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Abstract

The generalized thermal model is a thermodynamically consistent extension of the classical

Fourier’s law for describing thermal energy transportation which is very relevant to applica-

tions involving very small length, time scales and/or at extremely low temperatures. Under

such conditions, thermal propagation has been observed to manifest as waves, a phenomena

widely referred to as second sound effect. However, this is in contrast to the paradoxical

prediction of the Fourier’s model that thermal disturbances propagate with infinite speed. In

this work, we review the nonlinear model based on the theory of Green and Naghdi for ther-

mal conduction in rigid bodies and present its implementation within a class of space-time

methods. The unconditional stability of the time-discontinuous Galerkin method without

restriction over the grid structure of the space-time domain is proved. We also perform

a number of numerical experiments to study the convergence properties and analyze the

thermal response of materials under short-pulsed laser heating in two space dimensions.
Keywords: Generalized thermal model, Fourier’s law, second sound, time-discontinuous

Galerkin method, short-pulsed laser
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1. Introduction

Research activity in the development and improvement of existing laser technology has

witnessed significant growth over the last decades. This is due to its increased application

in fields including engineering material science, medical sciences as well as in the military.

For instance, in microelectronic and optoelectronic applications, short-pulsed lasers are used

to process thin films [1, 2]; also, in metallurgy, lasers can provide selective treatment of

metal surfaces for hardening. In such context, it is important to understand the models

for thermal energy transmission in the system. Interestingly, the classical Fourier’s law for

heat conduction has remarkably held on for well over a century in validating heat conduc-

tion experiments, showing significant success in a broad range of engineering and scientific

applications. However, as the involved time and length scales decrease, say as a result of

the recent trend to miniaturization of devices for application in micro and nano-technology,

certain effects previously unaccounted for become prevalent, such that descriptions under

the classical (macroscopic) continuum theories like the Fourier’s law become insufficient [3] .

Theoretical discovery of the physical impossibility of instantaneous transmission of ther-

mal energy disturbances as predicted by the parabolic Fourier’s model of heat conduction led

scientists to conjecture a wave-like transport of thermal energy [4], thereby suggesting the

possibility of the existence of thermal waves in super-fluids in certain temperature regimes

[5–7]. Further, thermal waves (the so-called second sound) had been observed experimen-

tally in super-fluids and pure crystalline solids [8–12] . The reader is referred to [13–17] for

detailed review of the literature on the experimental and theoretical basis for non-Fourier

heat conduction.

Motivated by the perceived drawbacks of the classical model for thermal conduction,

various modifications of Fourier’s theory have been proposed. The first attempts in for-

mulating theories accounting for propagation of thermal waves at finite speed were due to

Cattaneo [18] , Vernotte [19] and Maxwell [20] . The introduction of a relaxation time to

modify Fourier’s law results in an equation of damped hyperbolic-type which supports a

wave-like mechanism for thermal transport. This model is commonly referred to as the
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Cattaneo–Vernotte–Maxwell equation: see [21], for example. For much of the historical

development and theoretical justifications of the Cattaneo–Vernotte–Maxwell equation, see

the review articles [16, 17, 22, 23, 23–25]. Although the Cattaneo-Vernotte-Maxwell model

has been used extensively in modelling wave-like thermal propagation in various applica-

tions [25–29], its validity and derivation have been the subject of considerable debate among

researchers [30–32].

This has led to considerable attention towards a unified formulation of a widely valid

thermal conduction theory with a broader validity than the classical Fourier’s law, and con-

sistent with the statistical physics as well as the laws of thermodynamics [3, 32–34] . In

the 1990s Green and Naghdi [35–39] proposed a unified thermoelastic framework capable of

reproducing the second sound phenomenon. In their approach, a time primitive for the ab-

solute temperature, referred to as thermal displacement analogous to material displacement

in the theory of deformable bodies, was introduced into the thermodynamic state variables.

This formulation subsequently attracted a significant research audience: see, for example,

[40–44] and the references therein. Recently, in [51] , we extended their model of thermoelas-

ticity into a fully-nonlinear thermal regime in a thermodynamically consistent manner. The

extension coupled the nonlinear hyperbolic heat condition with elasticity at finite strains.

Its linearisation about a reference state reduces to the model due to Green and Naghdi.

In the present work, we apply this nonlinear model to study the thermal response of

materials under short-pulsed lasers. The materials under consideration are assumed to

be rigid so that the effect of deformation on thermal response is neglected. Much of the

literature on the numerical modelling of non-Fourier thermal response have been based on the

Cattaneo–Vernotte–Maxwell equation. Numerical solution of such models has been achieved

using a variety of different techniques. For instance, Ai and Li [1] applied a discontinuous

Galerkin (DG) scheme spatially with an explicit temporal integration in one, two and three

spatial dimensions to simulate the non-Fourier effect due to short-pulsed laser processing of

thin films. In related studies, Miller and Haber [21] proposed a space-time discontinuous

method which they referred it to as asynchronous spacetime discontinuous Galerkin (aSDG)

method. The aSDG method allows for discontinuities of the temperature and heat flux
3



fields across boundaries of space-time elements. It is element-wise conservative and employs

a causal space-time meshing supporting variable element duration and patch-wise solution

schemes with linear computational complexity. It also supports dynamic adaptive meshing.

However, the implementation of aSDG adaptivity is difficult due to the challenges of casual

meshing. A variety of finite difference and finite volume methods with different slop limiters

were used by Sasmal and Mishra [45] for the non-Fourier model that accounts for volumetric

radiation heat transfer term in two spatial dimension. Mishra and Sahai [46] employed the

lattice Boltzmann method to analysize non-Fourier effects in one dimensional cylindrical and

spherical geometries. Zhang et al. [47] used a homogenization technique in conjunction with

a conforming mixed finite element method to simulate non-Fourier effects in heterogeneous

media. Wang et al. [48] employed finite element/finite difference schemes in one space

dimension. Bargmann and Steinmann [49, 50] used Galerkin finite element methods both

in space and in time for the thermoelastic coupling based on the non-Fourier theory of

Green and Naghdi. Though space and time discretizations were treated with Galerkin finite

element methods, we note that their approach is not strictly a space-time approach in the

sense of the space-time methods discussed in [51–53, 55, 56].

