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Abstract—In this paper, Adaptive Neuro-Fuzzy Interference 

System (ANFIS) technique is used to develop models to predict 
two conditions commonly found in a Wireless Sensor Network’s 
deployment; these conditions are failure due to (i) poorly 
deployed environment and (ii) human movements. ANFIS 
models are trained using parameters obtained from actual 
ZigBee PRO nodes’ Neighbour Table experimented under the 
influence of associated network challenges. These parameters 
are Mean RSSI, Standard Deviation RSSI, Average Coefficient 
of Variation RSSI and Neighbour Table Connectivity. The 
individual and combined effects of parameters are investigated 
in-depth. Results showed the mean RSSI is a critical parameter 
and the combination of mean RSSI, ACV RSSI and NTC 
produced the best prediction results (~92%) for all ANFIS 
models.  

Keywords-ANFIS; Wireless Sensor Network; ZigBee PRO; 
human movements; poor deployment 

I.  INTRODUCTION 
Wireless Sensor Network’s (WSN) network reliability is 

greatly influenced by the network challenges found in a 
deployed environment [1, 2]. Particularly in home and 
building automation applications, poor deployment of nodes 
(i.e. dense physical obstructions, long distance 
communication) or any physical change in the environment 
(i.e. introduction of human movements) are known to 
degrade the multipath and fading effects [3, 4, 5, 6] between 
communicating nodes. These phenomenons potentially cause 
undesired link failures and frequent route changes, leading to 
higher energy consumption and even early death of battery-
powered devices [8]. It is therefore of great interest to study 
how WSN nodes operate under the influence of these 
physical network challenges, specifically, poor deployed 
environment and human movements. 

WSN optimisation protocol is often implemented to 
improve a WSN’s network reliability [18]. For instance, a 
typical routing protocol improves network reliability by 
selecting links or routes of the highest quality for data 
delivery [9, 10, 11]. However, the performance of a WSN 
can be attributed by different associated challenges. 
Common generalisation of a link performance as good, 
intermediate or bad does not provide sufficient information 
for WSN optimisation protocol to execute optimally [12, 25]. 
For instance, increasing transmit power may improve the 
delivery reliability of long distance communicating nodes 

[31]. However, this may not be true for nodes suffering from 
channel access failure under persistent Wi-Fi interference 
[13]. In order for WSN optimisation protocol to function 
optimally, it is highly desirable that the causes of link 
failures are accurately identified. Failure to identify the cause 
of link failure may adversely affect the network’s 
performance [1, 12]. 

Classical logic reasoning is a widely used method to 
estimate link quality [25]. However, link quality estimation 
is known to be imprecise due to the complexity of a 
deployed environment [14, 15, 16, 17]. For example, a link is 
identified as good only if its Packet Reception Rate (PRR) is 
greater than a given threshold of 0.95. However, relatively 
speaking, a link with PRR of 0.94 may not be inferior either. 
The ambiguity in the evaluation of link quality using 
classical reasoning can be attributed to the algorithm’s 
ineffectiveness to incorporate and intelligently deal with 
human knowledge [25]. Hence, the proposed research aims 
to fill this void using ANFIS. 

ANFIS functionally combines the approximate reasoning 
of fuzzy set theory with the learning and adaptability features 
of Artificial Neural Networks (ANN). Known for its 
capability to deal with non-linear and complex control 
problems, ANFIS is used in this work to break down the 
uncertainties of WSN into comprehensible knowledge.  

The objectives of this paper are twofold. Firstly, the 
paper aims to develop intelligent models using Adaptive 
Neuro-Fuzzy System (ANFIS) that accurately predicts if a 
link failure is due to (i) poor deployed environment or (ii) 
human movement. Secondly, the paper aims to investigate 
the individual and combined effects of parameters found in 
ZigBee PRO node’s Neighbour Table (NT) under the 
influence of associated network challenges.  

The contributions of this paper are threefold. First, the 
ANFIS models are trained and evaluated using parameters 
obtained from actual nodes in real-world environment rather 
than from simulations. This is important as research in this 
area are largely simulation based and may not be extendable 
to real deployments. These parameters serve as ANFIS 
models’ training inputs leading to realistic and relevant 
insights. Second, ANFIS model’s training inputs are 
obtained from the different operating layers where the 
complexity of different network challenges can be 
understood. Third, ANFIS models are trained using different 
combinations of parameters. This approach allows 



comparisons of performance of different parameters and 
provides meaningful insights to nodes’ behaviour.  

