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There remains a pressing need for biomarkers that can predict who will progress to

active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium.

By analyzing cohorts of household contacts of TB index cases (HHCs) and a

stringent non-human primate (NHP) challenge model, we evaluated whether integration

of blood transcriptional profiling with serum metabolomic profiling can provide new

understanding of disease processes and enable improved prediction of TB progression.

Compared to either alone, the combined application of pre-existing transcriptome- and

metabolome-based signatures more accurately predicted TB progression in the HHC

cohorts and more accurately predicted disease severity in the NHPs. Pathway and

data-driven correlation analyses of the integrated transcriptional and metabolomic

datasets further identified novel immunometabolomic signatures significantly associated

with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and

tRNA acylation networks. These results demonstrate the power of multi-omics analysis

to provide new insights into complex disease processes.

Keywords: rhesus macaque, household contact, biomarker, transcriptomics, metabolomics, tuberculosis,

inflammation, host-pathogen interaction

INTRODUCTION

Tuberculosis (TB) is an infectious disease caused by the bacterial pathogen Mycobacterium
tuberculosis (M. tb), which is spread via aerosolized droplets that originate from the expectorations
of diseased individuals. In 2017, it was estimated that 10 million people fell ill with TB and 1.6
million died from the disease. Overall, about 10% of individuals latently infected with M.tb will
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progress to active disease at some point in their lives (1).
However, the risk of progression is higher for certain groups,
including HIV+ individuals, children (2–4), and those with
metabolic and nutritional conditions such as diabetes (5, 6) and
Vitamin A deficiency (7). Progression is also more frequent
immediately post-contact with a TB patient: sharing a household
with an active TB case is associated with elevated risk of exposure
to M.tb and subsequent development of active disease (8–12).
Major obstacles to fighting TB are the lack of effective TB
diagnostics and the extremely large number of latently infected
individuals, estimated at 23% of the world’s population (13). Due
to the impracticality of effectively treating all latently infected
individuals and the accompanying possible side effects of such
treatments, an effectivemethod for identifying individuals at high
risk of progression to active TB disease is highly desirable. Since
M. tb is spread by individuals with active TB, early identification
and treatment of high-risk individuals could break the chain of
transmission and facilitate control of the TB epidemic.

A deeper understanding of immune dysregulation that leads
to active TB disease also has the potential to point the way toward
novel interventions to prevent progression. Blood transcriptional
profiles offer the advantage of being easily monitored and
strongly indicative of immune perturbations driven by TB
disease. Previous studies have identified transcriptional
signatures in peripheral blood that discriminate active TB from
latent TB (14–23). In addition to transcriptional approaches,
the development of sensitive metabolic profiling technologies
has allowed investigation of relationships between specific
metabolites and immune functions (24). Metabolomic profiling
can detect non-transcriptional changes in cellular activity as well
as metabolites released into the plasma from local tissue sites.
Metabolomics has been used to develop specific signatures of TB
disease which implicated inflammatory and hypoxic metabolic
pathways (25, 26). Recently, integration of transcriptomic and
metabolomic measurements in healthy individuals was shown
to reveal systematic relationships between serum metabolite
and blood transcript levels in various signaling, transport, and
metabolic processes (27). By taking a similar approach within
the context of TB, immunometabolic processes that are altered
during TB progression may be revealed.

This study uses RNAseq and metabolomic profiling of
household contacts of TB index cases (HHC) samples that were
collected as part of the Bill and Melinda Gates Grand Challenges
6–74 program (GC6–74). These cohorts have previously been
used to successfully validate a transcriptional signature of TB risk
(28). Furthermore, RNAseq (29), metabolomic profiling (30), and
c-miRNA (31) analyses of these cohorts identified and validated
novel transcriptional and metabolomic signatures of risk for TB.
We hypothesized that the ability to predict and understand the
processes underlying TB progression after exposure to TB will
be improved by integrating the transcriptional and metabolomic
profiles for the GC6–74 HHC cohorts. We demonstrate
this improvement through the realization of increased
prediction accuracy when applying existing transcriptional
and metabolic signatures of TB risk and disease and through the
de-novo identification of TB progression-associated functional
immunometabolomic pathway elements. Furthermore, using

whole blood RNA and plasma metabolomic profiles measured
28 days after challenge, we independently validate the multi-
omic signatures by applying them to predict the spectrum of
TB-associated disease (measured at necropsy) observed in rhesus
macaques (RMs) that had been vaccinated with the TB vaccine
candidate RhCMV/MTB, named according to its design as
rhesus cytomegalovirus vector (RhCMV) encoding M.tb antigen
repeats. Partial protection has been observed after vaccination
with RhCMV/MTB, allowing evaluation of correlates of
TB risk (32).

RESULTS

Multi-Omics Analysis Strategy to Identify
and Validate Immunometabolic Signatures
for Risk of Progression to
Active Tuberculosis
By employing a multi-step analytical strategy (Figure S1), we
tested whether integration of blood transcriptional profiling with
serum metabolomic profiling can provide new understanding
of disease processes and enable improved prediction of TB
progression. As detailed below, this analysis involved combined
testing of a pre-existing transcriptional TB risk signature (28) and
ametabolic TB disease signature (25) on the GC6-74HHC cohort
(28) and a stringent non-human primate (NHP) TB challenge
model (32), followed by direct integrated analysis of GC6-74
RNAseq (29) and metabolomics (30).

Household Contact Study Design,
Participant Recruitment, and
Sample Processing
The GC6-74 cohort study design has been previously described
(28). GC6-74 comprised HIV-negative household contacts of
active TB cases that were recruited from four African study sites,
in South Africa (Stellenbosch University/SUN), The Gambia
(Medical Research Council Unit The Gambia/MRC), Uganda
(Makerere University/MAK), and Ethiopia (Armauer Hansen
Research Institute/AHRI). Whole blood samples were taken
from study participants at enrollment of HHCs (BL: which was
within 2 months of the exposure event). Where feasible, further
whole blood samples were taken 6 months post-enrollment (M6)
and 18 months post enrollment (M18), provided the individual
remained free of active TB.

Study participants that developed microbiologically
confirmed active TB between up to 2 years after HHC were
termed TB “progressors” and participants who remained TB free
after HHC were termed “controls.” Progressors that developed
TB within 3 months of HHC were excluded from further
analysis as possible co-incident cases. Controls were matched
to progressors by age, sex, study site, and year of enrollment
(Table 1). Mass-spectrometry based metabolomic profiling of
collected blood-derived plasma (The Gambia, Ethiopia) and
serum (South Africa, Uganda) along with RNA sequencing
(RNAseq) of whole blood total RNA was performed for available
progressor and control samples. Progressor and control samples
for which both RNAseq and metabolomic profiling were
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TABLE 1 | Sample Counts by cohort, TB progression status, and sample type.