Traditional methods such as finite difference and conforming finite element tend to gen-

erate spurious oscillations when the solutions involve the propagation of steep gradients or

discontinuities, unless extra stabilization technique are employed, for example, by adding a

tunable ‘artificial viscosity’ term. The disadvantage of artificial viscosity is that it results

in excessive damping which severely limits accuracy. Discontinuous Galerkin methods have

received increased attention in recent years due to their superior stability behavior without

the need for extra stabilization. Under the umbrella of Discontinuous Galerkin methods,

space-time methods with some DG features have been the favourite choice for hyperbolic

problems. Hughes and Hulbert [56] and Hulbert and Hughes [55] introduced a space-time

Galerkin finite element formulation for second-order hyperbolic problems such as elasto-

dynamics. In their formulation the primary unknowns are allowed to be discontinuous in

time across the interfaces of space-time slabs, which are hyper-cylindrical partitions of the

space-time domain. And their continuities are enforced weakly in terms of the energy in-
4



ner product which is closely related to the problem itself. Johnson [52] gave convergence

analysis and a priori and a posteriori error estimates for the time-discontinuous Galerkin

formulation applied to a generic scalar, linear and second-order hyperbolic problem. Fully

discontinuous Galerkin space-time methods in both space and time have been proposed for

elastodynamics [57–60] and were also adopted to the Cattaneo–Vernotte–Maxwell equation

in [21].

Khalmanova and Costanzo [53] extend the time-discontinuous formulation of Hulbert

and Hughes to solve the linear thermo-elasto-dynamic problem. While their formulation

led to remarkable convergence and stability properties for both the uncoupled and coupled

case, the result however, showed dependency of accuracy on N (i.e., the number of elements

layers per slab along the time axis) of the space-time mesh. In an earlier work, Costanzo

and Huang [54] presented a one field space-time DG formulation for linear problem and

showed unconditional stability regardless of the structure of the space-time mesh in each

slab. Recently, in [51], we also extended the Hulbert and Hughes space-time formulation to

the coupling of classical elastodynamics with the thermal model due to Green and Naghdi in

an operator-splitting based algorithm. Unlike the Hulbert and Hughes time-discontinuous

method our formulation employs the L2-inner product to weakly enforce continuity across

the interfaces of space-time slabs. This makes it suitable for a natural extension to nonlinear

problems, as the L2-inner product is independent of the problem being solved.

In this article, we present two methods that belong to the family of space-time Galerkin

finite element method for the numerical solution of the nonlinear generalized thermal model

due to the formulation in [34]. The first is an extension of the time-discontinuous Galerkin

method proposed in [51] to the nonlinear generalized thermal model. The other one is a

continuous Galerkin space-time method where the principal unknowns are continuous ev-

erywhere in the space-time domain. Continuities across the interfaces of each space-time

slab are enforced strongly as Dirichlet boundary conditions. The fully discrete nonlinear

algebraic systems resulting from the space-time discretizations are solved using an iterative

Newton-Raphson scheme. Tangent matrices for the Newton scheme are computed exactly

using tools  with an automatic differentiation capability [61]. In comparison to the aSDG
5



method [21], the present time-discontinuous Galerkin (TDG) method is only slab-wise con-

servative whereas the continuous Galerkin (cG) method do not have conservation property.

As a typical DG based method the algorithmic complexity of TDG method can become in-

creasingly higher as the polynomial order increases. This can be circumvented using dynamic

adaptivity keeping the temporal thickness N = 1 as much as possible.

The structure of the paper is as follows. A brief review of the governing equations is

presented in Sec. 2. Important concepts essential for the analysis of the discrete formulations

such as the stability of the continuum model, are also discussed in this section. Basic

notations and the space-time formulations are presented in Sec. 3. The time-discontinuous

and the continuous space-time Galerkin formulations and their stability analysis are also

presented. The convergence properties of the two schemes are compared for the linear case

with an exact solution in Sec. 4; the capability of the time-discontinuous formulation in

resolving fine features of the solution arising from simulations of thermal response of a

rigid body under laser pulses in two spatial dimension is also showcased. Finally, in Sec. 5

concluding remarks are presented.

2. The generalized thermal conductivity problem

In this section, we summarize the generalized model of thermal conduction which was

derived based on the theory of Green and Naghdi in [34]. The nonlinear stability of the

initial-boundary value problem is analyzed using the energy method. The stability analysis

will also serve as the basis for a similar stability proof of the proposed discrete schemes.

2.1. An overview of the model

We consider a system involving a rigid body occupying the bounded domain Ω ⊂ Rd

(d = 1, 2 or 3) with piecewise smooth boundary Γ = ∂Ω subject to a volumetric heat

supply r : Ω × I → R, where I = [0, T ] is the time interval of interest. Let the scalar

field ϑ : Ω × I → R denote the relative temperature with respect to a uniform reference

temperature Θ0 > 0 such that the absolute temperature is given by Θ = ϑ + Θ0 > 0. The
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local balance of energy equation is given by

ε̇ = −div q + r, (1)

where ε is the volumetric internal energy of the system and q the heat flux vector, and the

superposed dot and div indicate the time derivative and the divergence operator, respec-

tively. The generalized theory of thermal conduction is based on the assumption that the

heat flux vector q is not entirely dissipative as in the case of Fourier’s law. Rather it is

composed of two components, the energetic part qe and the Fourier-like dissipative part qd

such that

q = qe + qd.

