive and useful compared to alternative heuristics and statistical 

models (Dhami & Belton, 2017).  However, past efforts to create representative designs 

typically lack extended dynamic social interaction leading up to the BOI.  Generally, 

these models are not concerned with temporal sequence in the meaning of action.   

Representatively sampling can be complex. ​Representatively sampling from 

extended behavioral interactions in SOI leading to an eventual BOI (e.g., a risky sexual 

decision) is complicated. Extended social interactions often involve intervening obstacles 

and challenges, each with decision points impacting the eventual BOI.  Ensuring that 

settings, situations (including extended social interactions) and stimuli are representative 

for the target audience and target behavior to which we wish to generalize might 

seem impossible.   

Sampling for implementation into DCG. ​However, we argue that it is not too 

difficult using the power of enabling technologies such as virtual environments to 

develop DCG and Experimental conditions built on the DCG base (E ​1​DCG) (Miller et al., 

 



 

2019). In order to create a representative sample for the default control group (DCG) in 

SRD a social scientist takes a series of steps, as provided in Table 2 with an example. 

This includes identifying the BOI, the POI and identifying and recruiting representative 

samples of POI, identifying the most frequent settings  (MFS) leading up to BOI for POI, 

extracting details (e.g., cues for POI in MFS), identifying relevant scripts in MFS, 

identifying the components of those scripts (SCs), and the “entry” and “exit” conditions 

for each SC, additional details and frequency of response options, and so forth.  In the 

Appendix we elaborate on this process (see also Miller et al., 2019).  

Virtual validity check. ​To insure that a given DCG is representative of everyday 

life, however, we also use a “virtual validity check” by correlating participant virtual 

choice to their prior behavior (e.g., past 90 days) in response to similar real-life 

situations. We found that these coefficients were quite high, approaching values normally 

associated with test-retest reliability (see for example, Godoy et al., 2013; Smith et al., 

2018). Below, we first briefly discuss some of these technologies and their use for a 

science involving SRD.  

SRD Virtual Environments 

Definitions and background. ​ Virtual environments are artificial environments 

in which one’s actions determine what happens next in the pursuit of goals (Overmars, 

2005). Virtual environments require a combination of software and hardware (e.g., virtual 

reality (VR) , computer hardware).   In virtual environment without VR, one can push 17 18

17 VR can consume the user’s audio and visual senses, activating haptic responses.  
18 Related technologies include augmented reality (AR) in which virtual objects are overlaid onto one’s 
real-life world and mixed reality (MR) that augments as above but also anchors those virtual objects, 
making it possible to interact with them in the real-world. (Garon, Boulet, Doironz, Beauliu, & Lalonde, 
2016; Tepper, Rudy, Lefkowitz, Weimer, Marks, Stern, & Garfein, 2017; Tokareva, J. (2018). Haptic 

 



 

or click buttons or move a mouse in making choices for one’s character (for example in a 

digital game): This can be very engaging, affording opportunities for studying complex 

psychological processes in representative social interactions between one’s own agent 

(that one controls) and other agents.  When those other agents are “intelligent agents” 

within a digital game (using software such as PsychSim (Marsella, Pynadath, & Read, 

2004)) whose parameters (e.g., for goals and beliefs) can be set to emulate the variability 

within and between various groups and cultures, one can have the “feel” of very complex 

extended social interactions (Marsella, Pynadath, & Read, 2004) in a 3-Dimensional 

animated environment (for example, see Christensen et al., 2013). Those interactions 

could be dyadic or involve participants interacting with representative team members or 

manipulations of same (or other variables).  

A virtual reality (VR) headset, on the other hand, obscures all but the virtual 

environment and enables one to feel one’s senses immersed in the virtual environment. 

With VR, the user moves his or her own body through the virtual environment assuming 

the identity of an avatar as he or she moves through the virtual environment.  For 

example, looking at a virtual environment without VR of a mechanic working on a 

vehicle one can see the steps the mechanic takes and even choose them.  The same 

simulation with VR, can enable the user to get the “feel” of the mechanics of the actions 

as if corporeally immersed in the interaction that offers haptic feedback (e.g., feeling 

one’s hand using a tool or lifting and removing objects). The user can interact with other 

avatars, but at least at present, the nature of those social interactions tends to be more 

interfaces may be especially interesting for applications with mixed reality and smartphones with 
digital/VR games “in the wild” for example. (Lee, Sinclair, Gonzalez-Franco, Ofek, & Holz, 2019) 

 



 

restricted (and typically are quite “clunky”) than that which is possible in non-VR virtual 

environments.  

Digital video games  afford the user features of a virtual environment experience 19

(e.g., the user can control computer keys, pads, etc. to make choices that affect how the 

action proceeds; receive feedback). This involves software and hardware (e.g., an 

electronic gaming device; a laptop computer; a smartphone -- all of which today are 

likely to have the capacity to control graphic images and a TV or other screen for 

displaying images).  Digital video games can involve VR or not : They are often 20

classified by their game genre (e.g., role-play, active, active adventure, adventure, 

simulation , strategy,  etc.) , game purpose (e.g., entertainment  or serious -- such as  to 21 22

enhance health, education, or training), and type of game platform (e.g., for use on 

mobile phones, personal computers, iPads, or that can be used cross-platform) ​(​Adams, 

2013).  For SRD, the video game genre most relevant involves simulations.  Simulations

 are typically designed to emulate real-world scenarios . Generally, SRD would fall 23 24

19 The broader category of games includes games that are not video games, such as card games. There are 
other things described as games (e.g., economic games, such as “prisoner’s dilemma”) that are associated 
with game theory, involving the modeling of strategic interactions between rational players (see for 
example, Myerson, 1991).  These literatures, however, are well outside the scope of the current work.  
20 The video game industry, including the much smaller VR video game industry, is a major industry, 
rapidly overtaking the 125 billion dollar annual mark (Gaudiosi, 2016).  
21 A commercial version is the well known video game simulation (and its many variants) called the 
“Sims.”  
22 As Adams (2013) notes there are also subgenres within each of these genre types (e.g., shooter games are 
a subgenre of action video games).  
23 Simulations are sometimes classified within the category of digital games and sometimes not, depending 
upon one’s specific definition of “video games” and the specific nature of the simulation in question. For 
our current purposes -- we are interested for research and behavior change purposes in the capabilities of 
such software and hardware for implementing the “gist” of representative SOI and BOI for a POI within a 
virtual world -- when it comes to language pertaining to such distinctions (e.g., when is a simulation not a 
game) we find ourselves in agreement philosophically with Wittgenstein (2009). 
24 Simulators, for example flight simulators, have been used extensively for decades and found to be highly 
effective (Hays, Jacobs, Prince, & Salas, 1992) 

 



 

under the category of a “serious game” because it is not primarily designed for 

entertainment, but rather as a “test-bed” for science and for developing interventions for 

behavior change. Diving further into these and other game-related distinctions, however, 

is well beyond the scope of the current work.  

Brief comparison of VR and Non-VR digital games.  ​Given their current status, 

the choice of whether to use VR or not in research and interventions depends upon the 

researcher’s goals and the nature of the planned intervention.  At present, VR would 

likely be a great choice where the premium on research is on the sensory/physical (e.g., 

eye-hand coordination; sensory systems and multi-sensory cues or triggers involving 

visual and auditory channels).  This is because, with the increasing sophistication of VR, 

more granular grasping and bodily precision movements are becoming possible, for 

example with haptic interfaces that the user wears that provide feedback from the touched 

object as if it is real (Lee, Sinclair, Gonzalez-Franco, Ofek, & Holz, 2019).  In contrast, 

digital non-VR games, can feature underlying software with intelligent agents that affords 

new possibilities for understanding social processes and enhancing social and 

communication interactions and skills (such intelligent agents are not currently available 

in a VR version). Below, we start with a little of the “bigger picture” of virtual games and 

their utility and then focus on a much smaller subset of virtual environments designed to 

be more representative of everyday life.  