RNAseq Metabolomics Shared RNAseq and

Metabolomics

South Africa

(SUN)

Progressor 43 81 40

Control 153 255 134

The Gambia

(MRC)

Progressor 39 61 36

Control 130 190 121

Ethiopia (AHRI) Progressor 16 20 15

Control 32 59 19

Uganda (MAK) Progressor 1 19 1

Control 2 66 0

Cohorts are labeled by the short form of their recruitment institution: SUN (Stellenbosch

University, South Africa), MRC (Medical Research Council, the Gambia), AHRI (Armaeur

Hanser Research Institute, Ethiopia), and MAK (Makerere University, Uganda).

successfully completed were analyzed in the present study.
The total number of metabolomic and RNAseq transcriptional
profiles available for each site is shown in Table 1. This shared
dataset was dominated by South African and Gambian donors,
with a smaller number of samples from Ethiopian donors, and a
single Ugandan control sample.

RhCMV-Vaccinated Rhesus-Macaque
Study Design and Sample Processing
Transcriptional and metabolomic profiles were obtained from
rhesus macaques (RMs) vaccinated with cytomegalovirus-
vectors encoding M.tb antigen inserts (RhCMV/TB) prior to
M.tb challenge (32). These samples were obtained from two
independent RM challenge groups, comprising a total of 59
RMs. Blood was drawn 4 weeks post-challenge with RNAseq
and metabolomic profiling being performed as for the human
samples. Disease outcome was measured as the harmonized
disease score at necropsy, performed either upon clinical
diagnosis of active TB (10–20 weeks post challenge), or in a
randomized manner 16–30 weeks post challenge in the absence
of a positive TB diagnosis. The harmonized disease score was
identical to that reported in the original publication, representing
a scaled summary of lung pathology and TB culture growth from
tissues collected at necropsy (32).

Combining Existing Transcriptomic and
Metabolomic Signatures Significantly
Improves Blind Prediction of TB
Progression in GC6-74 HHCs
As a first step to evaluate whether combined transcriptional
and metabolomic analysis of the HHC cohort would yield more
accurate prediction of TB progression, we used transcriptional
and metabolomic signatures developed from independent study
cohorts. This approach allows the use of all GC6-74 samples
as an independent test set, increasing statistical power. For
the transcriptional signature, we employed the Adolescent

Cohort Study Correlate of Risk (ACS-CoR). This previously-
described signature of risk of TB progression is comprised of
63 splice junctions from 16 genes and was developed from
whole blood RNAseq analysis of a cohort of latently-infected
adolescents from a TB-endemic region of South Africa (28),
[GEO: GSE94438]. For the metabolomic signature, we re-derived
a 25-metabolite diagnostic signature, termed Metabolomics
Active Disease Signature (MetabAD, Table S1). The signature
was trained on data from a published dataset of metabolite
profiles measured in the serum of South African adults and
adolescents with active TB, latent infection, and healthy controls
(25), with metabolites not also detected in all three GC6-74 sites
being removed before model fitting.

We computed the ACS-CoR and MetabAD signature
scores for the GC6-74 samples for which both RNAseq and
metabolomics measurements were available (Table 1). As
previously-reported (28), ACS CoR significantly discriminated
TB progressors from controls amongst GC6-74 HHCs [ROC
AUC = 0.71 (95% CI:0.64–0.78)]. Although derived from active
disease datasets, the diagnostic MetabAD also significantly
discriminated GC6-74 HHC progressors from controls
[ROC AUC = 0.68 (95% CI 0.61–0.74); Figure 1A]. Binary
classification of GC6-74 samples by both signatures using
optimal discrimination thresholds indicated that, of 366
samples, 177 were correctly classified by both signatures,
80/336 samples were correctly classified by ACS CoR but
incorrectly by MetabAD, and 50 were correctly classified by
MetabAD but incorrectly classified by ACS CoR (Table S2).
Despite these differences, the scores for the ACS-CoR and
MetabAD signatures were significantly correlated, albeit weakly
(Spearman’s ρ = 0.30). As shown in Figure 1B, some TB
progressor samples had high MetabAD scores and low ACS
CoR scores, and vice-versa. Both signatures produce prediction
scores in the range [0, 1], therefore scores from metabolomics
and transcriptomic signatures lie on the same theoretical scale.
To formally assess the prediction improvements attainable by
applying the two signatures together, we computed a combined
transcriptomics + metabolomics signature score for each
sample by adding the two individual scores together. This
sum represents a parameter-free combined signature score
that did not require the fitting of an additional model to
the data. This combined additive signature showed an AUC
of 0.75 (0.69–0.81) (Figure 1A), a significant improvement
over either signature alone (ACS-CoR χ

2 p = 0.0006; or
MetabAD χ

2 p = 7× 1 0−8) for all samples. The greatest
prediction performance improvement was observed on samples
within 6 months of TB diagnosis, with the combined model
achieving ROC AUC of 0.8 (0.7–0.9) compared to ROC AUC
of 0.7 (0.58–0.82) and 0.73 (0.58–0.89) for the individual
MetabAD and ACS CoR models, respectively (Figure S2A).
The combined signature also showed improved predictive
performance vs. both ACS CoR and MetabAD independently
for all three study sites (South Africa, The Gambia, Ethiopia,
Figures S2B–D).

Further validation of this result was performed using
transcriptional and metabolomic profiles measured 28 days
post M.tb challenge in RMs from the RhCMV/TB vaccine
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FIGURE 1 | Performance of a combined transcriptomic and metabolomic signature of TB progression. (A) ROC curves for the ACS CoR transcriptomic signature

alone, the MetabAD metabolomic signature alone, and the sum of ACS CoR + MetabAD. Legend shows signature AUCs and bootstrapped 95% confidence intervals

around the AUC in parentheses. (B) Scatter plot of ACS CoR scores (x-axis) vs. MetabAD scores (y-axis). Progressor samples are shown as red squares, and Control

samples are shown as blue triangles, with signature correlation indicated in the upper left (Spearman’s ρ). The dashed black line indicates the linear fit of MetabAD vs.

ACS CoR. (C) Scatter plots of individual and combined ACS CoR and MetabAD signature scores vs. harmonized disease score in two RhCMV-vaccinated rhesus

macaque studies after M.tb challenge. Poisson regression was used to determine the relationship between signature score, measured 28 days post-challenge and

harmonized disease score at time of necropsy. Solid lines represent Poisson regression fits to the harmonized disease score for MetabAD, ACS CoR and ACS CoR +

MetabAD, respectively and p-values shown in the top left of each plot indicate significance of association between signature score and harmonized disease score.

study (32). This was performed by evaluating the association
between the ACS CoR and MetabAD signature scores and the
RM outcome harmonized disease score. As the harmonized
disease score is a strictly positive number derived from count-
based measures (i.e., necropsy score and number of positive
necropsy cultures), Poisson modeling was used to evaluate the
association of signature scores with harmonized disease scores.
Figure 1C illustrates the prospective association of ACS-CoR,
MetabAD and the sum of ACS-CoR + MetabAD with the
harmonized disease score. The combination of ACS-CoR with
MetabAD shows a significantly stronger association with disease

outcome (p = 4.9 × 10−8, Kendall’s τ = 0.5) than either ACS-

CoR (p = 6.2 × 10−6, τ = 0.34) or MetabAD (p = 0.0022,
τ = 0.31) alone.

Altogether, these results demonstrate that the pre-defined

transcriptomic and metabolomic signatures each capture
complementary TB-related biological variation that is not
present in the other signature. Combining them yields a
significantly improved signature of risk for TB that also
prospectively captures the spectrum of post-challenge disease
severity in RhCMV/MTB-vaccinated RM.

