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We study multiplicative quiver varieties associated to specific extensions of cyclic quivers with m ≥ 2
vertices. Their global Poisson structure is characterized by quasi-Hamiltonian algebras related to these
quivers, which were studied by Van den Bergh for an arbitrary quiver. We show that the spaces are
generically isomorphic to the case m = 1 corresponding to an extended Jordan quiver. This provides a
set of local coordinates, which we use to interpret integrable systems as spin variants of the trigonometric
Ruijsenaars–Schneider (RS) system. This generalizes to new spin cases recent works on classical integrable
systems in the RS family.
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1. Introduction

In this article, we continue a recent attempt initiated in [1] to interpret the phase spaces of classical
complex integrable systems in the Ruijsenaars–Schneider (or RS) family as moduli spaces constructed
from particular quivers. Before focusing on this problem, let’s recall the well-understood interpretation
in the non-relativistic case of the Calogero–Moser (or CM) system, and its spin variant. In the pioneering
work [2], Wilson unveils several structures related to the phase space for the complex CM system, one
of which is the hyperkähler structure it possesses. The latter is naturally defined in the context of Naka-
jima quiver varieties [3], which considers Hamiltonian reduction of representation spaces of quivers.
Forgetting all but the topological structure, the phase space is nothing else than the reduced represen-
tation space of a deformed preprojective algebra associated to a Jordan quiver extended by one arrow.
Therefore, it is natural to ask if one could obtain the symplectic structure also at the level of the algebra.
This is indeed the case, if we consider non-commutative symplectic geometry [4, 5], or the analogue for
non-commutative Poisson geometry [6]. We refer to the review [7] for some details. Going a step further,
we can understand the spin generalization of this model discovered by Gibbons and Hermsen [8], by
looking at a Jordan quiver consisting of a single loop-arrow, which we extend by several arrows coming
from an additional vertex [9, 10]. We obtain in this way the model in type An, whose Weyl group W = Sn

determines the symmetry of the obtained system. A study of various extensions of cyclic quivers gener-
alizes the result to different complex reflection groups [11], in particular the case W = Sn � Zn

m to which
we shall come back.
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2 M. FAIRON

We postpone the quiver interpretation in the relativistic case, as we first need to focus on the geometric
side of these systems. In a way similar to the CM case, it is possible to understand the trigonometric
RS system geometrically, either as a symplectic leaf on a space defined by Poisson reduction [12], or
directly using quasi-Hamiltonian reduction [1, 13]. While the process of Hamiltonian reduction brings
down a Poisson manifold to one of smaller dimension by considering the action of a Lie group, in the
quasi-Hamiltonian setting we begin with a space which has some failure to have a Poisson bracket, but
we end up with a genuine Poisson manifold. These spaces that are called quasi-Poisson manifolds [14],
which are first introduced in [15] for the ‘quasi-symplectic’ case, find their origin in the need to get Lie
group valued moment maps. In some cases, it also provides a finite-dimensional framework for infinite-
dimensional symplectic reductions introduced by Atiyah and Bott [16]. Therefore, the reduction described
above provides an alternative formalism to understand earlier works of Gorsky and Nekrasov [17, 18].
However, if we leave the type An, we can observe that until recent works by Fehér and collaborators (see
e.g. [19–23] mostly in the real case), integrable systems in the trigonometric RS family are generally
devised using only a suitable Lax matrix, as they originally appear in [24], without geometric perspectives.

The lack of a specific geometrical framework to derive these models is even more apparent for
spin versions. To understand what is known at the moment, let us recall how the spin RS system is
introduced in the first place. In a celebrated attempt to generalize the relation between the matrix KP
equation and the spin CM system [25], Krichever and Zabrodin investigate solutions of the non-abelian
2D Toda chain and discover the Lax matrix for the real spin RS system, already in its elliptic form [26].
This system is parametrized by n particles with positions qi, each endowed with d additional degrees of
freedom aαi , for which we have d conjugate variables cαi that are function of the momentum q̇i. There are
additional n relations, so that we have 2nd independent coordinates, which appear in the Lax matrix L
(that we consider without spectral parameter) such that the Hamiltonian H1 = tr L defines the equations
of motion for the spin RS system. A striking feature of this space is the existence of a natural action of
a Lie group of dimension d(d − 1), such that on the corresponding orbit space we can pick coordinates
from the functions1 (qi, fij = ∑α aαi cαj ). Moreover, the Hamiltonian H1 descends to this reduced space
where it becomes integrable in Liouville sense, and solutions to the equations of motion defined by H1

can be found in terms of theta functions. In the rational and trigonometric case, a simpler form for the
equations of motions corresponding to the Hamiltonians tr Lk can be found [27, 28]. However, except
in the rational case [27] and for two particles in the elliptic case [29], the Poisson structure of the space
is only known in a universal form [30] that is not easy to manipulate. It is the existence of a geometric
formalism that allows to completely determine the Poisson brackets between the coordinates (qi, aαi , cαi )
in the rational case for the type An [27]. Similarly, it is the existence of a geometric interpretation that
enables to prove the integrability of such system outside the type An in the rational [31] or trigonometric
[32] cases. (Nevertheless, in those cases we work on the phase space where the individual spins (aαi , cαi )
are not naturally defined and we only know the collective spins (fij).) Thereupon, our understanding of
the Hamiltonian formalism for spin RS systems remains quite limited outside the rational case, but it is
natural to expect to solve this issue if we find a correct geometric framework.

Now, let’s come back to the algebraic interpretation with quivers. A key aspect of the work of
Van den Bergh [6] is that it also introduces non-commutative quasi-Poisson geometry. To an arbitrary
quiver, considering its double, one can associate a multiplicative preprojective algebra, and construct
the corresponding multiplicative quiver varieties (MQV) of Crawley-Boevey and Shaw [33]. The latter

1 Note that after this reduction, the spin variables (fij) are not attached to a specific particle any more, but they represent collective
degrees of freedom.
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 3

spaces are Poisson varieties, obtained after quasi-Hamiltonian reduction from the representation spaces
of the quiver path algebra, and all the geometric structure can be realized at the level of the path algebra
[6]. Therefore, it is a reasonable guess to investigate this theory applied to the quivers studied in [11], and
it is done by Chalykh and the author for a cyclic quiver with an extra arrow in [1]. In that case, it is shown
that any MQV contains the phase space for the (non-spin) trigonometric RS system. For the simplest
cyclic quiver consisting of one loop (i.e. a Jordan quiver) with d ≥ 2 arrows coming from a new vertex,
this is also done by Chalykh and the author, in the companion paper [34]. The natural generalization that
these other MQV carry on an open subset the phase space for the spin trigonometric RS system of type
An is obtained. Henceforth, it provides a crucial step to develop the geometric theory of spin RS models
farther than the rational case. The next step is to turn to the application of this method on the cyclic
quiver with m ≥ 2 vertices and d ≥ 2 new arrows pointing towards a chosen vertex in the cycle. This
is the purpose of this work, and our most important result is that any such representation space can also
be seen as the natural phase space of what we suggest to be the complex trigonometric spin RS system
with W = Sn � Zn

m. This provides a natural generalization of the case m = 1 corresponding to the Jordan
quiver [34]. Interestingly, there is a Poisson isomorphism between dense open subsets of the spaces
corresponding to the cases m ≥ 2 and m = 1, hence we also obtain that the representation spaces that we
construct carry the system with W = Sn. In particular, the flows defined by the symmetric functions of
the corresponding Lax matrices can be explicitly integrated. We also study Liouville integrability in line
with the original approach of Krichever and Zabrodin [26], which is based on the existence of a second
reduction for d ≤ n. The final step dealing with arbitrary extensions of cyclic quivers will be discussed
in forthcoming works.

The article is organized as follows. In Section 2, we recall the foundations of the theory of double
quasi-Poisson brackets, how we can define such brackets from quivers, and what is the counterpart to
that theory on the corresponding representation spaces, based on the work of Van den Bergh [6]. Our
presentation of this work relies on [1, Section 2], but we reproduce these results and add useful remarks
to provide a self-contained exposition of this non-standard subject. In Section 3, we apply the algebraic
part of the theory to the so-called spin cyclic quivers. We obtain their structure of quasi-Hamiltonian
algebras and gather several results based on computations with the double quasi-Poisson bracket. All the
proofs for that section are collected in Appendix A. The formalism employed being quite new, we suggest
to the reader interested in the integrable systems side of this work to skip the first part of this article,
and go directly to Section 4, where we overview the MQV associated to the spin Jordan quiver (or spin
one-loop quiver) recently introduced in [34]. In Section 5, we follow the method from [34] applied to the
cyclic quivers on m ≥ 2 vertices, to get new MQV. They are generically isomorphic as complex Poisson
manifolds to the space obtained in the case of a Jordan quiver reviewed in Section 4, which we prove in
Appendix B. We get three families of functions in involution on such a space for each m ≥ 2, that we
write in the set of local coordinates that exists in the Jordan quiver case. In particular, one of them contains
the spin RS Hamiltonian H1. We count the number of independent elements in each family and perform
an additional reduction to obtain integrability in Liouville sense. We can also get an explicit description
of some flows, based on computations in Appendix C. We finish by explaining why we believe that this
extra reduction should be avoided, and how the other two families corresponds to what should be seen
as the spin RS system for W = Sn � Zn

m, or a modification of it.

1.1 Notations

The sets N, Z, C denote the non-negative integers, integers and complex numbers. We write N×, Z×, C×

when we omit the zero element in those sets. Consider a finite set J , |J| = k, and totally ordered elements
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4 M. FAIRON

(aj)j∈J such that aj1 < · · · < ajk for some j(−) : {1, . . . , k} → J . Then the corresponding right and left

products are defined as
−→∏

aj = aj1 . . . ajk , while
←−∏

aj = ajk . . . aj1 .
We write δij or δ(i,j) for Kronecker delta function. We extend this definition for a general proposition

P by setting δP = +1 if P is true and δP = 0 if P is false. For example, δ(i �=j) = 1− δij.
Fix a positive integer d ≥ 2. The ordering function o : {1, . . . , d}×2 → {0,±1} is defined by

o(α,β) = +1 if α < β, o(α,β) = −1 if α > β, and o(α,β) = 0 if α = β. In other words, it takes
the value +1 if the first argument is strictly less than the second, the value 0 if they are equal, and is −1
otherwise. In terms of Kronecker delta function, we have for example o(α,β) = δ(α<β) − δ(α>β).

2. Preliminaries

We recall the necessary constructions needed in this article as they are introduced in [1], with some
additional remarks. Details regarding double brackets and representation spaces can be found in [6, 35],
while we refer to [33, 36] for generalities on multiplicative preprojective algebras and corresponding
MQV.

2.1 Double brackets

We review some results of [6, Sections 2–4]. We take all tensor products over C, and fix an associative
unital C-algebra A. For an element a ∈ A⊗ A, we use Sweedler’s notation a′ ⊗ a′′ to denote

∑
i a′i ⊗ a′′i .

We set a◦ = a′′ ⊗ a′. More generally, for any s ∈ Sn we define τs : A⊗n → A⊗n by τs(a1 ⊗ . . .⊗ an) =
as−1(1) ⊗ · · · ⊗ as−1(n), so we can write a◦ = τ(12)a.

We view A⊗n as an A-bimodule via the outer bimodule structure b(a1⊗ . . .⊗an)c = ba1⊗· · ·⊗anc.
An n-bracket is a linear map {{−, . . . ,−}} : A⊗n → A⊗n which is a derivation in its last argument for the
outer bimodule structure on A⊗n, and which is cyclically anti-symmetric:

τ(1...n) ◦ {{−, . . . ,−}} ◦ τ−1
(1...n) = (−1)n+1 {{−, . . . ,−}} .

In the cases of interest, there exists a C-algebra B and a C-algebra map B→ A turning A into a B-algebra,
and we identify B with its image in A. Then we assume that the bracket is B-linear, i.e. it vanishes if one
argument is an element of B.

We focus on 2- and 3-brackets, which we call double and triple brackets, respectively. In the particular
case of a double bracket, the defining relations take the form {{a, b}} = − {{b, a}}◦ and {{a, bc}} = b {{a, c}}+
{{a, b}} c for any a, b, c ∈ A. This implies that {{bc, a}} = {{b, a}} ∗ c + b ∗ {{c, a}}, i.e. it is a derivation in
the first argument for the inner A-bimodule structure on A⊗ A given by b ∗ (a′ ⊗ a′′) ∗ c = a′c ⊗ ba′′.
Also, any double bracket {{−,−}} defines an induced triple bracket {{−,−,−}} given by

{{a, b, c}} = {{a, {{b, c}}′}}⊗ {{b, c}}′′ + τ(123)

{{
b, {{c, a}}′}}⊗ {{c, a}}′′ + τ(132)

{{
c, {{a, b}}′}}⊗ {{a, b}}′′ .

(2.1)
In a similar way to the commutative case, n-brackets can be defined from analogues of n-vector

fields. Following Crawley-Boevey [37], we assume from now on that A is a B-algebra and we call the
elements of DA/B := DerB(A, A ⊗ A) double derivations. We see DA/B as an A-bimodule by using the
inner bimodule structure on A⊗ A. That is, if δ ∈ DA/B, then (b δ c)(a) = b ∗ δ(a) ∗ c for any a, b, c ∈ A.
Let DBA := TADA/B be the tensor algebra of this bimodule.
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 5

Proposition 2.1 [6, Proposition 4.1.1] There is a well-defined linear map μ : (DBA)n → {B-linear
n-brackets on A}, Q �→ {{−, . . . ,−}}Q which on Q = δ1 . . . δn is given by

{{−, . . . ,−}}Q =
n−1∑
i=0

(−1)(n−1)iτ i
(1...n) ◦ {{−, . . . ,−}}̃Q ◦ τ−i

(1...n),

{{a1, . . . , an}}̃Q = δn(an)
′δ1(a1)

′′ ⊗ δ1(a1)
′δ2(a2)

′′ ⊗ . . .⊗ δn−1(an−1)
′δn(an)

′′.

The map μ factors through DBA/[DBA, DBA] (for the graded commutator).

In the particular case of δ1δ2 ∈ (DBA)2, we have for any b, c ∈ A

{{b, c}}δ1δ2 = δ2(c)
′δ1(b)

′′ ⊗ δ1(b)
′δ2(c)

′′ − δ1(c)
′δ2(b)

′′ ⊗ δ2(b)
′δ1(c)

′′. (2.2)

Note also that DBA admits a canonical double Schouten–Nijenhuis bracket, which makes DBA into a
double Gerstenhaber algebra [6, Sections 2.7, 3.2]. This is a (graded) double bracket, that we denote by
{{−,−}}SN.

For any n ≥ 2, the multiplication map m : A⊗n → A is defined by concatenation of the factors, m(a1⊗
. . . ⊗ an) = a1 . . . an. For any n-bracket {{−, . . . ,−}}, this induces an associated bracket {−, . . . ,−} :=
m ◦ {{−, . . . ,−}}. In the case of a double bracket,

{a, b} = m ◦ {{a, b}} = {{a, b}}′ {{a, b}}′′ . (2.3)

Assume that the double bracket {{−,−}} is such that the bracket associated to the induced triple bracket
(2.1) satisfies {−,−,−} = 0. Then the bracket {−,−} associated to the double bracket is a left Loday
bracket (also called left Leibniz bracket), and it also satisfies Leibniz’s rule in its second argument, i.e.
{−,−} : A× A→ A is a bilinear map such that

{a, {b, c}} = {{a, b}, c} + {b, {a, c}}, {a, bc} = {a, b}c+ b{a, c}.

It descends to a map A/[A, A] × A→ A, then to an antisymmetric map on the vector space A/[A, A], so
that (A/[A, A], {−,−}) is a Lie algebra [6, Section 2.4]. Since each map {a,−} is a derivation on A, thus
{−,−} endows A with a non-commutative Poisson structure in the sense of [38], called an H0-Poisson
structure.

We can extend the procedure to graded setting, and denote the bracket associated to {{−,−}}SN as
{−,−}SN := m ◦ {{−,−}}SN. Hence, the pair (DBA, {−,−}SN) may be viewed as a non-commutative
version of the algebra of polyvector fields on a manifold with the Schouten–Nijenhuis bracket.

2.2 Double quasi-Poisson algebras

Consider B of the form B = Ce1 ⊕ . . . ⊕ CeK with eres = δrses, so that
∑

s es = 1 ∈ A. We define
for all s a double derivation Es ∈ DA/B such that Es(a) = aes ⊗ es − es ⊗ esa, and we call them the
gauge elements. As in [6, Section 5], a double quasi-Poisson bracket on A is a (B-linear) double bracket
{{−,−}}, such that the induced triple bracket satisfies {{−,−,−}} = 1

12

∑
s {{−,−,−}}E3

s
, where the triple

brackets in the right-hand side are defined in Proposition 2.1. In this case, we say that A is a double
quasi-Poisson algebra. Note that the associated brackets {−,−,−}E3

s
are identically zero, so that the
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6 M. FAIRON

double quasi-Poisson bracket {{−,−}} on A defines a left Loday bracket {−,−} by (2.3), which descends
to a Lie bracket on A/[A, A]. Assume that there is an element P ∈ (DBA)2 such that {P, P}SN = 1

6

∑
s E3

s

mod [DBA, DBA] (for the graded commutator). Then, we say that A is a differential double quasi-Poisson
algebra with the differential double quasi-Poisson bracket {{−,−}}P. This implies that {{−,−}}P is a
double quasi-Poisson bracket using [6, Theorem 4.2.3].

A multiplicative moment map for a double quasi-Poisson algebra (A, {{−,−}}) is an element � =∑K
s=1�s with�s ∈ esAes such that we have {{�s,−}} = 1

2 (�sEs+Es�s) ∈ DA/B for any s. This condition
may be written explicitly as requiring for all a ∈ A

{{�s, a}} = 1

2
(�sEs + Es�s)(a) = 1

2
(aes ⊗�s − es ⊗�sa+ a�s ⊗ es −�s ⊗ esa). (2.4)

When a double quasi-Poisson algebra is equipped with a multiplicative moment map, we say that it is a
quasi-Hamiltonian algebra.

Combining (2.3) and (2.4), we obtain {�, a} = a� − �a and {a,�} = 0 for any a ∈ A. Hence,
if q0 ∈ C and {−,−} is the left Loday bracket obtained from the double bracket on A, we get that
{J0, A} ⊂ J0, {A, J0} ⊂ J0 for J0 the ideal generated by � − q0. Therefore, A/J0 is a left Loday algebra.
If we consider q =∑s qses ∈ B and write J for the ideal generated by � − q, we only have {A, J} ⊂ J
in general, so that Aq := A/J is not necessarily a left Loday algebra. Nevertheless, since {J , A} ⊂ J
modulo commutators, the vector space Aq/[Aq, Aq] is a Lie algebra for the Lie bracket obtained from
{−,−} through A→ Aq/[Aq, Aq]. This endows Aq with an H0-Poisson structure [6, Proposition 5.1.5].

Finally, assume that A is (formally) smooth. If A is a double quasi-Poisson algebra with double
bracket defined by P ∈ (DBA)2, we say that the element P is non-degenerate if the map of A-bimodules
�1

BA ⊕ (⊕sAEsA) → DA/B given by (b.da.c, δ) �→ b {{a,−}}P c + δ is surjective. Here, {{−,−}}P is the
double bracket defined by Proposition 2.1, and �1

BA refer to the bimodule of non-commutative relative
1-forms [39, Section 2]. We refer to the brilliant work of Van den Bergh [35] for details and the relation
to a ‘double version’ of [15].

2.3 Multiplicative preprojective algebras

Let Q = (Q, I) be a quiver with vertex set I and arrow set Q, and consider the maps t, h : Q → I that
associate to every arrow a its tail and head, t(a) and h(a). We construct the double Q̄ of Q by adjoining
to every a ∈ Q an opposite arrow, denoted a∗. We naturally extend t and h, so that t(a) = h(a∗) and
h(a) = t(a∗). We define ε : Q̄→ {±1} the function that takes value +1 on arrows of Q, and −1 on each
arrow of Q̄ \ Q. We write CQ̄ for the path algebra of Q̄, whose underlying vector space is spanned by
all possible paths formed on Q̄ (including each trivial path es associated to s ∈ I). The multiplication is
given by concatenation of paths, and in particular the (es)s form a complete set of orthogonal idempotents.
We view CQ̄ as a B-algebra, with B = ⊕s∈ICes. Finally, we extend ∗ to an involution on CQ̄ by setting
(a∗)∗ = a for all a ∈ Q.