Overview of virtual environment’s applied potential.  ​Digital games, including 

commercial games ​ ​designed for entertainment and those not designed primarily for 

entertainment (i.e., serious games), until recently have mostly not used VR.  Existing 

 



 

games have shown promise as interventions, whether designed with that goal in mind or 

not.  As the review by Granic, Lobel, and Engels (2010) makes clear, a wide variety of 

games, including commercially designed games for entertainment, have potential for 

producing positive motivational, affective, cognitive, and social effects.  For example, 

playing some shooter games (a subgenre of active games), may dramatically enhance 

player’s spatial skills (Uttal et al., 2013), which, in turn, predict achievements in STEM 

fields (i.e., science, technology, engineering and math) (Wai, Lubinski, Benbow, & 

Steiger, 2010).  This is quite remarkable, especially since many of these commercial 

games of various genres (including shooter games) are designed for entertainment, and 

not for education, per se. Although education scholars may learn quite a bit from studying 

such entertainment games, and why they may be effective for enhancing learning (Gee, 

2003), they are neither designed to provide a test-bed for basic science nor designed for 

“serious game” applications (e.g., serious games can have the primary goal of assessing 

or changing behavior). Most games with the primary goal of providing entertainment are 

not designed to provide a representative environment for assessing or changing behavior.  

For those games designed as serious games, there are a number of other 

meta-analyses and reviews pertaining to their effectiveness (e.g., Papastergiou, 2009; 

Hieftje et al., 2013).   Serious games often try to entertain (and be fun) while also 25

25 ​In studies with commercial games as well as randomized trials with serious games, whether VR or 
virtual games, the control group is most often either a wait-list control group or it’s another game. Each has 
weaknesses, in that effects in the former may be due to using a game without the intervention components 
critical; The effects in the later are hard to compare because so many variables differ across games (Granic, 
et al., 2014).  Furthermore, for meta-analyses the control comparison with a comparison game differs 
considerably across studies whereas with a wait-list control group that control condition is more “constant”. 
SRD addresses this issue by first developing the DCG that can be used as the appropriate control in a 
randomized controlled trial.  

 



 

advancing learning (e.g., knowledge, developing skills, enhancing mastery, such as of 

self-monitoring) by using a variety of underpinning theories (e.g., about observational 

learning; about message tailoring, about persuasion, social cognitive theory, etc.):  For 

example, they may achieve these dual goals with adventure stories in fictional worlds 

(Thompson, 2012).  Although there are a number of simulations/ game simulations that 

show good transfer of knowledge and skills (e.g., Gaba, Howard, Fish, Smith, & Sowb, 

2001; Lateef, 2010), most of these serious games are not designed to be simulations 

and/or representative of scenarios/choices in everyday life.  Our focus below, although 

not intended to be a thorough review, provides examples of research using 

games/simulations (whether with VR or not). The games/simulations reviewed are those 

that could be considered more representative of the scenarios and challenges of everyday 

life.  

More representative virtual environment designed for research, diagnosis, 

and treatment. ​ Below, we discuss research from this growing literature using more 

representative designs that involve virtual reality (VR) and non-VR digital game 

interactive narrative (IN) environments and how we could leverage these technologies to 

advance a new paradigm for psychological science.  

Virtual reality (VR) ​. ​Below, we consider VR’s use in enabling better basic 

experimental research.  We also consider VR’s use in creating better applications for 

diagnosis and/or treatment (e.g., of a mental health disorder).  

Enhancing external validity ​. Blascovich et al.’s (Blascovich, Loomis, Beall, 

Swinth, Hoyt, & Bailenson, 2002) pioneering work showed that VR environments could 

 



 

be used to assess whether classic experimental social psychology studies ​conducted in the 

lab ​ (e.g., social influence in gambling situations that are more naturalistic) generalize to 

the virtual environment (Blascovich et al., 2002).  Some researchers have made the 

argument that virtual environments take an intermediate ground in the perceived 

“tradeoff” between internal validity and external validity for research and assessment 

(Blascovich, et al., 2002; Schonbrodt & Asendorpf, 2011; Johnsen, Raij, Stevens, Lind, 

& Lok, 2007).  This seems a reasonable claim within the context of standard 

experimental designs, that also nicely gets at the issue of external validity.  

 But, this approach does not address GEL.  It is unclear if individuals’ ​virtual 

behaviors in response to ​virtual ​situational triggers are similar to their behaviors in 

comparative situations in their everyday lives. Further, while VR has considerable 

promise, we believe that its promise goes well beyond a “tradeoff” between internal and 

external validity (see below).  

 ​Is VR effective for diagnosis and/or treatment? ​A recent review of the more than 

two dozen review ​ ​articles of the use of VR demonstrates the potential for VR in diagnosis 

and treatment (Riva, Wiederhold, & Mantovani, 2019), including the diagnosis and 

reduction of the effects of PTSD and sexual violence (e.g., Rothbaum, Rizzo, & Difede, 

2010; Rizzo & Koenig, 2017; Rizzo et al., 2014). It also demonstrates potential for the 

diagnosis of obsessive-compulsive symptoms, such as compulsions in response to 

everyday life (van Bennekom, Kasanmoentalib, de Koning, & Denys, 2017), drug relapse 

susceptibility (Hone-blanchet, Wensing, & Fecteau, 2014), and craving in smokers (e.g., 

Bordnick et al., 2005) and alcohol abusers (e.g., Bordnick et al., 2008). VR also shows 

 



 

promising effects in the successful treatment of a range of mental health disorders, 

including anxiety disorders (for reviews see, Lindner et al., 2017; Botella et al., 2017; 

Maples-Keller et al., 2017; Cardos, David, & David, 2017; Arroll et al., 2017) and diet 

related disorders, as well as in pediatric domains (see Riva, Wiederhold, & Mantovani, 

2019).  Most of these VR diagnostic and treatment programs are based on cues/triggers 

encountered in the VR world that are representative of those afforded in the real-world.  

Why is VR so effective? ​Riva et al. (2019) note that VR is very effective in 

promoting long-term behavior change across many domains,  more so even than 26

prevailing treatment “gold standards” such as cognitive behavioral therapy.  They argue 

that this is due to: (a) embodied simulations and predictive coding, (b) the meaning of 

presence, and (c) the instantiation of real-world physical rules within the virtual 

environment.  We would add another contributing factor: VR can afford a kind of 

interactive narrative (IN) during interaction with it, especially if a therapist is guiding the 

interaction.  We explicate these four factors in the four paragraphs below. 

Consistent with work on predictive coding (e.g., Clark, 2013; Friston, 2010), 

Riva, Wiederhold, and Mantovani argue that, “VR shares with the brain the same basic 

mechanism: embodied simulations” (2019, p. 88). Body ownership and simulation, 

involving the identification and integration of internally and externally generated 

multi-sensory channelled input, enables goal-directed behavior in humans and other 

species (Botvinick & Cohen, 1998; Van Den Bos & Jeannerod, 2002). Research 

regarding the Rubber Hand Illusion (RHI) paradigm (Botvinick & Cohen, 1998) aids in 

26 Price and Anderson (2007) argued that although VR could facilitate a sense of presence, it did not cause a 
positive treatment outcome.  

 



 

the inference that the brain creates these embodied simulations.  In the RHI, the 

researcher simultaneously strokes both a real hidden hand and a rubber visible hand 

(externally generated cues) causing the participant to perceive body ownership over the 

rubber “hand” as determined by the participant’s response to the researcher striking the 

rubber hand with a mallet.   27

If, to effectively regulate one’s body in the world, the brain creates and maintains 

simulations of that body operating in the world -- including various interoceptive, motor, 

and sensory inputs, and links incoming multi-modal patterns of activation to similar prior 

multimodal neural activation patterns -- what does the brain do with this information? It 

is hypothesized that humans use this information in predictive coding (Friston, 2010; 

Friston & Kiebel, 2011; Clark, 2013), in which past neural patterns (e.g., involving 

multimodal distributed neuron patterns across diverse brain regions supporting the 

achievement of a specific goal, concept, or emotion activation) are used to make 

predictions about what will happen or the meaning of what is happening. When the input 

reactivates a sufficiently similar pattern of these distributed neurons, the individual 

experiences the action (e.g., Clark, 2013), concept (Barsalou, 2003), or emotion (Barrett, 

2017).  In a similar way, VR-embodied simulations may “reactivate multimodal neural 

27 This externally generated RHI paradigm it is argued involves mostly top-down processes while 
alternative similar paradigms (where the user self-initiates movement)  involving body ownership (e.g., 
moving rubber hand (mRHI), virtual hand illusion (VHI),  are more likely to be “actively shaped by 
processes which allow for continuous comparison between the expected and the actual sensory 
consequences of the actions...[These additional illusions provide the basis with a motor task using VR to 
test hypotheses about] whether during goal-oriented tasks body ownership may result from the consistency 
of forward models” (brackets added for clarity) involving both self-generated and distal multisensory cue 
integration (Grechuta, Ulysse, Ballester, & Verschure, 2019, p. 1).  
 