The remainder of this paper is organised as follows: 
Section II provides an overview of relevant work in this area 
including the present practical limitations in WSN 
deployments. Section III describes the experimental setups, 
while Section IV introduces the parameters used to train the 
ANFIS models. Section V explains the basis of ANFIS 
architecture and also proposes three ANFIS models to be 
developed. The results of individual ANFIS models are then 
discussed and summarised in Section VI.  Section VII 
concludes the paper with key points. 

II. RELEVANT WORK TO DATE 
WSN link failures can be attributed to many causes such 

as inconsistent radio propagation, hardware dissimilarities, 
and external interferences. These undesirable operating 
conditions can lead to unpredictable behaviours [19]. From 
protocol design standpoint, a node’s behaviour may be 
trivial. However as network size scales up and the deployed 
environment gets more complex, anticipating the operating 
behaviour of nodes become increasingly complex and a 
generic model becomes impractical.  

In [19], the authors questioned, “What are the observable 
causes of packet success and failure in modern platforms, 
and how can a node detect them?” Knowing the answer to 
this question would have a significant implication for WSN, 
possibly leading to accurate link quality estimation and 
efficient WSN optimisation protocols. To do so, 
experimentation of node behaviours is necessary. This 
should be followed by in-depth analysis where underlying 
patterns are uncovered.  

The performance of QoS parameters from physical and 
application layer of IEEE 802.15.4 nodes are analysed under 
the influence of WLAN interference in [13]. In addition, a 
new cross-layer parameter, Packet Reception Rate with Clear 
Channel Assessment (PRRCCA) is proposed to distinguish 
persistent WLAN traffic robustly.  

The behaviour of the Reception Signal Strength Indicator 
(RSSI) under the influence of human movements, different 
antenna orientation, elevation and ground effect are studied 
in [21]. It is observed that even without human movements, 
RSSI measurements are inconsistent at different node’s 
orientation and position. Similarly, [20] confirmed the 
impact of human’s physical obstructions on 2.4 GHz 
wireless signals and showed that RSSI is dependent on the 
number of people as well as their movement speed. Based on 
these unique RSSI properties, impacts of human activities on 
communicating nodes are modeled.  

In [22, 23, 30], the impact of building layout and 
composition of elements on nodes are measured from signal 
attenuation and communication success rate. Poor 
deployment of nodes can be predicted from measures of 
quality of services, capacity, and overall energy 
consumption. In [24], signal deviation and path loss are 
found to vary with locations (i.e. different measurements are 
obtained at different locations). Basic geometry structures 
such as corridors and walls have inconsistent impact on 
signal propagation. This shows that there is no basis for a 

general model especially for complex and vastly different 
networks. Site-specific solutions are often necessary.  

Studies have showed that many existing link quality 
estimation techniques have limitations under dynamic 
communication constraints and only few algorithms or 
protocols have grown out of simulated environment [26]. 
Successful computation intelligence applications are usually 
limited to single problem like routing or optimal deployment. 
In reality, high human intervention is often necessary to 
overcome incompatibility. This highlights the importance of 
flexible learning platforms.  

In [31], ANFIS is used to estimate the RSSI values on 
body sensors. The complex nature of on-body channels are 
measured based on parameters from different layers such as 
transmission power and body positions of application layer, 
and RSSI of physical layer. WLAN indoor localisation based 
on ANFIS is introduced in [27] to reduce false RSSI-distance 
mapping caused by the unpredictable interference, reflection 
and multipath effects. With appropriate ANFIS configuration 
and training inputs, an accurate mapping is obtained. 

ANFIS also demonstrated its suitability for video quality 
prediction over error-prone network, and produced good 
model prediction accuracy even with unseen data set [28]. 
Investigation on impact of QoS parameters in both 
application and physical layers highlights the importance and 
feasibility of using parameters from different layers to 
improve model prediction. In [29], a neuro-fuzzy technique 
is proposed to perform dynamic clustering of WSN nodes 
and has shown computational fault tolerance capability 
towards the dynamic and unpredictable behaviour of network 
parameters and application requirement. 

III. EXPERIMENTAL SETUPS 
In this section, experiments simulating the network 

challenges of interests (i) poor deployed environment and (ii) 
human movement are prescriptively described. All 
experiments are conducted during non-working hours (i.e. 
weekdays after 9 pm and weekends) in a static environment 
with no external interference. 