In addition to this, the generalized theory also introduces a thermodynamic state variable,

the so-called thermal displacement α, which is the primitive of the absolute temperature,

that is

α = α0 +

∫ t

t0

Θ(·, s)ds. (2)

In this work, we assume that the initial thermal displacement α0 is uniform over the spatial

domain. By formally exploiting the argument of the imbalance of entropy (second law of

thermodynamics), the rate of net energy production becomes

ε̇−Θη̇ = Θ−1qe · ∇Θ, (3)

where η is the entropy of the system (measured per unit temperature) and ∇ denotes the

spatial gradient operator. Combining equations (1) and (3), we obtain

Θη̇ = −div q +Θ−1qe · ∇Θ+ r. (4)
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Thermodynamically consistent constitutive equations that represent a wide range of mate-

rials are given by1

η = C ln[Θ/Θ0] + ξ0, (5)

qe = −Θk1∇α, (6)

qd = −k2∇Θ, (7)

where C := ρc is the volumetric heat capacity, ρ the mass density, c the specific heat capacity,

k1 is a positive-definite non-classical conductivity (which accounts for the time and length

scales that are responsible for the second sound effect), and k2 is the positive-semi-definite

heat conductivity tensor as defined in the case of Fourier’s law, the constant ξ0 is the absolute

entropy. Note that the dissipative component qd of the heat flux satisfies the dissipation

condition,

qd · ∇Θ ≤ 0. (8)

Hence equation (4) together with the constitutive relations (5)–(7) and the thermal displacement–

temperature relation (2) leads to the system of partial differential equations governing the

distribution of temperature in space and time, Ω× I, and is summarized as

α̇ = Θ,

Cϑ̇ = −div q +Θ−1qe · ∇Θ+ r,

q = qe + qd, where qe = −Θk1∇α, qd = −k2∇Θ.

(9)

Furthermore, this system is subject to the initial condition for ϑ as

ϑ(x, 0) = ϑ0(x), (x ∈ Ω). (10)

Since we assume that the initial thermal displacement α0 is uniform and the dependence

of the temperature equation (9)2 on α is only through its gradient ∇α, the temperature

1These equations are obtained when the hyperthermoelastic constitutive equations of neo-Hookean-type

are extended to the generalized theory (see the article [34]) in the framework of the theory of Green and

Naghdi [35–39], and specialized to the purely thermal case.
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solution does not depend on the initial thermal displacement. As a consequence of this, in

this work, for the sake of simplicity, we use a homogeneous initial condition for α, that is,

α(x, 0) = 0, (x ∈ Ω).

In addition, the system (9) is also supplemented with the boundary conditions

ϑ = ϑ̄, on Γϑ × I,

q · n = q, on Γq × I,

where Γϑ and Γq are mutually disjoint parts of the boundary Γ and n is a the outward unit

normal to Γ.

2.2. Stability of the generalized model

Here we restrict our attention to the case that the system is solely driven by the initial

condition such that the heat supply is homogeneous, r = 0, and the entire boundary is held

at the reference temperature, that is, the relative temperature ϑ = 0 on Γ × I. To define

the state vector for system (9), we first redefine α by replacing α − Θ0t, t ∈ I, for α such

that equation (9)1 becomes α̇ = ϑ. Thus we define the state vector as X = (α, ϑ). Hence

X ∗ = 0 becomes the equilibrium state for the system (9) at which the functional

V (X ) =

∫
Ω

[
C(ϑ−Θ0 ln[Θ/Θ0])−

1

2Θ
qe · ∇α

]
dΩ, (11)

vanishes. Note that V is positive-definite, that is, V (X ) > 0 for all X except at X ∗ = 0. To

show the system is stable, it then suffices to prove that V̇ ≤ 0 along the flow (or the solution).

To this end, suppose X = (α, ϑ) is the solution satisfying the conditions stipulated above;

then from (11) and the constitutive equation (6) for qe we obtain

d

dt
V (X ) =

∫
Ω

[
Cϑ̇ϑ/Θ−Θ−1qe · ∇α̇

]
dΩ, (12)
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Substitution of the thermal equation (9)2 into (12) leads to

d

dt
V (X ) =

∫
Ω

[
(−div q +Θ−1qe · ∇Θ)ϑ/Θ−Θ−1qe · ∇Θ

]
dΩ, (13)

=

∫
Ω

[
q · ∇Θ(1/Θ− ϑ/Θ2) + (ϑ/Θ2)qe · ∇Θ−Θ−1qe · ∇Θ

]
dΩ (14)

=

∫
Ω

[
(qe · ∇Θ+ qd · ∇Θ)Θ0/Θ

2 − (Θ0/Θ
2)qe · ∇Θ

]
dΩ

=

∫
Ω

(Θ0/Θ
2)qd · ∇ΘdΩ

≤ 0 (15)

Integration by parts along with the homogeneous boundary condition has been effected in

passing from (13) to (14), and the inequality (15) follows from the dissipation condition,

equation (8).

3. Space-time Galerkin methods

Denoting the space-time domain Ω × I by Ω, we partition the space-time domain into

slabs of the form Ωn = Ω× In such that

Ω =
Ñ∪

n=1

Ωn, and In = [tn−1, tn],

where Ñ is the the number of slabs in the partition. Furthermore, the nth space-time slab is

Ωn triangulated into Kn space-time finite elements (which could be entirely unstructured),

where the eth space-time element in the triangulation of Ωn is denoted by Ωe
n. The following

notations are introduced, let ϕ and φ be scalar valued functions defined on the space-time

domain Ω, then
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Γn
φ = Γ× In – the nth slab dirichlet boundary

Γn
q = Γ× In – the nth slab Neumann boundary

ϕ(t±) = lim
h→0
h>0

ϕ(·, t± h) – value earlier/later than t

[[ϕ(t)]] = ϕ(t+)− ϕ(t−) – temporal jump at time t

(
ϕ, φ

)
Ωn

=

∫
Ωn

ϕφ dΩ – space-time integral inner-product

⟨ϕ(·, t), φ(·, t)⟩ =
∫
Ω

ϕ(·, t)φ(·, t) dΩ – spatial integral inner-product

(ϕ, φ)Γn
q
=

∫
Γn
q

ϕφ dΓ – space-time surface integral inner-product

In the remaining part of this section, we present two methods belonging to the family

of space-time Galerkin finite element methods. The first is the time-discontinuous Galerkin

(TDG FE); the second is continuous Galerkin (cG FE).

3.1. Time-discontnuous Galerkin method (TDG FE)

Here, the primary fields (in this case α and ϑ) are allowed to be discontinuous along

any space-time interfaces between slabs. This is intended to give better stability properties,

particularly when the solution involves propagation of steep gradients or even discontinuities.