Remark 2.2 As in [1, 6], we write paths in CQ̄ from left to right. Hence, ab means ‘a followed by b’,
and the path ab is trivially zero if h(a) �= t(b).
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 7

Let A be obtained from CQ̄ by inverting all elements (1+ aa∗)a∈Q̄. For all a ∈ Q̄, define the element
∂

∂a of DBA which on b ∈ Q̄ acts as

∂b

∂a
=
{

et(a) ⊗ eh(a) if a = b
0 otherwise

. (2.5)

We consider a minor generalization of the construction of multiplicative preprojective algebra, without
the use of a total ordering on the arrows of the quiver, see the first remark at the end of [1, Section 2.5].
For each s ∈ I , we fix a total ordering <s on the arrows meeting at s, that is on all a ∈ Q̄ with h(a) = s
or t(a) = s. We also assume that if two arrows a, b meet at s and r, then either we have both a <s b and
a <r b or we have both b <s a and b <r a. We denote such a relation by< and refer to is as an ordering,
though it is not necessarily a partial order.2 We define the element � = (�s)s ∈ ⊕sesAes by

�s =
−→∏
a∈Q̄

t(a)=s

es(1+ aa∗)ε(a)es, (2.6)

where the product is taken with respect to the ordering, see Section 1.1. Following [33], given q =∑
s∈I qses with qs ∈ C×, we define the (deformed) multiplicative preprojective algebra as the quotient


q = A/(�− q). Up to isomorphism, the algebra 
q is independent of the ordering [33, Theorem 1.4].
The next result states that � is a moment map for a specific quasi-Hamiltonian algebra structure on

A. In particular, we have an H0-Poisson structure on 
q by Section 2.2.

Theorem 2.3 [6, Theorem 6.7.1] The algebra A is quasi-Hamiltonian for the differential double quasi-
Poisson bracket defined by

P = 1

2

∑
a∈Q̄

ε(a)(1+ a∗a)
∂

∂a

∂

∂a∗
− 1

2

∑
a,b∈Q̄

t(a)=t(b), a<b

(
∂

∂a∗
a∗ − a

∂

∂a

)(
∂

∂b∗
b∗ − b

∂

∂b

)
, (2.7)

and the multiplicative moment map given by � = (�s)s, where �s is defined in (2.6).

In fact, P is non-degenerate by [35, Section 8]. The following result gives an explicit form to the
double quasi-Poisson bracket which we denote as {{−,−}}, and that is defined by P using Proposition 2.1.

Proposition 2.4 [1, Proposition 2.6] Take an ordering in Q̄ so that the arrows of Q̄ are ordered in such
a way that a < a∗ < b < b∗ for any a, b ∈ Q with a < b. Then one has

{{a, a}} = 1

2
ε(a)

(
a2 ⊗ et(a) − eh(a) ⊗ a2

)
δh(a),t(a) (a ∈ Q̄), (2.8a)

{{a, a∗}} = eh(a) ⊗ et(a) + 1

2
a∗a⊗ et(a) + 1

2
eh(a) ⊗ aa∗

2 Strictly speaking, what we only use to get Theorem 2.3 is the total ordering <s for each s on the arrows a ∈ Q̄ with t(a) = s.
However, defining an ordering as we do is easier to write the assumption in Proposition 2.4.
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8 M. FAIRON

+ 1

2
(a∗ ⊗ a− a⊗ a∗)δh(a),t(a) (a ∈ Q), (2.8b)

{{a, b}} = 1

2
(eh(a) ⊗ ab)δh(a),t(b) + 1

2
(ba⊗ et(a))δh(b),t(a)

− 1

2
(b⊗ a)δh(a),h(b) − 1

2
(a⊗ b)δt(a),t(b) (a, b ∈ Q̄, a < b, b �= a∗). (2.8c)

This defines all double brackets since when a > b, {{a, b}} = − {{b, a}}◦.
We finish by a remark on the structure of the moment map of a subquiver. assume that Q̄′ is a quiver

with vertex set I ′ ⊂ I and Q̄′ = {a ∈ Q̄ | t(a) ∈ I ′ and h(a) ∈ I ′}. This means that if we look at the subset
of vertices I ′ of Q̄ and erase all the arrows of Q̄ which are not both starting and ending at an element of
I ′, we get Q̄′. Moreover, we require that Q̄ and Q̄′ are endowed respectively with orderings <,<′ such
that, whenever a, b ∈ Q̄′, a <′ b if a < b in the initial quiver Q̄, and whenever a ∈ Q̄′ but c ∈ Q̄ � Q̄′ we
have a < c.

We construct A′ as A above, and we see A′ as a subalgebra of A (after adding the removed idempotents
es for s ∈ I \ I ′). Define elements �′, P′ by replacing Q̄ with Q̄′ in (2.6) and (2.7). Remark that we
can write P = P′ +Pout and � = (� +∑s/∈I ′ es)�out for some Pout ∈ (DBA)2 and �out = (�out,s)s∈I .
Last statement is, in fact, a consequence of the fusion process which is used to endow a quiver with a
quasi-Hamiltonian structure [6, Sections 6.5–6.7].

Lemma 2.5 For all b, c ∈ A′ ⊂ A, we have {{b, c}}P = {{b, c}}P′ . In particular, for all s ∈ I ′, we have{{
�′s, c

}}
P
= 1

2 (�
′
sEs + Es�

′
s)(c).

Proof. By linearity of the map in Proposition 2.1, we can write {{−,−}}P′ = {{−,−}}P + {{−,−}}Pout .
From (2.2), we get that {{b, c}}Pout is a sum of terms of the form

δ2(c)
′δ1(b)

′′ ⊗ δ1(b)
′δ2(c)

′′ − δ1(c)
′δ2(b)

′′ ⊗ δ2(b)
′δ1(c)

′′ (2.9)

for any b, c ∈ A. By construction, Pout is a sum of (double) biderivations, and each biderivation carries
at least one factor ∂/∂d for d ∈ Q̄ � Q̄′. Therefore, if both b, c ∈ A′, all terms in (2.9) must vanish, and
{{b, c}}Pout = 0.

Applying this to �′s and c ∈ A′,
{{
�′s, c

}}
P
= {{�′s, c

}}
P′ . By construction, �′ is a multiplicative

moment map for {{−,−}}P′ , so it satisfies (2.4). �

2.4 Geometric counterpart to the definitions

Fix a C-algebra A and N ∈ N. The representation space Rep(A, N) is the affine scheme whose coordinate
ring O(Rep(A, N)) is generated by symbols aij for a ∈ A and i, j = 1, . . . , N , such that they are C-linear
in a, they satisfy (ab)ij = ∑k aikbkj for any a, b ∈ A, and 1ij = δij. Alternatively, we can see Rep(A, N)
as parametrising algebra homomorphisms � : A → MatN(C), and we get aij(�) = �(a)ij at any point
� ∈ Rep(A, N). Following [6, Section 7], to any a ∈ A we associate a matrix-valued function X (a) :=
(aij)ij on Rep(A, N). Similarly, any double derivation δ ∈ Der(A, A ⊗ A) gives rise to a matrix-valued
vector field X (δ) = (δij)ij on Rep(A, N), where δij is a derivation of O(Rep(A, N)) defined by the rule
δij(auv) = δ′(a)ujδ

′′(a)iv. In particular, if {{−,−}} is a double bracket on A, we have for any a ∈ A that the
double derivation {{a,−}} defines a matrix-valued vector field Xa such that (Xa)ij(buv) = {{a, b}}′uj {{a, b}}′′iv.
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 9

We can generalize the definition in a relative setting for a B-algebra A, where B is of the form
B = Ce1 ⊕ · · · ⊕ CeK with eres = δrses. Representation spaces are now indexed by K-tuples α =
(α1, . . . ,αK) ∈ NK . Given α with α1 + · · · + αK = N , we embed B diagonally into MatN(C) so that
IdN is split into a sum of K diagonal blocks of respective sizes α1, . . . ,αK , representing the idempotents
(es)s. By definition, RepB(A,α) = HomB(A, MatN(C)), and it can be viewed as an affine scheme in the
same way as Rep(A, N). Note in particular that for any � ∈ ⊕s esAes, the matrix-valued function X (�)
on RepB(A,α) is a block matrix X (�) ∈∏s Matαs(C).

Assume that A is equipped with a B-linear double bracket {{−,−}}. Then the representation spaces
are endowed with an anti-symmetric biderivation as follows.

Proposition 2.6 [6, Proposition 7.5.1, Section 7.8] There is a unique anti-symmetric biderivation {−,−} :
O(RepB(A,α))× O(RepB(A,α))→ O(RepB(A,α)) such that for all a, b ∈ A,

{aij, buv} = {{a, b}}′uj {{a, b}}′′iv . (2.10)

Moreover, if {{−,−}} = {{−,−}}P for some P ∈ (DBA)2, then {−,−} is defined by the bivector field
tr(X (P)) and we denote it by {−,−}P.

The identity (2.10) extends to relate the double bracket {{−,−}}SN on DBA with the Schouten–Nijenhuis
bracket [−,−] between polyvector fields on RepB(A,α) [6, Proposition 7.6.1].

On Rep(A, N)we have a natural action of GLN , induced by conjugation action on MatN(C). Similarly,
we have an action of GLα = ∏s GLαs on RepB(A,α). Provided that A is quasi-Hamiltonian, RepB(A,α)
is a quasi-Hamiltonian manifold [14], as defined now in the smooth case (see [6, Sections 7.11–7.13] for
the algebraic case).

Let G be a Lie group with Lie algebra g. Moreover, assume that g admits a non-degenerate G-invariant
bilinear form (−,−). If (ea), (ea) are dual bases of g with respect to (−,−), we define the Cartan 3-tensor
φ = 1

12 Cabcea ∧ eb ∧ ec, for Cabc = (ea, [eb, ec]) the tensor of structure constants. For all ξ ∈ g, write ξ L

and ξR to denote the left and right invariant vector fields on G, respectively.
Given a G-manifold M, the G-action gives rise to a Lie algebra homomorphism (−)M : g →

Der O(M). This can be extended to polyvector fields and we can define the 3-tensor φM . We say that
M is a quasi-Poisson manifold if there exists an invariant bivector field P on M such that [P, P] = φM

under the Schouten–Nijenhuis bracket. We can use P to define a bracket {−,−} on O(M) in the obvious
way.

A multiplicative moment map is an Ad-equivariant map � : M → G satisfying

{g ◦�,−} = 1

2

(
(eL

a + eR
a )(g) ◦�

)
(ea)M , (2.11)

for all functions g ∈ O(G), and we say that the triple (M, P,�) is a Hamiltonian quasi-Poisson manifold.
In the case where the action of G on M is free and proper, for each conjugacy class Cg of g ∈ G we can
form the Poisson manifold �−1(Cg)/G. This process is called quasi-Hamiltonian reduction.

Theorem 2.7 [6, Section 7.8, 7.13] Assume that (A, P) is a differential double quasi-Poisson algebra,
which is quasi-Hamiltonian for the multiplicative moment map� ∈ ⊕sesAes. We have that RepB(A,α) is
a GLα-space with a quasi-Poisson bracket {−,−}P determined from {{−,−}}P by (2.10). Then the matrix-
valued function X (�) : RepB(A,α) → ∏

s Matαs(C) is a multiplicative moment map for RepB(A,α).
Therefore, if it smooth, RepB(A,α) is a Hamiltonian quasi-Poisson manifold.
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10 M. FAIRON

We can note that any multiple of the identity Idα = ∏s Idαs acts trivially on RepB(A,α). This leads
us to define

G(α) =
(∏

s∈I

GLαs

)
/C×, (2.12)

where C× ⊂ GLα is the subgroup {λ Idα | λ ∈ C×}. Combining Theorem 2.7 with [35, Proposition 5.2]
and [14, Theorem 10.3], we obtain

Corollary 2.8 Assume that (A, P,�) is a quasi-Hamiltonian algebra, with P non-degenerate. If Cg ⊂
GLα is a conjugacy class such that Y := X (�)−1(Cg) is smooth, and if the action of G(α) on Y is free and
the affine GIT quotient Y//G is a geometric quotient, then it is a Poisson manifold with non-degenerate
Poisson bracket defined by tr(X (P)), that we denote Y/G.

Note that in the case where the conjugacy class is given by
∏

s qs Idαs with all qs ∈ C×, we know that
Y//G has a Poisson bracket because A/(� −∑s qses) has an H0-Poisson structure by [38, Section 4].
However, we need the quasi-Poisson formalism to conclude that the Poisson bracket is non-degenerate
in Corollary 2.8.

Now, fix a conjugacy class Cg in Lie(GLα) and assume that F, G ∈ O(X (�)−1(Cg)) are invariant
under the GLα action. We can write F = tr(X (a)) and G = tr(X (b)) for some a, b ∈ A. Assuming that
all spaces involved are smooth, we get from Proposition 2.6, Theorem 2.7 and (2.3) that

{F, G}P = tr X ({{a, b}}′ {{a, b}}′′) = tr X ({a, b}), (2.13)

where the bracket on the right-hand side is the associated bracket {−,−} = m ◦ {{−,−}}. In particular,
we only need to compute {a, b} modulo commutators in A/[A, A] to get the Poisson bracket between
tr(X (a)) and tr(X (b)). In slightly more general setting, given arbitrary a, b ∈ A we find in the same way

{tr(X (a)), X (b)}P = X ({a, b}), (2.14)

where this time we have the associated bracket {−,−} : A/[A, A] × A→ A.

2.5 Multiplicative quiver varieties

From now on, fix B = ⊕s∈ICes as in Section 2.3. We always work in a relative setting and omit the
subscript B from the notation. The matrix X (a) representing an element a ∈ A is an |I|×|I| block matrix.
In the case of an arrow a ∈ Q̄, we can use the idempotents to write a = et(a)aeh(a), so a is represented by a
matrix with at most one non-zero block of size αt(a)×αh(a) placed in the t(a)th block row and h(a)th block
column. Therefore, this can be viewed as a quiver representation, consisting of vector spaces Vs = Cαs ,
s ∈ I and linear maps Xa : Vh(a)→ Vt(a) for each a ∈ Q̄. With this interpretation, we have

Xa ∈ Matαt(a) ,αh(a) (C), Rep(CQ̄,α) ∼=
∏
a∈Q̄

Matαt(a) ,αh(a) (C). (2.15)

Next, Rep(A,α) is an affine open subset of Rep(CQ̄,α), so it is also smooth. It is naturally acted on by∏
i∈I GLαs through conjugation. This induces an action of G(α) as defined in (2.12). By Theorems 2.3 and
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 11

2.7, and Proposition 2.6, Rep(A,α) is a quasi-Hamiltonian G(α)-manifold, with quasi-Poisson bracket
defined by the bivector tr(X (P)) and with multiplicative moment map X (�). The representation space
Rep(
q,α) corresponds to the subset such that X (�) = ∏s qs Idαs , so it is a closed affine subvariety in
Rep(A,α). We set qα =∏s∈I qαs , and note that Rep(
q,α) is empty when qα �= 1 by [33, Lemma 1.5].

The points in the affine variety Sα,q := Rep(
q,α)//G(α) are closed G(α) orbits of Rep(
q,α), so
correspond to semi-simple representations of
q of dimension α. In the case where all representations in
Rep(
q,α) are simple, we have the following description of the space.

Theorem 2.9 [1, Theorem 2.8] Let p(α) = 1+∑a∈Q αt(a)αh(a)− α · α, where α · α =∑s∈I α
2
s . Suppose

that Rep(
q,α) is non-empty and all representations in Rep(
q,α) are simple. Then α is a positive root of
Q and Rep(
q,α) is a smooth affine variety of dimension g+2p(α), with g = dim G(α) = α ·α−1. The
group G(α) acts freely on Rep(
q,α), so Sα,q = Rep(
q,α)/G(α) is a Poisson manifold of dimension
2p(α), obtained by quasi-Hamiltonian reduction.

As we explained in Section 2.4, the Poisson bracket on O(Sα,q) = O(Rep(
q,α))G(α) is obtained
from the G(α)-invariant bivector field tr(X (P)). Moreover, since P is non-degenerate by [35, Section 8],
Corollary 2.8 yields that Sα,q is a symplectic manifold when any representation in Rep(
q,α) is simple.

Let Q be an arbitrary quiver with vertex set I . A framing of Q is a quiver Q̃ with set of vertices
Ĩ = I ∪ {∞} and whose arrows are the ones of Q together with additional arrows∞→ s to the vertices
of Q. We allow multiple arrows to a single vertex. Given arbitrary α ∈ NI and q ∈ (C×)I , we extend
them from I to Ĩ by putting α∞ = 1 and q∞ = q−α , i.e. α̃ = (1,α) and q̃ = q−αe∞ +∑s∈I qses. By
construction q̃α̃ = 1. We can consider the multiplicative preprojective algebra of Q̃ with parameter q̃,
and consider the representation space Rep(
q̃, α̃). We refer to the quotients

M̃α,q(Q) := Rep(
q̃, α̃)//G(̃α), where G(̃α) ∼=
∏
s∈I

GLαs = GLα , (2.16)

as multiplicative quiver varieties, that we abbreviate MQV.
We say that q =∑s∈I qses is regular if qα �= 1 for any root α of the quiver Q. We have the following

result, which is a multiplicative analogue of [3, Theorem 2.8] and [40, Proposition 3].

Proposition 2.10 [1, Proposition 2.9] Choose an arbitrary framing Q̃ of Q and let α̃ and q̃ be defined
as above. If q is regular, then every module of dimension α̃ over the multiplicative preprojective algebra

q̃ is simple. Hence, the group GLα acts freely on Rep(
q̃, α̃) and the MQV M̃α,q(Q) is smooth.

When q is regular and M̃α,q(Q) �= ∅, this implies that α̃ = (1,α) is a positive root of Q̃ and M̃α,q(Q)
is a smooth affine variety of dimension 2p(̃α) by Theorem 2.9.

3. Quasi-Hamiltonian algebra structure

The developments of this section are parallel to [1, 34], and can be seen as application of Van den Bergh’s
work [6] that we recalled in Sections 2.1–2.3. Fix m, d ≥ 2 and let I = Z/mZ. Except when it is stated
differently, we assume for the rest of this article that we take the indices r, s in I , and that the Greek letters
α,β, γ , ε placed as indices always range through 1, . . . , d.

By a spin cyclic quiver, we mean the double quiver Q̄ of a quiver Q, where Q has m + 1 vertices
labelled by I ∪ {∞}, m arrows xs : s→ s+ 1 and d framing arrows v1, . . . , vd :∞→ 0. We write for the
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12 M. FAIRON

doubles ys = x∗s : s+ 1→ s and wα = v∗α : 0→∞. We consider the following ordering at each vertex

at∞ : v1 < w1 < · · · < vd < wd ,

at s ∈ I \ {0} : xs < ys < xs−1 < ys−1,

at 0 : x0 < y0 < xm−1 < ym−1 < v1 < w1 < · · · < vd < wd .

We form the algebra A obtained by inverting all the elements (1+ aa∗)a∈Q̄ in CQ̄. Using Proposition 2.4,
we get a double quasi-Poisson bracket on A, which satisfies the following identities between the arrows
of the cycle

{{xr , xs}} = 1

2
xr−1xr ⊗ er δ(s,r−1) − 1

2
er+1 ⊗ xrxr+1 δ(s,r+1), (3.1a)

{{yr , ys}} = 1

2
er ⊗ yryr−1 δ(s,r−1) − 1

2
yr+1yr ⊗ er+1 δ(s,r+1), (3.1b)

{{xr , ys}} = δsr

(
er+1 ⊗ er + 1

2
yrxr ⊗ er + 1

2
er+1 ⊗ xryr

)
− 1

2
xr ⊗ yr−1 δ(s,r−1) + 1

2
yr+1 ⊗ xr δ(s,r+1). (3.1c)

Note the difference of signs for last two terms in (3.1c) compared to [1, (4.1c)], which is a consequence
of the different ordering taken at each vertex s ∈ I . The double brackets involving elements of the cycle
and framing arrows are determined by

{{xr , wα}} = 1

2
δ(r,m−1) er+1 ⊗ xrwα − 1

2
δ(r,0) xr ⊗ wα , (3.2a)

{{xr , vα}} = 1

2
δ(r,0) vαxr ⊗ er − 1

2
δ(r,m−1) vα ⊗ xr , (3.2b)

{{yr , wα}} = 1

2
δ(r,0) er ⊗ yrwα − 1

2
δ(r,m−1) yr ⊗ wα , (3.2c)

{{yr , vα}} = 1

2
δ(r,m−1)vαyr ⊗ er+1 − 1

2
δ(r,0)vα ⊗ yr . (3.2d)

The remaining double brackets are nothing else than

{{
vα , vβ

}} = −1

2
o(α,β)

(
vβ ⊗ vα + vα ⊗ vβ

)
, (3.3a)

{{
wα , wβ

}} = − 1

2
o(α,β)

(
wβ ⊗ wα + wα ⊗ wβ

)
, (3.3b)

{{
vα , wβ

}} = δαβ (e0 ⊗ e∞ + 1

2
wαvα ⊗ e∞ + 1

2
e0 ⊗ vαwα

)
+ 1

2
o(α,β)

(
e0 ⊗ vαwβ + wβvα ⊗ e∞

)
. (3.3c)
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 13

To derive (3.3a), note that Proposition 2.4 gives for α < β that
{{

vα , vβ
}} = − 1

2 (vβ ⊗ vα + vα ⊗ vβ).
This is because vα < vβ and their heads/tails coincide. We then find (3.3a) by cyclic antisymmetry of the
double bracket. Identities (3.3b) and (3.3c) are obtained in the same way.