A. Poor Deployed Environment  
The design of this experiment is to simulate nodes 

communicating under the influence of reception signal 
decay, mirroring long distance communication and dense 
environment.  

 
Figure 1.  Experiment layout - Poor deployed environment in an open 

office  

Figure 1 illustrates four ZigBee PRO [8] nodes uniformly 
deployed 5 m apart from one another in an open office (i.e. 
nodes were placed at 5 m, 10 m, 15 m, and 20 m). For 



consistency, all nodes are mounted at the same level on desk 
partitions, 1.3 m above ground, and arranged in the same 
orientation. Reception signal decay with increasing distance 
between nodes is expected, but a uniform RSSI decay 
between nodes may not be possible due to the differences in 
physical environment (i.e. desks) altering the multipath and 
fading effects. These differences shall provide a more 
realistic set of training inputs for ANFIS models as 
compared to data obtained from computer simulations. 

B. Human Movement 
The design of this experiment is to simulate nodes 

communicating under the influence of human movement. All 
measurements are conducted with the presence of the 
experimenter only, minimising any possible interference. 

 

 
Figure 2.  Experiment layout – Human movement in a laboratory and open 

office 

Figure 2 illustrates two ZigBee PRO nodes with line of 
sight (LOS) communication deployed 4.5 m apart from each 
other, 1.3 m above floor level. Prescribed human walking 
sequences with LOS obstruction are then introduced. 
Experiments are repeated in laboratory and open office 
where different multipath and fading effects are accounted, 
providing more realistic training inputs for ANFIS models. 

IV. PARAMETERS 
In this work, the intention is to exploit information from 

ZigBee PRO nodes’ Neighbour Table (NT) [3]. A node’s NT 
contains connectivity information about its immediate 
neighbours, including relative RSSI. If node A is not present 
in node B’s NT, node A had simply not connected to node B.  

For each experiment, ZigBee PRO nodes are configured 
to report information of their NT every 4 – 6 seconds 
(depending on the network size). These information are 
subsequently post-processed into the following parameters. 

A. Neighbour Table Connectivity (NTC) 
NTC as explained in Table I is similar to Packet 

Reception Rate. NTCAB in percentage, is the probability node 
B being captured in node A’s NT over a span of 60 seconds. 
NTCAB indicates the communication success rate from node 
B to node A.  

B. Mean RSSI (MRSSI) 
MRSSIAB as explained in Table I, is the averaged RSSI in 

dBm measured at node A from node B in the span of 60 
seconds. MRSSIAB indicates how well node B is 
communicating to node A in terms of reception signal over 
time.  

TABLE I.  CALCULATION OF NTC, MEAN RSSI, SD RSSI AND ACV 
RSSI FROM FOUR CONSECTIVE NEIGHBOUR TABLES (AN 

EXAMPLE)

 

C. Standard Deviation RSSI (SDRSSI) 
SDRSSIAB is the standard deviation of RSSI in dBm 

measured at node A from node B. Table I also explains how 
SDRSSIAB is calculated. SDRSSIAB indicates how much 
reception signal fluctuation is present between node A and 
node B over a period of 60 seconds. 

D. Average Coefficient of Variation RSSI (ACVRSSI) 
ACVRSSIA as explained in Table I, is the average 

coefficient of variation of RSSI in dBm of all links found 
around node A. ACVRSSIA is a measure of reception signal 
dispersion of all connecting nodes around node A over a 
period of 60 seconds. The calculation of ACVRSSIA is 
expressed as: 

 
where n is the number of neighbouring nodes around 

node A. 

 

V. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

A. ANFIS Architecture  
ANFIS [32] combines Fuzzy Logic and Neuro Network 

into a single data learning technique where it constructs an 
input-output mapping in form of fuzzy if-then rules with 
interconnected Neural Network elements and connections.  

A two input ANFIS architecture with an adaptive 
multilayer feed-forward network is shown in Figure 3 
consisting of five layers, namely, a fuzzy layer, a product 
layer, a normalising layer, a defuzzy layer and a total output 
layer. In each layer, network nodes perform individual 
functions on incoming signals. 