This is an extension of the time-discontinuous formulation that we employed in [51] for the

generalized linear thermoelasticity to the nonlinear case.

Suppose the problem is already solved on the slab Ωn−1 or, in particular, the solution
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X h(t−n−1) from the left of tn−1 is known. To proceed with the formulation of the TDG FE,

we first define the trial Vh
DG

and weighting Wh
DG

spaces as follows:

Vh
DG

:= {X h = (αh, ϑh) ∈ [C0(Ωn)]
2 : αh|Ωe

n
∈ Pk(Ωe

n), ϑ
h|Ωe

n
∈ P l(Ωe

n), and ϑh = ϑ̄ on Γn
ϑ},

(16)

Wh
DG

:= {X̂
h
= (α̂h, ϑ̂h) ∈ [C0(Ωn)]

2 : α̂h|Ωe
n
∈ Pk(Ωe

n), ϑ̂
h|Ωe

n
∈ P l(Ωe

n), and ϑ̂h = 0 on Γn
ϑ},

(17)

where Pk(Ωn) denotes the set of all polynomials on Ωn of degree at most k. Generally,

there is no restriction on the order of the polynomial spaces for temperature, l, and thermal

displacement, k, interpolation spaces. Note also that there are no constraints placed on the

trial and weighting spaces at the beginning of the space-time slab (Ω × {tn−1}), because

the values X h(t+n−1) are unknown with respect to the current slab Ωn. This represents the

largest possible number of candidates to obtain an approximation that would improve that

of a space-time Bubnov-Galerkin–type approach.

Now, we formally define the TDG FE scheme as follows: find X h ∈ Vh
DG

such that for

each X̂
h
∈ Wh

DG
,

L
DG

(X h, X̂
h
) = ℓ

DG
(X̂

h
), (18)

where the nonlinear functional L
DG

and the right-hand-side ℓ
DG

are given by

L
DG

(X h, X̂
h
) =

(
α̇h −Θh, α̂h

)
Ωn

+ ⟨αh(t+n−1), α̂
h(t+n−1)⟩+

(
Cϑ̇h, ϑ̂h

)
Ωn

−
(
qh, ∇ϑ̂h

)
Ωn
−(

[1/Θh]qh
e · ∇Θh, ϑ̂h

)
Ωn

+ ⟨Cϑh(t+n−1), ϑ̂
h(t+n−1)⟩,

ℓ
DG

(X̂ ) = ⟨αh(t−n−1), α̂
h(t+n−1)⟩+ ⟨Cϑh(t−n−1), ϑ̂

h(t+n−1)⟩+(
r, ϑ̂h

)
Ωn

−
(
qh, ϑ̂h

)
Γn
q
.

Note that Θh, qh, qh
e denote approximations of the absolute temperature, heat flux, and

energetic part of the heat flux, respectively, that are obtained from the finite element inter-

polations αh and ϑh.
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The consistency of the TDG FE scheme can be shown by converting the equation (18)

into an Euler-Lagrange form by using integration by parts: that is,

0 = L
DG

(X h, X̂
h
)− ℓ

DG
(X̂ ), (Residual)

=
(
α̇h −Θh, α̂h

)
Ωn

+
(
Cϑ̇h + div qh − [1/Θh]qh

e · ∇Θh − r, ϑ̂h
)
Ωn

 (Equation of motion)

+ ⟨[[αh(tn−1)]], α̂
h(t+n−1)⟩ (αh–continuity)

+ ⟨C[[ϑh(tn−1)]], ϑ̂
h(t+n−1)⟩. (ϑh–continuity)

Here the jump terms are used to weakly enforce continuity along the interfaces of space-time

slabs, and vanish if the solutions are continuous. Hence, we can observe that a sufficiently

smooth solution X = (α, ϑ) of the strong form (9) satisfies the above Euler-Lagrange form.

The TDG FE scheme renders a nonlinear time-stepping algorithm. A crucial property in

any time-stepping algorithms is stability. It refers to the question as to how errors grow as the

algorithm marches forward in time. For nonlinear algorithms, one way of proving stability

is the so-called energy method, which involves showing existence of a Lyapunov function, a

positive-definite functional that is non-increasing along the numerical solution. In our case,

this means that the numerical solution should also replicate the stability property (13)-(15)

of the strong form of the problem (9) in the discrete sense. This will be discussed in the

following section.

3.2. Stability of the TDG FE scheme

As in the case of the stability analysis (9) of the strong form, here we also assume ho-

mogeneous Dirchlet boundary condition over the entire boundary, and without heat source,

whereby the system is only driven by the initial condition (10). One of the remarkable

features of the TDG FE formulation is that the energy functional (11) for the strong form

is also a Lyapunov function for the discrete TDG FE algorithm (18). To show this, since

V is positive-definite, what remains to prove is that it is non-increasing along the discrete

solution of (18), that is,

V (X h(t−n )) ≤ V (X h(t−n−1)) or V (X h(t+n )) ≤ V (X h(t+n−1)), (19)
13



where X h(t±n−1) and X h(t±n ) are solutions of the TDG FE scheme (18). The statements

(19) should hold for all n = 1, . . . , N . Since both estimates employ similar arguments,

without loss of generality, we will only prove the validity of the first estimate of (19). Let

X h = (αh, ϑh) be the solution of TDG FE scheme (18) in the current slab Ωn. It should

be noted that because of the assumption on the boundary condition, the trial (16) and

weighting (17) spaces are the same, that is, Vh
DG

= Wh
DG

. Now, if we choose the weighting

function X̂
h

to be equal to Πh(div [1/Θhqh
e ], ϑ

h/Θh), from the residual of the TDG FE

formulation (18) we obtain

(
α̇h −Θh, πhdiv [(1/Θh)qe]

)
Ωn

+
(
Cϑ̇h, πh[ϑh/Θh]

)
Ωn

−
(
qe + qd, ∇πh[ϑh/Θh]