 



 

networks, which have produced the simulated or expected effect before” (Riva et al., 

2019, p. 88).  

The feeling of “presence” is an important concept in virtual environment 

generally (in both VR and non-VR digital games).  Presence theory (See Lombard & 

Jones, 2015 for review) developed, in part, as a concept that accounted for the 

psychological effects of media technology that embody the user, such as robotics and 

virtual reality (Steuer, 1992; Sheridan, 1992; Biocca, 1997). Generally, presence has been 

characterized as a “mental state” (Sheridan, 1992), a “perceptual illusion” (Lombard & 

Ditton, 1997), and a psychological state (Lee, 2004).  Extending the predictive coding 

hypothesis, Riva and colleagues (2019, p. 88) re-conceptualize the concept of  “presence” 

and argue that “the feeling of presence in a space can be considered as an evolutive tool 

used to track the difference between the predicted sensations and those that are incoming 

from the sensory world, both externally and internally.”  Indeed, the level of presence one 

experiences using VR may be a function of the degree of similarity between the VR’s 

simulation model of the world and that of the brain.   If correct, this suggests that the 28

extraordinary promise of VR extends beyond diagnosis and treatment to deeply 

understanding psychological processes.  

28Researchers have suggested that we need to be careful in designing representative environments, 
avoiding and testing for problems like the uncanny valley (e.g., where the agents are so similar to the target 
person that they activate disbelief) or VR sickness (Cobb, Nichols, Ramsey, & Wilson, 1999).  However, 
although one should test for this in a given population (e.g., Benoit, Guerchouche, Petit, Chapoulie, 
Maneva, Chaurasia, Drattakis, and Robert, 2015), that as participants are more immersed and experience 
greater presence in more representative environments, and better leverage emerging technologies for their 
target populations and behaviors of interest (e.g., Garcia-Betances et al., 2015), that virtual environments 
may provide closer and closer approximations to everyday behavior in similar everyday affording situations 
without detrimental effects.  
  

 



 

The nature of the physics in VR matters. VR simulations involve some virtual 

scenes (e.g., with 3-Dimensional models of objects, character agents, and the integration 

of landmarks) that can be merged into an overall model using professional design 

software and a means (i.e., the game engine) to calculate the relations between the player 

and this 3-Dimensional model.  What is achieved is the simulation of some real-life 

physics (e.g., collision-detection, gravity, etc.) and representative human behavior in 

response to it (e.g., human movements in response to stimuli) along with physical and 

sensory (visual, auditory) capabilities (Mueller et al., 2012).  Even in clunky interactions, 

this can be enough to create a sense of presence (Regenbrecht, Schubert, & Friedmann, 

1998). However, more realistic physics-based interactions, such as physics-based 

hand-object interactions (Höll, Arth, Overweger, & Lepetit, 2018) have been improving 

dramatically, leveraging augmented and mixed reality, and likely increasing a sense of 

presence (Antotsiou, Garcia-Hernando, & Kim, 2018).  However, for SRD, more than 

just physical reality is needed.  In theory, social reality in VR could also mimic the 

quality of physical reality in VR.  In practice, VR incorporates social presence often in 

somewhat indirect or superficial ways (e.g., the presence of a sensory-based (e.g., visual, 

auditory) scene or one or a group of avatars that evokes a social interaction or the sense 

of one (i.e., the implied presence of others in a scene that mimics a conference room 

where the player is expected to speak, designed to evoke social anxiety). Where there are 

interacting avatars in VR, social interactions to date are often primitive and often clunky.  

 ​Interactive narrative (IN) games could be used with VR.  IN are systems that 

allow users to take a role in a narrative story and interact with character agents in an 

 



 

environment (Si, Marsella, & Pynadath, 2010).  Broadly, IN occurs in a range of virtual 

environments. For example, in Blascovich et al.’s (2002) virtual environments using VR, 

he and his team assessed social influence in gambling situations designed to be very 

similar to those sequences, that are interactive, in gambling situations he had constructed 

in laboratory studies years before and that can provide the affordances and cues that can 

evoke gambling scenarios.  Similarly, Rizzo and his colleagues have studied mitigating 

the effects of post-traumatic stress disorder (PTSD) (Rizzo & Koenig, 2017) and sexual 

violence (Rizzo et al., 2014) using a VR environment with visuals and sounds within 

which users experience (or might re-imagine) narratives that trigger their prior trauma 

with the guidance of a trained therapist. VR with IN-like features have also been used to 

enhance diagnosis of drug relapse susceptibility based on cues/triggers encountered in the 

virtual reality (VR) world (Hone-Blanchet, Wensing, & Fecteau, 2014).  In IN research 

and interventions, cues and scenes are often chosen to be more representative of the 

relevant triggering scenarios to afford relevant cue inter-associations present over time 

and to be of interest for the POI (e.g., PTSD triggering events).  

Non-virtual reality​. ​Representative designs without VR have also been used for a 

range of interventions. This includes those to enhance health-related communication 

(e.g., Marsella, Johnson, & LaBore, 2000) and those to reduce risky sex using an 

interactive video (Read et al., 2006), and intelligent agents (Christensen et al., 2013).  

IN games with intelligent agents. ​ “Intelligent agents” are so named because these 

agents can autonomously determine how the action within an IN proceeds based on how 

other agents and humans respond and negotiate with other agents and humans to achieve 

 



 

their goals (Marsella et al., 2004).  Intelligent agents can achieve these feats using a range 

of underpinning mechanics, sometimes with quite complex and deep psychological 

models.  For example, PsychSim software agents (Marsella et al., 2004; Miller et al., 

2011) have a “theory of mind” about the self and all the other players, including the 

human user, and these intelligent agents try to pursue goals in the negotiation based on 

their different parameter settings .  Most non-VR IN games have intelligent agents, 29

although some VR IN virtual environments are not driven by intelligent agents (e.g., 

Rizzo et al., 2014) .  Intelligent agents in IN environments have been used in a number 30

of serious games (Ritterfeld, Cody, & Vorderer, 2009), and applications for changing 

behavior (Miller et al., 2009). Our own socially optimized learning in virtual 

environments using intelligent technologies (SOLVE-IT) game (Christensen et al., 2013; 

Miller et al., 2009; Miller et al., 2011) features an extensive series of virtual date 

scenarios across two game levels designed to reduce risky sexual behavior for young men 

who have sex with men using the PsychSim Software. The parameters underlying the 

intelligent agents (e.g., affecting goals and beliefs) drive the choice of agents, which in 

combination with the human decision-maker, drive how the story proceeds. That is, agent 

parameters (that can be manipulated) play a large role in the emerging social situation. 

This nationally disseminated intervention was the first intervention to successfully reduce 

sexual shame (and to do so for young men who have sex with men) and to show that 

29 Here, the underlying person parameters (goals, beliefs) that might drive behavior of those other actors 
should be considered, bearing in mind the technology used to implement agents in the game and leveraging 
its capabilities. For example, we manipulated the parameters of intelligent agents (Marsella et al., 2004), 
including various goal weights and belief parameters to guide automatic scenarios affording different 
sexual risk challenges (SOI) leading to our BOI, risky sex, for our POI, as in the real-world.  
 
30 In theory, VR could involve intelligent “other” agents. However, this is currently not the case.  

 



 

reduction of sexual shame significantly subsequently reduces risky sex in a longitudinal 

randomized controlled trial (Christensen et al., 2013). The sophistication of IN games 

with intelligent agents for modeling complex representative social interactions, and for 

creating representative interaction partners and interactions, make it particularly 

promising for modeling and understanding representative social behavior, including 

detailed social interactions over time (and game levels) in a virtual environment.   