Introduce the elements x =∑s xs, y =∑s ys and set Fa =∑s∈I es+a⊗ es ∈ A⊗A for any a ∈ Z. Of
great help for our study are the elements

F1 =
∑
s∈I

es+1 ⊗ es, F−1 =
∑
s∈I

es−1 ⊗ es =
∑
s∈I

es ⊗ es+1. (3.4)

With these notations, Equations (3.1a)–(3.1c) become

{{x, x}} = 1

2

(
x2F1 − F1x2

)
, {{y, y}} = −1

2

(
y2F−1 − F−1y2

)
(3.5a)

{{x, y}} = F1 + 1

2
(yxF1 + F1xy − xF1y + yF1x), (3.5b)

while (3.2a)–(3.2d) take the form

{{x, wα}} = 1

2
e0 ⊗ xwα − 1

2
e0x ⊗ wα , {{x, vα}} = 1

2
vαx ⊗ e0 − 1

2
vα ⊗ xe0, (3.6a)

{{y, wα}} = 1

2
e0 ⊗ ywα − 1

2
e0y⊗ wα , {{y, vα}} = 1

2
vαy⊗ e0 − 1

2
vα ⊗ ye0. (3.6b)

(The expressions (3.6a)–(3.6b) could be written using F1 and F−1 instead of writing the idempotents
e0, but this form is not better suited for calculations.) Adding to A local inverses x−1

s = es+1x−1
s es such

that xsx−1
s = es and x−1

s xs = es+1, we get locally invertible elements zs = ys + x−1
s and we form

z = x−1 + y = ∑s zs. Equations (3.5a), (3.6a)–(3.6b) can be written with z instead of y, while (3.5b)
becomes

{{x, z}} = 1

2
(zxF1 + F1xz − xF1z + zF1x). (3.7)

The algebra A is quasi-Hamiltonian for the double bracket given above and the multiplicative moment
map � =∑s es�es + e∞�e∞ where

e0�e0 =(e0 + x0y0)(e0 + ym−1xm−1)
−1

−→∏
α=1,...,d

(e0 + wαvα)
−1, (3.8a)

es�es =(es + xsys)(es + ys−1xs−1)
−1, s ∈ I \ {0}, (3.8b)

e∞�e∞ =
−→∏

α=1,...,d

(e∞ + vαwα). (3.8c)

Here, we use the invertibility of 1+ x0y0 and the idempotent decomposition of 1 ∈ A to get that e0+ x0y0

is locally invertible with inverse (e0 + x0y0)
−1 := e0(1+ x0y0)

−1e0, and the same holds for all the arrows
in Q̄. If we further localize at x, we can write (es + xsys)(es + ys−1xs−1)

−1 as xszsx
−1
s−1z−1

s−1.
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14 M. FAIRON

Following the Jordan quiver case [34, Section 3.1], we introduce the spin elements

a′α = wα , c′1 = v1z, c′α = vα(e0 + wα−1vα−1) . . . (e0 + w1v1)z, (3.9)

and we can define c′α inductively using

c′α =
α−1∑
λ=1

vαwλc
′
λ + vαz. (3.10)

It is important to remark that a′α = e0a′αe∞ but c′α = e∞c′αem−1 is not a path to 0. This is due to the fact
that vαz = vαzm−1. To get the double brackets between the elements (x, z, a′α , c′α), it remains to find the
ones involving c′α . The next result is obtained in Appendix A:

Lemma 3.1 For any α,β = 1, . . . , d,

{{
x, c′α

}} = 1

2
c′αx ⊗ em−1 + 1

2
c′α ⊗ xem−1,

{{
z, c′α

}} = −1

2
c′αz ⊗ em−1 + 1

2
c′α ⊗ zem−1 (3.11a)

{{
a′α , c′β

}} = 1

2

(
o(α,β)− δαβ

)
e∞ ⊗ a′αc′β − δαβ

(
e∞ ⊗ e0z +

β−1∑
λ=1

e∞ ⊗ a′λc
′
λ

)
, (3.11b)

{{
c′α , c′β

}} = 1

2
o(α,β)

(
c′β ⊗ c′α − c′α ⊗ c′β

)
. (3.11c)

where the last sum in (3.11b) is omitted for λ = 1.

Motivated by the geometric interpretation through (2.13), we are interested in the bracket {−,−}
associated to {{−,−}} between the elements xk and a′αc′βxl, for any k, l ∈ N. Hereafter, given any b ∈ A
we also denote by b its equivalence class in A/[A, A]. We compute

Lemma 3.2 For any k, l ≥ 1, we get in A/[A, A],

{xk , xl} = 0, {xk , a′αc′βxl} = k a′αc′βxk+l, (3.12a)

{a′γ c′εx
k , a′αc′βxl} = 1

2

(
k∑

v=1

−
l∑

v=1

) (
a′αc′βxva′γ c′εx

k+l−v + a′αc′βxk+l−va′γ c′εx
v
)

+ 1

2
o(α, γ )

(
a′γ c′εx

ka′αc′βxl + a′αc′εx
ka′γ c′βxl

)
+ 1

2
o(ε,β)

(
a′αc′βxka′γ c′εx

l − a′αc′εx
ka′γ c′βxl

)
+ 1

2
[o(ε,α)+ δαε] a′αc′εx

ka′γ c′βxl − 1

2
[o(β, γ )+ δβγ ] a′αc′εx

ka′γ c′βxl

+ δαε
(

z +
ε−1∑
λ=1

a′λc
′
λ

)
xka′γ c′βxl − δβγ a′αc′εx

k

(
z +

β−1∑
μ=1

a′μc′μ

)
xl. (3.12b)
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 15

In particular, in order for the elements on which we take the bracket to be non-zero in A/[A, A], we need
k = 0 mod m for xk , or l − 1 = 0 mod m for a′αc′βxl.

In fact, (3.12a) holds in A for the left Loday bracket {−,−}, i.e. we do not necessarily need to regard
it as the operation A/[A, A] × A/[A, A] → A/[A, A]. Note also that it is sufficient to consider in the two
first sums over v in (3.12b) the terms for which v = 1 mod m. All the computations are provided in
Appendix A.

We work in slightly more general setting from now on, and consider u ∈ {x, y, z,
∑

s es + xy}. We
already have ε(x) = +1, ε(y) = −1, and we set ε(z) = −1, ε(

∑
s es + xy) = +1. We can write in the

three first cases {{u, u}} = 1
2ε(u)[u2Fε(u)−Fε(u)u2], while {{u, u}} = 1

2 [u2F0−F0u2] if u =∑s es+xy. The
identities can be directly checked, see e.g. [1, Lemmas A.1, A.2] for some of them. Using these brackets,
we get the following result which is proved in Appendix A.

Lemma 3.3 For any k, l ≥ 1, α,β = 1, . . . , d, we have
{{

uk , wαvβul
}} = 0 under the left Loday bracket

in A. The equality descends to A/[A, A] and we have in particular that the C-vector space generated by
the elements (uk , w1v1uk) is a commutative Lie subalgebra in (A/[A, A], {−,−}).

Let φ be the moment map associated to the subquiver supported at I . That is φ = ∑s φs for φs =
(es + xsys)(es + ys−1xs−1)

−1 or φs = xszsx
−1
s−1z−1

s−1 when we localize A at x. We assume in the next result
that A is localized at u.

Proposition 3.4 Let U+,η = u(1+ ηφ), U−,η = u(1+ ηφ−1), for arbitrary η ∈ C playing the role of a
spectral parameter. Let K , L ∈ N×. Then, if ε(u) = −1,

{UK
+,η, UL

+,η′ } = 0 mod [A, A], for any η, η′ ∈ C. (3.13)

If ε(u) = +1,

{UK
−,η, UL

−,η′ } = 0 mod [A, A], for any η, η′ ∈ C. (3.14)

Note that when u is not
∑

s es + xy and K is not divisible by m, then UK
+,η = 0 mod [A, A] and the result

is trivial. This is because um ∈ ⊕sesAes but u /∈ ⊕sesAes in those cases. The proof of Proposition 3.4 is
provided in Appendix A.

For a (m+1)-uple (q∞, qs) ∈ C×× (C×)I , we set q̃ = q∞e∞+∑s qses and the multiplicative prepro-
jective algebra 
q̃ is the quotient of A by the two-sided ideal J generated by the relation � = q̃, where
� is given by (3.8a)–(3.8c). The different equalities derived above in the Lie algebra (A/[A, A], {−,−})
descend to 
q̃/[
q̃,
q̃] by Section 2.2.

4. A natural phase space for the spin RS model

We recall the important results from [34] that are needed for our study, and we take the freedom to adapt
the notations to suit our case.

Fix t ∈ C× not a root of unity, n ∈ N× and d ≥ 2. A dense open subset C◦n,t,d of the MQV Cn,t,d of
dimension (1, n) defined from a spin Jordan quiver with d framing arrows is given by equivalence classes
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16 M. FAIRON

of 2d + 2 elements (A, B, V ′α , W ′α), where A, B ∈ GLn(C) and V ′α ∈ Mat1×n, W ′α ∈ Matn×1 are matrices
satisfying

ABA−1B−1
−→∏

α=1,...,d

(Idn+W ′αV ′α)
−1 = t Idn, (4.1)

under the equivalence defined from the action of the group GLn(C) by

g.(A, B, V ′α , W ′α) = (gAg−1, gBg−1, V ′αg−1, gW ′α), g ∈ GLn(C). (4.2)

In fact, C◦n,t,d is a smooth symplectic complex manifold of dimension 2nd, and we denote its Poisson
bracket by {−,−}P. For any representative of an equivalence class, we form the matrices A ∈ Matn×d(C)

and C ∈ Matd×n(C) by

Aiα =
[
W ′α
]

i
, Cαj =

[
V ′α(Idn+W ′α−1V ′α−1) . . . (Idn+W ′1V ′1)B

]
j
, (4.3)

so that the moment map equation can be rewritten as

ABA−1 = tB+ tAC. (4.4)

Then a point of C◦n,t,d is determined by the equivalence class of (A, B, V ′α , W ′α) as above, or equivalently by an
element (A, B, A, C)modulo identification by the group action g·(A, B, A, C) = (gAg−1, gBg−1, gA, Cg−1)

for any g ∈ GLn(C). Choosing the functions

fk := tr(Ak), gαβk = tr(AEαβCAk), k ∈ N, α,β = 1, . . . , d, (4.5)

the Poisson structure is determined from the identities

{fk , fl}P = 0, {fk , gαβl }P = k gαβk+l, (4.6a)

{gγ εk , gαβl }P =
1

2

(
k∑

r=1

−
l∑

r=1

) (
tr(AEαβCArAEγ εCAk+l−r)+ tr(AEαβCAk+l−rAEγ εCAr)

)
+ 1

2
o(α, γ )

(
tr(AEγ εCAkAEαβCAl)+ tr(AEαεCAkAEγβCAl)

)
+ 1

2
o(ε,β)

(
tr(AEαβCAkAEγ εCAl)− tr(AEαεCAkAEγβCAl)

)
+ 1

2
[o(ε,α)+ δαε] tr(AEαεCAkAEγβCAl)− 1

2
[o(β, γ )+ δβγ ] tr(AEαεCAkAEγβCAl)

+ δαε tr

([
B+

ε−1∑
λ=1

AEλλC

]
AkAEγβCAl

)

− δβγ tr

([
B+

β−1∑
μ=1

AEμμC

]
AlAEαεCAk

)
, (4.6b)
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 17

see [34, Lemma A.2]. This space admits local coordinates on an open subset which is dense3 in C◦n,t,d

as follows. Define the open subspace C ′n,t,d ⊂ C◦n,t,d which is such that for any equivalence class of
quadruple (A, B, A, C) ∈ C◦n,t,d , the matrix A is diagonalizable with non-zero eigenvalues (xi)i satisfying
xi �= xj, xi �= txj for each i �= j, and when we choose a representative with A in diagonal form, the matrix A
is such that the entries in each of its rows sum up to a non-zero value. Hence, we can pick a representative
with A in diagonal form as above, and such that

∑
α Aiα = 1 in C ′n,t,d . Note that this is uniquely defined

up to action by a permutation matrix. Introduce

Creg = {x = (x1, . . . , xn) ∈ Cn | xi �= 0, xi �= xj, xi �= txj for all i �= j}. (4.7)

For α = 1, . . . , d take (aα)�, cα ∈ Cn. We define h ⊂ Creg × (Cn)×d × (Cn)×d to be a generic subspace
such that on global coordinates (xi, aαi , cαi )iα we require

∑
α aαi = 1, see [34, Section 4.1]. We can define

a map ξ : h → C ′n,t,d which associates to (xi, aαi , cαi )iα the equivalence class of the element (A, B, A, C),
where

A = diag(x1, . . . , xn), B = (Bij), A = (Aiα), C = (Cαi)

with Bij = t

∑
α aαi cαj

xix
−1
j − t

, Aiα = aαi , Cαi = cαi .
(4.8)

This map is such that the following result holds.

Proposition 4.1 [34, Propositions 4.1, 4.3] The map ξ : h/Sn → C ′n,t,d given by (4.8) defines a local
diffeomorphism. It is a Poisson morphism when h/Sn is equipped with the Poisson bracket {−,−} defined
on coordinates by

{xj, xi} = 0, {aαj , xi} = 0, {cαj , xi} = −δijcαj xi, (4.9a)

{aγj , aαi } =
1

2
δ(i �=j)

xj + xi

xj − xi
(aγj aαi + aγi aαj − aγj aαj − aγi aαi )+

1

2
o(α, γ )(aγj aαi + aγi aαj )

+ 1

2

d∑
σ=1

o(γ , σ)aαi (a
γ

j aσi + aγi aσj )−
1

2

d∑
κ=1

o(α, κ)aγj (a
κ
j aαi + aκi aαj ), (4.9b)

{cεj , aαi } = δεαBij − aαi Bij + 1

2
δ(i �=j)

xj + xi

xj − xi
cεj (a

α
j − aαi )− δ(α<ε)aαi cεj

− aαi

ε−1∑
λ=1

aλi (c
λ
j − cεj )+ δεα

ε−1∑
λ=1

aλi cλj +
1

2

d∑
κ=1

o(α, κ)cεj (a
κ
j aαi + aκi aαj ), (4.9c)

{cεj , cβi } =
1

2
δ(i �=j)

xj + xi

xj − xi
(cεj cβi + cεi cβj )+ cβi Bij − cεj Bji + 1

2
o(ε,β)(cεi cβj − cεj cβi )

3 To be precise, we have local coordinates on the connected component of C◦n,t,d that contains the subspace C′n,t,d defined below.
It is conjectured in [34] that C◦n,t,d itself is connected and we work under the latter assumption. If C◦n,t,d is not connected, then we
get from [34] that the Poisson brackets (4.6a)–(4.6b) determine the Poisson structure only on the connected component of C◦n,t,d
containing C′n,t,d , and Proposition 5.3 only holds between the latter connected component and its image in C◦n,̃q,d(m).
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18 M. FAIRON

+ cβi

ε−1∑
λ=1

aλi (c
λ
j − cεj )− cεj

β−1∑
μ=1

aμj (c
μ

i − cβi ). (4.9d)

Furthermore, letting fij = ∑α aαi cαj , the subalgebra generated by (xi, fij)ij inside O(h/Sn) is a Poisson
subalgebra under {−,−}.

In these local coordinates, the matrix B is the Lax matrix of the spin trigonometric RS system.
Furthermore, the equation of motions defined by d

dt = {tr B,−}P are normalized versions of the equations
of motion for the spin RS Hamiltonian, as originally defined in [26]. The form of the Poisson brackets
between the elements (xi, fij)ij was conjectured in [27].

5. MQV for spin cyclic quivers

Consider the multiplicative preprojective algebra for a spin cyclic quiver as in Section 3. In accordance
with Section 2.5, choose a dimension vector α̃ = (1,α) with α ∈ (N×)I , and set q∞ = q−α =∏s∈I q−αs

s .
A representation of 
q̃ of dimension α̃ is a collection of vector spaces (V∞, Vs) = (C, Cαs) together

with linear maps representing arrows of Q̄ and satisfying (3.8a)–(3.8c). Denote in an obvious way the
matrices representing the arrows as (Xs, Ys, Vα , Wα). Therefore, points of Rep(
q̃, α̃) are represented by
2m + 2d elements (Xs, Ys, Vα , Wα),

Xs ∈ Matαs×αs+1(C), Ys ∈ Matαs+1×αs(C), Vα ∈ Matα0×1(C), Wα ∈ Mat1×α0(C),

for s ∈ I , α ∈ {1, . . . , d} satisfying

(Idα0 +X0Y0)(Idα0 +Ym−1Xm−1)
−1 = q0

←−∏
α=1,...,d

(Idα0 +WαVα), (5.1a)

(Idαs +XsYs)(Idαs +Ys−1Xs−1)
−1 = qs Idαs , s ∈ I \ {0}, (5.1b)

−→∏
α=1,...,d

(1+ VαWα) = q∞, (5.1c)

and such that all factors have non-zero determinant. The group G(̃α) = ∏s∈I GLαs(C) acts on these
elements by

g.(Xs, Ys, Vα , Wα) = (gsXsg
−1
s+1, gs+1Ysg

−1
s , Vαg−1

0 , g0Wα), g ∈ G(̃α), (5.2)

and the orbits in Rep
(

q̃, α̃

)
//G(̃α) correspond to isomorphism classes of semisimple representations.

We are particularly interested in the cases where X =∑s Xs is invertible at some points, hence we restrict
our attention to the spaces such that αs = n ∈ N× for all s ∈ I . We now define

Cn,̃q,d(m) = Rep
(

q̃, α̃

)
//G(̃α),

which is the spin analogue of the space Cn,q(m) introduced in [1, Section 4], see also [41, Section 5]. By
construction, this is a MQV for a framed cyclic quiver, and we denote its Poisson bracket by {−,−}P.
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 19

Let us identify I and {0, . . . , m − 1} to introduce the elements

ts :=
∏

0≤s′≤s

qs′ , s = 0, . . . , m − 1, t := tm−1, (5.3)

so that q∞ = t−n. We also set t−1 = 1 to state the next result, which is an application of 2.5 with the
regularity condition from [1, Section 4].

Proposition 5.1 Suppose that t−1
s ts′ �= tk for any k ∈ Z,−1 ≤ s < s′ ≤ m−1 with (s, s′) �= (−1, m−1),

or that tk �= 1 for any k ∈ Z×. Then Cn,̃q,d(m) is a smooth variety of dimension 2nd, with a non-degenerate
Poisson bracket denoted by {−,−}P.

From now on, we assume the regularity condition of the proposition. In particular, t is not a root of
unity.

5.1 Local coordinates

Consider the open subset C◦n,̃q,d(m) ⊂ Cn,̃q,d(m) on which the Xs are invertible. Similarly to the Jordan
quiver case reviewed in Section 4, introduce Zs := Ys + X−1

s , and form the matrices A(m) ∈ Matn×d(C),
C(m) ∈ Matd×n(C) by

A(m)
iα = [Wα]i , C(m)

αj = t−1 [Vα(Idn+Wα−1Vα−1) . . . (Idn+W1V1)Z]j . (5.4)

so that the αth column of A(m) represents the spin element a′α , while the αth row of C(m) represent t−1c′α .
Note the factor t−1 necessary to define C(m). In particular, (5.1a)–(5.1b) adopt the compact form

X0Z0X−1
m−1 = q0Zm−1 + q0t A(m)C(m), XsZs = qsZs−1Xs−1. (5.5)

Then (5.1c) is just a corollary of these relations. Up to changing basis, a point (Xs, Ys, Vα , Wα) can be
represented by an element of the equivalence class such that X0, . . . , Xm−2 = Idn. Therefore, setting
A := Xm−1 and B := q−1

0 Z0, we find that the condition (5.5) gives Zs = tsB for s �= m− 1, Zm−1 = tA−1B,
and A, B satisfy

q0BA−1 = q0tA−1B+ q0t A(m)C(m). (5.6)

Hence a point in C◦n,̃q,d(m) is completely determined by the data (A, B, A(m), C(m)) up to GLn action by
g · (gAg−1, gBg−1, gA(m), C(m)g−1) seen as

∏
s g ∈ G(̃α), with A, B invertible and the elements Idn+WαVα

(that can be reconstructed from (5.4)) invertible. Comparing with (4.4), we find

Proposition 5.2 Let C◦n,̃q,d(m) ⊂ Cn,̃q,d(m) be as above. Let C◦n,t,d be the spin RS space considered in
Section 4 with parameter t =∏s qs, so that C◦n,t,d is a smooth variety. Then the map ψ : C◦n,t,d → C◦n,̃q,d(m)
sending (A, B, A, C) to Xs = Idn, Zs = tsB for s = 0, . . . , m − 2 and Xm−1 = A, Zm−1 = tA−1B,
A(m) = A−1A, C(m) = C defines an isomorphism of varieties.
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20 M. FAIRON

Proof. The only non-trivial identity to show is that we can recover det(Idn+WαVα) �= 0 for all α. We
define in C◦n,t,d the elements W ′β = (Aiβ)i, C′β = (Cβi)i and inductively

V ′β = C′βB−1(Idn+W ′1V ′1)
−1 . . . (Idn+W ′β−1V ′β−1)

−1.