)
Ωn

−
(
[1/Θh]qe · ∇Θh, ϑh/Θh

)
Ωn

+ ⟨[[αh(tn−1)]], π
hdiv [(1/Θh(t+n−1))qe(t

+
n−1)]⟩

+ ⟨C[[ϑh(tn−1)]], ϑ
h(t+n−1)/Θ

h(t+n−1)⟩ = 0, (20)

where Πh = (πh, πh) is the L2-projection operator from [L2(Ωn)]
2 onto the finite dimensional

space Wh. Note also that 1/Θhqh
e = −k1∇αh. By definition of the L2-projection operator

and making use of integration by parts along with the homogeneous boundary condition,

equation (20) becomes

−
(
∇α̇h −∇Θh, [1/Θh]qe

)
Ωn

+
(
Cϑ̇h, ϑh/Θh

)
Ωn

−
(
qe + qd, (1/Θ

h − ϑh/[Θh]2)∇Θh
)
Ωn

−
(
(ϑh/[Θh]2)qe, ∇Θh

)
Ωn

+ ⟨[[∇αh(tn−1)]], k1∇αh(t+n−1)⟩

+ ⟨C[[ϑh(tn−1)]], ϑ
h(t+n−1)/Θ

h(t+n−1)⟩ = 0.

By eliminating similar terms with opposite sign and after rearranging the remaining terms,

we obtain that

(
Cϑ̇h, ϑh/Θh

)
Ωn

−
(
∇α̇h, [1/Θh]qe

)
Ωn

−
(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn

+ ⟨[[∇αh(tn−1)]], k1∇αh(t+n−1)⟩+ ⟨C[[ϑh(tn−1)]], ϑ
h(t+n−1)/Θ

h(t+n−1)⟩ = 0. (21)
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In equation (21) the first two terms are the integral of the time derivative of V over the time

interval In. We write V as

V (X ) =

∫
Ω

[U1(ϑ) + U2(∇α)]dΩ, (22)

with U1(ϑ) = C(ϑ−Θ0 ln[Θ/Θ0]),

U2(∇α) = − 1

2Θ
qe · ∇α =

1

2
k1∇α · ∇α,

where it can easily be shown that both U1 and U2 are convex in their respective arguments,

and their derivatives are

U ′
1(ϑ) = Cϑ/Θ, and U ′

2(∇α) = k1∇α.

Hence equation (21) becomes∫ tn

tn−1

d

dt
V (X h) dt−

(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn

+

∫
Ω

U ′
1(ϑ

h(t+n−1))[[ϑ
h(tn−1)]] dΩ +

∫
Ω

U ′
2(∇αh(t+n−1))[[∇αh(tn−1)]] dΩ = 0. (23)

By convexity of U1 and U2 and evaluating the temporal integral, from (23) one obtains

V (X h(t−n ))− V (X h(t+n−1))−
(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn

+

∫
Ω

[U1(ϑ
h(t+n−1))− U1(ϑ

h(t−n−1))] dΩ

+

∫
Ω

[U2(∇αh(t+n−1))− U2(∇αh(t−n−1))] dΩ ≤ 0. (24)

From (22) and (24), it follows that

V (X h(t−n ))− V (X h(t+n−1))−
(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn
+

V (X h(t+n−1))− V (X h(t−n−1)) ≤ 0.

Thus,

V (X h(t−n ))−
(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn

≤ V (X h(t−n−1)). (25)

Therefore, by the dissipation inequality (8), it follows that equation (25) leads to the required

energy estimate; that is,

V (X h(t−n )) ≤ V (X h(t−n−1)).

15



3.3. Continuous Galerkin method (cG FE)

Here the primary fields are assumed to be continuous over the entire space-time domain

Ω. But still the space-time domain is partitioned into slabs as in the case of TDG FE

method, and the algorithm proceeds slab-by-slab in a time-stepping manner. Even though

the lack of jump terms reduces the ability of the cG FE method to resolve high gradients

and discontinuities as much as the TDG FE method the algorithm, as will be shown later,

is still unconditionally stable.

Suppose that the solution X h(tn−1) from the previous slab Ωn−1 at tn−1 is known. We

would like to obtain a scheme for obtaining an approximate solution in the current slab Ωn

with no jump discontinuity at tn−1. We first define the weighting Wh
cG

and the trial Vh
cG

solution spaces as follows by

Vh
cG

:= {X h =(αh, ϑh) ∈ [C0(Ωn)]
2 : αh|Ωe

n
∈ Pk(Ωe

n), ϑ
h|Ωe

n
∈ P l(Ωe

n),

ϑh = ϑ̄ on Γn
ϑ, and X h(t+n−1) = X h(t−n−1) in Ω}, (26)

Wh
cG

:= {X̂
h
=(α̂h, ϑ̂h) ∈ [C0(Ωn)]

2 : α̂h|Ωe
n
∈ Pk(Ωe

n), ϑ̂
h|Ωe

n
∈ P l(Ωe

n),

ϑ̂h = 0 on Γn
ϑ and X h(t+n−1) = 0 in Ω}, (27)

Then the continuous Galerkin method (cG FE) is formulated as: find X h ∈ Vh
cG

such that

for all X̄ h ∈ Wh
cG

L
cG
(X h, X̄ h) = ℓ

cG
(X h), (28)

where

L
cG
(X h, X̄ h) =

(
α̇h −Θh, α̂h

)
Ωn

+
(
Cϑ̇h, ϑ̂h

)
Ωn

−
(
qh, ∇ϑ̂h

)
Ωn

−
(
[1/Θh]qh

e · ∇Θh, ϑ̂h
)
Ωn

ℓ
cG
(X̂ ) =

(
r, ϑ̂h

)
Ωn

−
(
qh, ϑ̂h

)
Γn
q
.

We note that due to the constraints placed on the finite element spaces (26) and (27) at the

lower interface of the current space-time slab Ωn, that is at tn−1, the trial space in the case

of cG FE case is smaller than that of the TDG FE case. Thus, there are more candidate

solutions to choose from for TDG FE than cG FE scheme. As a consequence of this, for
16



the same order of polynomial interpolation, one would expect the TDG FE scheme to be

more accurate than the cG FE method. On the other hand, it is less expensive to solve the

cG FE solution as it is not necessary to recompute the solution at the lower interface of the

current slab.