Considering an ANFIS architecture with Sugeno fuzzy 
model that consists of two fuzzy if-then rules: 

 
Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y +r1 
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y +r2 



where x and y are crisp inputs, and A1 and A2 are 
linguistic variables. pi, qi, and ri are consequent parameters. 

 

 
Figure 3.  ANFIS architecture [32] 

Layer 1 is the fuzzy layer where each node i generates a 
membership grade of a linguistic label based on input x. The 
membership relationship can be express as:  

   (1) 
where O1 denotes the output of layer 1, and  denotes 

the membership function. 
Layer 2 is the product layer where each node i 

corresponds to a single Sugeno-type fuzzy rule and 
calculates the firing strength wi based on the product of input 
signals. This relationship can be written as: 

 (2) 
where O2 denotes the output of layer 2.  
Layer 3 is the normalising layer where each node i 

calculates a normalised firing strength for a given rule 
based on inputs wi. The normalising function can be 
represented by: 

  (3) 
where O3 denotes the Layer 3 output. 
Layer 4 is the defuzzy layer where each node i calculates 

the weighted consequent value of a given rule using a linear 
combination of the inputs multiplied by the normalised firing 
strength . This defuzzication relationship can be 
expressed as:  

 (4) 
where O4 denotes the layer 4 output, and pi, qi, and ri are 

consequent parameters. 
Layer 5 is the total output layer where node i calculates 

the output of all defuzzication neurons and produce an 
overall ANFIS output. The results can be written as: 

 (5) 
where O5 denotes the layer 5 output.  
 

B. ANFIS based Prediction Models 
This paper focuses on differentiating three distinct 

conditions commonly found in a deployed environment 

using NT contents extracted from experimented nodes; the 
three conditions are link failures due to poor deployed 
environment, link failure due to human movements, and no 
failure. The functional block diagram is shown in Figure 4. 
These conditions are then formed into the following three 
ANFIS–based learning models:  

 

 
Figure 4.  Block diagram of ANFIS-based prediction model 

• Model 1: Link Failure due to Poor Deployed 
Environment vs No Failure 

• Model 2: Link Failure due to Human Movement vs 
No Failure 

• Model 3: Link Failure due to Poor Deployed 
Environment vs Human Movement vs No Failure 

 
1) Link Failure Due to Poor Deployed Environment: 

Link failures that are caused by either the physical 
obstructions between nodes or nodes located too far apart. 
Typical physical obstructions are for instance walls, desk 
partitions, desk objects, and adjacent floors [30]. 

2)  Link Failure Due to Human Movements: Link 
failures that are caused by physical presence of a human in 
close proximity. This could include the position of human 
relative to the node and the number of people presence 
around a node [20].  

3) No Failure: Best case scenario where a node is not 
subjected to interference. In this condition, node performs 
well in terms of connectivity and any failures are negligible. 

C. Training and Validation Methods 
ANFIS models are trained with supervised learning using 

inputs and outputs data obtained from the real-world 
experiments. To better understand the behaviour of different 
inputs or their combinations thereof under different failures, 
and to ascertain the best parameter or best combination of 
parameters that can accurately predict the outcome, each 
model described in the previous sections is trained using 15 
different sets of input parameter presented in Table II.  

TABLE II.  PARAMETERS COMBINATION USED TO TRAIN ANFIS 
MODEL 

	 
For all three ANFIS models, 10-fold cross validations are 

used as described – Training sets are split into 10 subsets, 
and a holdout method is applied 10 times. Each time, one of 
the subsets is used as the test set and the other nine as the 



training set. Subsequently, the average accuracy across all 10 
trials is obtained.  

VI. RESULTS AND DISCUSSION 
In this section, the results from the three ANFIS models 

described in Section V are discussed and analysed in-depth 
in the form of box plot diagrams. 

A. Model 1: Link Failure due to Poor Deployed 
Environment vs. No Failure 
Model 1 differentiates between link failures caused by 

poor deployed environment and no failures. Figure 5 
presents the mean prediction accuracies for all 15 sets of 
parameter combinations averaged over 10-fold cross 
validation runs. It can be seen that mean RSSI performed 
well with averaged accuracies greater than 95% when used 
on its own or as a joint parameter (set 1, 5, 6, 8, 11, 12, 13). 
This suggests that mean RSSI is a strong influencer on the 
prediction outcome and is good at detecting link failures due 
to poor deployed environment.  