By definition of the space C◦n,t,d with (4.3), 1 + V ′βW ′β �= 0 for all β. Now we remark in C◦n,̃q,d(m) that
Wβ = ((A−1A)iβ)i = A−1W ′β . We can also rewrite (5.4) as

Vβ = C′βB−1A(Idn+W1V1)
−1 . . . (Idn+Wβ−1Vβ−1)

−1,

to get that V1 = V ′1A and by induction Vβ = V ′βA. Thus 1+ VβWβ = 1+ V ′βW ′β �= 0 for all β. �

We can, in fact, compare the Poisson structures on both spaces.

Proposition 5.3 The isomorphism ψ : C◦n,t,d → C◦n,̃q,d(m) from Proposition 5.2 is Poisson.

The proof can be found in Appendix B. In particular, we can transfer the invariant local coordinates on
C ′n,t,d ⊂ C◦n,t,d obtained in Proposition 4.1 to the open subset C ′n,̃q,d(m) ⊂ C◦n,̃q,d(m) defined by C ′n,̃q,d(m) =
ψ(C ′n,t,d). In such a case, we can always consider for a point of C ′n,̃q,d(m) a gauge with representative of the
form (X, Z , A(m), C(m)) given by Proposition 5.2, with the extra condition that Xm−1 is in diagonal form
with diagonal entries (xi)i defining a point of Creg (4.7) and

∑
α(XA(m))iα = 1 for all i.

5.2 New variants of the spin RS system

Set X = ∑s Xs, Y = ∑s Ys and denote by 1 the sum of the m copies of the identity matrix on each
Vs = Cn, s ∈ I . Let� = (1+ XY)(1+ YX)−1 be the moment map restricted to the cyclic quiver without
framing, so that � = X (φ) for φ defined in Section 3. Proposition 3.4 and (2.13) imply the following
result.

Theorem 5.4 The following families of functions are Poisson commuting for any parameter η:{
tr
(
(1+ η�−1)X

)j ∣∣ j ∈ N
}

,
{

tr
(
(1+ η�−1)(1+ XY)

)j ∣∣ j ∈ N
}

,{
tr ((1+ η�)Y)j ∣∣ j ∈ N

}
,
{

tr
(
(1+ η�)(Y + X−1)

)j ∣∣ j ∈ N
}

.

Apart from the first family, we need j ∈ mN to have non-zero elements.
We will write down the families from Theorem 5.4 in C ′n,̃q,d(m), where we can use the coordinates

(xi, fij)ij with fij =∑α aαi cαj . Hence, our first task is to use the known matrices (A, B, S = AC) instead of
the matrices describing a point in C ′n,̃q,d(m). Using the isomorphism from Theorem 5.2, they are given by

A = diag(x1, . . . , xn), B = (Bij)ij, Bij = tfijxj

xi − txj
, S = (Sij)ij, Sij = fij.
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 21

Decomposing the moment map (restricted to the cycle) � = XZX−1Z−1 as � = ∑s �s, we get from
(5.1b) that �s = qs Idn for s �= 0, and from (5.1a) that �0 = q0 Idn+q0t A(m)C(m)Z−1

m−1. Hence

�0Zm−1 = q0Zm−1 + q0tA(m)C(m) = q0tA−1B+ q0tA−1AC = q0tA−1 (B+ S),

�sZs−1 = qsZs−1 = qsts−1B, s �= 0.
(5.7)

The first family contains the symmetric functions of the positions (xi)i so we omit it. For the fourth
family in Theorem 5.4, we see that (1+ η�)(Y +X−1) is constituted of m blocks Zs−1+ η�sZs−1. Thus,
the block Zs−1+η�sZs−1 is given by (1+ηq0)tA−1B+ηq0tA−1S for s = 0 and ts−1(1+ηqs)B otherwise.
We can rewrite [(1+ η�)Z]m as a matrix with diagonal blocks(

t2
∏
s �=0

ts−1(1+ ηqs)
)

BsA−1
([t−1 + η′]B+ η′S)Bm−s−1, for η′ = q0t−1 η. (5.8)

In other words, we are interested in studying the family

Gm
j := tr

[
A−1

([t−1 + η′]B+ η′S)Bm−1
]j

. (5.9)

In particular, if we write Gm
j as a polynomial in η′ under the form Gm

j =
∑j

l=0(η
′)lGm

j,l, we get that
all the (Gm

j,l)j,l are Poisson commuting (for fixed m) by Theorem 5.4. Now, remark that (4.4) gives
[t−1 + η′]B+ η′S = t−1B+ η′t−1ABA−1. We can write

Gm
j,l = t−j

n∑
i1,...,ijm=1

jm∏
a=1

fiaia+1xia+1

xia − txia+1

∑
I⊂{0,...,j−1}
|I|=l

(∏
s∈I

x−1
ism+2

)(∏
s/∈I

x−1
ism+1

)
. (5.10)

This was obtained by developing Gm
j := tr

[
(t−1A−1B + t−1η′BA−1)Bm−1

]j
, which explains the two

products at the end of the expression, that represent whether A−1 occurs before or after B in the (sm+1)th
factor A−1B+ η′BA−1. In particular, Gj,j = Gj,0 for all j = 1, . . . , n.

We now look at the third family in Theorem 5.4. We can see that for any j � 1 in C ′n,̃q,d(m)

tr ((1+ η�)Y)jm = tr
(
(1+ η�)(Z − X−1)

)jm

= m tr
(
(Idn+η�0)(Zm−1 − X−1

m−1) . . . (Idn+η�2)(Z1 − X−1
1 )(Idn+η�1)(Z0 − X−1

0 )
)j

.
(5.11)

We get, for any s �= 0,

(Idn+η�s)(Zs−1 − X−1
s−1) = (1+ ηqs)(ts−1B− Idn) = ts−1(1+ ηqs)(B− t−1

s−1 Idn),

(Idn+η�0)(Zm−1 − X−1
m−1) = (Idn+ηq0tA−1(B+ S)(tA−1B)−1)(tA−1B− A−1)

= tA−1((1+ ηq0) Idn+ηq0 SB−1)(B− t−1 Idn).

Hence, introducing Hm
j = m−1C−j tr ((1+ η�)Y)jm for C = t

∏
s �=0 ts−1(1+ ηqs), we get

Hm
j = tr

(
A−1((1+ ηq0) Idn+ηq0 SB−1)(B− t−1

m−1 Idn) . . . (B− t−1
0 Idn)

)j
= tr

([(1+ ηq0) Idn+ηq0 SB−1]P(B)A−1
)j

,
(5.12)
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22 M. FAIRON

by setting

P(B) =
←−∏

0�s�m−1

(B− t−1
s Idn). (5.13)

Again, we are interested in the different functions obtained by developing with respect to η, that is we
write Hm

j =
∑j

l=0 η
lHm

j,l. We can explicitly write down the elements for l = 0 and get

Hm
j,0 =

∑
i1,...,ijm

j−1∏
a=0

xia(m+1)+1

m∏
s=1

(
xiam+s+1 fiam+siam+s+1

xiam+s − txiam+s+1

− t−1
s−1

δ(iam+s ,iam+s+1)

xiam+s+1

)
. (5.14)

As noticed for the family (Gm
j,l)j,l, the functions Hm

j,j and Hm
j,0 are not independent. Using that � =

XZX−1Z−1, we can write (1+ η�)(Z − X−1) as (Z − X−1)+ ηXZ(Z − X−1)Z−1X−1, so that in (5.11) it
gives after expanding in η

tr ((1+ η�)Y)jm = tr
(
(Z − X−1)

)jm + · · · + ηjm tr
(
XZ(Z − X−1)Z−1X−1

)jm
, (5.15)

thus the factors in η0 and ηjm agree, implying that Hm
j,j and Hm

j,0 are multiples of each other, after
normalisation by the constant m−1C−j from above.

Let’s remark two results about those families. First, in the limit q0 →∞ where we fix the other qs,
all ts →∞ and we can see from (5.13) that Hm

j,0 → Gm
j,0. So, by rescaling the Hm

j,l, we can recover all the
(Gm

j,l)j,l in that limit. Though it is an alternative proof of their involution, the phase space is not defined in

that limit. Second, For a given m, each function Hm
j,l can be written as a linear combination of (Gm′

j′ ,l′)j′ ,l′
with smaller indices. If we allow the definition of Gm

1,0 = t−1 tr BmA−1 and Gm
1,1 = t−1 tr A−1SBm−1 for

m = 0, 1, we get for example,

H2
1,1 = tt0

(
G2

1,0 + G2
1,1

)− t

(
t0

t1
+ 1

) (
G1

1,0 + G1
1,1

)+ t

t1

(
G0

1,0 + G0
1,1

)
. (5.16)

Finally, we look at the second family tr
(
(1+ η�−1)(1+ XY)

)j
in Theorem 5.4, for any j ∈ N. We

first remark that in C◦n,̃q,d(m), (1 + η�−1)XZ = XZ + ηZX. Meanwhile, XsZs is nothing else than tsB,
while for s �= m − 1 ZsXs = tsB but Zm−1Xm−1 = tA−1BA. This gives us, if we call the elements Fm

j ,

Fm
j =

m−1∑
s=0

tr(XsZs + ηZsXs)
j =
(

m−2∑
s=0

ts(1+ η)
)

tr(B)j + t tr(B+ ηA−1BA)j. (5.17)

It is just a family equivalent to (G1
j )j with G1

j = tr
(
B+ ηA−1BA

)j
, corresponding to the spin RS system,

see [34]. Developing Fm
j =

∑j
l=0 η

lFm
j,l, we also get that Fm

j,0 and Fm
j,j are proportional.

5.3 Explicit flows

We now show that we can get explicit expressions for the flows associated to particular elements of
the families in Theorem 5.4 in Cn,̃q,d(m). Computations for the results that we use now and the general
philosophy behind them are gathered in Appendix C.
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Recall that the family (Gm
k )k is defined in C◦n,̃q,d(m) from the elements tr(Uk

η), where Uη = Z(1+ η�)
represents the element z(1+ ηφ) ∈ A. We get from Lemma C.1 and (2.14)

1

k
{tr Uk

η , X}P = −η�Uk−1
η ZX − XUk−1

η Z ,
1

k
{tr Uk

η , Z}P = −ZUk−1
η Z + Uk−1

η Z2,

while the Poisson brackets with Vβ or Wβ vanish. It does not look possible to explicitly integrate most
flows. Indeed, even the matrix Uη is not a constant of motion under tr Uk

η , though its symmetric functions
certainly are. However, looking at order 0 in η, we get tr Zk which is Gm

k,0 up to a constant, and if we look
at the flow defined by d/dtk = 1

k {tr Zk ,−}P, we get the defining ODEs

dX

dtk
= −XZk ,

dZ

dtk
= 0,

dVβ
dtk
= 0,

dWβ

dtk
= 0,

which can be easily integrated.

Proposition 5.5 Given the initial condition (X(0), Z(0), Vβ(0), Wβ(0)), the flow at time tk defined by
the Hamiltonian tr Zk for k ∈ mN is given by

X(tk) = X(0) exp(−tkZ(0)k), Z(tk) = Z(0), Vβ(tk) = Vβ(0), Wβ(tk) = Wβ(0).

In particular, the flows are complete in C◦n,̃q,d(m) so that we can reintroduce A(m) and C(m) for all times,
although some X(tk) could be non-diagonalizable. Remark also that this expression does not exactly
coincide with [1, Proposition 4.7] when d = 1. This is due to our different choice of ordering at the
vertices s ∈ I , so that Cn,̃q,d(m) for d = 1 is isomorphic to the space in [1, Section 4] but this map is not
the identity map. This is also true for the next flows.

For the other family (Hm
k )k , expressed from tr Ūk

η if we set Ūη = Y(1+ η�), Lemma C.2 and (2.14)
give

1

k
{tr Ūk

η , X}P = −Ūk−1
η − XŪk−1

η Y − η�Ūk−1
η (1+ YX),

1

k
{tr Ūk

η , Y}P = −YŪk−1
η Y + Uk−1

η Y 2,

and the Poisson brackets with Vβ or Wβ vanish. Again, we can write the flows for the functions which
are the coefficients at order 0 in η. If we want to obtain the flow of tr Y k which is a multiple H1

k,0, we get
by writing d/dτk = 1

k {tr Y k ,−}P that

dX

dτk
= −Y k−1 − XY k ,

dY

dτk
= 0,

dVβ
dτk
= 0,

dWβ

dτk
= 0.

Proposition 5.6 Given the initial condition (X(0), Y(0), Vβ(0), Wβ(0)) the flow at time τk defined by
the Hamiltonian tr Y k for k ∈ mN is given by

X(τk) = X(0) exp(−τkY(0)k)+ Y(0)−1[exp(−τkY(0)k)− Idn],
Y(τk) = Y(0), Wβ(τk) = Wβ(0), Vβ(τk) = Vβ(0).

The expression for X(τk) is analytic in Y(0) so does not require its invertibility. The dynamics take
place in Cn,̃q,d(m).
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Reproducing this scheme for the family (Fm
k )k using Lemma C.3 and (2.14), this yields for Ũη =

(1+ XY)(1+ η�−1)

1

k
{tr Ũk

η , X}P = −Ũk−1
η (1+ XY)X − ηX�−1Ũk−1

η (1+ XY)

1

k
{tr Ũk

η , 1+ XY}P = (1+ XY)ŨK−1
η (1+ XY)− ŨK−1

η (1+ XY)2,

and the Poisson brackets with Vβ or Wβ vanish. It is easier to work with 1 + XY instead of Y in this
case, because when we look at order 0 in η we obtain for the flow of tr(1 + XY)k after setting d/dt̃k =
1
k {tr(1+ XY)k ,−}P that

dX

dt̃k
= −(1+ XY)kX ,

d(1+ XY)

dt̃k
= 0,

dVβ
dt̃k
= 0,

dWβ

dt̃k
= 0.

Proposition 5.7 Given the initial condition (X(0), Y(0), Vβ(0), Wβ(0)), setting T = 1+XY , the flow at
time t̃k defined by the Hamiltonian tr T k for k ∈ N is given by

X(t̃k) = exp(−t̃kT(0)k)X(0), T(t̃k) = T(0), Vβ(t̃k) = Vβ(0), Wβ(t̃k) = Wβ(0).

In particular, assuming that X(0) is invertible, this completely determines the solution Y(t̃k) =
X(t̃k)

−1[T(t̃k)− 1] for all time t̃k .

The extra assumption that X(0) is invertible is satisfied in our interpretation of this family as being
the one containing the spin RS Hamiltonian. In that case, the flows take place in C◦n,̃q,d(m) where they
are complete. Using the isomorphism of Proposition 5.2, we can see that they can be related to the
corresponding flows derived in [28, 34].

A natural question to ask is to obtain locally the flows that we could not compute explicitly. As we
see in Section 5.5, we can define integrable systems from these families in order to compute them by
quadrature. However, this requires the additional assumption d � n, which we comment in Section 5.6.1.

5.4 Linear independence

We assume from now on that d � n and look at the number of independent functions in each family. Since
the family (Fm

j,l)j,l corresponds to functions for the spin RS system, we already know that this contains
nd − d(d − 1)/2 linearly independent elements [26].

For the families (Gm
j,l)j,l and (Hm

j,l)j,l, remark that there can be at most n(n+ 1)/2 linearly independent
functions. Indeed, we look at the symmetric functions of n×n matrices (see (5.9), (5.12)), so we have by
developing in η, n + n(n + 1)/2 functions for j = 1, . . . , n, with n constraints coming from the relation
between the terms (j, 0) and (j, j). It now suffices to remark that we can write these functions generically
in the form {tr(C + ηT)j | 1 � j � n} for C invertible with distinct eigenvalues, and T of rank d, with
distinct non-zero eigenvalues. This yields (n−d)(n−d+1)/2 additional constraints, as we now explain
with the family (Gm

j,l)j,l. The other case is similar.
We adapt the method introduced for the spin CM family [25, 42], and we write Gm

k = tr(C + ηT)k

for C = A−1Bm, T = SBm−1A−1 and η = η′/(t−1 + η′), see (5.9). Remark that C, T take the form stated
above. Consider the spectral curve

�(η,μ) ≡ det((C + ηT)− μ Idn) = 0, (5.18)
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 25

We write �(η,μ) ≡∑n
i=0 ri(η)μ

i = 0, where ri(η) is a symmetric function of order n− i of C + ηT , so
is a function of {Gm

k,K |0 � K � k, 1 � k � n − i}, if we consider the expansion4 Gm
k =

∑k
K=0 Gm

k,Kη
K .

We can expand each ri(η) in terms of η as ri(η) = ∑n−i
s=0 In−i,sη

s. Hence the set of linearly independent
functions is contained in the {In−i,s}, which are functions of the n+n(n+1)/2 functions {Gm

k,K}. It remains
to see how many relations exist on the {In−i,s}. In a neighbourhood of η = ∞, we can write

�(η,μ) =
n∏

i=1

(μ− μi(η)), for μi(η) = ηνi, (5.19)

for (νi)i the eigenvalues of T . At a generic point, we can order the (νi)i so that ν1 < ν2 < · · · < νd

are non-zero, and νd+1 = · · · = νn = 0. Thus near η = ∞ we write �(η,μ) = μn−d
∏d

i=1(μ − ηνi).
From this behaviour at infinity, we require that if we write �(η,μ) ≡∑n

i=0 �i(μ)η
i, then �i(μ) = 0 for

all i = d + 1, . . . , n. Each �i(μ) has order n − i as a polynomial in μ whose coefficients are functions
of the {In−i,s}. Hence, we get the expansion �i(μ) =∑n−i

s=0 Jn−i,s μ
s, for some functions Jn−i,s(Ik,t). Their

vanishing for i > d is equivalent to imposing

n∑
i=d+1

(n− i + 1) = (n− d)(n− d + 1)

2

relations, which proves our claim. Imposing the initial n relations, which are independent from the ones
just obtained, we have a total of nd − d(d − 1)/2 independent functions.

5.5 Additional reduction

We would like to construct a space of dimension 2nd−d(d−1) into which the different families descend.
Introduce the d(d − 1)-dimensional algebraic group

H =
{

h = (hαβ) ∈ GLd(C)
∣∣∣ d∑
β=1

hαβ = 1 for all α
}

, (5.20)

whose elements are invertible d × d matrices such that the vector (1, . . . , 1)� is an eigenvector with
eigenvalue +1. This is precisely the algebraic group H needed to get Liouville integrability of the RS
system in the original work [26].

Define the action of H on (X , Z , A(m), C(m)) by h · (X, Z , A(m), C(m)) = (X, Z , A(m)h, h−1C(m)). By
definition of C ′n,̃q,d(m) at the end of Section 5.1, we can always take a representative (X, Z , A(m), C(m))

on this subspace such that
∑

α(XA(m))iα = 1 for all i. This condition is preserved under the action of
H. Hence, we define the reduced space CH

n,̃q,d(m) as the affine GIT quotient CH
n,̃q,d(m) = C ′n,̃q,d(m)//H. It

has dimension 2nd − d(d − 1) and is generically smooth as we will shortly see. The coordinate ring
O(CH

n,̃q,d(m)) is generated by elements of the form tr γ , where γ is a word in the letters X, Z , S = A(m)C(m).
If we write such functions in coordinates by lifting them to C ′n,̃q,d(m), they become invariant polynomial
in the elements (xi, xix

−1
j − t, fij)ij, which form a Poisson subalgebra of {−,−} by Proposition 4.1. Thus

the Poisson bracket {−,−}P descends to CH
n,̃q,d(m). It is such that the projection C ′n,̃q,d(m)→ CH

n,̃q,d(m) dual
to the inclusion O(C ′n,̃q,d(m)

H)→ O(C ′n,̃q,d(m)) is a Poisson morphism.