Remarks

1. Inter-slab interface continuity is enforced strongly through the definition of the finite

element interpolation functions unlike in the TDG FE case where continuity is enforced

weakly using the spatial L2-inner product.

2. Consistency of the cG FE formulation (28) can be easily shown by rewriting it in the

Euler-Lagrange form, which reveals that the discrete formulation is indeed a weak

form of (9) in space-time.

3. The nonlinear stability proof of the scheme (28) is quite similar to that of the TDG

FE case, except that, in this case, there are no jumps and the equation analogous to

(21) is

(
Cϑ̇h, ϑh/Θh

)
Ωn

−
(
∇α̇h, [1/Θh]qe

)
Ωn

−
(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn

= 0,

which can also be written as∫ tn

tn−1

d

dt
V (X h) dt−

(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn

= 0.

Integrating the first term over the time interval In and by using the fact that inter-slab

interface continuities are enforced strongly, we obtain

V (X h(t−n ))− V (X h(t−n−1))−
(
qd, (Θ0/[Θ

h]2)∇Θh
)
Ωn

= 0.

Again by dissipation inequality (8), the required energy estimate (19)1 is obtained.

4. The TDG FE scheme is characterized by the presence of the jump terms which offer

superior stability properties, while in the cG FE case there are no additional stability

mechanisms except through the dissipation condition (8).
17



4. Numerical results

In this section, we consider isotropic materials so that the conductivity tensors take

the form k1 = k11,k2 = k21, where k1 > 0, k2 ≥ 0, and 1 is the identity second-order

tensor. All results in this section correspond to a non-dimensional form of the governing

equations (9) such that the thermal displacement, temperature and heat flux are redefined

in non-dimensional form as

α̃ =
α

τΘ0

, ϑ̃ =
ϑ

Θ0

, q̃ =
τ0Θ0

l0C
q, (29)

where τ0 and l0 are the characteristic time and length scales involved, for which the space

and time coordinates are redefined as

x̃ =
1

l0
x, and t̃ =

t

τ0
. (30)

For clarity, we drop the tildes from the non-dimensional quantities in the remainder of this

section.

4.1. Convergence study

To investigate the convergence of the proposed schemes, we consider the one-spatial

dimension, linearized and non-dimensional form of (9), that is

α̇ = ϑ

ϑ̇ = ∂x[k1∂xα + k2∂xϑ] + r

 in [0, 1]× [0, 1], (31)

where k1, k2, and r are non-dimensional constants according to the scaling in (29) and (30),

and ∂x denotes the partial derivative with respect to x. Moreover, we choose a source term

and appropriate initial and boundary conditions so that the exact solutions for (31) are

α =
1

4
sin(2πx) sin(2πt)

ϑ =
π

2
sin(2πx) cos(2πt).

The corresponding source term r can be easily computed by substituting these solutions

into the the linearized system (31).
18



The energy norm corresponding to the linearized system (31) is thus given by

∥X∥2 =
∫ 1

0

(
k1[∂xα]

2 + ϑ2
)
dx, (32)

where X = (α, ϑ). This norm is used to compute the error of approximations X h = (αh, ϑh)

at the terminal time t = 1.

Though the TDG and cG FE formulation allows for the grid in each space-time slab to

be completely unstructured, for comparison purpose, the results presented in Figures 1 – 3

correspond to computations in which the space-time mesh is composed of slabs with N = 1,

each of which is refined uniformly into elements of unit aspect ratio. In each case, the left

side corresponds to computations with Q1 space-time elements, while those on the right side

corresponds to biquadratic Q2 space-time elements.

It has been noted that the weak enforcement of continuity through the jump terms in

the TDG FE scheme are important for stability as well as accuracy. The TDG scheme pro-

posed by Hulbert and Hughes [55] and Hughes and Hulbert [56] for second-order hyperbolic

problems is stable only if the space-time mesh consists of slabs of single layer, N = 1, [53],

whereas, the similar formulation by Khalmonova and Costanzo [53] for coupled linear ther-

moelasticity exhibits dependence of accuracy on N . In contrast, the result for the TDG FE

scheme as shown in Figure 4 demonstrates that, in addition to the unconditional stability

behavior as proved in Sec. 3.2, irrespective of the mesh structure, its accuracy is independent

of N .

Figure 1 presents the convergence results for the Type I equation (i.e. k1 = 0, or the

classical transient heat conduction problem) as computed by all the two schemes proposed,

with single layered slabs, N = 1. Note that in this case, as k1 = 0, the energy norm coincides

with the L2 norm with respect to the temperature only. As a result, the result shows slightly

better rate of convergence, compared to the same type of approximations for Type II and

III. The results corresponding to Type II and III in Figure 2 & 3 suggest that the order of

TDG FE scheme is at least O(hq), where h is the diameter of the largest element and q is

the highest monomial degree appearing in the piece-wise polynomial finite element space.

Figure 4 shows convergence results of both TDG FE (left) and cG FE (right) schemes for
19
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Figure 1: Convergence results for the Type I problem in 1D in which k1 = 0, k2 = 1. The space-time

domains were uniformly refined into rectangular elements with aspect ratio one, or h = ∆x = ∆t, and each

slab consists of single layer (N = 1). Space-time elements of type Q1 (left) and Q2 (right) were used. The

label ‘Error’ represents the energy norm (32) of the error.

101 102 103
10-5

10-4

10-3

10-2

10-1

100

0.99
1

2

1

101 102 103
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2
1

4.09

1

Figure 2: Convergence results for the Type II problem (the non-classical theory of Green and Naghdi)

characterized by the absence of dissipation in 1D in which k1 = 1, k2 = 0. The space-time domains were

uniformly refined into rectangular elements of bilinear-type or Q1 (left) and biquadratic-type Q2 (right)

with aspect ratio one, or h = ∆x = ∆t. The label ‘Error’ represents the energy norm (32) of the error.
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Type III problem for which each curve corresponds to uniformly refined slabs of thickness of

2, 4, 8, 16, 32 elements with both Q1 and Q2 approximations. The fact that the curves (on

the left) corresponding to Q1 and Q2 approximations are observed to overlap one another

suggests that, in TDG FE approximations, neither the accuracy nor the convergence rate

depend on N . The implication of this remarkable property of TDG FE scheme is that it is

suitable for local space-time mesh adaptation without losing accuracy when the mesh uses

variable temporal thickness, N , on various regions of a space-time slab. Hence, one can get

an efficient TDG FE scheme by refining only regions of the space-time slab that need to be

refined, leaving the rest with only one element layer, N = 1.