The Transcriptome and Metabolome
Provide Complementary Information on
TB Progression
Given that the specific case of ACS-CoR andMetabAD signatures
demonstrated the benefit of combining transcriptomic and
metabolomic measurements for predicting TB progression, we
sought to more globally quantify the benefit of combining data
from transcriptional and metabolomic platforms. Specifically, we
determined whether combining an individual transcript with an
individual metabolite more frequently resulted in a significant
improvement in prediction performance than combining two
transcripts or two metabolites. After performing an initial
filtering step to remove transcripts and metabolites lacking any
univariate association with TB progression (t-test p > 0.05),
pairwise logistic regression models fitting TB progression as
a function of all possible transcript-transcript (t-t), metabolite-
metabolite (m-m), and transcript-metabolite (t-m) pairs from
the remaining 5,892 transcripts and 195 metabolites were
constructed. Each pairwise model was tested for significant
complementarity between the two features, which was defined
as a significant improvement (χ2 p < 0.05) for the pair
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TABLE 2 | Proportion of transcript-metabolite, transcript-transcript, and

metabolite-metabolite pairs that show significant complementarity in prediction of

TB progression.

No significant

improvement over either

element alone

Significant improvement

over both individual

elements alone

Transcript

(n = 5,892)—

Metabolite (n = 195)

(t-m) pairings

36% 64%

Metabolite—Metabolite

(m-m) pairings

(n = 195 × 195)

58% 42%

Transcript—Transcript

(t-t) pairings

(n = 5,892 × 5,892)

82% 18%

Bold values serve to highlight the most important metabolomic + transcriptomics row.

model compared to univariate logistic regression models for
either individual element alone. All resulting (t-t), (t-m),
and (m-m) pairs that exhibited complementarity between the
features are listed in Table S3. While the majority (64%) of
(t-m) pairings exhibited complementarity, this was observed
for only a minority of (t-t) pairs (18%) and (m-m) pairs
(42%) (Table 2). This result indicates that, in a general sense,
transcriptional and metabolomic measurements provide non-
redundant information that is relevant for predicting risk of
TB progression.

Correlations Between Transcripts and
Metabolites Reveal Biological Networks
Involved in TB Progression
We sought to explore biological relationships between transcript
and metabolite abundances by comprehensively evaluating rank
correlations between all detectable transcripts (n = 15,320)
and metabolites (n = 830). A total of 11,851 statistically
significant correlations were identified (FDR < 0.05). We
validated these significant (t-m) correlations by testing them on
an independent set of transcriptional and metabolomic profiles
measured in healthy elderly German adults from the KORA
F4 cohort (27). Despite demographic differences between the
GC6-74 and KORA F4 cohorts, (t-m) correlations between
the studies were significantly concordant (p = 2.61 × 10−88).
Furthermore, of 1,109 significant correlations identified in
KORA F4, 181 were also significant in GC6-74 (FDR= 0.05), and
correlation coefficients (Spearman’s ρ) for the significant KORA
F4 transcript-metabolite pairs were highly correlated between the
studies (ρ = 0.59, p < 2 × 10−16) (Figures S3, S4). Thus, robust
correlations between the abundance of particular transcripts in
whole blood and particular metabolites in serum/plasma were
consistently observed in two very different human cohorts,
suggesting that these transcripts and metabolites are functionally
linked. We next identified the subset of (t-m) pairs that were
significantly correlated in both GC6-74 and KORA F4 and that
were significantly impacted by TB progression (Figure 2A). The

resulting data-driven immunometabolic network was dominated
by a core of hub genes connected to multiple metabolites. Three
hub genes are significantly associated with TB progression: the
mitochondrial fatty-acid metabolism genes CPT1A, SLC25A20,
and PDK4. Correlated with these genes are fatty acid metabolites
and related molecules such as carnitines, some of which are
also associated with TB progression. In order to estimate the
potential of the fatty-acid metabolism network for predicting
TB progression, logistic regression models were fitted as above
for each of the (t-m) pairs in this network. The best fit
pair model was SLC25A20:eicosenoate (20:1n9 or 11), with
an AUC of 0.66 (0.60–0.72) (Figures 2B,D). Another data-
driven immunometabolic subnetwork was centered around a
correlation between cortisol and immune signaling genes such
as FKBP-5, CXCR4, CEBPD, DDIT4, and SOCS1. This small
subnetwork exhibits strong potential for predicting TB with an
AUC of 0.77 (0.71–0.82) (Figures 2C,D).

Joint Pathway Analysis of Transcripts and
Metabolites Reveals Canonical
Biochemical Pathways Altered in
TB Progression
To complement the data-driven transcriptional/metabolic
discovery analysis, we determined whether a canonical
pathway knowledge-driven integration of transcriptional and
metabolomic profiles would reveal additional immunometabolic
TB risk signatures. Metabolites (n = 195) and transcripts
(n= 5,892) previously selected for global (t-m) complementarity
analysis (Table 2) were separately tested for over-representation
in canonical metabolic pathways defined in the Kyoto
Encyclopedia of Genes and Genomes (KEGG), (33), and
joint (t-m) enrichment p-values were then calculated using
Fisher’s method (34). The analysis identified 5 significantly
jointly enriched pathways (Table 3, Table S4) that were driven
by a total of 142 TB-progression associated transcripts and
61 TB progression-associated metabolites (Table S5). The most
strongly jointly enriched pathway was Lysosome (Figure S5A),
driven by significant transcriptional up-regulation of lysosomal
hydrolases and membrane proteins and the metabolite mannose
in TB progressors. In particular, a transcript/metabolite pair
combining the lysosomal membrane transporter NPC2 with
mannose was a strong predictor of TB progression [ROC AUC:
0.72 (0.66–0.78), Figures 3A,F, Figure S5A]. The Aminoacyl-
tRNA biosynthesis (AA-tRNA, Figures 3B,F, Figure S5B) and
protein digestion and absorption (Figures 3C,F, Figure S5C)
pathways were also strongly jointly enriched, driven by
significant TB progression-associated down-regulation of
multiple free serum amino-acids. In particular, the combination
of arginine with WARS (tryptophanyl-tRNA synthetase) was the
strongest complementary TB-associated pairing in the AA-tRNA
pathway [ROC AUC: 0.7 (0.64–0.77); Figures 3B,F], and the
combination of alanine with SLC9A3 [ROC AUC: 0.71 (0.65–
0.77); Figures 3C,F] was the most predictive (t-m) pair for the
protein digestion pathway. The glutathione pathway (Figure 3D,
Figure S5D), relating to the production of the antioxidant
glutathione and other gamma-glutamyl amino-acids, and
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FIGURE 2 | TB-related biological networks inferred from correlations in GC6-74. (A) Network plot of selected transcript/metabolite pairs previously identified as

correlated in KORA F4 that are also significantly correlated in GC6-74 samples. Transcript nodes are shown as diamonds, metabolite nodes as circles, with significant

correlations indicated by edges linking transcripts and metabolites. Positive correlations between metabolites and transcripts are shown as green edges and negative

correlations as red. Darker shades indicate stronger correlations (legend at center right). Transcripts and metabolites that showed significant association with TB

progression are shaded in purple, with unassociated nodes shaded gray. Darker shades indicate more significant association, according to legend in bottom left.