4 The expansion differs from the one in Section 5.2, but each of these two families can be obtained from the other one.
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Theorem 5.8 The families {Fm
j,l | (j, l) ∈ Jd}, {Gm

j,l | (j, l) ∈ Jd} and {Hm
j,l | (j, l) ∈ Jd} define completely

integrable systems on the smooth part of CH
n,̃q,d(m), for Jd = {(j, l) | j = 1, . . . , n, l = 0, . . . , min(j−1, d)}.

Proof. We show the existence of a non-empty open subset of C ′n,̃q,d(m) where H acts properly and freely
in Lemmas 5.9 and 5.10, so that the corresponding space of H-orbits defines a smooth complex manifold
of dimension 2nd − d(d − 1) inside CH

n,̃q,d(m). In particular, a point (X, Z , A, C) in the subspace is
characterized by the fact that all the d-dimensional minors of A are non-zero. This is the complement
of the Zariski closed subsets defined by having a vanishing minor of dimension d. Thus this subspace is
dense in C ′n,̃q,d(m), and so does its reduction in CH

n,̃q,d(m). The elements in each family are H-invariant,
and also linearly independent by the argument developed in Section 5.4. Thus the proof follows for the
first two families. For the last family, remark that we also need to restrict to the open subset where Y is
invertible before performing the reduction, but this is dense again. �

Using the isomorphism of Proposition 5.2, a point (X, Z , A(m), C(m)) of C ′n,̃q,d(m) can be equivalently
characterized by a quadruple (A, B, A, C) satisfying (4.8). By abuse of notation, we denote this point
by (X, Z , A, C) and assume that it has the form just stated. We remark that the H-action is given by
h · (X, Z , A, C) = (X , Z , Ah, h−1C) so that

∑
α(Ah)iα = 1 for all i.

Lemma 5.9 The action is free on the subset of C ′n,̃q,d(m) where, given a point (X, Z , A, C), either A or C
has rank d.

Proof. Assume A has rank d, the proof being the same if we assume the latter for C. By definition, there
exists K = (k1, . . . , kd) ⊂ {1, . . . , n} such that Ā = (Akαβ) is a d × d matrix which has rank d, so is
invertible. If we take some h in the stabilizer of the point (X, Z , A, C), then in particular Ah = A and
thus Āh = Ā. Indeed,

(Āh)αβ =
∑
γ

Akαγ hγβ = (Ah)kαβ = Akαβ = Āαβ . (5.21)

Since Ā is invertible, h = Idd . �

Lemma 5.10 The action is proper on the subset S ⊂ C ′n,̃q,d(m) where, given a point (X, Z , A, C), all the
minors of dimension d of A are invertible.

Proof. The claim follows if we can show that given sequences (hm) ⊂ H, (Xm, Zm, Am, Cm) ⊂ S satisfying
(Xm, Zm, Am, Cm)→ (X , Z , A, C) ∈ S and hm·(Xm, Zm, Am, Cm)→ (X ′, Z ′, A′, C′) ∈ S, then hm converges
in H. Note that trivially X ′ = X and Z ′ = Z .

For any choice of K = (k1, . . . , kd) ⊂ {1, . . . , n}, we can form Ā as in Lemma 5.9. We also use
the notation D̄ for the d × d matrix obtained in that way from some n × d matrix D. We see that
hm = Ā−1

m hm · Am, since the minors of Am are invertible and hm · Am = Āmhm.
From this, form h := Ā−1A′. This element does not depend on the choice of K : take any two

K , L ⊂ {1, . . . , n} and construct Ā(K)
m and Ā(L)

m for all m as before, where the superscript denotes the
partition to which we refer. They are both invertible, so they are related by Ā(K)

m = TmĀ(L)
m for some

Tm ∈ GLd(C). Forming h(K) and h(L) from them, we get

h(K) = lim
m→∞(Ā

(K)
m )−1(hm · Ā(K)

m ) = lim
m→∞(Ā

(L)
m )
−1T−1

m Tm(hm · Ā(L)
m ) = h(L).
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Next, remark that h ∈ GLd(C): as h = Ā−1A′ and both elements on the right-hand side have non-zero
determinant, so too has h. Finally, h ∈ H because∑

β

hαβ =
∑
γ ,β

(Ā−1)αγA′γβ =
∑
γ

(Ā−1)αγ 1 = 1.

Here we use that
∑

α Aiα = 1 for all i, implies that we have
∑

α Āγα = 1 for all γ . That is Ā ∈ H, which
in turn yields Ā−1 ∈ H. �

We summarize the projection from the representation space of the multiplicative preprojective algebra
to the space we have just constructed as

Rep(
q̃, α̃) −→ Cn,̃q,d(m) � C ′n,̃q,d(m) −→ CH
n,̃q,d(m). (5.22)

Let us formulate one last comment on the reduced space CH
n,̃q,d(m). We can integrate some equations

of motions for the families in Theorem 5.4, thus defining flows in Cn,̃q,d(m). If flows quit the subspace
C ′n,̃q,d(m), then the last projection given in (5.22) cannot be defined, so the flows are not complete in
CH

n,̃q,d(m). This suggests that CH
n,̃q,d(m) is not the natural phase space for our systems in the complex case,

and it motivates a search for other first integrals, see Section 5.6.1.

5.6 Final remarks

We finish by some additional comments that could lead to new investigations about these models.

5.6.1 Integrability before reduction In Section 5.5, we constructed the space CH
n,̃q,d(m) as the complex

analogue of the phase space for the real trigonometric spin RS system considered by Krichever and
Zabrodin [26]. However, we noticed in the complex setting that some flows are not complete inside
CH

n,̃q,d(m), but they are in the larger space C◦n,̃q,d(m) by Proposition 5.7. This suggests that we should
be able to build an integrable system containing the Hamiltonian for the trigonometric spin RS system
directly in C◦n,̃q,d(m). This is proved in [34], and we can in fact adapt the method to our case for the different
Hamiltonians tr Zkm, tr Y km, tr Xkm and tr(1 + XY)k , k ∈ N. In the case d = 2, it easily follows from the
next result, which is a direct application of Lemma 3.3.

Theorem 5.11 The following families of functions on Cn,̃q,d(m) are linearly independent and in involution{
tr Xjm, tr

(
W1V1Xjm

) ∣∣ j = 1, . . . , n
}
,
{
tr(1+ XY)j, tr

(
W1V1(1+ XY)j

) ∣∣ j = 1, . . . , n
}
,{

tr Y jm, tr
(
W1V1Y jm

) ∣∣ j = 1, . . . , n
}
,
{
tr Zjm, tr

(
W1V1Zjm

) ∣∣ j = 1, . . . , n
}
,

where the last family is viewed on the subspace C◦n,̃q,d(m) ⊂ Cn,̃q,d(m) where X is invertible.

For the case d ≥ 3, the construction is more involved as we need more Poisson commuting functions,
and we leave the details of adapting [34, Section 5.2] to the reader. Rather, we will look at another feature
of these systems which is their degenerate integrability (also called non-commutative integrability or
superintegrability), and was first remarked for the spin RS system by Reshetikhin in the real rational case
[31].
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Our method follows [34]. We only consider U = Y or U = Z , as they define new non-trivial
Hamiltonians. We introduce the commutative algebra QU generated by the elements tr WαVβUlm for all
1 ≤ α,β ≤ d, with l ∈ N.

Lemma 5.12 The algebra QU is a Poisson algebra under the Poisson bracket {−,−}P.

Proof. We show that {tr WαVβY lm, tr WγVεY km}P ∈ QU which proves the case U = Y . We leave the
similar case U = Z to the reader.

By inspecting the double brackets between the elements (y, vα , wα) in Section 3, we see that the double
bracket

{{
wαvβylm, wγ vεykm

}}
is such that its two components are (sums of) words in wα , wγ , vβ , vε , y. At

the same time, this double bracket is an element of e0Ae0 ⊗ e0Ae0, so its two components are in fact
words in wμvν and ym, with μ ∈ {α, γ }, ν ∈ {β, ε}. Applying the multiplication map also yields a word
ρ ∈ e0Ae0 written with the same letters. Moreover, a careful analysis of the double bracket shows that ρ
has to contain at least a factor wμvν . Using (2.13), these remarks yield that

{tr WαVβY lm, tr WγVεY
km}P = tr R, for some R ∈ C[Y m, WαVβ , WαVε , WγVε , WγVβ] \ C[Y m].

Now, the terms of tr R are of the form

tr
(
(Y m)a1Wμ1Vν1(Y

m)a2 Wμ2 Vν2 . . .Wμj Vνj (Y
m)aj

)
= (Vν1Y a2mWμ2) . . . (Vνj Y

(aj+a1)mWμ1).

Since VνY aWμ = tr WμVνY a ∈ QU , any term of tr R is an element of QU . �

Next, we remark by multiplying the identities (5.1a)–(5.1b) that we can write on the subspace {det
U �= 0} of Cn,̃q,d(m) that

MUmM−1 = t
←−∏

α=1,...,d

(Idn+WαVα)Um, (5.23)

with M = X0 if U = Z or M = (X0 + Y−1
0 ) if U = Y . In particular, by taking traces of higher powers of

this identity, we get that any tr Ulm ∈ QU for U = Y , Z . Meanwhile, we have that the elements (tr Ukm)

Poisson commute with any function tr WαVβUkl by Lemma 3.3 and (2.13). Thus, they are in the centre
of the Poisson algebra QU .

Proposition 5.13 The algebra QU has dimension 2nd − n and its centre is generated by the elements
tr Um, . . . , tr Umn, so it has dimension n.

Proof. A first method is to adapt the case when m = 1 given in [34, Proposition 5.2]. We sketch another
possible proof when U = Y , based on a suitable choice of local coordinates similar to [34, Lemma 5.6].

Consider non-zero elements y1, . . . , yn ∈ C satisfying yi �= yj, yi �= tyj, for i �= j. Consider also
arbitrary wα,i, vα,i ∈ C for i = 1, . . . , n and 1 ≤ α < d. We denote by h′ the subspace of C2nd−n with the
above elements as coordinates, under the additional d−1 conditions that

∑
i vα,iwα,i �= 0. We then define

the matrices Ys ∈ GLn(C) for s ∈ I , and Wα ∈ Matn×1(C), Vα ∈ Mat1×n(C) for 1 ≤ α < d by

Y0 = diag(y1, . . . , yn), Ys = Idn for s �= 0, (Vα)i = vα,i, (Wα)i = wα,i.
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For a generic point of h′, we can then find Vd ∈ Matn×1(C) such that, if Wd := (1, . . . , 1)�, the matrices
Y0 and Fd = t(Idn+WdVd) . . . (Idn+W1V1)Y0 have the same spectrum. Indeed, this is just a rank one
perturbation of the matrix t(Idn+Wd−1Vd−1) . . . (Idn+W1V1)Y0. In particular, there exists a n-dimensional
family of matrices M that put Fd in the diagonal form Y0.

By construction, all the above matrices satisfy (5.23). We set M0 = M and define inductively Ms =
qsYs−1Ms−1Y−1

s for s = 1, . . . , m− 1. Then, we put Xs = Ms− Y−1
s for all s ∈ I . It is then easy to see that

the relations in (5.1a) and (5.1b) hold, and that all the invertibility conditions required to define a point
in {det Y m �= 0} ⊂ Cn,̃q,d(m) are satisfied. Hence, we can complete the 2nd − n functions (yi, vα,i, wα,i) to
get a local coordinate system around a generic point of Cn,̃q,d(m).

Finally, note that in terms of these coordinates we can write that

fk= tr Y km=
∑

i

yk
i , gk,α= tr WdY kmVα=

∑
i

yk
i vα,i, hk,α= tr WαY kmV1=

∑
i

yk
i v1,iwα,i,

for α �= d. These functions belong to QU , and we can easily check that the subset {fk , gk,α , hk,α | k =
1, . . . , n, 1 ≤ α < d} is formed of functionally independent elements. �

As a consequence, the functions tr Um, . . . , tr Umn are degenerately integrable. Their flows are
complete by Propositions 5.5 and 5.6.

We will write down a complete proof for both Liouville and degenerate integrability of the four cases
U = X, Y , Z , 1+ XY for an arbitrary framing of a cyclic quiver in subsequent work.

5.6.2 Self-duality The work of Reshetikhin [31] considers the duality between the spin hyperbolic CM
system and the spin rational RS system. This was discovered in the non-spin case by Ruijsenaars [43],
together with the self-duality of the hyperbolic RS system. In the complex setting where the hyperbolic
and trigonometric cases are the same, the latter self-duality can be obtained by noticing that, with the
notations of Section 4 in the non-spin case m = d = 1, the transformation � : (A, B) �→ (B, A) is an
(anti-)symplectic mapping [1, Proposition 3.8]. We can make a step in that direction for the spin case,
though this requires the additional reduction of Section 5.5. Hence, we assume d ≤ n.

To work in full generalities, let A be the algebra localized at x constructed in Section 3. Consider the
quasi-Hamiltonian algebra Â obtained from A by removing the elements vα , wα , e∞, i.e. Â = A/〈e∞〉.
This can be seen as the analogue of A obtained by construction from the non-framed cyclic quiver, that
is the subquiver Q̄′ ⊂ Q̄ supported at I = Z/mZ. We can easily see that the algebra homomorphism
ι : Â→ Â defined by

ι(es) = em−s, ι(xs) = zm−s−1, ι(zs) = xm−s−1, (5.24)

satisfies ι2 = idÂ. It corresponds to flipping Q̄′ such that the vertex 0 is fixed. Moreover, from (3.5a), with
z instead of y, and (3.7) we can show that

(ι⊗ ι) {{x, x}} = − {{ι(x), ι(x)}} , (ι⊗ ι) {{z, z}} = − {{ι(z), ι(z)}} , (ι⊗ ι) {{x, z}} = − {{ι(x), ι(z)}} ,

so that ι is an anti-morphism of quasi-Poisson algebras. (We can check this equivalently on {{xs, xr}},
{{zs, zr}} and {{xr , zs}}.) In particular, ι(φ) = ι(xzx−1z−1) = φ−1, so ι maps the moment map of Â to its
inverse.

D
ow

nloaded from
 https://academ

ic.oup.com
/integrablesystem

s/article-abstract/4/1/xyz008/5578672 by U
niversity of G

lasgow
 user on 11 O

ctober 2019



30 M. FAIRON

Remark that from Section 5.5 and (5.5), the coordinate ring O(CH
n,̃q,d(m)) is generated by elements of

the form tr(�), where � is a sum of matrices whose factors are either X or Z , so that the Poisson structure
on CH

n,̃q,d(m) is completely defined from the double brackets {{x, x}}, {{z, z}} and {{x, z}}. Indeed, they define
the quasi-Poisson brackets in Rep(
q̃, α̃) for the elements (Xij, Zij), which determine the Poisson bracket
on CH

n,̃q,d(m) by construction. This yields the following result.

Proposition 5.14 The map ι : Â → Â induces a (generically defined) anti-Poisson morphism � :
CH

n,̃q,d(m) → CH
n,q̂,d(m) determined by (X , Z) �→ (Z , X), where q̂ = (q̂∞, q̂s) is defined by q̂s = q−1

m−s,
q̂∞ = q−1

∞ .

In particular, since ι(z) = x, ι(φ) = φ−1, we have that �((1 + η�)Z) = (1 + η�−1)X. Hence, we
have that the first and fourth families in Theorem 5.4 are swapped under � .

As indicated in Proposition 5.14,� is only defined at a generic point, e.g. in CH
n,̃q,d(m) there are points

where the product Z0 . . .Zm−1 is not semisimple. Hence, we do not have self-duality of the system in the
strict sense of [21, 43–45] which requires a global Poisson isomorphism. Nevertheless, the underlying
interpretation on the quiver Q̄′ is easy to understand, and works also for m = 1, where it extends
the geometric approach to the self-duality for the trigonometric RS to the spin case. Given the natural
appearance of the self-duality for the non-spin case in gauge theory [46, 47], it would be interesting to
understand the interpretation of the spin case within this framework.

Let us formulate two final remarks. Firstly, if we replace z by y in the definition of ι (5.24), this also
gives an anti-morphism of quasi-Poisson algebras. Hence, the integrable system containing tr X is dual to
the integrable system containing tr Z , but also to the one containing tr Y by adapting the above argument.
Secondly, note that this isomorphism ι : Â→ Â does not directly extend to A itself. We will return to this
issue in further work, in order to lift the map � to a well-defined map on C◦n,̃q,d(m).

5.6.3 Relation to generalized symmetric group It is remarked in [1] that in the case d = 1, the new
Hamiltonians obtained for a cyclic quiver on m vertices correspond to W = Sn � Zn

m. In the study of
(non-multiplicative) quiver varieties, the Hamiltonians of CM type obtained in the spin case have also that
particular symmetry [11, Section VI]. Thus, we would expect that the elements of the families (Gm

j,l)j,l and
(Hm

j,l)j,l are also related to the generalized symmetric groups G(m, 1, n) = Sn � Zn
m. To establish this link,

consider p ∈ C ′n,̃q,d(m) ⊂ C◦n,̃q,d(m) determined by a point of C ′n,t,d as in Proposition 5.2. Using the local
coordinates of C ′n,t,d (4.8), the point p = (Xs, Zs, A(m), C(m)) is characterized by Xs = Idn for s �= m − 1,
Xm−1 = diag(x1, . . . , xn), and the matrices (Zs, A(m), C(m)) are given by

(Zs)ij = ts
tfij

xix
−1
j − t

, s �= m − 1, (Zm−1)ij = t
tx−1

i fij

xix
−1
j − t

, (A(m))iα = aαi
xi

, (C(m))αj = cαj .

In particular, the matrices (Xs)s take two different forms: either the identity or a diagonal matrix whose
entries are interpreted as particle positions. To set them all to the same diagonal matrix, recall that an
element g ∈ G(̃α) acts as in (5.2), so we can write this action as

g.(Xs, Zs, A(m), C(m)) = (gsXsg
−1
s+1, gs+1Zsg

−1
s , C(m)g−1

0 , g0A(m)), g ∈ G(̃α). (5.25)

Choose elements (λi)i such that λm
i = xi. They are non-zero distinct and satisfy λm

i λ
−m
j �= t for all i �= j.

We can form the element
∏

s gs ∈ G(̃α) with gs = diag(λm−s
1 , . . . , λm−s

n ) for s = 0, . . . , m− 1, and acting
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on p in its above form yields

Xs = diag(λ1, . . . , λn), (Zs)ij = ts
tfij

λm
i − tλm

j

λm−s−1
i λs

j , (A(m))iα = aαi , (C(m))αj =
cαj
λm

j

,

for any s = 0, . . . , m− 1. Hence, the choice of a representative (Xs, Zs, A(m), C(m)) in C ′n,̃q,d(m), such that
all the Xs are in the same diagonal form and

∑
α(A

(m))iα = 1, is unique up to acting by Sn � Zn
m. Here,

the action of an element (σ , M) ∈ Sn � Zn
m, is represented by the matrix g = ∏s gσg−s

M , where gσ is the
permutation matrix corresponding to σ while gM = diag(ζM1 , . . . , ζMn) for M = (M1, . . . , Mn) and ζ is
a primitive mth root of unity.

In the case m = 2, write q0 = e−2γ0 and q1 = e−2γ1 so that t = e−2γ for γ = γ0 + γ1. We get

(Z0)ij = e−2γ−2γ0

2

(
1

λi − e−γ λj
+ 1

λi + e−γ λj

)
fij,

(Z1)ij = e−3γ

2

(
1

λi − e−γ λj
− 1

λi + e−γ λj

)
fij.

We can write down tr Z2 and tr Y 2, which are multiples of G2
1,0 and H2

1,0, respectively, in C ′n,̃q,d(m) as

tr Z2 = e−5γ−2γ0

2

∑
i,j

(
1

λi − e−γ λj
+ 1

λi + e−γ λj

)(
1

λj − e−γ λi
− 1

λj + e−γ λi

)
fijfji,

tr Y 2 = tr Z2 −
∑

i

e−2γ−2γ0 + e−4γ

1− e−2γ

fii

λ2
i

+
∑

i

1

λ2
i

.