On the other hand, for each N , the result in Figure 4 (right) corresponding to cG FE

(Q2) shows that the error deteriorates towards the beginning the refinement levels as the

computation involves stepping over a multiple number of slabs, and the convergences tend

second-order asymptotically in both the Q1 and Q2. This dependance on the number of

slabs suggests two things: 1) stability of the cG FE scheme becomes less as the order of the

space-time finite element is higher, and 2) the accuracy of cG FE is restricted to only to

second-order even with higher-order (Q2) finite elements.

4.2. Two-dimensional laser-pulsing in a rigid body

Non-Fourier type thermal transport occurs rarely and previously limited to a handful of

materials such as super-fluids and pure crystals at low temperatures. In recent experimental

study [62] second-sound phenomenon has been directly observed in graphite at tempera-

tures above 100 kelvins. In another recent experimental work [63] a non-Fourier effect that

involve thermal energy propagation without energy dissipation has been achieved at room

temperature. This work made use of a device referred to as “thermal inductor” that can

drive temperature differences between two bodies to change signs by imposing inertia on the

heat flowing between them.

Here we consider the propagation of thermal waves induced by a pulsing laser heat source

in a rigid body. This set of problems has been investigated by several other researchers, for

instance in [1, 21] it was analyzed using the linear hyperbolic heat conduction model of
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Figure 3: Convergence results for the Type III problem (the generalized thermal conduction equation) in

1D in which k1 = 0, k2 = 1. The space-time domains were uniformly refined into rectangular elements of

bilinear-type Q1 (right) and biquadratic-type Q2 (left) with unit aspect ratio, or h = ∆x = ∆t. The label

‘Error’ represents the energy norm (32) of the error at the terminal time t = 1.

Cattaneo-Vernotte-Maxwell.

All the results presented in this section correspond to the non-dimensional form of the

equations in (9) according to the scaling (29) and (30).

The nonlinearity of the governing partial differential equations lies in the constitutive

relation for the energetic heat flux qe equation (6). This represents the typical nonlinear

behaviour that is present in the well-known inviscid Burger’s equation, in which the charac-

teristic speed is proportional to the value of the temperature ϑ. This is equivalent to stating

that a point at a higher temperature the rate is faster than those at lower temperatures.

This characteristic of the propagation of thermal waves is manifested by the sharpness of the

wave front as it travels in a medium. Here we emphasize that the nonlinearity present in the

current model is not a mathematical artifact, rather it is naturally present as a consequence

of the laws of thermodynamics.
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Figure 4: Convergence results for the Type III problem (the generalized equation) in 1D in which k1 = 1,

k2 = 0.2. The band of curves labelled ‘Q1’ (resp. ‘Q2’) correspond to calculations with space-time elements

of type Q1 (resp. Q2), and element layers per slabs, N , used were 2, 4, 8, 16, 32. Each slab was then uniformly

refined into rectangular space-time elements of unit aspect ratio. The vertical axis represents the energy

norm of the error at the terminal time t = 1, while the horizontal axis denotes the reciprocal of the element

diameters 1/h.

4.2.1. Rectangular channel problem

The first problem considered here involves two-dimensional propagation of nonlinear

thermal waves generated by a pulsing laser heat source in a regular domain. The rectan-

gular channel domain, as depicted in Figure 5(a), occupies the planar region Ω = [0, 2] ×

[−0.5, 0.5]. The laser pulse incident on the left of the domain is represented as a Gaussian-

type heat source given by

Q(x, y, t) =
1

2Dtp
exp

[
−

(
1 + x

D

)2

−
(

y

∆r

)2

−
(

t

tp

)2]
, (33)

where D is the penetration depth in the horizontal direction, ∆r is the width of the pulse

(the radius in the vertical direction), and tp is the characteristic duration of the laser pulse.

In the analysis, the values of the parameters used are D = 0.05, ∆r = 0.10, and tp = 0.10.

The results presented here consider two models of thermal transmission. The first, type

II thermal conduction, corresponds to k1 = 1 and k2 = 0, while the other, type III thermal
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Figure 5: Pulsing laser study: schematic of two-dimensional domains of a rectangular (a) and a converging-

diverging (b) channel.
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Figure 6: Spatial, (a) and (c), and space-time, (b) and (d), meshes of the computational domains of rect-

angular, (a) and (b), and converging-diverging, (c) and (d), channels. Note that the actual spatial mesh

density used in the simulation was higher than displayed here, and the temporal duration ∆t is magnified

for viewing.
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conduction mode, corresponds to k1 = 0.5 and k2 = 0.2. A situation is chosen in which the

system is driven by the pulsing laser heat source only, that is, the initial conditions with

respect to α and ϑ are chosen to be homogeneous. Moreover, the boundaries of the channel

in each case are assumed to be insulated throughout the simulation.

We exploit the symmetry of the problem by taking as the analysis domain the upper-half

of Ω, that is, [0, 2]× [0, 0.5]. For the simulation, we used 100× 50 quadrilateral elements

spatially as shown in Figure 6(a). In the temporal direction each space-time slab consists of

one element of thickness ∆t = 0.01, resulting in 100 × 50 trilinear space-time elements, in

which the space-time mesh shown in Figure 6(b) are used at each time step.