 

 
Figure 5.  ANFIS prediction results - Link Failure due to Poor Deployed 

Environment vs. No Failure 

Low mean RSSI values are observed to be associated 
with higher occurrences of link failures caused by poor 
deployment, while high mean RSSI indicates higher chances 
of no failure. A probable explanation is that dense physical 
obstructions such as walls, desk partitions, and adjacent 
floors impact signal propagation via attenuation or scattering 
effects. This phenomenon degrades how a signal is received 
and can lead to a higher chance of link failure [20, 23, 30].  

NTC as a single parameter (set 4) produced a prediction 
accuracy of only 0.603 or 60.3%. It is observed that link 
failures (i.e. NTC lower than 80%) are always under the 
influence of poor mean RSSI. However, looking in-depth 
into model 1’s training inputs with mean RSSI of poorer than 
-86 dBm (371 samples), links with NTC ranged from 80 to 
100% take up only 51% of the population. This explains that 
NTC as single parameter could produces false positive 
results hence is not at good at detecting link failure due to 
poor deployment. 

In model 1, link failures due to poor deployment and no 
failures are subjected to minimal variation of multipath and 
fading effects where the reception strength between nodes 
remained relatively constant with no more than 1.1 dBm 

variation. This phenomenon is observed on SD RSSI and 
ACV RSSI (set 2, 3, 7), which performed poorly. In addition, 
no distinct performance differences are found between SD 
RSSI and ACV RSSI as single and/or joint parameters, 
showing result consistency (i.e. “Mean RSSI & NTC & SD 
RSSI” (set 12) and “Mean RSSI & NTC & ACV RSSI” (set 
13) have prediction accuracies of 0.979 and 0.982 
respectively).  

B. Model 2: Link Failure due to Human Movement vs. No 
Failure 
Figure 6 shows the mean prediction accuracies for all 15 

sets of parameter combinations for model 2, averaged over 
10-fold cross validation runs. It is observed that none of the 
parameter combinations produced mean prediction 
accuracies of more than 90%. This poor performance across 
all parameter combinations could be debated that model 2 is 
based on a single human walking profile, which may not be 
distinctively detected. As explained in [20], the variation in 
reception strength is relative to the growing number of 
people around a node. Extrapolating from this, it can be 
inferred that in situations where there are more human 
activities around a particular node, model 2 should perform 
even better. 

 

 
Figure 6.  ANFIS prediction results – Link Failure due to Human 

Movement vs. No Failure 

The introduction of human movement alters the 
multipath and fading effects on signal propagation between 
communicating nodes. SD RSSI represents the reception 
signal fluctuation present between nodes and this 
phenomenon could be observed from set 2, 5, 6, 7, 9, 10, and 
14 where prediction accuracies are more than 0.8 or 80%. 

It is important to note that single parameter NTC (set 4) 
performed poorest with a prediction accuracy of only 0.057 
or 5.7%. Looking in-depth into model 2’s training inputs, no 
link failures are found under the influence of human 
movements. This phenomenon can be explained with as long 
as there are strong receptions between communicating nodes, 
the influence of temporal human movement (variation in 
RSSI) on communication failure is negligible. 

C. Model 3: Link Failure due to Poor Deployed 
Environment vs. Human Movement vs. No Failure 
Model 3 differentiates between the link failures caused 

by poor deployment or human movement and no failure. 



Figure 7 presents the mean prediction accuracies for all 15 
sets of parameter combinations averaged over 10-fold cross 
validation runs. It is clear that any parameter combinations 
that contain mean RSSI (set 1, 5, 6, 8, 11, 12, 13, 15) has 
mean prediction accuracy of more than 0.85. Mean RSSI is 
an averaged RSSI measured across a window period. In 
other words, a consistently low mean RSSI indicates a long 
period of consistently poor reception strength and hence 
indicating a higher probability of poor deployed environment 
rather than human movement.  

 

 
Figure 7.  ANFIS prediction results – Link Failure due to Poor Deployed 

Environment vs. Human Movement vs. No Failure. 

Similar to model 1, SD RSSI and ACV RSSI as a single 
parameter both performed poorly (set 2 and 3) and are found 
to have no distinct performance difference between them (i.e. 
“SD RSSI & NTC” (set 9), and “ACV RSSI & NTC” (set 
10) have prediction accuracies of 0.589 and 0.613). 
However, SD RSSI and ACV RSSI as joint parameters with 
other parameters can improve the overall prediction accuracy 
(i.e. prediction accuracy of “mean RSSI & NTC” (set 8) 
improved from 0.923 to 0.975 with the addition of ACV 
RSSI (set 13)). This phenomenon is observed to be 
consistent for SD RSSI as well.  