Comparing last two expressions with tr B2 and tr(B − A−1)2 obtained from Section 4 strengthens our
claim that the (Gm

j,l)j,l correspond to a spin RS system for W = Sn � Zn
m (and (Hm

j,l)j,l to a modification
of it).
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Appendix A. Calculations for the spin cyclic quivers

We prove Lemma 3.1 in Section A.1, Lemma 3.2 in Section A.2, Lemma 3.3 in Section A.3 and Proposition
3.4 in Section A.4. Most computations rely heavily on the properties of a double bracket given in 2.1.
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Remark A.1 Note that the proofs of Lemmas 3.1, 3.2 and Proposition 3.4 also apply for their analogues
in the case m = 1 considered in [34]. We make a comment on the changes that are needed in the latter
case at the beginning of each of these proofs. The elements a′α , c′α are denoted by aα , bα in [34].

A.1 Double bracket with spin variables: Proof of Lemma 3.1

We will show that (3.11a) and (3.11c) holds, while we replace (3.11b) by

{{
a′α , c′β

}} = −1

2
c′βa′α ⊗ e0 + 1

2

(
o(α,β)− δαβ

)
e∞ ⊗ a′αc′β

− δαβ
(

e∞ ⊗ e0z +
β−1∑
λ=1

e∞ ⊗ a′λc
′
λ

)
.

(A.1)

This is nothing else than (3.11b) because the first term vanishes. Indeed, note that c′β = e∞c′βem−1, so that
c′βγ = 0 for any γ which is a path beginning by x, z or some a′α = wα since then γ = e0γ . However, we
will carry on such terms of the form c′βγ , because our proof also applies in the case of a Jordan quiver
(see [34, Lemma 3.1]) where it does not vanish. Indeed, if we allow the case m = 1 and set Fb = e0⊗ e0

for any b ∈ Z, The double brackets between the elements x, z, vα , wα given in Section 3 exactly match
the double brackets in [34, Section 3.1.2].

We prove the results by induction using (3.10). Knowing the double brackets in Section 3, if we want
to compute the bracket

{{
�, c′β

}}
for some � ∈ A, we first find

{{
�, c′1

}} = {{�, v1z}} and then show our
statement by induction using

{{
�, c′α

}} = α−1∑
λ=1

(
vαwλ

{{
�, c′λ

}}+ {{�, vαwλ}} c′λ
)+ {{�, vαz}} . (A.2)

To get (3.11a), we first compute
{{

x, c′α
}}

and show how to deal with the idempotents. Recalling that
F1 =∑s es ⊗ es−1, we get from the double brackets in Section 3

{{x, vαz}} = {{x, vα}} z + vα {{x, z}}

= 1

2
(vαx ⊗ e0z − vα ⊗ xe0z + vαzxF1 + vαF1xz − vαxF1z + vαzF1x)

= 1

2

(
vαxe1 ⊗ e0z − vαe0 ⊗ em−1xz + vαzxe0 ⊗ em−1

+ vαe0 ⊗ em−1xz − vαxe1 ⊗ e0z + vαzem−1 ⊗ em−2x
)

= 1

2

(
vαzx ⊗ em−1 + vαz ⊗ xem−1

)
.

In order to simplify the F1 to go from the second to the third equality, we used that vα = vαe0, x ∈
⊕s∈I esAes+1 and z ∈ ⊕s∈I es+1Aes. For example, vαzxF1 = vαzxe0F1 = vαzxe0 ⊗ em−1. In particular, if we
use c′1 = v1z we get the expression for

{{
x, c′1

}}
given in (3.11a) as our basis for the induction.

Meanwhile, we compute

{{x, vαwλ}} = vα {{x, wλ}} + {{x, vα}}wλ = 1

2
(vα ⊗ xwλ − vαx ⊗ wλ)+ 1

2
(vαx ⊗ wλ − vα ⊗ xwλ) = 0,
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so that if we assume that the first equality in (3.11a) is true for any λ < α, we get from (A.2)

{{
x, c′α

}} = α−1∑
λ=1

(
vαwλ

{{
x, c′λ

}}+ {{x, vαwλ}} c′λ
)+ {{x, vαz}}

=
α−1∑
λ=1

vαwλ

(
1

2
c′λx ⊗ em−1 + 1

2
c′λ ⊗ xem−1

)
+ 1

2
(vαzx ⊗ em−1 + vαz ⊗ xem−1)

= 1

2

(
α−1∑
λ=1

vαwλc
′
λ + vαz

)
x ⊗ em−1 + 1

2

(
α−1∑
λ=1

vαwλc
′
λ + vαz

)
⊗ xem−1,

which is exactly the first equality in (3.11a) by using (3.10). For the bracket
{{

z, c′α
}}

, we compute

{{z, vαz}} = {{z, vα}} z + vα {{z, z}}

= 1

2

(
vαz ⊗ e0z − vα ⊗ ze0z − vαz2F−1 + vαF−1z2

)
= 1

2

(
vαze1 ⊗ e0z − vαe0 ⊗ e1z2 − vαz2em−2 ⊗ em−1 + vαe0 ⊗ e1z2

)
= 1

2

(− vαz2 ⊗ em−1 + vαz ⊗ zem−1

)
,

and
{{

z, c′1
}}

given by the second equality in (3.11a) holds. We can find {{z, vαwλ}} = 0 so that the general
case follows by induction, in a way similar to

{{
x, c′α

}}
.

To get (A.1), recall that a′α = wα by definition. We first compute

{{
vβz, a′α

}} = vβ ∗
{{

z, a′α
}}+ {{vβ , a′α

}} ∗ z

= 1

2
(e0 ⊗ vβza′α − e0z ⊗ vβa′α)

+
[
δαβ e0z ⊗ e∞ + 1

2
[o(β,α)+ δαβ]

(
e0z ⊗ vβa′α + a′αvβz ⊗ e∞

)]
.

Using
{{

a′α , vβz
}} = − {{vβz, a′α

}}◦
, we can write

{{
a′α , vβz

}} = 1

2
(vβa′α ⊗ e0z − vβza′α ⊗ e0)− δαβ e∞ ⊗ e0z

+ 1

2
[o(α,β)− δαβ]

(
vβa′α ⊗ e0z + e∞ ⊗ a′αvβz

)
= −δ(α�β)

(
1

2
e∞ ⊗ a′αvβz + 1

2
vβza′α ⊗ e0 + δαβ e∞ ⊗ e0z

)
+ δ(α<β)

(
vβa′α ⊗ e0z − 1

2
vβza′α ⊗ e0 + 1

2
e∞ ⊗ a′αvβz

)
,
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recalling that o(α,β) = δ(α<β) − δ(α>β). In particular, this yields

{{
a′α , c′1

}} = −1

2
c′1a′α ⊗ e0 − 1

2
e∞ ⊗ a′αc′1 − δαβ e∞ ⊗ e0z

which is exactly the case β = 1 in (A.1) (and c′1a′α = 0 as we mentioned at the beginning of the proof to
get in fact (3.11b)). Next, we can compute{{

a′α , vβwλ

}} = vβ
{{

a′α , wλ

}}+ {{a′α , vβ
}}

wλ

= −1

2
o(α, λ)

(
vβwλ ⊗ wα + vβwα ⊗ wλ

)
− δαβ e∞ ⊗ wλ + 1

2
[o(α,β)− δαβ]

(
vβa′α ⊗ wλ + e∞ ⊗ a′αvβwλ

)
,

and this implies that

β−1∑
λ=1

{{
a′α , vβwλ

}}
c′λ = −

1

2

β−1∑
λ=1

o(α, λ)
(
vβwλ ⊗ wαc′λ + vβwα ⊗ wλc

′
λ

)− δαβ β−1∑
λ=1

e∞ ⊗ wλc
′
λ

+ 1

2
[o(α,β)− δαβ]

β−1∑
λ=1

(
vβa′α ⊗ wλc

′
λ + e∞ ⊗ a′αvβwλc

′
λ

)
.

In the case α � β this gives since wα = a′α

β−1∑
λ=1

{{
a′α , vβwλ

}}
c′λ

α�β= − δαβ
β−1∑
λ=1

e∞ ⊗ wλc
′
λ +

1

2

β−1∑
λ=1

(
vβwλ ⊗ wαc′λ − e∞ ⊗ a′αvβwλc

′
λ

)
.

Otherwise, we just write

β−1∑
λ=1

{{
a′α , vβwλ

}}
c′λ

α<β= − 1

2

(
β−1∑
λ=α+1

−
α−1∑
λ=1

) (
vβwλ ⊗ wαc′λ + vβwα ⊗ wλc

′
λ

)
+ 1

2

β−1∑
λ=1

(
vβa′α ⊗ wλc

′
λ + e∞ ⊗ a′αvβwλc

′
λ

)
Now, assume by induction that (A.1) holds for any λ < β, which we can write

{{
a′α , c′λ

}} α�λ= − 1

2
c′λa
′
α ⊗ e0 − 1

2
e∞ ⊗ a′αc′λ − δαλ

(
e∞ ⊗ e0z +

λ−1∑
γ=1

e∞ ⊗ a′γ c′γ

)
,

{{
a′α , c′λ

}} α<λ= − 1

2
c′λa
′
α ⊗ e0 + 1

2
e∞ ⊗ a′αc′λ,
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In the first case, α ≥ β, we find from (A.2) and (3.10)

{{
a′α , c′β

}} α�β= − 1

2

β−1∑
λ=1

vβwλc
′
λa
′
α ⊗ e0 − 1

2

β−1∑
λ=1

vβwλe∞ ⊗ a′αc′λ

− δαβ
β−1∑
λ=1

e∞ ⊗ wλc
′
λ +

1

2

β−1∑
λ=1

(
vβwλ ⊗ wαc′λ − e∞ ⊗ a′αvβwλc

′
λ

)
−
(

1

2
e∞ ⊗ a′αvβz + 1

2
vβza′α ⊗ e0 + δαβ e∞ ⊗ e0z

)

= −1

2
c′βa′α ⊗ e0 − 1

2
e∞ ⊗ a′αc′β − δαβe∞ ⊗

(
β−1∑
λ=1

a′λc
′
λ + e0z

)

which coincide with (A.1). In the second case, we get

{{
a′α , c′β

}} α<β=
α∑
λ=1

[
− 1

2
vβwλc

′
λa
′
α ⊗ e0 − 1

2
vβwλ ⊗ a′αc′λ

]
− vβwα ⊗ e0z −

α−1∑
γ=1

vβwα ⊗ a′γ c′γ

+
β−1∑
λ=α+1

(
−1

2
vβwλc

′
λa
′
α ⊗ e0 + 1

2
vβwλ ⊗ a′αc′λ

)

− 1

2

(
β−1∑
λ=α+1

−
α−1∑
λ=1

) (
vβwλ ⊗ wαc′λ + vβwα ⊗ wλc

′
λ

)
+ 1

2

β−1∑
λ=1

(
vβa′α ⊗ wλc

′
λ + e∞ ⊗ a′αvβwλc

′
λ

)
+
(

vβa′α ⊗ e0z − 1

2
vβza′α ⊗ e0 + 1

2
e∞ ⊗ a′αvβz

)
which, after some easy manipulations on the sums, yields

{{
a′α , c′β

}} α<β= − 1

2

β−1∑
λ=1

vβwλc
′
λa
′
α ⊗ e0 + 1

2

β−1∑
λ=1

e∞ ⊗ a′αvβwλc
′
λ −

1

2
vβza′α ⊗ e0 + 1

2
e∞ ⊗ a′αvβz

= −1

2
c′βa′α ⊗ e0 + 1

2
e∞ ⊗ a′αc′β

as expected from (A.1) since the first term is zero.
As an intermediate result for (3.11c), we need

Lemma A.2 For any α,β = 1, . . . , d,

{{
vα , c′β

}} = 1

2
c′βe0 ⊗ vα − 1

2

(
o(α,β)+ δαβ

)
vα ⊗ c′β
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Proof. Note that the first term vanishes, but we keep it for the case m = 1 as explained at the beginning
of the proof. We compute

{{
vα , vβz

}} = {{vα , vβ
}}

z + vβ {{vα , z}}

= −1

2
o(α,β)

(
vβ ⊗ vαz + vα ⊗ vβz

)− 1

2
vβ ⊗ vαz + 1

2
vβze0 ⊗ vα .

We keep the last vanishing term for computations. In particular, we get

{{
vα , c′1

}} α>1= 1

2
vα ⊗ c′1 +

1

2
c′1e0 ⊗ vα ,

{{
v1, c′1

}} = −1

2
v1 ⊗ c′1 +

1

2
c′1e0 ⊗ v1,

which agrees with our statement for β = 1. Now, we compute

{{
vα , vβwλ

}} = {{vα , vβ
}}

wλ + vβ {{vα , wλ}}

= −1

2
o(α,β)

(
vβ ⊗ vαwλ + vα ⊗ vβwλ

)+ δαλvβ ⊗ e∞

+ 1

2
[o(α, λ)+ δαλ]

(
vβ ⊗ vαwλ + vβwλvα ⊗ e∞

)
.

Assume by induction that for all λ < β,

{{
vα , c′λ

}} = 1

2
c′λe0 ⊗ vα − 1

2
(o(α, λ)+ δαλ) vα ⊗ c′λ,

then we get by (A.2)

{{
vα , c′β

}} = 1

2

β−1∑
λ=1

vβwλc
′
λe0 ⊗ vα − 1

2
o(α,β)

β−1∑
λ=1

(
vβ ⊗ vαwλc

′
λ + vα ⊗ vβwλc

′
λ

)
+ δ(α<β)vβ ⊗ c′α +

1

2

β−1∑
λ=1

[o(α, λ)+ δαλ]vβ ⊗ vαwλc
′
λ

− 1

2
o(α,β)

(
vβ ⊗ vαz + vα ⊗ vβz

)− 1

2
vβ ⊗ vαz + 1

2
vβze0 ⊗ vα .

In the case α > β, we find

{{
vα , c′β

}} α>β= 1

2

β−1∑
λ=1

vβwλc
′
λe0 ⊗ vα + 1

2
vβze0 ⊗ vα + 1

2

β−1∑
λ=1

vα ⊗ vβwλc
′
λ +

1

2
vα ⊗ vβz

= 1

2
c′βe0 ⊗ vα + 1

2
vα ⊗ c′β .
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In the case α = β, we have

{{
vα , c′β

}} α=β= 1

2

β−1∑
λ=1

vβwλc
′
λe0 ⊗ vα + 1

2
vβze0 ⊗ vα − 1

2

β−1∑
λ=1

vβ ⊗ vαwλc
′
λ −

1

2
vβ ⊗ vαz

= 1

2
c′βe0 ⊗ vα − 1

2
vα ⊗ c′β .

Finally, for α < β we get

{{
vα , c′β

}} α<β= 1

2

β−1∑
λ=1

vβwλc
′
λe0 ⊗ vα − 1

2

β−1∑
λ=1

(
vβ ⊗ vαwλc

′
λ + vα ⊗ vβwλc

′
λ

)+ vβ ⊗ c′α

+ 1

2

[
β−1∑
λ=α
−

α−1∑
λ=1

]
vβ ⊗ vαwλc

′
λ −

1

2

(
vβ ⊗ vαz + vα ⊗ vβz

)− 1

2
vβ ⊗ vαz + 1

2
vβze0 ⊗ vα

= 1

2

β−1∑
λ=1

vβwλc
′
λ ⊗ vα + 1

2
vβz ⊗ vα − 1

2

β−1∑
λ=1

vα ⊗ vβwλc
′
λ −

1

2
vα ⊗ vβz

+ vβ ⊗ c′α −
α−1∑
λ=1

vβ ⊗ vαwλc
′
λ − vβ ⊗ vαz,

which is exactly 1
2 c′βe0 ⊗ vα − 1

2 vα ⊗ c′β since the two last terms can be written as −vβ ⊗ c′α . �

We can finish the proof of Lemma 3.1 by showing (3.11c). It is easier to use the induction in the first
variable, that is

{{
c′α ,�

}} = α−1∑
λ=1

(
vαwλ ∗

{{
c′λ,�

}}+ {{vαwλ,�}} ∗ c′λ
)+ {{vαz,�}} (A.3)

with � = c′β in our case. By doing so, we can repeatedly use (3.11a), (A.1) and Lemma A.2. We first get

{{
vαz, c′β

}} = {{vα , c′β
}} ∗ z + vα ∗

{{
z, c′β

}}
= 1

2
c′βe0z ⊗ vα − 1

2

(
o(α,β)+ δαβ

)
vαz ⊗ c′β −

1

2
c′βz ⊗ vαem−1 + 1

2
c′β ⊗ vαz

= −1

2

(
o(α,β)+ δαβ

)
vαz ⊗ c′β +

1

2
c′β ⊗ vαz,
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using that the first and third terms vanishes (they would cancel out in the Jordan quiver case). This gives
in particular

{{
c′1, c′β

}} = − 1
2 c′1 ⊗ c′β + 1

2 c′β ⊗ c′1. Now using (A.1) as wλ = a′λ, we can compute{{
vαwλ, c′β

}} = {{vα , c′β
}} ∗ wλ + vα ∗

{{
wλ, c′β

}}
= 1

2
c′βe0wλ ⊗ vα − 1

2

(
o(α,β)+ δαβ

)
vαwλ ⊗ c′β −

1

2
c′βwλ ⊗ vα

+ 1

2

(
o(λ,β)− δλβ

)
e∞ ⊗ vαwλc

′
β − δλβ

(
e∞ ⊗ vαz +

β−1∑
γ=1

e∞ ⊗ vαwγ c′γ

)
.

The first and third terms cancel out, so we can write

α−1∑
λ=1

{{
vαwλ, c′β

}} ∗ c′λ = −
1

2

(
o(α,β)+ δαβ

) α−1∑
λ=1

vαwλc
′
λ ⊗ c′β +

1

2

α−1∑
λ=1

(
o(λ,β)− δλβ

)
c′λ ⊗ vαwλc

′
β

− δ(β<α)c′β ⊗ vαz − δ(β<α)
β−1∑
γ=1

c′β ⊗ vαwγ c′γ .

Now, assume by induction that for all λ < α,

{{
c′λ, c′β

}} = 1

2
[o(λ,β)+ δλβ]

(
c′β ⊗ c′λ − c′λ ⊗ c′β

)
,

and let us show that this holds for λ = α. Note that it is exactly (3.11c) since in the case λ = β the two
terms cancel out. We find by (A.3) and our previous computations

{{
c′α , c′β

}} = 1

2

α−1∑
λ=1

[o(λ,β)+ δλβ]
(
c′β ⊗ vαwλc

′
λ − c′λ ⊗ vαwλc

′
β

)
− 1

2

(
o(α,β)+ δαβ

) α−1∑
λ=1

vαwλc
′
λ ⊗ c′β +

1

2

α−1∑
λ=1

(
o(λ,β)− δλβ

)
c′λ ⊗ vαwλc

′
β

− δ(β<α)c′β ⊗ vαz − δ(β<α)
β−1∑
γ=1

c′β ⊗ vαwγ c′γ −
1

2

(
o(α,β)+ δαβ

)
vαz ⊗ c′β +

1

2
c′β ⊗ vαz.

If α > β we find

{{
c′α , c′β

}} α>β= 1

2

(
β∑
λ=1

−
α−1∑
λ=β+1

) (
c′β ⊗ vαwλc

′
λ − c′λ ⊗ vαwλc

′
β

)+ 1

2

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β

+ 1

2

(
β−1∑
λ=1

−
α−1∑
λ=β

)
c′λ ⊗ vαwλc

′
β −

β−1∑
λ=1

c′β ⊗ vαwλc
′
λ +

1

2
vαz ⊗ c′β −

1

2
c′β ⊗ vαz

= −1

2

α−1∑
λ=1

c′β ⊗ vαwλc
′
λ −

1

2
c′β ⊗ vαz + 1

2

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β +

1

2
vαz ⊗ c′β ,
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which gives us − 1
2 (c
′
β ⊗ c′α − c′α ⊗ c′β). In the other cases,

{{
c′α , c′β

}} α�β= 1

2

α−1∑
λ=1

(
c′β ⊗ vαwλc

′
λ − c′λ ⊗ vαwλc

′
β

)− 1

2

α−1∑
λ=1

vαwλc
′
λ ⊗ c′β

+ 1

2

α−1∑
λ=1

c′λ ⊗ vαwλc
′
β −

1

2
vαz ⊗ c′β +

1

2
c′β ⊗ vαz,

and this is trivially + 1
2 (c
′
β ⊗ c′α − c′α ⊗ c′β). �

A.2 Proof of Lemma 3.2

This proof can be applied without change in the case m = 1 treated in [34]. Indeed, we use (A.1) instead
of (3.11b) when computing {{a′γ c′ε , a′αc′β}} below. In that way, all the double brackets that we use during
this proof are the ones in [34] if we set m = 1.