Game physics used with IN games with intelligent agents ​.​ ​There are a variety of 

game platforms that can afford physics as in everyday life. One of the most popular is 

called Unity, ​https://unity3d.com/unity/ ​, a 3-Dimensional animated game development 

platform  that has a real-time game engine, or software development environment. 31

Authors on this paper have used Unity for developing SOLVE-IT and many other 

applications.  Physics engines (software) built into these games enable computers to 

create and tell 3-Dimensional objects how to interact in the digital world, affording an 

increasingly sophisticated “real-life-like” physics that can have GEL (e.g., where objects 

have mass and respond to gravity, with drag and angular drag, and can have velocity and 

respond appropriately when given levels of force and torque are applied, given drag).  We 

can record how objects (and agents, including one’s self character) are moving, and 

responding in the world, and relating to other objects and others (e.g., intelligent agents) 

over time.  Advances in voice recognition and sophisticated game physics, like real-world 

physics, enables the design of virtual environments that are more representative of 

31 Unity games can be built once and then used across over 20 different platforms including on 
smartphones, iPads/tablets, computers of every sort; it is used in about half of all games developed since 
2005, and is relatively easy to learn and use, and has a real-time game engine -- software development 
environment (https://unity3d.com/unity/features/multiplatform).  

 



 

real-life SOI and BOI for our POI, facilitating embodied simulations and a sense of social 

and physical presence.  

Neuroscience Measurement in SRD Using Virtual Environments 

A wide range of biobehavioral indicators (e.g., eye tracking software; 

physiological measurements, such as skin conductance, heart rate, blood pressure) could 

be used with SRD while individuals are playing a game, whether using VR or not (Miller, 

Jeong, & Christensen, 2019; Miller et al., 2019; Weibel, Grubel, Zhao, & Schinazi, 

2018).  A large exception involves the use of fMRI with VR, where VR involves the 

user’s own actual bodily movement: This is because one must remain relatively still in a 

scanner.  To try to provide something akin to a VR experience using fMRI ,  researchers 32

have modified the VR headset so that it can be used in a scanner, but it doesn’t afford the 

same sense of bodily presence that bodily movement affords (for a review see 

Wiederhold & Weiderhold, 2008). Nevertheless, the use of this modified headset using 

fMRI appears promising for a range of applications: For example, researchers have 

examined the effects of alcohol intoxication on virtual driving, both behaviorally and 

neurally (Calhoun et al., 2005), and the use of the modified headset to study its capacity 

to reduce pain, both in terms of self-report and also neural patterns (Hoffman, Richards, 

Coda, Richards, & Sharar, 2003; Hoffman et al., 2004; ​Parsons, Gaggioli, & Riva, 2017 

see also, ​Bohil, Alicea, & Biocca, 2011 who used EEG in conjunction with fMRI ).  

These effects may be extended into social interactions: Schilbach et al. (2006) found 

neural evidence that human observers can be socially entrained by virtual characters to 

32 Of course the VR headset is also modified so that it does not contain ferromagnetic metals. 
 

 



 

whom they attribute communicative intention. The user experience with modified 

headsets in a scanner (where the user does not actually bodily move as with regular VR) 

can involve the sense of moving in a virtual space (Wiederhold & Weiderhold, 2008): 

This is similar to what a user can experience within a non-VR interactive narrative (IN) 

game (Christensen et al., 2013).  

Using representative virtual IN games in fMRI scanners, one can examine how 

individuals differ in their ​neural circuit​ responses, for example, to sexually risky decision 

points versus conversational decision points (Smith et al., 2018).  Neurofeedback fMRI 

studies today strive to diagnose, train (i.e., enhance self-regulation) , and monitor neural 33

responses in contexts where atypical neural connectivity may adversely impact behavior 

(Robineau et al., 2017).  SRD could optimize the potential GEL and causal-inferences 

possible in such work.  Furthermore, because each level of the game could represent, for 

example, a month (yet be played in minutes), SRD IN games offer a “crunched time” 

capacity potentially  useful in capturing hard to observe patterns of virtual behavior over 

time (e.g., oscillating dynamic patterns) while also collecting neural patterning data.  

Dynamics that Might Otherwise be Hidden 

 ​One example of dynamics that might be more readily “observable” in a 

multilevel game is narcissism, a perplexing personality pattern.  Within a person, 

narcissism seems to include both periods of expressed grandiosity and vulnerability 

(Pinus, Cain, & Wright, 2014; Coleman, Pincus, & Smyth, 2019). Narcissistic individuals 

have an inflated sense of self-worth, prioritize their own needs and goals over those of 

33 See Emmert et al. (2016) for a meta-analysis of fMRI self-regulation neurofeedback. 

 



 

others, and believe that they are entitled to better treatment than that afforded others, and 

constantly seek admiration and recognition (Krizan & Herlache, 2018).  The vulnerability 

pattern likely emerges when the supports for this inflated self-worth are threatened.  In 

that context, narcissistic individuals’ self-regulatory capabilities are readily challenged 

and impaired (J. D. Miller, Lynam, Hyatt, & Campbell, 2017; Pincus, Roche, & Good, 

2015). ​ ​A variety of theoretical perspectives (Morf, 2006; Krizan & Herlace, 2018; 

Pincus et al., 2015) argue that grandiosity and vulnerability patterns dynamically feed 

into and reinforce one another over time (e.g., Giacomin & Jordan, 2014, 2016; Gore & 

Widiger, 2016; Hyatt et al., 2018; for a review see Coleman et al., 2019).  However, it is 

hard to “observe” this potential oscillation pattern behaviorally and even harder to 

determine the control parameters (environmental; within-person) that underlie it.  As 

Coleman et al. (2019) note, the specific situational stressors that threaten narcissistic 

individuals have been hard to discern; the same dynamic (e.g., grandiose behavior and 

non-responsive or dismissive claims or overwhelming rejection/humiliation producing 

self-regulatory breakdowns) may operate in an interpersonal conversation over a few 

minutes or over months or years. Measuring these in-the-moment trigger-response 

interpersonal dynamics under controlled conditions is quite difficult: SRD in a virtual 

environment -- in conjunction with computational modeling to anticipate critical control 

parameters for within-person oscillations for a given individual -- is needed.  

The Value of SRD for Psychological Science 

 



 

SRD requires a great deal of “upfront” work (also see Appendix), but we suggest 

that the potential payoff is worth it.  We argue that SRD will enable psychologists to 

better address criticisms and advance psychology as a science. 

Psychology: Science or Scientific-y? 

Is psychology a science or just scientific-y? Outside the field, skepticism over 

whether psychology is or is not a science is not uncommon (Lilienfeld, 2012: 2017): It is 

also reflected in the occasional senate bill or congressional vote to strip ​National Science 

Foundation ​funding or occasional claims that surface in the public (e.g, newspapers, 

blogs).  Berezow, a microbiologist, for example, argued that psychology was not a 

science because “psychology often does not meet the five basic requirements for a field 

to be considered scientifically rigorous: clearly defined terminology, quantifiability, 

highly controlled experimental conditions, reproducibility and, finally, predictability and 

testability” (Berezow, July 13, 2012). Not surprisingly, psychologists argue they meet 

these tests (e.g., Wilson, 2012): We share the frustration. But, it is worth noting that well 

into the 1900’s, prominent physicists viewed only physics as a science  (Bernal, 1939).  34 35

So what changed for biology and chemistry?  And is there a lesson for psychology?  

What Makes Nobel-Worthy Science?   

34 Rutherford, who won a Nobel Prise Prize in Chemistry was overheard noting that science is either 
physics or stamp collecting.  
35 The physicist Hoffman more recently noted, “When I was in high school, I loved science and 
mathematics, but I could never get too excited about biology. It seemed like a lot of tedious memorization 
and ad hoc theories and appeared to lack the coherence, clarity, and universality of physics. This remained 
my opinion for many years” (Hoffman, 2012, p. 2).  

 



 

To answer this question, we looked at what makes for unquestionably good 

“science”.  We did so by examining the past decade of Nobel Prize  winners in the 36

“hard” sciences, a noble aspiration.  

Criteria for Nobel science include innovative methods. ​ Many of the criteria 

for who/what wins a Nobel Prize in the hard sciences appear to involve innovative 

methods. These are described in more detail below.  