Combining parameters from different layers improves the 
model accuracy. However, this is only true for a selection of 
combination of parameters. Sets 12 and 13 showed that the 
combination of parameters from different layers and of 
different link properties produced a prediction model with 
accuracy of over 96%; these parameters mirror the properties 
of channel fluctuations, signal strength and success rate of 
reception. This highlights the importance of careful selection 
of parameters to improve the prediction accuracy of ANFIS 
models. 

D. Comparison of all three ANFIS models 
Table III presents the mean prediction results obtained 

from all three ANFIS models trained with 15 different 
combinations of parameters. The parameters are ranked 
accordingly to the averaged prediction accuracies across all 
three ANFIS models – from most to least accurate. It is clear 
that mean RSSI stands out among all parameters as the top 8 
best predictors are trained with parameters combinations 
consisting of mean RSSI.  

The parameter combination of mean RSSI, ACV RSSI 
and NTC (set 13) has the best performance for all three 

models, stressing the importance of combining link 
properties of channel fluctuations, signal strength and 
communication success rate.  

TABLE III.  SET OF PARAMETERS COMBINATION RANKED ACCORDING 
TO MEAN PREDICTION ACCURACIES COMPUTED FROM ALL THREE ANFIS-

BASED DEPLOYMENT MODELS 

No. Parameters Combination Set 

Accuracies 

Average 
PDE 
vs. 
NF 

HM 
vs. 
NF 

PDE 
vs. HM 
vs. NF 

13 M RSSI, ACV RSSI, NTC 0.917 0.982 0.793 0.975 
11 M RSSI, SD RSSI, ACV RSSI 0.915 0.952 0.863 0.929 
5 M RSSI, SD RSSI 0.913 0.958 0.839 0.94 
6 M RSSI, ACV RSSI 0.893 0.948 0.799 0.931 
12 M RSSI, SD RSSI, NTC 0.864 0.979 0.647 0.965 
8 M RSSI, NTC 0.813 0.982 0.536 0.923 
1 M RSSI 0.782 0.944 0.524 0.879 

15 M RSSI, SD RSSI, ACV RSSI, 
NTC 0.768 0.642 0.756 0.904 

14 SD RSSI, ACV RSSI, NTC 0.648 0.509 0.823 0.612 
9 SD RSSI, NTC 0.637 0.501 0.822 0.589 
10 ACV RSSI, NTC 0.609 0.619 0.594 0.613 
4 NTC 0.408 0.603 0.057 0.565 
7 SD RSSI, ACV RSSI 0.335 0.073 0.83 0.1 
2 SD RSSI 0.312 0.046 0.817 0.073 
3 ACV RSSI 0.218 0.025 0.585 0.044 

 
The results of individual ANFIS model showed that 

parameters can behave vastly different under different 
conditions. In other words, careful selection of parameters is 
necessary in order to obtain the best prediction accuracy of a 
desired model. In another example, even though set 15 
consists of the highest number of parameters (mean RSSI, 
SD RSSI, ACV RSSI and NTC), it does not necessary 
translate to the best prediction result. This implies that 
adding more training inputs to the ANFIS models may not 
necessary produce better prediction results. 

VII. CONCLUSION 
In this paper, three ANFIS models for WSN failure 

prediction have been developed, capable of diagnosing the 
cause of link failure to either poor deployment or human 
movement. The ANFIS models trained with different 
combinations of parameters are evaluated and have shown 
that ANFIS is a suitable technique for WSN link failure 
prediction.  

The training of ANFIS models with multiple parameter 
combinations provides a learning approach to understand 
how parameters behave under different conditions. Unlike 
developing a typical Fuzzy model [25], expert knowledge is 
not required. This is particularly useful if the behaviour of 
the individual and joint parameters are unclear.  

In this work, the combination of mean RSSI, ACV RSSI 
and NTC (set 13) produced the best prediction results for all 
ANFIS models. Mean RSSI, ACV RSSI and NTC, which 
mirror the properties of signal strength, channel fluctuations, 
and communication success rate respectively, highlights the 
importance of using cross-layer parameters to improve 
prediction accuracy.  