We assume that the integers k, l ≥ 1 satisfy the conditions for the elements to be non-zero, otherwise
the proof is trivial. The first equality is an easy computations, or can be obtained as a consequence of [1,
Lemma A.3]. Next, we compute from (3.6a) and (3.11a)

{{
x, a′αc′β

}} = 1

2
e0 ⊗ xa′αc′β −

1

2
e0x ⊗ a′αc′β +

1

2
a′αc′βx ⊗ em−1 + 1

2
a′αc′β ⊗ xem−1. (A.4)

Combining this result with (3.5a), S1 := {{xk , a′αc′βxl}} becomes

S1 =
k∑

σ=1

xσ−1 ∗ {{x, a′αc′β
}}

xl ∗ xk−σ +
k∑

σ=1

l∑
τ=1

xσ−1 ∗ a′αc′βxτ−1 {{x, x}} xl−τ ∗ xk−σ

= 1

2

k∑
σ=1

(
e0xk−σ ⊗ xσa′αc′βxl − e0xk−σ+1 ⊗ xσ−1a′αc′βxl

+ a′αc′βxk−σ+1 ⊗ xσ−1em−1xl + a′αc′βxk−σ ⊗ xσ em−1xl
)

+ 1

2

k∑
σ=1

l∑
τ=1

∑
s∈I

(
a′αc′βxτ+1esx

k−σ ⊗ xσ−1es−1xl−τ

− a′αc′βxτ−1esx
k−σ ⊗ xσ−1es−1xl−τ+2

)
.

(A.5)

If we apply the multiplication m, we have in the last two terms that the non-vanishing terms are for s ∈ I
such that em−1xτ+1es = xτ+1 and em−1xτ−1es = xτ−1, respectively, and we get that only the third and fourth
terms do not cancel out. We find that {xk , a′αc′βxl} = k a′αc′βxkem−1xl = k a′αc′βxk+l since xkem−1 = em−1xk

by assumption on k. Next,

{{
a′γ c′εx

k , a′αc′βxl
}} = a′γ c′ε ∗

{{
xk , a′αc′βxl

}}+ a′αc′β
{{

a′γ c′ε , xl
}} ∗ xk + {{a′γ c′ε , a′αc′β

}}
xl ∗ xk .
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From (A.4) and (A.5), we can get for the first two terms

S2 := a′γ c′ε ∗
{{

xk , a′αc′βxl
}}− l∑

τ=1

a′αc′βxτ−1
{{

x, a′γ c′ε
}}◦

xl−τ ∗ xk

= 1

2

k∑
σ=1

(
e0xk−σ ⊗ a′γ c′εx

σa′αc′βxl − e0xk−σ+1 ⊗ a′γ c′εx
σ−1a′αc′βxl

+ a′αc′βxk−σ+1 ⊗ a′γ c′εx
σ−1em−1xl + a′αc′βxk−σ ⊗ a′γ c′εx

σ em−1xl
)

+ 1

2

k∑
σ=1

l∑
τ=1

∑
s∈I

(
a′αc′βxτ+1esx

k−σ ⊗ a′γ c′εx
σ−1es−1xl−τ

− a′αc′βxτ−1esx
k−σ ⊗ a′γ c′εx

σ−1es−1xl−τ+2
)

+ 1

2

l∑
τ=1

(−a′αc′βxτa′γ c′εx
k ⊗ e0xl−τ + a′αc′βxτ−1a′γ c′εx

k ⊗ e0xl−τ+1
)

+ 1

2

l∑
τ=1

(−a′αc′βxτ−1em−1xk ⊗ a′γ c′εx
l−τ+1 − a′αc′βxτem−1xk ⊗ a′γ c′εx

l−t
)
.

Applying the multiplication map and relabelling indices yields

S2 = 1

2

[
k∑

σ=1

−
k−1∑
σ=0

]
e0xk−σa′γ c′εx

σa′αc′βxl + 1

2

[
k−1∑
σ=0

+
k∑

σ=1

]
a′αc′βxk−σa′γ c′εx

σ em−1xl

+ 1

2

k∑
σ=1

l∑
τ=1

∑
s∈I

(
a′αc′βxτ+1esx

k−σa′γ c′εx
σ−1es−1xl−τ

− a′αc′βxτ−1esx
k−σa′γ c′εx

σ−1es−1xl−τ+2
)

+ 1

2

[
−

l∑
τ=1

+
l−1∑
τ=0

]
a′αc′βxτa′γ c′εx

ke0xl−τ − 1

2

[
l−1∑
τ=0

+
l∑

τ=1

]
a′αc′βxτem−1xk ⊗ a′γ c′εx

l−t .

By assumption, l, k = 1 modulo m, so that esxk = xkes+1 and esxk = xkes+1 for any s ∈ I . Hence
a′αc′βxle0 = a′αc′βxl and em−1xla′αc′β = xla′αc′β , so we can drop the idempotents in the first line modulo
commutators. Similarly, this can be done in the last line. For the first term in the middle line, a′αc′βxτ+1es

gives s = τ mod m while es−1xl−τa′αc′β gives s − 1+ (1− τ) = 0 mod m, which is the same condition.
Thus we can drop the idempotent corresponding to s = τ modulo commutators. For the second term, we
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get s = τ − 2 in the same way and we can drop the idempotent. So we can write

S2 = 1

2

[
k∑

σ=1

−
k−1∑
σ=0

]
xk−σa′γ c′εx

σa′αc′βxl + 1

2

[
k−1∑
σ=0

+
k∑

σ=1

]
a′αc′βxk−σa′γ c′εx

l+σ

+ 1

2

k∑
σ=1

l∑
τ=1

(
a′αc′βxk−σ+τ+1a′γ c′εx

l−τ+σ−1 − a′αc′βxk−σ+τ−1a′γ c′εx
l−τ+σ+1

)
+ 1

2

[
−

l∑
τ=1

+
l−1∑
τ=0

]
a′αc′βxτa′γ c′εx

k+l−τ − 1

2

[
l−1∑
τ=0

+
l∑

τ=1

]
a′αc′βxk+τa′γ c′εx

l−t .

Note that the middle line can be decomposed as

1

2

[
k−1∑
σ=0

∑
τ=l

+
∑
σ=0

l−1∑
τ=1

−
k−1∑
σ=1

∑
τ=0

−
∑
σ=k

l−1∑
τ=0

]
a′αc′βxk−σ+τa′γ c′εx

l−τ+σ .

We can then rewrite S2 as

S2 = 1

2
a′γ c′εx

ka′αc′βxl − 1

2
xka′γ c′εa

′
αc′βxl + 1

2
a′αc′βxka′γ c′εx

l + 1

2
a′αc′βa′γ c′εx

k+l +
k−1∑
σ=1

a′αc′βxk−σa′γ c′εx
l+σ

+ 1

2

k−1∑
σ=0

a′αc′βxk+l−σa′γ c′εx
σ + 1

2

l−1∑
τ=1

a′αc′βxk+τa′γ c′εx
l−τ

− 1

2

k−1∑
σ=1

a′αc′βxk−σa′γ c′εx
l+σ − 1

2

l−1∑
τ=0

a′αc′βxτa′γ c′εx
k+l−τ

+ 1

2
a′αc′βa′γ c′εx

k+l − 1

2
a′αc′βxla′γ c′εx

k − 1

2
a′αc′βxka′γ c′εx

l − 1

2
a′αc′βxk+la′γ c′ε −

l−1∑
τ=1

a′αc′βxk+τa′γ c′εx
l−τ

We can cancel terms together (some of them modulo commutators) to obtain

S2 = +1

2
a′αc′βa′γ c′εx

k+l − 1

2
a′αc′βxk+la′γ c′ε +

1

2

k−1∑
σ=1

(
a′αc′βxk−σa′γ c′εx

l+σ + a′αc′βxk+l−σa′γ c′εx
σ
)

− 1

2

l−1∑
τ=1

(
a′αc′βxτa′γ c′εx

k+l−τ + a′αc′βxk+τa′γ c′εx
l−τ )

= 1

2
a′αc′βa′γ c′εx

k+l − 1

2
a′γ c′εa

′
αc′βxk+l + 1

2

[
k∑

v=1

−
l∑

v=1

] (
a′αc′βxva′γ c′εx

k+l−v + a′αc′βxk+l−va′γ c′εx
v
)
,
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where we added the terms v = k, l in the sums because they cancel out together. Now, we compute{{
a′γ c′ε , a′αc′β

}}
= {{a′γ , a′α

}}
c′β ∗ c′ε + a′α

{{
a′γ , c′β

}} ∗ c′ε + a′γ ∗
{{

c′ε , a′α
}}

c′β + a′γ ∗ a′α
{{

c′ε , c′β
}}

= −1

2
o(γ ,α)

(
a′γ c′ε ⊗ a′αc′β + a′αc′ε ⊗ a′γ c′β

)+ 1

2
o(ε,β)

(
a′αc′β ⊗ a′γ c′ε − a′αc′ε ⊗ a′γ c′β

)
− 1

2
a′αc′βa′γ c′ε ⊗ e0 + 1

2

(
o(γ ,β)− δγβ

)
a′αc′ε ⊗ a′γ c′β − δγβ

(
a′αc′ε ⊗ e0z +

β−1∑
μ=1

a′αc′ε ⊗ a′μc′μ

)

+ 1

2
e0 ⊗ a′γ c′εa

′
αc′β −

1

2
(o(α, ε)− δαε) a′αc′ε ⊗ a′γ c′β + δαε

(
e0z ⊗ a′γ c′β +

ε−1∑
λ=1

a′λc
′
λ ⊗ a′γ c′β

)
,

which we have to multiply on the right by xl (for the outer bimodule structure) and xk (for the inner
bimodule structure). After doing so, we apply the multiplication map and denote by S3 the expression
obtained in that way, i.e. S3 = m ◦ ({{a′γ c′ε , a′αc′β}}xl ∗ xk). We finally get

{a′γ c′εx
k , a′αc′βxl} = S2 + S3

= +1

2

[
k∑

v=1

−
l∑

v=1

] (
a′αc′βxva′γ c′εx

k+l−v + a′αc′βxk+l−va′γ c′εx
v
)

+ 1

2
o(α, γ )

(
a′γ c′εx

ka′αc′βxl + a′αc′εx
ka′γ c′βxl

)+ 1

2
o(ε,β)

(
a′αc′βxka′γ c′εx

l − a′αc′εx
ka′γ c′βxl

)
− 1

2

(
o(β, γ )+ δγβ

)
a′αc′εx

ka′γ c′βxl − δγβ
(

a′αc′εx
kzxl +

β−1∑
μ=1

a′αc′εx
ka′μc′μxl

)

+ 1

2
(o(ε,α)+ δαε) a′αc′εx

ka′γ c′βxl + δαε
(

zxka′γ c′βxl +
ε−1∑
λ=1

a′λc
′
λx

ka′γ c′βxl

)
,

modulo commutators. This is our claim. �

A.3 Proof of Lemma 3.3

Let’s restate the setting. For u ∈ {x, y, z,
∑

s es + xy}, set ε(x) = +1, ε(y) = −1, ε(z) = −1 or
ε(
∑

s es + xy) = +1. We also set θ(u) = ε(u) if u = x, y, z, while θ(
∑

s es + xy) = 0. With these
notations, we have u ∈ ⊕sesAes+θ(u), and we can write that {{u, u}} = 1

2ε(u)[u2Fθ(u)−Fθ(u)u2]. Moreover,
we can also obtain in all cases that

{{u, wα}} = 1

2
e0 ⊗ uwα − 1

2
e0u⊗ wα , {{u, vα}} = 1

2
vαu⊗ e0 − 1

2
vα ⊗ ue0. (A.6)

For the first statement, we compute for any α,β = 1, . . . , d

{{
u, wαvβ

}} = 1

2
(wαvβu⊗ e0 − wαvβ ⊗ ue0 + e0 ⊗ uwαvβ − e0u⊗ wαvβ),
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 43

We find in a similar way to (A.5) in the proof of Lemma 3.2,

{{
uk , wαvβul

}} = 1

2

k∑
σ=1

(
e0uk−σ ⊗ uσwαvβul − e0uk−σ+1 ⊗ uσ−1wαvβul

+ wαvβuk−σ+1 ⊗ uσ−1e0ul − wαvβuk−σ ⊗ uσ e0ul
)

+ 1

2

k∑
σ=1

l∑
τ=1

∑
s∈I

(
wαvβuτ+1esu

k−σ ⊗ uσ−1es−θ(u)ul−τ

− wαvβuτ−1esu
k−σ ⊗ uσ−1es−θ(u)ul−τ+2

)
.

We now apply the multiplication map, and we clearly see that the terms in the first two lines cancel out.
In the last two lines, we obtain factors esuk−1es−θ(u) = uk−1es+(k−1)θ(u)es−θ(u) because u ∈ ⊕sesAes+θ(u).
Thus, these two lines clearly disappear if k is not divisible by m. Assuming now that k = 0 mod m, we
also remark that we have the factor wαvβuτ+1es in the third line, and since vβ = vβe0 this implies that the
only s that gives a non-zero term is such that s− (τ + 1)θ(u) = 0 mod m. The same argument in the last
line allows to remove the idempotents and the sum over s ∈ I . Thus, all the terms in those sums are just
wαvβuτ+k+l, and they cancel out together.

For the second claim, we show more generally that for any fixed α = 1, . . . , d, the elements
(uk , wαvαul) form a commutative Lie subalgebra in A/[A, A]. It is just an application of [1, Lemma
A.3] to show {uk , ul} = 0, and we have from the previous part that {uk , wαvαul} = 0. Thus, it remains to
prove that {wαvαuk , wαvαul} = 0 in A/[A, A]. On one hand, we get again by adapting the argument in the
proof of Lemma 3.2

m ◦ (wαvα ∗
{{

uk , wαvαul
}}+ wαvα

{{
wαvα , ul

}} ∗ uk
)

= 1

2

[
k∑

σ=1

−
k−1∑
σ=0

]
uk−σwαvαuσwαvαul + 1

2

[
k−1∑
σ=0

−
k∑

σ=1

]
wαvαuk−σwαvαul+σ

+ 1

2

[
k−1∑
σ=0

∑
τ=l

+
∑
σ=0

l−1∑
τ=1

−
k−1∑
σ=1

∑
τ=0

−
∑
σ=k

l−1∑
τ=0

]
wαvαxk−σ+τwαvαxl−τ+σ

+ 1

2

[
−

l∑
τ=1

+
l−1∑
τ=0

]
wαvαuτwαvαuk+l−τ + 1

2

[
−

l−1∑
τ=0

+
l∑

τ=1

]
wαvαuk+τwαvαul−t ,

because we can get rid of the idempotents modulo commutators, after careful analysis. After
simplification, all terms vanish modulo commutators.

On the other hand, we compute

{{wαvα , wαvα}} = e0 ⊗ wαvα − wαvα ⊗ e0 + 1

2
e0 ⊗ (wαvα)

2 − 1

2
(wαvα)

2 ⊗ e0.

Hence m ◦ ({{wαvα , wαvα}} xl ∗ xk) = 0 modulo commutators and we can conclude. �
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44 M. FAIRON

A.4 Proof of Proposition 3.4

This proof can be applied without change in the case m = 1 treated in [34], after setting es = e0 for each
s ∈ I , and Fb = e0 ⊗ e0 for all b ∈ Z.

We begin with the first identity, and let Uα = u(1 + ηφ) instead of U+,α to ease notations. Writing{{
Uα , Uη

}} = a′ ⊗ a′′, we get

1

KL
{UK

α , UL
η } = UL−1

η a′UK−1
α a′′ mod [A, A], (A.7)

So we have to compute

{{u+ αuφ, u+ ηuφ}} = {{u, u}} + α {{uφ, u}} + η {{u, uφ}} + αη {{uφ, uφ}} . (A.8)

With the notations of the proof of Lemma 3.3, we find

{{u, u}} = 1

2
ε(u)[u2Fθ(u) − Fθ(u)u

2], {{φ, γ }} = 1

2
φ ∗ (γF0 − F0γ )+ 1

2
(γF0 − F0γ ) ∗ φ, ,

where γ is any word in the letters {es, xs, ys} (with possible inverses). The second equation is obtained by
combining (2.4) and Lemma 2.5 applied to the subquiver based at I , the set of all vertices in the cycle.
We see that we can write

{{φ, u}} = 1

2
(uF0φ − F0φu)+ 1

2
(uφF0 − φF0u), {{φ,φ}} = 1

2
(φ2F0 − F0φ

2),

because φ ∈ ⊕sesAes, so φ commutes with any es. As u ∈ ⊕sesAes+θ(u) we have ues = es−θ(u)u, so that

{{u,φ}} = 1

2
φ(uFθ(u) − Fθ(u)u)+ 1

2
(uFθ(u) − Fθ(u)u)φ.

From these basic results, we directly get the first term in (A.8). For the second term, we compute

{{uφ, u}} = u ∗ {{φ, u}} + {{u, u}} ∗ φ

= 1

2
u ∗ (uF0φ − F0φu)+ 1

2
u ∗ (uφF0 − φF0u)+ 1

2
ε(u)(u2φFθ(u) − φFθ(u)u

2)

= 1

2
(uFθ(u)uφ − Fθ(u)uφu+ uφFθ(u)u− φFθ(u)u

2)+ 1

2
ε(u)(u2φFθ(u) − φFθ(u)u

2)

using that u ∗ F0 = Fθ(u)u since ues = es−θ(u)u. The term {{u, uφ}} = − {{uφ, u}}◦ follows from the
following result.

Lemma A.3 Fix some r ∈ N and let a ∈ ⊕sesAes, b0, b1 ∈ ⊕sesAes+r and c ∈ ⊕sesAes+2r . Then
(b0Frb1)

◦ = b1Frb0 and (cFra)◦ = aFrc.

Proof. We compute (b0Frb1)
◦ = ∑s esb1 ⊗ b0es+r = ∑s b1es+r ⊗ esb0 = b1Frb0. The second equality

follows similarly. �
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SPIN VERSIONS OF THE RS MODEL FROM CYCLIC QUIVERS 45

Taking r = θ(u), b0 = u and b1 = uθ gives (uFθ(u)uφ)◦ = uφFθ(u)u. Using the lemma on the other
terms of {{uφ, u}} yields

{{u, uφ}} = −1

2
(uφFθ(u)u− uφuFθ(u) + uFθ(u)uφ − u2Fθ(u)φ)+ 1

2
ε(u)(u2Fθ(u)φ − Fθ(u)u

2φ).

Computing that

{{uφ,φ}} = {{u,φ}} ∗ φ + u ∗ {{φ,φ}}

= 1

2
φ(uFθ(u) − Fθ(u)u) ∗ φ + 1

2
(uFθ(u) − Fθ(u)u)φ ∗ φ + 1

2
u ∗ (φ2F0 − F0φ

2)

= 1

2
(φuφFθ(u) + uφFθ(u)φ − φFθ(u)uφ − Fθ(u)uφ

2),

we find for the fourth term {{uφ, uφ}} = u {{uφ,φ}} + {{uφ, u}}φ that

{{uφ, uφ}} = 1

2
(uφuφFθ(u) + u2φFθ(u)φ − Fθ(u)uφuφ − φFθ(u)u

2φ)+ 1

2
ε(u)(u2φFθ(u)φ − φFθ(u)u

2φ).

Remarking that Uα − u = αuφ and Uη − u = ηuφ, we find

αη {{uφ, uφ}} = 1

2
ηuφ(Uα − u)Fθ(u) + 1

2
ηu(Uα − u)Fθ(u)φ − 1

2
αFθ(u)uφ(Uη − u)

− 1

2
αφFθ(u)u(Uη − u)+ 1

2
ε(u)ηu(Uα − u)Fθ(u)φ − 1

2
ε(u)αφFθ(u)u(Uη − u).

Now, we sum all the terms appearing in (A.8), which yields{{
Uα , Uη

}} = 1

2
ε(u)(u2Fθ(u) − Fθ(u)u

2)+ 1

2
αε(u)u2φFθ(u) − 1

2
ηε(u)Fθ(u)u

2φ

+ 1

2
α(uFθ(u)uφ + uφFθ(u)u)− 1

2
η(uφFθ(u)u+ uFθ(u)uφ)

+ 1

2
ηuφUαFθ(u) + 1

2
ηuUαFθ(u)φ − 1

2
αFθ(u)uφUη

− 1

2
αφFθ(u)uUη + 1

2
ε(u)ηuUαFθ(u)φ − 1

2
ε(u)αφFθ(u)uUη.