 ​Precisely measure the smallest critical unit.  ​The criterion involves affording 

observation of the smallest critical unit in dynamic interaction with other critical units, 

often, in real-time. The goal is not only greater precision but greater accuracy (National 

Academies of Science, Engineering, and Medicine, 2019) in for example, measuring 

these key units in interaction with other key units/concepts, or in observing how they 

operate -- within cells -- at lower levels of scale).  In chemistry, for example, 

Nobel-worthy methods enable insight into intercellular communication via 

hormone-receiving receptors (Nobel Media AB, 2012) and the development of 

Super-resolved Fluorescence Microscopy (Nobel Media AB, 2014) to look inside living 

cells in operation and literally see how molecules interact at the nanoscale level.   37

Improve experimental capabilities. ​In Physics, Geim and Novoselov (Nobel 

Media AB, 2010) found innovative ways to create a 2-Dimensional material, graphene, in 

which a single layer (one sheet) of atoms were arranged in ​hexagon ​forms ​, ​opening up 

new possibilities for exquisitely controlled experiments of electron behavior. Haroche 

36 There is a Nobel prize in physics, chemistry, and medicine/physiology, but not biology per se. Nor is 
there a Nobel Prize (officially) in the social sciences.  
37 Note that the level of scale here for this precision and dynamic examination of molecules in their context 
is at the level of molecules and cells, not whole organisms.  

 



 

and Wineland (Nobel Media AB, 2012) created groundbreaking experimental methods to 

better measure and experimentally manipulate individual quantum systems. 

Use computational methods to illuminate the complex patterns of critical units. 

The focus is on understanding complex interactions across scale.  For example, the Nobel 

Prize in Chemistry (Nobel Media AB, 2013) was awarded “for the development of 

multiscale models for complex chemical systems”) .  Karplus, Levitt, and Warshel used 38

quantum and classical mechanics and computational tools to calculate complex chemical 

reactions when new molecules are formed, aiding prediction and hypothesis testing.  

Afford manipulation and change.​ ​For example, Arnold leveraged evolutionary 

theory for new methods for protein development -- directed evolution of enzymes -- to 

solve chemical problems (Nobel Media AB, 2018a).  In Physics (Nobel Media 2018b) 

Ashkin was awarded one for tools--optical tweezers-- that can use laser light to move 

small particles, and living bacteria, without harming them: He also subsequently used 

them to investigate “the machinery of life”.  

Additional criteria. ​  ​We identified two additional common criteria.  The second 

major Nobel criterion involves the relevance and potential that the innovation had for 

large social impact that accompanied paradigm shifts.  For example, Arnold’s work 

involving directed evolution of enzymes could be used to solve social problems (Nobel 

Media AB, 2018a). The third major Nobel criterion for discoveries in physics, chemistry, 

38 The 1998 Nobel Prize in Chemistry (Nobel Media AB, 1998) was won for computational tools: Pople for 
developing computational methods for quantum chemistry and Kohn’s involved a density functional 
approach. The 1999 Nobel Prize in Physics (Nobel Media AB, 1999) involving computational modeling 
was awarded to Veltman and Hooft in quantum field theory.  

 



 

and biology involved theory, usually this involved the testing of  or advancement of 39

cumulative “big” or “bigger theory.” Those “bigger theories” included, in physics, the 

Standard Model in particle physics (Mann, 2010) and Einstein’s Theory regarding 

gravitational waves (Steinicke, 2005); in chemistry, the Periodic Table (Scerri, 2007); in 

medicine/physiology, Evolutionary Theory (Darwin, 1859/2002)).  

A “hard science” Nobel for a Psychologist? ​Psychologists or those trained in 

psychology have been awarded a Nobel Prize in Medicine/Physiology, most recently in 

2014 for discovering the brain’s neural positioning system, O’Keefe (a psychologist/ 

neuroscientist) won his portion for the discovery of “place cells” (CA1 hippocampus area 

(see O’Keefe & Nadel, 1978)) and the Mosers, both neuroscientists, won theirs for 

discovering a correspondence between a ​hexagonal​ grid with evenly spaced (and same 

direction/size) electrode spike firing of nerve cells in the rat’s brain in the dorsocaudal 

medial entorhinal cortex (dMEC) during the rat’s movement/positioning in his 

environment that coordinated with the CA1 hippocampus area “place cells” (Moser, 

Kropff, & Moser, 2008).  Drawing from the nobel criteria above, this work identified 

smaller critical units ​(i.e., grid cells) that in interaction with one another and with other, 

place cells, provide insight into fundamental questions ​across scale ​about how brains 

have the capacity to navigate in our environment (e.g., representing position, direction, 

and velocity). Additional discoveries since this Nobel was awarded indicate that the 

uniform hexagon space grid “warps” in line with the reward learning histories for specific 

motivations/goals in a given context (Butler, Hardcastle, & Giocomo, 2019; see also 

39 Providing the basis for refuting “bigger theory” or strong systematic evidence that undermines major 
theoretical assumptions of established theory could also provide a basis for an award in science at this level.  

 



 

work by Boccara, Nardin, Stella, O’Neill, & Csicsvari, 2019).   The content of this work 40

and its innovative and ​paradigm changing methods ​ seem tantalizingly within our grasp as 

psychologists.   41

Aspirational Psychological Science: SRD’s Role 

 ​Using the roadmap provided by Nobel Prize awards as a guide, what is the 

science towards which psychologists should aspire? SRD could help move us towards an 

aspirational science, advancing each of the following:  

Shared definitions of units of interest.​ ​ For social and personality psychologists, 

key units include, for example, situations (or contexts), for which we do not have shared 

definitions. Default control groups (DCGs), provide an initial concrete implementation of 

a person-in-context model (e.g., like a model system in biology) of one or more situations 

involving ongoing social interactions, and physical affordances.  With feedback (via 

virtual validity checks) to assure GEL, DCG could provide cumulatively more precise 

and accurate shared definitions of contexts and person-in-context interactions over time.  42

40 Furthermore, additional researchers, building on this work, investigating the combination of multisensory 
self-motion and place/landmark information​ in virtual environments with mice​ developed a network model 
whose principles were further tested, moving scientists towards a theoretical framework for understanding 
how environment and self-cues produce the spatial representations guiding goal-directed behavior 
(Campbell, Ocko, Mallory, Low, Ganguili & Giocomo, 2018).  
41 Indeed, the hippocampus plays a significant role across rodents and humans ​in decision-making 
involving approach-avoidance conflict: it is key, however, to study these motives concurrently ​(​Bach, 
Guitart-Masip, Packard,  Miró, Falip, Fuentemilla, & Dolan, 2014); Ito & Lee, 2016; Oehrn, Baumann, 
Fell,  Lee, Kessler, Habel, ​Hanslmayr, ​& Axmacher, 2015; O'Neil, Newsome, Li, Thavabalasingam, Ito, & 
Lee (2015). ) reminding us of N. E. Miller’s (1944) classic approach-avoid conflict research (and the 
importance of measurements in the rat’s ​movement in space​ as it negotiated this conflict). This suggests the 
need to revisit this work on movement to assess this conflict (Boyd, Robinson, & Fetterman, 2011) using 
today’s technologies (e.g., Oculus Rift/VR; animated characters interacting with humans) similar to what 
has and is currently being done, involving fine-grained head movements in both approach and avoid 
motivations in conflict situations Jeong, Feng, Krämer, Miller, & Marsella (2017).  
42 In building initial DCG, for example, we are concurrently testing assumptions about key features in it 
(e.g., settings and their affordances; structures in it (e.g., scripts); beginning and ending points, etc.). These 
evidence-based assumptions, for example, can be challenged (e.g., with comparisons with alternative 
models; by experimentally eliminating/altering aspects of the model in experimental comparisons to judge 

 



 

Precision measurement of critical units in dynamic interaction over time. ​ ​It 

can do so with automatically recorded precise observations (e.g., virtual choices; the 

physics of movements, such as avoiding/approaching others/objects) of an individual’s 

agent behavior interacting within social interactions and contexts; sophisticated 

intelligent social agents with known representative underpinning parameters; and with the 

capacity of SRD in virtual environments to  “crunch time,” this could enable  precision 

examination of the complex triggers and oscillating behavior patterns that can emerge for 

individuals in interaction with others over long periods of time.  43

Concurrent measurement of underpinning brain patterning​.  Concurrent 

measurement of underlying mechanisms while engaged in representative everyday 

interactions during extended social interaction is possible today (e.g., with fMRI, for 

example, Smith et al., 2018).  