Mean RSSI is captured in all top 8 best predictors (Table 
III) while NTC is only found in 3 of them. The poor 
prediction accuracies of NTC have shown that a 
communication success rate parameter alone is not sufficient 



to link quality estimation. This is also supported in [13, 25]. 
The results indicate that physical layer parameter such as the 
RSSI may perform better than a network layer parameter at 
describing the geometry of an environment (influenced by 
poor deployment and human movements).  

Care should be taken as to which parameter combination 
to use as not every parameter combination produces the best 
prediction result. The key for a robust prediction model is to 
first understand the operating behaviour of parameters under 
different network challenges, followed by a careful selection 
of training parameters for ANFIS models. 

REFERENCES 
[1] D. Ganesan, D. Estrin, A. Woo, and D.Culler, “Complex Behaviour at 

Scale: An Experimental Study of Low-Power Wireless Sensor 
Networks”, Vol. 13. Technical Report UCLA/CSD-TR 02, 2002. 

[2] N.Baccour, A.Koubaa, M.B.Jamma, D.Rasario, H.Youssef, M.Alves, 
and L.B.Becker, “RadiaLE: A Framework for Designing and 
Assessing Link Quality Estimators in Wireless Sensor Networks”, Ad 
Hoc Networks 9, pp. 1165-1185, 2011. 

[3] “JN5168-001-Myy Datasheet”, NXP Laboratories UK, 2013. 
[4] Y.Tang, Z.Wang, T.Du, D.Makrakis, and H.Moutftah, “Study of 

Clear Channel Assessment Mechanism for ZigBee Packet 
Transmission under Wi-Fi Interference”, 10th IEEE CCNC, 2013. 

[5] N.LaSorte, S.Rajab, and H.Refai, “Experimental Assessment of 
Wireless Coexistence for 802.15.4 in the Presence of 802.11 g/n”, 
EMC IEEE International Symposium, 2012. 

[6] L.Angrisani, M.Bertocco, D.Fortin, and A.Sona, “Experimental Study 
of Coexistence Issues between IEEE 802.11b and IEEE 802.15.4 
Wireless Networks”, IEEE Transactions on Instrumentation and 
Measurement, Vol 57, Issue 8, pp. 1514-1523, 2008. 

[7] “ZigBee PRO Stack User Guide”, NXP Laboratories UK, 2014 
[8] V. Raghunathan, C. Schurgers, S. Park, and MB. Srivastava, 

“Energy-Aware Wireless Microsensor Network”, In IEEE Signal 
Processing Magazine, 2002. 

[9] D. Estrin, R. Govindan, J. Heidemann and S. Kumar, “Next Century 
Challenges: Scalable Coordination in Sensor Networks”, 
USC/Information Sciences Institute, 1999. 

[10] S.Aslam, F. Farooq, and Shahzad Sarwar, “Power Consumption in 
Wireless Sensor Networks, General Literature”, In 6th FIT, 2009.  

[11] M. Holland, T. Wang, B. Tavli, A. Seyedi, and W. Heinzelman, 
“Optimizing Physical Layer Parameters for Wireless Sensor 
Networks”, In ACM Trans. Sensor Networks, Vol. 7, 2011. 

[12] Wireless sensor networks: signal processing and communications 
perspectives. John Wiley & Sons, pp. 69-344, 2007.  

[13] C.L.Lim, M.Bolt, A.Syed, P.Ng, C.Goh, and Y.Li, “Dynamic 
Performance of IEEE 802.15.4 Devices under Persistent WiFi 
Traffic”, RIoT, pp. 1-6, 2015.   

[14] N. Baccour, A. Koubaa, M. Ben Jamaa, H. Youssef, M. Zuniga, and 
M. Alves, “A Comparative Simulation Study of Link Quality 
Estimators in Wireless Sensor Networks”, In 17th IEEE International 
Symposium on Modelling, Analysis and Simulation of Computer and 
Telecommunication Systems, 2009. 

[15] K. Srinivasan, and P. Levis, “Rssi is Under Appreciated”, In 
Proceedings of the 3rd Workshop on Embedded Networked Sensors, 
2006. 

[16] J. Polastre, R. Szewczyk, and D. Culler.: Telos, “Enabling Ultra-Low 
Power Wireless Research”, In Proceedings of the 4th International 
Symposium on Information Processing in Sensor Networks, 2005. 