As u is assumed to be invertible, we can repeat the substitution under the form u−1(Uα − u) = αφ. We
find in this way{{

Uα , Uη

}} = 1

2
ε(u)(u2Fθ(u) − Fθ(u)u

2)+ 1

2
ε(u)u(Uα − u)Fθ(u) − 1

2
ε(u)Fθ(u)u(Uη − u)

+ 1

2
(uFθ(u)(Uα − u)+ (Uα − u)Fθ(u)u)− 1

2
((Uη − u)Fθ(u)u+ uFθ(u)(Uη − u))

+ 1

2
(Uη − u)UαFθ(u) + 1

2
uUαFθ(u)u

−1(Uη − u)− 1

2
Fθ(u)(Uα − u)Uη

− 1

2
u−1(Uα − u)Fθ(u)uUη + 1

2
ε(u)uUαFθ(u)u

−1(Uη − u)− 1

2
ε(u)u−1(Uα − u)Fθ(u)uUη
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This may be reduced to the form

{{
Uα , Uη

}} = +1

2
(1+ ε(u)) [uUαFθ(u)u

−1Uη − u−1UαFθ(u)uUη

]
+ 1

2
(uFθ(u)Uα + UαFθ(u)u)− 1

2
(UηFθ(u)u+ uFθ(u)Uη)

− uUαFθ(u) + Fθ(u)uUη + 1

2
(UηUαFθ(u) − Fθ(u)UαUη)

The latter expression can be put back in (A.7), and we get

{UK
α , UL

η } =
1

2
(1+ ε(u)) [UL

η uUK
α u−1 − UL

η u−1UK
α u
]

+ 1

2
(−UL−1

η uUK
α + UL−1

η UK
α u+ UL

ηUK−1
α u− UL

η uUK−1
α )

(A.9)

all mod [A, A]. Indeed, since we have the decomposition Uα ∈ ⊕sesAes+θ(u) we can write when we insert
the first term of

{{
Uα , Uη

}}
in (A.7) that

∑
s

UL−1
η uUαes+θ(u)UK−1

α esu
−1Uη = UL−1

η uUα

(∑
s

es+θ(u)es−(K−1)θ(u)

)
UK−1
α u−1Uη

= UL−1
η uUαUK−1

α u−1Uη

for (K − 1)θ(u)≡− θ(u) mod m, that is K is divisible by m if θ(u) = ±1 (for u = x, y, z), while K ≥ 1
for θ(u) = 0 (for u =∑s es+xy). For every other element, we can proceed in the same way and establish
(A.9). By assumption, the first line in (A.9) vanishes for ε(u) = −1. The second line is trivially zero if
α = η. Otherwise we use u = 1

α−η (αUη − ηUα) and we also get that the second line vanishes.
The same proof works when ε(z) = +1 to show that {UK

−,α , UL
−,η} = 0 modulo commutators for

U−,α = u(1 + αφ−1). We only need to notice that
{{
φ−1, a

}} = −φ−1 ∗ {{φ, a}} ∗ φ−1, so we just need
to replace in the expression {{φ, a}} the factors φ by φ−1 and multiply by an overall factor −1. Thus,
reproducing the proof in the first case with some sign changes, we get

1

KL
{UK
−,α , UL

−,η} =
1

2
(−1+ ε(u)) (UL

−,ηuUK
−,αu−1 − UL

−,ηu
−1UK

−,αu
)
,

modulo commutators. This yields the desired result for ε(u) = +1. �

Appendix B. Poisson isomorphism between MQVs

Before proving Proposition 5.3, let’s remark that Lemma 3.2 together with (2.13) give

{tr Xk , tr Xl}P = 0, {tr Xk , tr(A(m)EαβC(m)Xl)}P = k tr(A(m)EαβC(m)Xk+l), (B.1a)

{tr(A(m)Eγ εC(m)Xk), tr(A(m)EαβC(m)Xl)}P

= 1

2

(
k∑

v=1

−
l∑

v=1

) (
tr(A(m)EαβC(m)XvA(m)Eγ εC(m)Xk+l−v)+ tr(A(m)EαβC(m)Xk+l−vA(m)Eγ εC(m)Xv)

)
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+ 1

2
o(α, γ )

(
tr(A(m)Eγ εC(m)XkA(m)EαβC(m)Xl)+ tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

)
+ 1

2
o(ε,β)

(
tr(A(m)EαβC(m)XkA(m)Eγ εC(m)Xl)− tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

)
+ 1

2
[o(ε,α)+ δαε] tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

− 1

2
[o(β, γ )+ δβγ ] tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

+ δαε tr

([
t−1Z +

ε−1∑
λ=1

A(m)EλλC(m)

]
XkA(m)EγβC(m)Xl

)

− δβγ tr

(
A(m)EαεC(m)Xk

[
t−1Z +

β−1∑
μ=1

A(m)EμμC(m)

]
Xl

)
. (B.1b)

Note the appearance of two constants t−1 in the last two terms. Indeed, we used that (A(m))iα is the ith
component of the covector representing a′α , while (C(m))βj is the jth component of the vector representing
t−1c′α , while X and Z respectively represent x, z. Furthermore, for the last equality, it is an easy exercise
to see that both matrices Z in the right-hand side can be replaced by Zm−1 after using that k, l = 1 modulo
m in that expression. The second set of Poisson brackets that we need are given by (4.6a)–(4.6b) for the
coordinates defined in (4.5), and we write in our case for k0, l0 ≥ 1

{tr(Ak0), tr(Al0)}P = 0, {tr(Ak0), tr(AEαβCAl0)}P = k0 tr(AEαβCAk0+l0), (B.2a)

{tr(AEγ εCAk0), tr(AEαβCAl0)}P

= 1

2

(
k0∑

r=1

−
l0∑

r=1

) (
tr(AEαβCArAEγ εCAk0+l0−r)+ tr(AEαβCAk0+l0−rAEγ εCAr)

)
+ 1

2
o(α, γ )

(
tr(AEγ εCAk0 AEαβCAl0)+ tr(AEαεCAk0 AEγβCAl0)

)
+ 1

2
o(ε,β)

(
tr(AEαβCAk0 AEγ εCAl0)− tr(AEαεCAk0 AEγβCAl0)

)
+ 1

2
[o(ε,α)+ δαε] tr(AEαεCAk0 AEγβCAl0)− 1

2
[o(β, γ )+ δβγ ] tr(AEαεCAk0 AEγβCAl0)

+ δαε tr

([
B+

ε−1∑
λ=1

AEλλC

]
Ak0 AEγβCAl0

)

− δβγ tr

([
B+

β−1∑
μ=1

AEμμC

]
Al0 AEαεCAk0

)
. (B.2b)

Proof. [Proposition 5.3]. It suffices to show that the map ψ : C◦n,t,d → C◦n,̃q,d(m) is a Poisson map with
respect to a basis of functions on C◦n,̃q,d(m). It is not hard to see that we can pick the functions Fk := tr(Xk)

and Gγ ε

l := tr(A(m)Eγ εC(m)Xl), which are non-zero for k = k0m and l = l0m + 1 with k0, l0 ≥ 1. We
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48 M. FAIRON

always assume such a choice for the indices from now on (which thus depends on the function Fk or
Gγ ε

l ). Using the notations from (4.5), we can see that

ψ∗Fk = m tr(Ak0) = mfk0 , ψ∗Gγ ε

l = tr(A−1AEγ εCAl0+1) = gγ εl0
. (B.3)

Indeed, we have C(m)Xl = C(m)Xm−1(X0 . . .Xm−1)
l0 which is CAl0+1 under ψ∗. Hence, we have to show

that the following equalities hold (writing {−,−}P for both Poisson brackets)

ψ∗{Fk , Fl}P = m2{fk0 , fl0}P, ψ∗{Fk , Gαβ

l }P = m{fk0 , gαβl0
}P, ψ∗{Gγ ε

k , Gαβ

l }P = {gγ εk0
, gαβl0
}P.

The first equality is obvious as both sides vanish. For the second one,

ψ∗{Fk , Gαβ

l }P = k ψ∗Gαβ

k+l = (k0m)gαβk0+l0
= m{fk0 , gαβl0

}P, (B.4)

since k = k0m and l = l0m + 1, so that k + l = (k0 + l0)m + 1. For the last equality, we have written at
the beginning of this appendix that the left-hand side is

1

2

(
k∑

v=1

−
l∑

v=1

) (
ψ∗ tr(A(m)EαβC(m)XvA(m)Eγ εC(m)Xk+l−v)+ ψ∗ tr(A(m)EαβC(m)Xk+l−vA(m)Eγ εC(m)Xv)

)
+ 1

2
o(α, γ )

(
ψ∗ tr(A(m)Eγ εC(m)XkA(m)EαβC(m)Xl)+ ψ∗ tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

)
+ 1

2
o(ε,β)

(
ψ∗ tr(A(m)EαβC(m)XkA(m)Eγ εC(m)Xl)− ψ∗ tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

)
+ 1

2
[o(ε,α)+ δαε]ψ∗ tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

− 1

2
[o(β, γ )+ δβγ ]ψ∗ tr(A(m)EαεC(m)XkA(m)EγβC(m)Xl)

+ δαεψ∗ tr

([
t−1Zm−1 +

ε−1∑
λ=1

A(m)EλλC(m)

]
XkA(m)EγβC(m)Xl

)

− δβγ ψ∗ tr

(
A(m)EαεC(m)Xk

[
t−1Zm−1 +

β−1∑
μ=1

A(m)EμμC(m)

]
Xl

)

In the first sum, we need v to be congruent to 1 modulo m to have non-zero terms, which means
that we can sum over v = v0m + 1 with v0 = 0, . . . , k0 or v0 = 0, . . . , l0. In that case, C(m)Xv =
C(m)Xm−1(X0 . . .Xm−1)

v0 , and we can write the same for v = k, l. Composing with ψ , we write this last
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expression as

1

2

⎛⎝ k0∑
v0=0

−
l0∑

v0=0

⎞⎠(tr(AEαβCAv0 AEγ εCAk0+l0−v0)+ tr(AEαβCAk0+l0−v0 AEγ εCAv0)
)

+ 1

2
o(α, γ )

(
tr(AEγ εCAk0 AEαβCAl0)+ tr(AEαεCAk0 AEγβCAl0)

)
+ 1

2
o(ε,β)

(
tr(AEαβCAk0 AEγ εCAl0)− tr(AEαεCAk0 AEγβCAl0)

)
+ 1

2
[o(ε,α)+ δαε] tr(AEαεCAk0 AEγβCAl0)− 1

2
[o(β, γ )+ δβγ ] tr(AEαεCAk0 AEγβCAl0)

+ δαε tr

([
A−1B+

ε−1∑
λ=1

A−1AEλλC

]
Ak0 AEγβCAl0+1

)

− δβγ tr

(
AEαεCAk0+1

[
A−1B+

β−1∑
μ=1

A−1AEμμC

]
Al0

)
,

which is precisely {gγ εk0
, gαβl0
}P. �

Appendix C. Calculations for the dynamics

Our method goes as follows: the Hamiltonians come from functions of the form tr(X (uη)K), for some uη ∈
A. Then, defining the derivation d/dtK := {tr(X (uη)K),−}P, the evolution of a matrix X (c) representing
an element c ∈ A is governed by the ODE

dX (c)
dtK

= X ({uK
η , c}), X (c)|t=0 := C0, (C.1)

using 2.14, for some initial condition C0. Thus, we are interested in computing the left Loday bracket
{uK
η , c} = m ◦ {{uK

η , c
}}

, which can be found by

{uK
η , c} = K

{{
uη, c

}}′
uK−1
η

{{
uη, c

}}′′
, (C.2)

after using the derivation property in the first variable then multiplying. Hence we need to compute{{
uη, c

}}
, then substitute the result back into (C.2). Note that from the discussion at the end of Section

2.2, we get for the ideal J = (� − q) that {uK
η , J} ⊂ J , hence (C.1) defines flows in Rep

(

q̃, α̃

)
that

we can project in Cn,̃q,d(m). The data of (C.2) for a set of generators in A can be seen as an analogue in
the quasi-Poisson case to an Hamiltonian ODE on A as defined in [48, Section 2.4] for a double Poisson
algebra.

First, we look at the family (Gm
k )k , which are the symmetric functions of the matrix representing the

element uη := z(1+ ηφ). We need the double brackets

{{z, z}} = −1

2

(
z2F−1 − F−1z2

)
, {{z, x}} = −1

2
(xzF−1 + F−1zx − zF−1x + xF−1z),

{{
z, wβ

}} = 1

2
e0 ⊗ zwβ − 1

2
e0z ⊗ wβ ,

{{
z, vβ

}} = 1

2
vβz ⊗ e0 − 1

2
vβ ⊗ ze0,
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obtained from (3.5a)–(3.7) and (A.6), together with

{{φ, a}} = 1

2
φ ∗ (aF0 − F0a)+ 1

2
(aF0 − F0a) ∗ φ, for a ∈ {x, z}, (C.3a)

{{
φ, vβ

}} = 1

2
(vβφ ⊗ e0 − vβ ⊗ φe0),

{{
φ, wβ

}} = 1

2
(e0 ⊗ φwβ − e0φ ⊗ wβ). (C.3b)

Note that the equations involving vβ or wβ need to be computed and do not follow from Lemma 2.5,
because such arrows appear from the framing which is not in the initial cyclic quiver for which φ is a
moment map. We do it for the double bracket containing vβ in (C.3b), and the second case is left as an
exercise. Write φ = φ+φ−1

− for φ+ =∑s es+ xy, and φ− =∑s es+ yx, and remark that (A.6) is satisfied
for both u = φ+,φ−. Therefore

{{
φ, vβ

}} = {{φ+, vβ
}} ∗ φ−1

− − φ+φ−1
− ∗

{{
φ, vβ

}} ∗ φ−1
− =

1

2
(vβφ+φ−1

− ⊗ e0 − vβ ⊗ φ+φ−1
− e0),

as desired. Now, we can begin the computations. First,

{{
uη, x

}} = {{z, x}} ∗ (1+ ηφ)+ ηz ∗ {{φ, x}}

= −1

2
(xzF−1 + F−1zx − zF−1x + xF−1z) ∗ (1+ ηφ)

+ 1

2
η(zφ ∗ (xF0 − F0x)+ z ∗ (xF0 − F0x) ∗ φ)

= −1

2
(xz(1+ ηφ)F−1 + (1+ ηφ)F−1zx − z(1+ ηφ)F−1x + x(1+ ηφ)F−1z)

+ 1

2
η((xF−1zφ − F−1zφx)+ (xφF−1z − φF−1zx)),

where we used thatφ ∈ ⊕sesAes, while z ∈ ⊕sesAes−1. By definition, uη = z(1+ηφ), so that uη−z = ηzφ.
We can also use both expressions after multiplication from the left by z−1. Thus

{{
uη, x

}} = −1

2
(xuηF−1 + z−1uηF−1zx − uηF−1x + xz−1uηF−1z)

+ 1

2
((xF−1(uη − z)− F−1(uη − z)x)+ (xz−1(uη − z)F−1z − z−1(uη − z)F−1zx))

= −z−1uηF−1zx − xF−1z + F−1zx + 1

2
(xF−1uη − xuηF−1 − F−1uηx + uηF−1x)

Remarking that uK−1
η ∈ ⊕ses−1Aes for K ∈ mN, we find

1

K
{uK
η , x} = −z−1uηu

K−1
η zx − xuK−1

η z + uK−1
η zx = −ηφuK−1

η zx − xuK−1
η z,
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while this expression vanishes for K /∈ mN since then es−1uK−1
η es = 0. This is similar in the other cases,

hence we restrict to the case K ∈ mN from now on. Doing the same computations with z, we can find{{
uη, z

}} = {{z, z}} ∗ (1+ ηφ)+ ηz ∗ {{φ, z}}

= −1

2
(zuηF−1 − z−1uηF−1z2)+ 1

2
(zF−1(uη − z)− F−1(uη − z)z)

+ 1

2
((uη − z)F−1z − (z−1uη − 1)F−1z2)

= F−1z2 − zF−1z + 1

2
(zF−1uη − zuηF−1 + uηF−1z − F−1uηz).

Hence 1
K {uK

η , z} = −zuK−1
η z + uK−1

η z2. Next, we get

{{
uη, vβ

}} = {{z, vβ
}} ∗ (1+ ηφ)+ ηz ∗ {{φ, vβ

}}
= 1

2

(
vβuη ⊗ e0 − vβz−1uη ⊗ ze0 + vβ(z

−1uη − 1)⊗ ze0 − vβ ⊗ (uη − z)e0

)
= 1

2

(
vβuη ⊗ e0 − vβ ⊗ uηe0

)
,

which gives {uK
η , vβ} = 0. Similarly, {uK

η , wβ} = 0. Gathering the expressions, we have proved

Lemma C.1 Write uη = z(1 + ηφ) with φ = (
∑

s es + xy)(
∑

s es + yx)−1. The left Loday bracket
{−,−} : A× A→ A satisfies for any K ∈ mN

1

K
{uK
η , x} = −ηφuK−1

η zx − xuK−1
η z,

1

K
{uK
η , z} = −zuK−1

η z + uK−1
η z2,

1

K
{uK
η , vβ} = 0,

1

K
{uK
η , wβ} = 0.

We now adapt the discussion to the family (Hm
k )k , which are the symmetric functions of the matrix

representing the element ūη = y(1 + ηφ). Note that, by doing so, we assume the invertibility of the
element x (which was used to make sense of z−1 when deriving the double brackets

{{
uη,−

}}
), but it can

be proved by only inverting y instead. Hence, passing from uη to ūη, it is not hard to see that the double
brackets involving x only differ by an additional term −F−1 when replacing {{z, x}} by {{y, x}}, so that

1

K
{ūK
η , x} = −(1+ ηφ)ūK−1

η − y−1ūηū
K−1
η yx − xūK−1

η y + ūK−1
η yx

= −ūK−1
η − xūK−1

η y − ηφūK−1
η (1+ yx).

(C.4)

The double bracket with y instead of z does not change: 1
K {ūK

η , y} = −yūK−1
η y+ ūK−1

η y2. The same holds
for the couple (y, wβ) replacing (z, wβ), or doing it with vβ , so that {ūK

η , wβ} = 0 and {ūK
η , vβ} = 0.

Therefore
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Lemma C.2 Write ūη = y(1 + ηφ) with φ = (
∑

s es + xy)(
∑

s es + yx)−1. The left Loday bracket
{−,−} : A× A→ A satisfies for any K ∈ mN

1

K
{ūK
η , x} = −ūK−1

η − xuK−1
η y − ηφuK−1

η (1+ yx),
1

K
{ūK
η , y} = −yuK−1

η y + uK−1
η y2,

1

K
{ūK
η , vβ} = 0,

1

K
{ūK
η , wβ} = 0.

For the family (Fm
k )k of symmetric functions of the matrix representing the element ũη = (∑s es +

xy)(1 + ηφ−1), we also do the computations assuming that x is invertible so that
∑

s es + xy = xz and
ũη = xz(1+ ηφ). As a first intermediate result, note that

{{xz, x}} = 1

2
x2zF0 − 1

2
F0xzx − 1

2
xzF0x − 1

2
xF0xz.

This directly yields{{
ũη, x

}} = {{xz, x}} ∗ (1+ ηφ−1)− ηxzφ−1 ∗ {{φ, x}} ∗ φ−1

= 1

2
(xũηF0 − (xz)−1ũηF0xzx − ũηF0x − x(xz)−1ũηF0xz)

+ 1

2
(−x[(xz)−1ũη − 1]F0xz + [(xz)−1ũη − 1]F0xzx − xF0[ũη − xz] + F0[ũη − xz]x).

After simplification, we obtain for any K ∈ N

1

K
{ũK
η , x} = −x(xz)−1ũK

η xz − ũK−1
η xzx + xũK−1

η xz = −ũK−1
η xzx − η xφ−1ũK−1

η xz.

Second, we compute {ũK
η , xz} using

{{
ũη, xz

}} = {{xz, xz}} ∗ (1+ ηφ−1)− ηxzφ−1 ∗ {{φ, xz}} ∗ φ−1

= 1

2

(
xzũηF0 − (xz)−1ũηF0(xz)2

)
+ 1

2

(−[ũη − xz]F0xz + [(xz)−1ũη − 1]F0(xz)2 − xzF0[ũη − xz] + F0[ũη − xz]xz
)
.

After cancellations, this is just

1

K
{ũK
η , xz} = xzũK−1

η xz − ũK−1
η (xz)2.

Finally, we get
{{

ũη, vβ
}} = 1

2 vβ ũη ⊗ e0 − 1
2 vβ ⊗ ũηe0, so that {ũK

η , vβ} = 0 as before. The same is true
for wβ .
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Lemma C.3 Write ũη = u(1+ ηφ) with φ = (∑s es + xy)(
∑

s es + yx)−1 and u =∑s es + xy. The left
Loday bracket {−,−} : A× A→ A satisfies for any K ∈ N

1

K
{ũK
η , x} = −ũK−1

η ux − η xφ−1ũK−1
η u,

1

K
{ũK
η , u} = −ũK−1

η u2 + uũK−1
η u,

1

K
{ũK
η , vβ} = 0,

1

K
{ũK
η , wβ} = 0.
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