Experimental manipulation, causal inference, and change assessment. ​  It is 

possible with SRD to compare an experimental group to a control group that differs only 

in the independent variable of interest.  The control group itself has generalizability to 

everyday life (Miller et al., 2019). 

Use of computational models and modeling “experiments.” ​Computational 

models (Read et al., 2010; Read, Smith, et al., 2017; Read, Droutman, Smith, & Miller, 

2017) were used in addressing prior puzzles in personality and social psychology such 

their altered virtual validity) to enhance cumulative science precision, accuracy, and insight into when, 
why, and how they differ in terms of impact. 
43 Furthermore, virtual validity checks in real-time (e.g., using smartphone and sensor technologies, 
including ecological momentary assessments (Shiffman, Stone, & Hufford, 2008) afford continued 
feedback and opportunities for cumulative measurement and prediction improvement over time. 
 

 



 

as how there could be more within-person variability across situations than 

between-person variability and still have stable traits such as the “Big-5”.   Such 44

computational experiments can guide SRD  development (Miller, Jeong, & Christensen, 45

2019) because they suggest, for example, the need to measure certain affordances in 

situations in everyday life and insure that those are represented in virtual environments 

as in everyday life for our BOI in our SOI and for our POI.   Data afforded in SRD 46 47

designed with these computational models in mind can be used to further test these 

models computationally (i.e., do we get the same results from a computational modeling 

of the same features as we do in terms of participant behaviors in virtual environments 

with SRD). This process can generate new hypotheses for testing in SRD.  

Translation methods to optimize scalability  and broader societal impact. 48

SRD provides one possible solution to better methods and more rapid translation for 

44  In building their computational models, Read and his colleagues argued that humans have universal 
approach and avoid systems and nested in them, universal goals: But the relative levels of chronic goals 
differ between individuals. Situations have different goal affordances as well. As individuals move into 
different situations (e.g., a friend appears; an alarm goes off), the situational affordances change: These 
combine with chronic goal activations to affect current competing goal activations, with the most activated 
goal driving behavior. Computational models virtual personalities (VP) -- where VP chronic activations 
were systematically manipulated -- indicated that there was tremendous within-person variability in 
behavior across situations, but at the same time entering each VP’s data (as we would for real subjects), and 
performing factor analyses produced across persons, the “Big 5”.  
45 In a way a given SRD DCG could be our “best guess” instantiation of the probability distributions of 
cues and sequences that constitute a specific context and sequential options and consequences in the 
real-world.  As suggested earlier, this seems analogous to the “model system” concept so critical in modern 
biology.  
46 In addition, because computational models can be used across scale (e.g., the interpersonal level, the 
individual level, and the neural level) to address personality and social psychological dynamics in 
producing emergent behavior (e.g., Read, Brown, Wang, & Miller, 2018), they can also suggest (across 
scale, for example in fMRI studies) what to measure and afford in building SRD.  
47 In short, computational modeling, since it requires the math and precision to build, provides 
psychologists with new methods in our toolkit for illuminating hidden assumptions and theoretical gaps, 
while also affording ways to iteratively build and improve SRD as well as testable theories (Marsella & 
Gratch, 2016; Marsella, Gratch, & Petta, 2010; Vallacher, Read, & Nowak, 2017; Farrell & Lewandowsky, 
2018) 
48 It can take a decade or more for basic science to produce useful applications (Morris, Wooding, & Grant, 
2011). 

 



 

broader impact.  That is, if found effective, some of that experimental work could afford 

interventions that could rapidly move from experimental lab efficiency to effectiveness 

trials with broad utilization on a national level with relatively low cost to the public on a 

per capita ​ basis (Christensen et al., 2013).  Some game platforms (e.g., Unity) such as the 

one we used for our SOLVE game (Christensen et al., 2013), are highly cross-platform 

capable -- for example, game interventions developed for computers, can be easily 

implemented on other platforms (e.g., smartphones). These games could be extended as 

smartphone interventions or with other smartphone interventions, such as just-in-time 

adaptive interventions (JITAI), into individuals’ everyday life  (Nahum-Shani, Hekler, & 49

Spruijt-Metz, 2015; Nahum-Shani et al., 2018; Spruijt-Metz et al., 2015) .  Indeed, a 50

recent meta-analysis suggests that JITAI can be quite effective (Wang & Miller, in press).  

Reach towards “bigger theory”. ​  So many of our theories in social and 

personality psychology -- from the perspective of hard scientists -- would probably be 

viewed as “mini theories” where it’s hard to see how it all “adds up”.  Work in these, and 

most areas of psychology, is generally not tethered to and integrated into a “bigger 

theory”.  We elaborate on the “bigger theory” issue in its own section below and how 

49 Technological advances here are rapid, including in exquisite capabilities for voice recognition and 
emotion differentiation (see for example, Huang & Narayanan, 2017; Somandepalli et al., 2016) and the 
capacity to “pick up” complex contextual cue reactivity in craving (Traylor, Parrish, Copp, & Bordnick, 
2011).  
50 In this era of “big data” (Cai & Zhu, 2015; Kitchin, 2014; Provost & Fawcett, 2013), one question is what 
will we do with so much rich and complex data? Machine learning may provide one set of answers, but the 
cues, and the relationships among them that go into these algorithms can often be a “black box.” 
Furthermore, these cues may or may not be the cues that humans use in the same way (Cai &Zhu, 2015). 
SRD is a methodology through which big data can be leveraged to better create systematic control and 
experimental groups and to more systematically test how to “structure” data contextually to build better 
predictive models of human smart-phone and sensor data patterns over time.  

 



 

SRD could also assist there.  In all of these ways, we argue, that SRD would concurrently 

advance psychology as a science, and therefore, our place within the “hard” sciences.  

“Bigger Theory”and SRD 

Given emerging findings in cognitive science and neuroscience, we believe that 

psychology, broadly, may be “on the cusp” of an exciting paradigm shift if we can 

examine and manipulate ​features in context ​ that are important and representative of those 

that humans encounter (and are differentially motivated by) in their real-world ecologies. 

Since many of the authors are personality-social psychologists or from related social 

sciences, we use examples of social concepts to suggest how we could do this.  

 ​Bigger Theory Candidate: Predictive Coding 

Hierarchical prediction. ​Making sense of and acting in the world is what we do 

all the time, whether in virtual environments or in everyday life. It is nonetheless 

complex and not direct. Predictive coding is a major theory of how the brain is adapted to 

make probabilistic inferences (Clark, 2013; Friston & Kiebel, 2011).  Predictive coding 51

affords a universal explanatory principle for the operation of the human brain and mind 

(Bar, 2011a; Friston & Kiebel, 2011).  As such, it’s a promising candidate for “bigger 

theory” in psychology -- as biologists, chemists, and physicists might think of it -- that 

also could guide us in developing systematic representative environments to better 

understand individuals in their interaction with one another in context.  Such SRD 

designed virtual environments could also guide our thinking about predictive coding in 

51 Although Clark (2013) mostly presents one predictive coding algorithm, different predictive coding 
models using alternative algorithms still vye for which better capture the data and which is the most 
neurobiologically plausible (Spratling, 2017).  

 



 

understanding social construction of causal meaning and social behavior in 

representative, dynamic, and contextualized person and situation interactions over time.  

 Clark (2013), reviewing work in cognitive science, computational modeling, and 

neuroscience, argues for predictive coding: That is, that the brain uses a hierarchical, 

multi-modal (e.g., Mesulam, 1998; Rauschecker & Tian, 2000; DeWitt & Rauschecker, 

2012) “bidirectional cascade of cortical processing,” generatively, to minimize prediction 

error between “top-down expectations or predictions” and “incoming sensory inputs” (p. 

181).   In the domain of perception -- and also in the domain of action -- humans in 52

trying to track a visually presented scene use prior knowledge, and “top-down” 

knowledge, to generate “a kind of ‘virtual version’ of the sensory data” (Clark, 2013, p. 

182).   For example, imagine a social outcome or consequence: For example, Mary was 

just injured. We might ask, “What or Who caused this?” “Why?” 