(B,C) Scatter plots of the levels of the optimal fatty-acid (SLC25A20/eicosenoate) and cortisol (SOCS1/Cortisol) transcript (y-axis)/ metabolite (x-axis) pairs in all

GC6-74 samples. Progressor samples are shown as red squares, and control samples are shown as blue triangles. The optimal logistic regression classification

boundary for each pair is shown as a black line, and text labels “Predicted Progressor” and “Predicted Control” indicate logistic regression binary predictions either

side of the classification boundary. (D) ROCs for the fatty-acid and cortisol logistic regression pair models shown in (B,C) predicting all GC6-74 samples. AUCs for

each model are shown in the legend, with 95% CIs in parentheses.

the sphingolipid pathway (Figure 3E, Figure S5E) were also
implicated by the joint metabolomics (t-m) enrichment analysis.
The combination of the gene LAP3 with the glutamate precursor
5-oxoproline formed the optimal predictive glutathione pathway
pair [ROC AUC: 0.72 (0.65–0.78), Figures 3D,F]. In the
sphingolipid pathway, the combination of the ceramidase ACER3
and the sphinganine precursor amino-acid serine leads to
the strongest pair-predictor of progression [ROC AUC: 0.68
(0.62–0.65), Figures 3E,F].

Integration of Pathway-Based Signatures
Leads to Improved Prediction of
Progression to Active TB in HHCs
We next sought to determine whether the novel knowledge-
driven metabolomics (t-m) signatures generated by the joint
metabolic pathway enrichment analysis could be combined to
yield a more accurate predictor for TB progression. This analysis

is driven by our hypothesis that improved knowledge of the
biological processes underlying TB progression would result in
better prediction—an argument that has been made for omics-
based signatures for vaccine immunogenicity and efficacy [34].
We constructed a Composite Canonical metabolic pathway
enrichment-based Signature (CCS) that was composed of the
sum of scores from the optimal (t-m) pairs derived from each of
the five jointly enriched canonical metabolic pathways (described
above; Table 4, Figure 3). The ROC of the CCS signature for
predicting TB progression in the GC6-74 HHC cohort is shown
in Figure 4A, and surpasses the AUC obtained for the ACS
CoR, MetabAD, or the combination of the two. We further
evaluated whether the CCS signature could be enhanced by the
knowledge-driven (KD)metabolomics (t-m) signatures that were
identified by the comprehensive correlation analysis—i.e., the
SLC25A20-eicosenoate and SOCS1-cortisol pairs (Figure 2C).
We termed this signature the CCS+KD signature. Combining
the KD with the data-driven multi-omics signatures resulted
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TABLE 3 | KEGG pathways that significantly enriched for TB progression-associated transcripts and metabolites.

Name KEGG

mapID

Significant

metabolites

in pathway

All

metabolites

in pathway

Significant

transcripts

in pathway

All

transcripts

in pathway

Combined

P-value

Lysosome map04142 1 1 61 116 0.00

Aminoacyl-tRNA

biosynthesis

map00970 8 21 18 41 0.03

Protein digestion and

absorption

map04974 8 26 24 48 0.03

Sphingolipid metabolism map00600 2 5 20 35 0.03

Glutathione metabolism map00480 4 8 19 41 0.04

FIGURE 3 | Optimal transcript-metabolite pairs derived from canonical pathways predictive of TB progression in GC6-74 (A–E): Scatter plots of transcript (x-axis) and

metabolite (y-axis) expression for transcript-metabolite pairs from canonical pathways significantly enriched for differential expression in all GC6-74 samples:

Lysosome, AA-tRNA, protein digestion, glutathione and sphingolipid, respectively. Samples taken from TB progressors (Progressor) are shown as red squares, and

samples from non-progressors (Control) are shown as blue triangles. The optimal logistic regression classification boundary is shown as a black line, and text labels

“Predicted Progressor” and “Predicted Control” indicate logistic regression binary predictions either side of the classification boundary. (A–E) Scatter plots for the top

pair from each pathway. (F) ROCs for each pair logistic regression model classifying all GC6-74 samples. AUCs for each model are shown in the legend, with 95% CIs

in parentheses.

in further improved discrimination of TB progressors from
controls in GC6-74 (CCS+KDROCAUC= 0.81; Figures 4A,B).
Although direct comparison of the significance of the CCS+KD
and the ACS-CoR signature may be biased by the fact that the
CCS+KD signature does not represent a blind prediction on the
GC6-74 dataset, overfitting of CCS+KD is limited by its small
size (7 genes, 7 metabolites), and use only of validated biological
pathways to construct the signature. Nevertheless, to test whether
the improvements in predicting TB progression obtained
with the CCS+KD signature was significant, we performed a

bootstrapped resampling comparison of the signatures. This
showed that the CCS+KD signature significantly outperformed
the previously published ACS-CoR signature on all samples
(p = 0.02, Figure 4B). Improved performance was also observed
on samples taken within 6 months of TB progression, and on
each study site (South Africa, The Gambia, Ethiopia) taken
individually (Figures S2, S6).

Because a further independent human test set was not
available to validate the CCS+KD signature, we compared
the signature to predictors based on randomly-selected sets of
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TABLE 4 | Transcript-metabolite pairs most strongly associated with TB

progression from each significantly enriched KEGG pathway.

Metabolite Gene Model

fit

AUC

AUC

lower

95% CI

AUC

upper

95% CI

Lysosome Mannose NPC2 0.72 0.66 0.78

Aminoacyl-tRNA

biosynthesis

Arginine WARS 0.7 0.64 0.77

Protein digestion

and absorption

Alanine SLC9A3 0.71 0.65 0.77

Sphingolipid

metabolism

Serine ACER3 0.68 0.62 0.75

Glutathione

metabolism

5-

oxoproline

LAP3 0.70 0.65 0.78

complementary (t-m) pairs to determine whether the specific
combination of gene signatures from distinct metabolic pathways
resulted in increased accuracy compared to randomly selected
predictive (t-m) pairs. These random pairs were selected so that
each individual random pair had similar predictive ability to
the pairs making up the composite pathway based predictor.
The 7-pair combined pathway model was in the top 0.2% of
results (p = 0.002) (Figure 4C), indicating that using canonical
pathway knowledge to guide signature design yields improved
predictive performance.

Finally, we assessed the association between the CCS and
CCS+KD signature scores at 28 days post challenge and
the RhCMV/TB trial harmonized disease outcome scores
(as described above). Strong associtions were observed, with
performance being similar for CCS and CCS+KD signatures
(CCS: p = 8.8 × 10−5, τ = 0.356; CCS+KD: p = 4.0
× 10−6, τ = 0.359 Figure 4D). Both CCS and CCS+KD
showed a stronger correlation than was observed for either of
the single-omic ACS-CoR or MetabAD signatures (Figure 1C),
however only CCS+KD showed a lower model p-value for
the association. This was despite the non-detection of the
SLC9A3 gene in the RM transcriptional data, which required the
omission of the alanine/SLC9A3 pair, representing the protein
digestion and absorption pathway (Table 4), from the both
CCS and CCS+KD scores. Signature performance was driven
by the highly significant associations of the arginine/WARS
(p = 4.3 × 10−7, τ = 0.43), cortisol/SOCS1 (p = 7.4
× 10−6, τ = 0.28) and 5-oxoproline/LAP3 (5.8 × 10−5,
τ = 0.37) pairs (Figure S8). This approach demonstrates that the
biologically interpretable pathway-driven multi-omic signature,
based on simple (t-m) pairs, outperforms the existing single-
omic signatures for prospectively capturing the spectrum of TB-
associated disease that will be observed in M.tb-challenged RM
that experience varying degrees of protection mediated by the
vaccine RhCMV/MTB.