Figure 7 shows a time sequence of snapshots of the evolution of temperature distribu-

tion, according to type II (left) and type III (right) models of heat conduction, within the

rectangular channel domain Ω. The numerical solutions obtained from the simulations using

the TDG FE scheme are reflected about the x-axis in the visualization to give the complete

problem domain. At t = 0.10 it is shown that the Gaussian-type laser pulse generates a

thermal distribution whose shape reflects its source with a somewhat sharper front. The

wave reaches the boundary at t = 0.50 and is reflected back into the channel. At t = 1.00

the reflected thermal waves are seen to interact nonlinearly, resulting in a nearly uniform

temperature distribution in the region between their peaks, while the non-reflected part of

the wave is at about halfway into the channel. Finally, at t = 2.00 the wave reaches the

other end of the channel and reflects backwards. The other important nonlinear feature of

the thermal wave is demonstrated through its appearance. As the wave propagates forward

its front gets sharper and it also appears to be extended from behind, the well-known non-

linear feature referred to as rarefaction. On the other hand the plots to the right of Figure 7

show the thermal energy transmission in the type III model. It is shown in these plots that

the wave mechanism of thermal energy still exists in this case with more attenuation.

Figure 8(a) presents the temperature profile along the mid-line y = 0 at time t = 0.6.

The temperature curve corresponding to the classical theory, type I, is superimposed to

serve as a reference for the non-classical models. It is noted that the peaks of both curves

corresponding to type II and III have been shifted to the right compared to the one with
25
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Figure 7: Temperature evolution, according to type II (left column) and type III (right column) non-classical

heat conduction, in the rectangular channel domain heated by a Gaussian-type laser pulse
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Figure 8: Temperature profiles according to the various heat conduction models in the rectangular channel

domain (a) across the mid-horizontal axis y = 0 at time t = 0.6, and (b) at the point A(0.5, 0) over the

duration t ∈ [0, 2]

type I. This is an indication that both type II and III support wave propagation of thermal

energy. We also notice that the peak of the type II curve is accompanied by a sharp front but

this is not observed in the case of type III, for which case the dissipation is higher and the

profile appears to be smoother. Apart from the small over- and under-shoot at the foot of

the wave peak, the TDG FE scheme captures the sharp wavefront well. It generally resolves

a number of fine scale solution features which are particularly important in the nonlinear

dynamics of thermal waves. Figure 8(b) shows the temperature profile of a point in the

channel domain at (0.5, 0) over the whole duration of the simulation. In case of type II, it

is clearly seen that the thermal disturbances reach the point at about t = 0.8. Later, the

thermal waves which were reflected by the boundary reach the point at about t = 1.3. In the

case of type I, it is clearly shown that the temperature increases almost immediately after the

laser pulse is applied, which demonstrates the fact that Fourier’s or type I heat conduction

permits an instantaneous transmission of thermal energy. The temperature profile of type

III is characterized by its dissipative feature and wave mechanism of transmission of thermal

energy. Unlike the case of type I, the temperature rise does not happen immediately after

the thermal disturbance that has been induced in the form of the pulsing laser heat source.
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4.3. Converging-diverging channel problem

The objective of this problem is to demonstrate the ability of the TDG FE method to

model and capture complex solution features of heat conduction problems involving thermal

wave propagation through a more complicated region. As shown in Figure 5(b), the domain

consists of a uniform inlet followed by a converging-diverging region, and then a uniform

outlet. This problem has also been investigated in [21] with the linear hyperbolic heat

conduction model of Cattaneo-Vernotte-Maxwell. A pulsing laser modelled as a Gaussian-

type heat source Q given by equation (33) is applied to the left of the channel domain.

The pulse is of D = 0.05 penetration depth, ∆r = 0.10 width, and tp = 0.10 characteristic

duration.

Two cases are considered: the first, type II, corresponds to k1 = 1 and k2 = 0, and the

second, type III, corresponds to k1 = 0.5, and k2 = 0.2. Homogeneous initial conditions

with respect to α and ϑ are considered, and the boundaries of the domain are insulated

throughout the simulation.

The problem is symmetrical with respect to the x-axis, and only the upper-half of the

domain is analyzed. An optimal spatial mesh, as shown in Figure 6(c), with each element

having aspect ratio as close to one as possible is considered, and consists of 115× 50 quadri-

lateral elements. In the temporal direction each space-time slab is of single layer, N = 1,

with duration ∆t = 0.01. In total 115× 50 trilinear space-time elements were used for each

space-time slab. In the visualization, the numerical solution obtained from the simulations

using the fully-time-discontinuous Galerkin method are reflected about the x-axis to give

the complete problem domain. The images shown in Figure 9 are 3D scatter plots such that

for each node within the domain a point is shown with its color and height corresponding

to the temperature at that point.
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Figure 9 shows the temporal sequence of the evolution of temperature according to the

nonlinear heat conduction models. The plots at the right side of Figure 9 show the evolution

of temperature according to the type II model. The plot at t = 0.1 shows the early stages

of the temperature distribution reflecting the Gaussian-type thermal pulse with a sharper

front. At t = 0.5 the wave is about to enter the converging region, while some boundary

interaction patterns are also evident. As the wave passes through the compression region, it

is expected that the amplitude of the waves will increase. This results in a layered thermal

distribution as shown at t = 2, created by the waves reflected by the boundaries. This

pattern is clearly different from the one obtained for the regular channel domain shown in

Figure 7. On the other hand, the thermal distribution patterns according to the type III

model do not seem to be affected by the complexity of the geometry, and are similar to those

obtained for the regular channel domain.

5. Conclusion and discussion

In this paper, we have presented an overview the generalized thermal conduction model

and showed its nonlinear stability which is embodied by its thermodynamic consistency.

Two numerical methods based on the framework of space-time Galerkin methods for the

numerical implementation of the generalized model have been formulated and discussed.

The numerical stability of the TDG and cG FE schemes have been proved using the energy

method which imitates the dissipative property of the continuous model. Numerically we

have demonstrated that the TDG FE has better stability and accuracy features. The nu-

merical result has also indicated that the accuracy of the TDG scheme does not depend on

N . Moreover, the numerical simulation of the thermal response of a rigid material under

short pulsed laser heating has been modeled using the TDG FE method. These simulations

have shown that performance and capability of the TDG FE scheme in representing fine

solution features.
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Figure 9: Temperature evolution, according to type II (Left) and type III (right) theory of non-classical

theory of nonlinear heat conduction, in the converging-diverging channel domain heated by a Gaussian-type

laser pulse
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