As Friston notes, starting with the consequence or effect, the brain essentially 

works backwards to identify the cause.  In doing so, we use causal structures (presumably 

evolved) in the brain “that distil the causal regularities in the sensorium and embody them 

in models of their world” that we can use to predict consequences (Friston, 2013, p. 

212-213).  The task is complex because there are many potential causes (e.g., of Mary’s 

injured state). What might be those structures (each represented here with an arbitrary 

letter) that our brains use to make causal inference about what happened here.  

[ ​A D G I X T P N ​] → With what consequence/effect 

52 Friston (2013, p. 212) notes that “predictive coding is a consequence of surprise minimisation, not its 
cause.” 

 



 

Read and Miller (1998) argued that each of these “structures” or “slots” are likely to 

reflect “universal” linguistic concepts  across cultures (Wiezbicka, 1992) that include 53

“want”,  “as well as all of the words in the following ‘story’: I want this, you do this, this 

happened, this person did something bad, and something bad happened because of this.” 

(Read & Miller, 1998, p. 49).  And, as Friston (2013) notes, the neuroscience literature 

supports at least two likely candidates, those associated with “ ​separable attributes of 

‘what’ and ‘where’ [translating] into separate neuronal representations in segregated 

visual pathways” ​(Friston, 2013, p. 212-213, brackets added).   Furthermore, different 54

orderings of the same behaviors produce remarkably different social causal inferences 

(Read, Druian, & Miller, 1989): That suggests, “when” behavior relative to other 

behavior occurs, matters . Thus, candidates for the causal “slots” for making causal 55

inferences about the consequences/effects (e.g., Mary’s injury) that occur in social 

interactions may include the following candidates in brackets:  

 [Who /what] [Did/Said this] [to Whom/What] [How][Where][When]→ effect ,  [Why] 56 57 58

53 Read and Miller (1998) also closely examined the developmental literature (Read & Miller, 1995). For 
example, young children have a readiness to communicate wants (Gelman, 1990).  
54 The frontal cortex plays a domain general cognitive control function, selecting among competing 
representations and shifting and weighting algorithms between dorsal and ventral multimodal streams and 
numerous points of integration across ventral and dorsal streams (Bornkessel-Schlesewky et al., 2015a, 
2015b.) 
55 A critical feature in experiments is timing, the independent variable for example must precede the 
dependent variable as one important criterion for causal inference.  Of course, in everyday life, individuals 
use many of the criteria we use in experiments to make their own everyday causal inferences about the 
meaning of sequences of behavior.  
56 Face processing (and the anticipation of face processing) is especially associated with the fusiform face 
area (FFA) of the brain (Furl, Garrido, Dolan, Driver, & Duchaine, 2011). That is, specific “who” or 
“whom” assessments in understanding sequences of actions may be based on connections in one’s 
representation there. 
57 Roseman (2011) provides a hierarchical motive-based model pertaining to emotional “effects” that may 
serve to also motivate (e-motion) action. Might this theoretical model suggest possible neural (perhaps 
narratively based) slot unit linked underpinnings? 
58 Exciting work (i.e., Chang, Gianaros, Manuck, Krishnan & Wagner, 2015) in multivoxel pattern analysis 
(MVPA) that appears to afford sensitive and specific neural signatures for affect induced stimuli (e.g., 

 



 

And, the concrete narrative that might be generated in a situation as we tried to 

understand why Mary was injured, using these slots, might be the following:  

John shoved Mary hard at the luggage carousel just now causing her injury: 

He was in a hurry and didn’t care if he hurt her in the process. 

Just as only a few letters (26 in English) afford thousands of words, these “causal slots” 

of a scenario (we call a “plot unit”)  can afford an almost infinite number of concrete 

scenario descriptions, some so recurrent that in a given culture we may give them an 

economical conceptual name, such as here describing John’s behavior as aggressive or 

using trait terms if John has done things like this repeatedly (e.g., aggressive): Indeed, 

consistent with Read and Miller (1998), underlying many social concepts may be 

neurally linked “slots” in one or more of these “plot units” (see Figure 3).  Because there 

are so many ways that each of these categories of slots can be filled, there are many 

alternative causal inferences that could be activated across persons in understanding the 

meaning of a given sequence of behavior (although this set of alternatives is not 

unlimited).  As humans move from scene to scene, top-down inferences about a former 

scene can guide the meaning of a new or upcoming scene, dynamically enabling the 

construction of the interpretation that best “explains” what is happening, and reduces 

errors of prediction (due to surprise, Friston, 2013).  If these are important slots in 

making causal inferences, what’s the hierarchical nature of this process?  

aversive images) could benefit from fMRI recording during participant SRD representative scenarios 
engagement. It is an intriguing possibility that we could examine if such stable neural specific signature 
activations and their links recapitulate nongoing narratives (and conceptual plot units) in social interaction.  

 



 

Concretizing hierarchical prediction in social interaction. ​ ​Read and Miller 

(1998) used a recurrent neural network interactive activation and competition (IAC) 

modeling approach (McClelland & Elman, 1986; McClelland & Rumelhart, 1981; 

Rumelhart & McClelland, 1982): IAC is one approach, to help concretize the prediction 

processes humans may use to infer causal meaning in social interaction. Like the brain 

itself, an IAC approach assumes hierarchical structures and a parallel constraint 

satisfaction process in making causal inferences regarding the meaning of actions. As 

illustrated in Figures 3 and 4 (see Read & Miller for further detail), major social concepts 

(e.g.,  traits, states, relationships, roles, beliefs/attitudes, and so forth)  may “top down” 59

guide our causal interpretation of the ongoing social interaction at the event and sequence 

levels. Bottom up processes (e.g., from the feature analysis  and identification levels) 60

might send “error signals” up, producing surprise (e.g., Clark, 2013; Friston & Kiebel, 

2011) and the need for adjustments in predictive coding (Friston, 2013).  Figure 4 helps 

illustrate some of the links, and spreading activation involved in settling on a competing 

interpretation of an ongoing social interaction and how it changes with new input.  

Event models are predictive models of the near future that provide a “top-down” 

frame or bias that allows the person perceiver to fill in and disambiguate ambiguous 

information. Consistent with the idea of events as predictive models, an event typically 

59 These social concepts themselves are apt to be based on underlying learning histories with respect to 
various combinations of plot units.  
60 There are extensive literatures focused on “person”/“object” perception as well as action perception-- and 
the links among these to social judgments.  For example, there is considerable work on features 
underpinning face perception and the relationship of these features to social judgements such as dominance 
and competence (e.g., Todorov, Dotsch, Porter, Oosterhof, Falvello, 2013) or attractiveness (e.g., 
Bronstaad, Langlois, & Russell, 2008; Todorov et al., 2013). 
 

 



 

ends when there is high prediction error; at this point the perceiver starts to build a new 

event model, and when possible, integrate it with the prior event (Radvansky & Zacks, 

2014). As perceivers may create hierarchies of event models at different “grain” sizes, 

prediction error and likelihood of updating a model may differ at different “grain” sizes.  

Predictive Coding in Building Virtual Environments for SRD. ​ ​ The literature on 

predictive coding makes it clear that ​context matters tremendously ​. For the brain, prior 

knowledge, including what just happened and what we believe the perceiver/doer is 

anticipating/expecting matters (e.g., Clark, 2013).   ​It matters in experiments. ​ ​As Clark 61

(2013) notes, this “means that we need to be very careful when generalizing from 

ecologically strange laboratory conditions [e.g., faces without bodies] that effectively 

deprive us of such ongoing context.” (p. 203, material in brackets added).   This is a 62

major reason why our laboratory contexts need to be representative of everyday life: If 

not, it’s neither clear what our findings really mean nor whether our findings are likely to 

have GEL.  And ​that, ​ ​we would argue, is critical for our status as a science.  

How does predictive coding help guide SRD development? ​ In building a virtual 

environment for SRD based on predictive coding, how do we start?  Predictive coding 

suggests that in developing DCG that are representative for our purposes, we should 

insure in our virtual environment that game players can use the same process (and can 

61 As Clark notes, Helmholtz (1860) had “the key idea that sensory systems are in the tricky business of 
inferring sensory causes from their bodily effects. This in turn involves computing multiple probability 
distributions, since a single such effect will be consistent with many different sets of causes distinguished 
only by their relative (and ​context dependent​) probability of occurrence” (Clark, 2013, p. 182, italics 
added).  
62 For other discussions pertaining to contextualization and its importance, see Kveraga et al., (2007), Bar 
(2007), Barrett and Bar (2009), and Fabre-Thorpe (2011).  
 