DISCUSSION AND CONCLUSIONS

Improved biosignatures to identify the HHCs of TB cases
likely to progress to active disease are urgently needed. Such
biosignatures can serve to prioritize at-risk individuals for

closer monitoring and targeted prophylactic treatment and to
identify high-risk individuals suitable for enrollment in TB
vaccine and drug trials (35). Combined transcriptional and
metabolomic analyses of blood samples from HHC cohorts
have the potential to reveal these predictive biomarkers
and simultaneously identify immunometabolic inflammatory
processes associated with TB progression. This could also
enable development of novel host-directed therapies for TB
(36, 37). In the current study, we performed transcriptional and
metabolomic analyses of HHCs from multiple African sites in
the GC6-74 cohort and demonstrated that these two platforms
provide complementary information for predicting TB disease
progression.We further integrated these platforms with validated
immunometabolic pathway information to generate accurate
and functionally interpretable signatures of TB progression.
We also demonstrate that while existing signatures of TB
progression prospectively correlate strongly with post-necropsy
measures of TB-induced lung pathology and bacterial growth
measured in the RhCMV/TB vaccine challenge studies, multi-
omic signatures show further improved performance. The
validation of these multi-omic signatures in both humans and
rhesus macaques is noteworthy, as it reveals a universal set of
M.tb progression pathways in human and RM, underscoring the
utility of the RM model to explore the early response to TB
in humans.

In our first analysis, we observed that combining a pre-
existing transcriptional signature of risk for TB progression
[ACS-CoR (28)] with a diagnostic metabolomic signature
derived from an independent cohort [MetabAD (25)] yielded
a significant improvement in predicting TB progression and
showed improved correlation with disease pathology. While
our previously-reported ACS CoR demonstrated a sensitivity
of 42% at a specificity of 80% for identifying individuals who
progress to active disease up to 2 years after the initial HHC
exposure, the combined signature (ACS CoR + MetabAD)
achieved 56% sensitivity while maintaining 80% specificity on the
same samples. This improvement in prediction accuracy allows
detection of the majority of TB progressors while maintaining
comparatively high specificity. This is important, given that the
vast majority of TB exposed individuals do not progress to active
disease. As such, the combined ACS CoR + MetabAD signature
may serve for therapies in which a rule-in test is appropriate.
Importantly, the Stop TB Partnership target product profile for a
progression signature (38) is achieved by the ACS CoR (39, 40)
for identifying individuals who will progress to active TB in
the following 12 months. The ability to improve ACS CoR by
combining it with MetabAD will expand the potential clinical
relevance of this signature.

By taking data-driven (correlation) and knowledge-driven
(pathway) approaches to integrate the GC6-74 transcriptomics
and metabolomics data in the context of TB progression,
we identified novel functionally-interpretable signatures that
demonstrated the potential to predict TB with higher accuracy.
While previously reported blood-based signatures of TB disease
and TB risk (14–23, 25, 26, 28) largely implicate interferon-driven
changes in transcriptional activity (41), the data-driven CCS
and CCS+KD signatures identified a broader range of biological
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FIGURE 4 | Comparison of the pathway-derived signatures to previously discovered signature of risk of TB progression. (A) ROC curves for the pathway-derived CCS

and CCS+KD signatures on all GC6-74 samples. (B) Comparison of the ROC AUCs of the external signatures (MetabAD and ACS CoR), the combined ACS CoR +

MetabAD, and the pathway-based signatures (CCS, CCS+KD). Error bars represent 95% confidence intervals around the AUC. (C) Distribution of model AUCs from

randomly resampled transcript-metabolite pairs with similar AUCs to pairs in the CCS+KD model. AUC of the CCS+KD signature is indicated by vertical red line.

P-value indicates the proportion of resampled models with AUC > CCS+KD. (D) Scatter plots of CCS and CCS+KD signature scores vs. harmonized disease score in

two RhCMV-vaccinated rhesus macaque studies after M.tb challenge. Poisson regression was used to determine the relationship between signature score, measured

28 days post-challenge and harmonized disease score at time of necropsy. Solid lines represent Poisson regression fits to the harmonized disease score for CCS and

CCS+KD, respectively. P-values shown in the top left of each plot indicate significance of association between signature score and harmonized disease score.

functions. This increase in pathway diversity may derive, in part,
from the potential of plasma and serum metabolomic profiling
to quantify metabolites that are released into bloodstream from
tissues throughout the body, not solely limited to blood cells
(which is the case for whole blood based transcriptomics), and
potentially including the lung and TB granuloma themselves.
We identify several key immunometabolic pathways associated
with TB disease progression in GC6-74 HHCs. Among the
pathways implicated by the CCS signature is the fatty-acid
metabolism network. This pathway is of critical importance in
TB progression as M.tb favors fatty-acids as its cellular nutrient
source (42), and M.tb itself has roughly 250 genes dedicated
to fatty acid metabolism, a higher proportion than any other
micro-organism (43).

The CCS+KD signature also implicates key immune
regulatory pathways in TB progression, particularly strong
correlations between levels of the metabolite cortisol and the
genes SOCS1 and DDIT4, all three of which are upregulated in
TB progressors. Cortisol is a glucocorticoid steroid hormone

that induces apoptosis through activation of the glucocorticoid
receptor, and it has been shown that inhibition of mTOR with
rapamycin sensitizes lymphoid cells to glucocorticoid receptor
mediated apoptosis (44). SOCS1 (Suppressor of Cytokine
Signaling 1) is a negative regulator of signaling in the JAK/STAT
pathway, which acts downstream of interferon-gamma. SOCS1,
in its role as a repressor of the JAK/STAT pathway, shows
extensive cross-talk with mTOR in response to interferon
signaling (45). DDIT4 (DNA-damage inducible transcript
4), regulates p53/TP53-mediated apoptosis via the mTORC1
complex in response to DNA damage and hypoxic stress (46).
The optimal SOCS1-Cortisol (t-m) pair in this subnetwork is
the strongest individual predictor in the combined signature,
underscoring the key role of the mTOR and JAK/STAT immune
signaling pathways in TB progression. The lysosome pathway
was among the five pathways implicated by the knowledge-
driven analysis. This may reflect the established ability of
M.tb to prevent formation of the phagolysosome complex
(47, 48) for protection from degradation by lysosomal enzymes
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and autophagy, thus decreasing antigen presentation (49),
and facilitating subsequent M.tb escape to the cytosol (50). The
analysis similarly implicated the protein digestion pathway, which
was strongly down-regulated during TB progression, particularly
SLC9A3 Na+/H+ membrane transporter protein. Importantly,
lysosomal activity depends on the maintenance of an acidic
milieu in the phagolysosome, and the main role of SLC9A3
is to regulate intracellular pH by transporting H+ out of the
phagolysosome. M. tb also plays an active role in counteracting
the phagolysosomal maturation and subsequent acidification
(51). These were accompanied by the related amino-acyl tRNA
pathway, which reflects the significant decrease of amino-acid
levels in progressors vs. controls. Free amino-acids are produced
by the degradation of proteins in the lysosome. Recently, it has
been observed that inhibition of mTOR strongly reduces the
efflux of amino-acids from the lysosome (52). Thus, mechanistic
linkages exist between four of the pathways implicated here in
TB progression (lysosome, protein digestion, amino-acid tRNA,
and cortisol signaling).