[17] D. Lal, A. Manjeshwar, F. Herrmann, E. Uysal-Biyikoglu, and A. 
Keshavarzian, “Measurement and Characterization of Link Quality 
Metrics in Energy Constrained Wireless Sensor Networks”, IEEE 
Global Telecommunications Conference, 2003. 

[18] N.Baccour, A.Koubâa, L.Mottola, M.A.Zúñiga, H.Youssef, 
C.A.Boano, and M.Alves, “Radio Link Quality Estimation in 
Wireless Sensor Networks: A Survey”, ACM Transactions on Sensor 
Networks (TOSN), 8(4), p.34, 2012. 

[19] K. Srinivasan , P. Dutta , and A. Tavakoli , and P. Levis, 
“Understanding the Causes of Packet Delivery Success and Failure in 
Dense Wireless Sensor Network”, Sensys’06, pp. 419-420, 2006.   

[20] M.F.Ramli, L.M.Kamarudin, A.Zakaria, A.Y.M.Shakaff, D.L.Ndzi, 
C.M.Nor, N.Hassan, and S.Mamduh, “The Study of Human 
Movement Effect on Signal Strength for Indoor Wireless Sensor 
Network Deployment, ICWISE, pp 30-35, 2013.   

[21] S.Ahmed, S.Bouk, N.Javaid, and I.Sasase, “Combined Human, 
Antenna Orientation in Elevation Direction and Ground Effect on 
RSSI in Wireless Sensor Network”, CSNI, 2012.   

[22] J.Nazabal, P.Iturri, L.Azpilicueta, F.Falcone, and C.Valdivielso, 
“Performance Analysis of IEEE 802.15.4 Compliant Wireless 
Devices for Heterogeneous Indoor Home Automation Environment”, 
Journal of Antennas and Propagation, Vol 2012, 2012.   

[23] I.Chatzigiannakis, G.Mylonas, and S. Nikoletseas, “Modelling and 
Evaluation of the Effect of Obstacles on the Performance of Wireless 
Sensor Network”, ANSS’06, 2006.   

[24] B. R. Jadhavar, and T. R. Sontakke, “2.4 GHz Propagation Prediction 
Models for Indoor Wireless Communication within Building”, IJSCE, 
Vol 2, 2012. � 

[25] N.Baccour, A.Koubaa, M.B.Jamma, D.Rasario, H.Youssef, M.Alves, 
and L.B.Becker, “F- LQE: A Fuzzy Link Quality Estimator for 
Wireless Sensor Network”, EWSN, pp 240-255, 2010. � 

[26] R.Kulkarni, A.Forster, and G.Venayagamoorthy, “Computational 
Intelligence in Wireless Sensor Networks: A Survey”, ICS&T’11, 
Vol 13, 2011. � 

[27] B. F. Wu, C. L. Jen, and K. C. Chang, “Neural Fuzzy Based Indoor 
Localization by Kalman Filtering with Propagation Channel Model”, 
IEEE International Conference on Systems, Man and Cybernetics, pp. 
812 – 817, 2007. � 

[28] A. Khan, L. Sun, and E. Ifeachor, “Learning Models for Video 
Quality Prediction over Wireless Local Area Network and Universal 
Mobile Telecommunication System Network”, IET communications, 
pp. 1389 – 1403, 2010. � 

[29] K.N.Veena, and B.P.Vijaya Kumar, “Dynamic Clustering for 
Wireless Sensor Networks: A Neuro Fuzzy Technique Approach”, 
ICCIC, pp. 1-6, 2010. � 

[30] M.Amin, A.Louis, D.Baudry, B.Mazari, and A.El-Hami, “Impact of 
Radio Propagation in Building on Wireless Sensor Network’s 
Lifetime”, GSCIT, pp. 1-6, 2014. � 

[31] Vallejo, Monica, Joaquin Recas Piorno, and Jose Luis Ayala Rodrigo. 
“A Link Quality Estimator for Power-Efficient Communication over 
On-Body Channels”, Embedded and Ubiquitous Computing (EUC), 
2014 12th IEEE International Conference on. IEEE, 2014. 

[32] Jang, Jyh-Shing Roger. “ANFIS: Adaptive Network-based Fuzzy 
Inference System”, Systems, Man and Cybernetics, IEEE 
Transactions on 23.3, pp. 665-685, 1993. 

 