 



 

access the same representative features) for meaning construction during an unfolding 

social interaction scenario in a virtual IN game as that same POI in the SOI for the BOI 

would need in everyday life. 

We know a great deal about the features underpinning scenario construction, and 

in expanding on that and leveraging it in creating SRD, we can systematically (and with 

recurrent feedback from participants in developing our SRD to achieve this) reproduce 

in our virtual worlds what humans need (e.g., in the way of cues) to make inferences 

they are likely to make in these same everyday contexts. We can test hypotheses and 

build theories about probability distributions in these representative social virtual worlds 

that are more consistent with those in the real-world while insuring our science fits with 

work emerging across psychology (e.g., cognition, decision-making, language, memory, 

perception, social interaction, speech) as well as in the biological and neuroscience 

literatures.   63

Advancing Psychological Science 

SRD as a Tool for “Crisis Management” 

As the above discussion suggests there are a number of benefits to SRD, including 

its potential to grapple with current and recurring crises in the field and to leverage 

criticisms to develop new methods to address those criticisms and advance our science. 

This includes the relevance crisis (Pettigrew, 2018), and building capacity to leverage 

theory and research for effective, impactful interventions. It also includes the related 

63 Computational models that take priors (prior constructions; top down concepts) into account in guiding 
subsequent causal inferences in ongoing social interactions. This could help model and predict users’ causal 
meaning inferences in interacting in virtual (and to the extent possible real-life corresponding) situations. 
Those computational models could also generate testable hypotheses for participants causal inferences 
within and about both virtual and real-life ongoing situations over time.  

 



 

generalizability of our work to everyday life (GEL), the crisis in homogenous samples of 

POI (Henrich et al., 2010), and the replication crisis (National Academies of Science, 

Engineering, and Medicine, 2019). Other emerging crises are the need for paradigms that 

better bridge levels of scale (Cacioppo et al, 2000), for example, between behavior in 

extended social interaction and neural circuit patterning, and finally, the capacity to build 

a cumulative science, involving increasingly more precise methods/measures and an 

understanding of how these experiments fit in the fabric of a “bigger theory,” affording 

prediction and testability (see above).  

Integration of Approaches is Essential 

Cronbach’s (1957) APA presidential address, published in the ​American 

Psychologist, ​noted that there were historically two streams of research differing in 

method and approach: experimental and correlational. He argued that integrating these 

approaches was critical: Otherwise, he said,  

they can give only wrong answers or no answers at all regarding certain important 

problems…A united discipline will ... be concerned with the otherwise neglected 

interactions between organismic and treatment variables.  Our job is to invent 

constructs and to form a network of laws which permits prediction.  From 

observations we must infer a psychological description of the situation and the 

present state of the organism.  Our laws should permit us to predict from this 

description, the behavior of organism-in-situation (pp. 681-682). 

The current approach we have proposed suggests ways to move further towards 

this goal.  We argue that we may be at the “tipping point” for a paradigm shift in 

 



 

experimental design.  Systematic Representative Design, as envisioned here, combines 

correlational and experimental approaches, and affords generalizability to everyday life 

as well as the capacity for experimental causal inference.   A technology-enabled SRD 64

could enhance our science in myriad ways (e.g., precision, robustness and reliability, 

generalizability to everyday life, cumulative potential for bigger theory, usefulness) and 

fill the context gap.  Systematic Representative Design could also help bridge historical 

divides, provide tools across scale, support new persons-in-situation methods, better 

interface with cognitive science, neuroscience, computational science, and artificial 

intelligence, and help better claim psychology’s place in the “hard” sciences.     

64 Given a predictive coding approach to developing SRD, there is also the possibility of building in 
representative environments that afford opportunities for examining variability in how individuals make 
causal inferences within, for example, a given DCG and in assessing what can alter those patterns (e.g., 
with experimental groups built on the DCG base). .  
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Table 1 

Comparing Three Designs on Inference Goals and Strategies to Achieve Them 

Goals ​ & 
Strategies 

Systematic  
Design 

Representative 
Design 

Systematic 
Representative Design 

Cause-Effect       
Study Phase  Design Causal Analysis Design + Analysis 

Timing IV -> DV Sometimes IV -> DV 

Controls Via Manipulation Via Analysis Via Manipulation 

Eliminate 
Alternative 

Explanations 

Random Assignment Analysis Random Assignment 

Control (CG) and 
Experimental (EG) Analysis Default Control (DCG) 

+ EG on DCG 

Generalizability       
Everyday Life 
(GEL); Ext. 
Valid (EV) 

EV, but Even If EV, 
GEL Unknown 

GEL; If GEL, 
Then EV Likely 

GEL; If GEL, Then EV 
Likely 

Representative? Atypical Task Analysis Task Analysis 
Check? No No Virtual Validity 

Denatured 
Variable?  

Denatured Variables 
Tying/Untying 

Naturally 
Occurring Naturally Occurring 

      
  

 

  

 



 

Table 2 

Representatively Designing a Default Control Group: Social 

Scientist Steps for Intelligent Agent/Game Designer Collaborator 

in Building Default Control Group 

Step Concept Example 
1 
  

Identify Behavior(s) of 
Interest (BOI) 

Condomless Anal Sex 
(CAS) 

2 
Identify Samples of 

Population of Interest 
(POI) 

Young Men who have 
Sex with Men (YMSM) 

3 

Identify Most Frequent 
Settings (MFS) 

Leading Up to BOI for 
POI 

Home/Apartment (CAS 
frequently occurs); 

House Party; Bar/Club; 
Internet (First Contact) 

4 Extract Details,  
Relevant Cues 

Cues for POI in MFS; 
Partner Selection 

Attributes  

5 Identify Scripts in MFS “Pick Up”; “Sexual 
Script” 

6 Identify Components of 
Scripts (SC) 

Bar Pick-Up Steps: 
Enter/Check Scene; 

Zero in on Prospective 
Target; Create Reason 
to Meet; Get to Know; 
Test waters; Escalate 

Intimacy; Seal the deal 

7 

“Entry” and “Exit” 
Conditions for Each SC 
and Specified (Extract 

Relevant Cues to 
Threshold Exit/Entry 
Conditions. Identify 
Frequent Responses/ 

Options; How 
Sequences can go 

Differently 

Bar Pick-Up from “Test 
Waters” to “Escalate 

Intimacy” Example: (1) 
Pretext to Touch (e.g., 
Love the Feel of your 
Shirt, is it Silk?); If go, 
(2) Reduce Distance 

(e.g., Dance) (3) Brush 
up “Accidently” 

(Deniability) Until 
more Intimate (e.g., 

Touch Leg); If Go, Exit 
(4) Enter Escalate 

Intimacy (more Direct, 

 



 

Foreplay), Desire for 
Sex Mutual, if 

Threshold Exit; (5) 
Enter “Seal the Deal”). 

8 

Identify Challenges 
(e.g., to Safer Sex) 

Embedded in Sequence 
up to BOI for POI; 

When/How they Occur 

Frequent Obstacles 
(e.g., Alcohol) Given 

BOI and POI. In 
“Getting to Know” 

Phase, Offered Drink.  

9 

Represent Exact 
Behavioral 

Implementations for 
Dialogue for Agent; 

Representative Human 
Response 

Options Where 
Variability 

In “Getting to Know,” 
Compliments Afford 
Positivity Threshold. 

Specify for POI, 
Positively Rated 

Compliments in Bar 
Scenario. Specify 
Behavior Options; 

Choice Basis (e.g., in 
Attachment Styles)  

      
  
  

 



 

 

 

Figure 1. ​ Adapted from Brunswik’s Lens Model of a Single-System 

(1952). 

  

 



 

 

 

 

Figure 2. ​ Restaurant Script Adapted from Read (1987).  

 



 

 

 

Figure 3.  

The bi-directional information flow between the levels of the Constraint Satisfaction 

Model exemplified (modified from Read & Miller, 1998 by adding the event level for 

clarification).  

 

 

 

 



 

 

Figure 4. Constraint Satisfaction Model of Social Perception, Specific Example  

 



 

 

 