The glutathione pathway, relating to the production of the
antioxidant glutathione and other gamma-glutamyl amino-acids,
was also selected as part of the CCS signature. Consistent with
the observed upregulation of protein-degradation enzymes in
the lysosome, leucine amino peptidase 3 (LAP3) was strongly
upregulated in TB progressors, and this enzyme formed part of
the optimal predictive (t-m) pair in this pathway. Also notable
was the observed down-regulation of glutathione peroxidase 2
(GPX2) in progressors. GPX2 helps protect cells against oxidative
stress by catalyzing glutathione-mediated reduction of peroxides.
While these oxidative peroxides can damage the cell, release
of reactive oxygen species by macrophages plays a critical role
in bacterial killing (53). Reduction in GPX2 levels is consistent
with allowing a higher degree of bacterial killing accompanied
by increased host cell damage. Counteracting this process by
supplementation with N-acetylcysteine to increase glutathione
levels during TB treatment has recently been shown to be
associated with faster sputum negativity and reduced lung cavity
size (54). This example indicates the potential of this pathway-
driven analysis to reveal targets for host directed therapies. Our
analysis also implicated the Sphingolipid metabolism pathway,
an established mediator of the host response to TB (55–57).
Sphingolipids are key building blocks of cell membranes which
also play important roles in immune signaling and represent
major constituents of the mucus secreted by lung alveolar
epithelial cells (57). In particular, sphingosine-1-phosphate is
involved in the induction of antibacterial activity in macrophages
that participate in the control of M.tb (55). Inhibition of
translocation of cytosolic SK1 to the phagosome membrane
is associated with survival of M.tb (56). Furthermore, M.tb
may manipulate host sphingolipid metabolism to enhance its
persistence and replication (57).

The approach described in this work can, in principle, be
applied to other, similar diseases. Leprosy, another mycobacterial
disease, also often remains asymptomatic in the host for years
after the initial infection. Thus, a signature of risk post-exposure
could be of clinical value. Gene-expression studies have been
performed on several human leprosy disease cohorts, looking at
samples taken from patients; including leprosy skin lesions (58),

Schwann cells from nerve biopsies (59), and from PBMCs (60). A
key limitation of these studies is that samples are from individuals
who have already succumbed to active disease. The development
of a prospective signature of leprosy risk would require the
recruitment and follow-up of a high-risk population in order
to search for biomarkers apparent before disease onset. Lessons
learned from TB risk cohorts in this study suggest immune
processes associated with leprosy may also be evident in blood
prior to the onset of symptoms, and transcriptional studies of
active disease may be of use to guide the discovery of a potential
leprosy risk signature.

The integrated transcriptomic and metabolomic approaches
applied here have allowed characterization of biological processes
that are coordinated simultaneously inside and outside the
cell, which cannot be captured by transcriptional profiling
alone. Intriguingly, the set of processes identified here as
significantly involved in progression in certain aspects mirrors
events occurring inM. tb itself. Galagan et al. (61) have previously
revealed a direct link between the hypoxic stress response, fatty
acid catabolism, lipid biosynthesis, and protein degradation in
theM.tb transcriptional regulatory network.

An unanswered question still exists: what is the precise
protective or pathogenic role associated with each of these
pathways? Transcriptomic and proteomic investigation
of TB-infected adolescents suggests that there exists a
sequential modulation of immunological processes leading
to TB progression (41), consistent with TB progression from
incipient, to subclinical, to active disease. However, it remains
unclear whether our power to predict TB progression is derived
from observing a normally effective immune response to TB
be overcome by high bacterial load, or whether differential
regulation of the pathways identified here represents a failure
of particular immune mechanisms to respond adequately to
M.tb. Recent studies have noted a continuum of granulomas
at different developmental stages including solid granulomas,
necrotic granulomas and caseous granulomas, and the decisive
impact of the range of granuloma microenvironments in a
single patient potentially showing a range of outcomes from
sterilizing immunity to loss of control (62, 63). This suggests
that analysis of biological samples taken close to or from the
granuloma itself may be required to better understand the
precise protective or pathogenic role of diverse host responses
to TB. In addition, a greater knowledge of pathways associated
with progression can lead to novel host-directed approaches to
improve treatment outcomes, and suggest biological mechanisms
underlying granuloma-specific loss-of-control. Future analysis
may expand this strategy by integrating other complementary
high throughput assessments of host inflammatory and
metabolic processes, including cellular and serum proteomics,
intra-cellular metabolomics, and focused single-cell analysis of
macrophages and T-cells (64).

MATERIALS AND METHODS

The study design, sample acquisition, RNAseq and metabolomic
profiling techniques applied here have been described in detail
elsewhere (25, 29, 30, 40). These methods are summarized below.
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Household Contact Study Design and
Sample Acquisition
This study includes cohorts from four geographic sites, all with a
prospective longitudinal design to identify prospective correlates
of risk of TB disease. The household contact study design
included participants from four African sites: South Africa, The
Gambia, Ethiopia, and Uganda, as part of the Bill and Melinda
Gates Grand Challenges 6–74 study. The GC6-74 parent cohort
consisted of 4,466 HIV-negative participants, aged 10–60 years,
with no clinical signs of active TB disease. Participants were
HHCs of a TB index case, who was at least 15 years old, with a
confirmed positive sputum smear for acid fast bacilli. HHCs were
enrolled within no more than 2 months of the index case being
diagnosed with active TB.

HHCs who progressed to active TB disease between 3
and 24 months from recruitment were considered progressors.
Active TB in progressors was diagnosed by microbiological
confirmation of M.tb in sputum samples in all except 7
individuals, who were diagnosed based on clinical symptoms,
chest and other radiographs (CXR) consistent with TB and
response to chemotherapy, withoutmicrobiological confirmation
(29). HHCs diagnosed with active TB disease within 3 months of
enrolment were excluded from further analysis. Each progressor
was matched to 4 controls who remained healthy during follow-
up. Matching was done by site, age category, sex, and year of
recruitment category. Age categories included 4 categories: <18,
18–25, 25–36, and >36 years of age, and year of enrolment had 3
categories: 2006/2007, 2008, and 2009/2010. For all sites, samples
were collected at enrolment (baseline), and at 6 and 18 months
post-enrolment, provided the participant remained free of active
TB at the time of sampling.

RhCMV/TB RM Study Design and
Sample Acquisition
RM disease outcome data was obtained from the previously
published RhCMV/TB vaccine trial (32). This trial comprised
RMs from two independent challenge studies, including those
vaccinated with RhCMV/TB candidate vaccines, BCG and
unvaccinated RMs. RM counts for each experimental group
were 23 from Study 1, and 36 from Study 2. Thirty three
RMs were vaccinated with a RhCMV/TB candidate vaccine;
7 were vaccinated with both RhCMV/TB and BCG; 13 were
unvaccinated, and 6 vaccinated with BCG only.

RNAseq Profiling
RNAseq was carried out as previously described (28, 32).
PAXgene blood RNA samples (Beckton Dickinson, New Jersey,
USA) from Uganda and Ethiopia and extracted RNA from
the Gambia were shipped for processing at the University of
Cape Town. RNA was extracted from blood using the PAXgene
Blood RNA kit (Qiagen, Germantown, MD, USA), and separated
into aliquots for local quality control, RNA-sequencing and
qRT-PCR. Quantification of RNA and initial quality control
were performed using the NanoDrop 2000TM spectrophotometer
(ThermoFisher Scientific, Waltham, MA, USA) to measure
concentrations and 260/280 ratios, followed by sampling on the

Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA) to
determine RNA Integrity Number (65). TruSeq cDNA library
preparation (Illumina, San Diego, CA, USA) from a minimum
of 200 ng RNA samples of RIN ≥ 7 was sequenced at the Beijing
Genomics Institute (BGI, Shenzhen, China), at 60 million 50 bp
paired-end reads using Illumina HiSeq-4000 sequencers. Gsnap
(66) software was used to align read pairs to the hg19 human
genome. Further analysis was done using the gene count table,
normalized with edgeR. Transcriptional profiles are available on
NCBI GEO for GC6-74 samples (GSE94438), and RhCMV/TB
RMs (GSE102440).

Metabolomic Profiling
Metabolomic profiling was performed by Metabolon, Inc.
as described previously (67), using either participant plasma
(Ethiopia, The Gambia) or serum (Uganda, South Africa)
samples. For RMs, plasma was collected as previously described
(32). Plasma samples from Study 1 and Study 2 were analyzed
in two separate batches ∼6 months apart. Prior to metabolomics
analysis, RM plasma samples were rendered non-infectious by
sterile filtering twice using sterile 25mm Pall acrodisc PF syringe
filters with stupor membrane (prod. #4187).

Plasma and serum samples were analyzed in concert
with a pool of normalization control plasma extensively
characterized by Metabolon. Samples were analyzed using
three mass-spectrometry pipelines: ultra high performance
liquid chromatography-tandem mass spectrometry (UPLC-
MS/MS; positive mode), UPLC-MS/MS (negative mode), and
gas chromatography–mass spectrometry (GC-MS). The UPLC-
MS/MS pipeline used a Waters ACQUITY UPLC (BEH C18-
2.1 x 100mm, 1.7µm) and a Thermo Scientific Q-Exactive
high resolution/accurate mass spectrometer interfaced with a
heated electrospray ionization (HESI-II) source and Orbitrap
mass analyzer. The GC/MS pipeline used a Thermo-Finnigan
Trace DSQ GC/MS with electron impact (EI) ionization.

Metabolites were identified by automated comparison of the
ion features in the experimental samples to a reference library
of >4,000 chemical standard entries that included retention
time, molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra and curated by
visual inspection for quality control using software developed
at Metabolon (68). Additional mass spectral entries have been
created for structurally unnamed biochemicals (>5,000 in the
Metabolon library), which have been identified by virtue of
their recurrent nature (both chromatographic andmass spectral).
These compounds have the potential to be identified by future
acquisition of a matching purified standard or by classical
structural analysis.

Peaks were quantified using area-under-the-curve. Raw area
counts for each metabolite in each sample were normalized to
correct for variation resulting from instrument inter-day tuning
differences by the median value for each run-day, therefore,
setting the medians to 1.0 for each run. Missing values were
imputed with the observed minimum after normalization.

Metabolomic profiles for GC6-74 samples are available from
Metabolomic Workbench (69) (www.metabolomicsworkbench.
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org, ID: PR000666). Metabolomic profiles for RhCMV/TB
samples are attached as Table S6.

Development of Metabolomics Disease
Signature (MetabAD)
Themetabolomics active disease cohort obtained byWeiner et al.
(25) was used to train and parameterize the metabolomics active
disease model. These samples are available as part of the R tmod
(70) package as the tbmprof dataset. Metabolites detected in
GC6-74 plasma and serum samples that also had values available
in the active disease dataset were considered for model inclusion
(207metabolites). A random forest model was trained using the R
(71) caret (72) package, with performance assessed by leave-one-
out cross validation. Metabolite model importance to the model
was ranked by contribution to prediction error using the caret
varImp function, and the model retrained on the top 100 features
only. This was repeated recursively to shrink the model to 50
and 25 metabolites. This 25-metabolite signature was used for all
further analyses.

Receiver-Operating Characteristic
(ROC) Analysis
The R package pROC (73) (function: roc) was used to
calculate ROC curves by applying a set of thresholds to
numeric predictions from predictive models to predict the
progressor/non-progressor status of the samples, and then
calculating the sensitivity and specificity of the predictor at each
threshold. 95% confidence intervals (CI) around the AUC were
estimated using 2000 bootstrapped replicates as implemented in
pROC, and ROC curves with a lower 95% confidence interval
above 0.5 were considered statistically significant. ROC curves
were plotted using the R ggplot2 (74) package. The optimal
classification threshold for binary classification was chosen from
the ROC curve by identifying the point on the ROC curve
with the smallest Euclidian distance to perfect classification
(sensitivity= 1 and specificity= 1).

Significance of combining the ACS CoR and MetabAD
signatures was assessed by fitting a logistic regression model to
ACS CoR alone, MetabAD alone, and ACS CoR + MetabAD
and using the R anova.glm(test = “Chisq”) function to test for
a significant reduction in residual deviance for the Combined
model vs. both ACS CoR and MetabAD alone.

Poisson Modeling of RhCMV Study Data
Transcriptomic, metabolomics, and harmonized disease
outcome data data from the RhCMV/TB trial were used
to develop regression models of association between
harmonized disease score “Outcome” and (t-m) signature
scores “Signature_Score.” As disease outcome scores were
strictly non-negative and derived from lung pathology and
TB culture count scores, Poisson regression was chosen as the
appropriate modeling approach. Two forms of models were
fit to evaluate goodness of fit to the data, and a “Study” term
was included in the modeling in order to exclude technical
effects related to the separately performed transcriptional or
metabolomic profiling of the particular vaccine study (Study 1
or Study 2).

Model 1: Outcome∼ Study
Model 2: Outcome∼ Study+ Signature_Score
Wald tests [R function: waldtest; library: lmtest (75)]

using the regression coefficient covariance matrix provided
by the heteroscedasticity-consistent covariance estimation (R
library: sandwich) were performed comparing the two (above)
models generated for each signature. Thus, the resulting P-
value measures the study-invariant P-value of the association
of Outcome and Signature_Score. The correlation between
study adjusted Signature_Score and Outcome was calculated as
Kendall’s tau (τ ).

All plots showing the results of modeling the relationship
between Signature_Score and Outcome have been adjusted to
remove the effect of the Study coefficient.

Logistic Regression Modeling
Logistic regression models of the form progression ∼

(gene|metabolite) were fit for each individual metabolite
and gene, using the R glm() function. χ2 p-values were calculated
using the R anova.glm() function. To assess complementarity
with ACS COR, logistic regression models of the form
(1) progression ∼ ACS CoR and (2) progression ∼ ACS
CoR + metabolite were fit. Significant complementation
was defined as model (2) showing significantly better fit
to the data (p < 0.05) than model (1) calculated using
anova.glm(test = “Chisq”). For each gene-metabolite pair, a
model of the form (1) progression ∼ gene + metabolite was
compared to both (2) progression ∼ gene and (3) progression
∼ metabolite. Complementarity was defined as model (1) being
significantly better than both models (2) and (3) as measured
by anova.glm().

Transcript-Metabolite Correlations
Transcript-metabolite correlations were calculated for matched
samples using Spearman’s rho. P-values for these correlations
were calculated using Fisher’s transformation, and a false-
discovery rate correction applied. Significant overlap of
correlated pairs of genes and metabolites significant at FDR <

0.01 were compared between GC6-74 HHC and KORA F4 using
the hypergeometric test.

Joint Pathway Analysis
KEGG IDs for each transcript were obtained using the
biomaRt (76) and KEGGREST (77) R packages. KEGG
pathway annotations for each transcript were obtained using
the Bioconductor org.Hs.eg.db (78) package. KEGGREST was
used to obtain KEGG pathway IDs for each metabolite. The
number of significant genes and significant metabolites from
the GC6-74 HHC datasets mapped to each pathway was
determined, and compared with the total number of genes
and metabolites mapped. The hypergeometric test was used
separately to determine pathways enriched in significant (1)
genes and (2) metabolites. These two p-values were combined
using Fisher’s method to determine an overall p-value for
the pathway.
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Joint Metabolic Pathway
Enrichment-Based Logistic
Regression Models
Logistic regression models were fit, as above, for each
gene/metabolite pair in each significant pathway, with the
single most predictive pair from each pathway being selected.
Predictions from each selected gene/metabolite pair model were
summed to form the final pathway predictor.

Significance Testing of
Pathway-Enrichment-Based Model
The pathway based model was created by selecting the most
predictive and synergistic (as described above) (t-m)-pair
for each significant KEGG pathway. The top synergistic
pairs from each correlation subnetwork (if a synergistic pair
was identified) were also included. Predictive performance
of the individual pairs in the signature was referred to
as “pair-ROC.” The overall ROC for the signature was
calculated by summing the logistic-regression predictions
for each individual pair to construct an overall ROC
curve (“sum-ROC”).

Significance of this model was calculated by repeatedly
randomly sampling the same number (N) of synergistic pairs as
were included in the model from the global set of synergistic
pairs. Here N = 7 = the total number of pairs in the
composite pathway predictor. In order to ensure comparable
performance of randomly sampled pairsets to those in the
pathway model, the mean pair-ROC for each pairset was
required to be within ± 10% of the mean pair-ROC for
the pathway model (mean composite AUC = 0.709). The
combined AUC for the random predictor was then calculated
by summing the individual pairs, in the same way as for the
pathway predictor (see Figure S7). Significance was calculated
as p = 1—(fraction of randomly sampled pair models with
lower sum-ROC).

Significance comparison of the combined pathway based
model to the ACS CoR model was done using a bootstrapped
comparison implemented in the pROC roc.test() function.
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Figure S1 | Overview of the multi-step analytical strategy employed to test

whether integration of blood transcriptional profiling with serum metabolomic

profiling can provide new understanding of disease processes and enable

improved prediction of TB progression. ACS CoR, Adolescent Cohort Signature

Correlate of Risk; MetabAD, Metabolomics Active Disease signature; CCS,

Composite Canonical Signature; CCS+KD, Composite Canonical Signature plus

Knowledge Driven pathways.

Figure S2 | ROC curves of ACS-CoR, MetabAD, and combined ACS CoR +

MetabAD signature predictions on subsets on the GC6-74 samples. (A)

Progressors within 6 months of active TB vs. healthy controls. (B–D) predictions

of specific samples from the South African, Gambian, and Ethiopian sites,

respectively. (E) P-values (single-tailed Delong test) indicating whether the

improvement in prediction for the ACS CoR+MetabAD model over either

individual model is significant for each subset.

Figure S3 | Network plot of all transcript/metabolite pairs previously identified as

correlated in KORA F4 that are also significantly correlated in GC6-74 samples.

Transcript nodes are shown as diamonds, metabolite nodes as circles, with

significant correlations indicated by edges linking transcripts and metabolites.

Positive correlations between metabolites and transcripts are shown as green

edges and negative correlations as red. Darker shades indicate stronger

correlations (legend shown bottom left). Transcripts and metabolites that showed

significant association with TB progression were shaded in purple, with

unassociated nodes shaded gray. Darker shades indicate more significant

association, according to legend in bottom left.

Figure S4 | Concordance of correlations between the KORA F4 and GC6-74

transcript/metabolite pairs. Each point represents a single (t-m) pair significantly

correlated in the KORA F4 cohort. The x-axis shows Spearman correlation

coefficients for (t-m) pairs from the KORA F4 cohort, and the y-axis shows the

equivalent correlations in GC6-74. The red line represents x=y, perfect

concordance, and the blue line is the linear best fit.

Figure S5 | KEGG pathway maps for each of the significant KEGG pathways

shown in Table 3. (A–E) Maps for lysosome, aminoacyl-tRNA synthesis, protein

digestion and absorption, glutathione metabolism, and sphigolipid metabolism

respectively. Significantly up- and down-regulated transcripts are highlighted in red

and green, respectively, and significantly up- and down-regulated metabolites are

shown in blue and yellow, respectively.

Figure S6 | ROC curves for the CCS+KD classifier on subsets of the GC6-74

cohort. Signature performance is shown for progressors within 6 months of active

disease, and for each individual study site.

Figure S7 | Flow diagram illustrating the resampling procedure used to compare

performance of the pathway-derived signature to randomly constructed signatures

containing the same number of (t-m) pairs with similar predictive performance.

Figure S8 | Scatter plots of individual pairs from the CCS+KD classifier compared

to harmonized disease scores from two independent RM vaccine trial studies

measured 28 days post-challenge with M.tb. Solid lines indicate the best-fit

Poisson model, and p-values shown indicate Poisson p-values for the association

between individual pair score 28 days post-challenge and harmonized

disease score.

Table S1 | Metabolites included in the MetabAD TB diagnostic signature.

Table S2 | Summarized binary classifications of the ACS-CoR and MetabAD

signatures on the shared GC6-74 dataset. Binary classification thresholds were

selected as the point on the ROC curve (Figure 1A) closest to 100% sensitivity

and specificity.

Table S3 | (t-t), (t-m), and (m-m) pairs that showed significant complementarity in

discriminating progressor and control samples.

Table S4 | (t-m) pairs associated with TB progression found in all combined

transcriptional/metabolic KEGG pathways.

Table S5 | Progression-associated fold changes of each significant transcript and

metabolite mapped to the KEGG pathways listed in Table 3.

Table S6 | Metabolite levels in the RhCMV/TB RM study 28 days post M.tb

challenge.
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