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ABSTRACT

Current optical communication technologies are predicted to face a bandwidth capacity limit in the near future.
The nature of the limitation is fundamental rather than technological and is set by nonlinearities in optical fibers.
One solution, suggested over 30 years ago, comprises the use of spatial modes of light as information carriers.
Along this direction, light beams endowed with orbital angular momentum (OAM) have been demonstrated as
potential information carriers in both, free space and fibres. However, recent studies suggest that purely OAM
modes does not increase the bandwidth of optical communication systems. In fact, in all work to date, only
the azimuthal component of transverse spatial modes has been used. Crucially, all transverse spatial modes
require two degrees of freedom to be described; in the context of Laguerre-Gaussian (LGp`) beams these are
azimuthal (`) and radial (p), the former responsible for OAM. Here, we demonstrate a technique where both
degrees of freedom of LG modes are used as information carrier over free space. We transfer images encoded using
100 spatial modes in three wavelengths as our basis, and employ a spatial demultiplexing scheme that detects
all 100 modes simultaneously. Our scheme is a hybrid of MIMO and SMM, and serves as a proof-of-principle
demonstration. The cross-talk between the modes is small and independent of whether OAM modes are used or
not.

Keywords: Laguerre-Gaussian modes, Optical communications, orbital angular momentum

1. INTRODUCTION

The dramatic growth of data traffic has changed the landscape of modern telecommunication networks. Exciting
progress in polarization division multiplexing (PDM) and wavelength division multiplexing (WDM) technologies
as well as the use of high order modulation formats have contributed significantly to the increase in optical
communication bit rates.1–3 However, it has been predicted that current technologies will reach a capacity limit
in the near future, a fundamental limit imposed by nonlinearities in optical fibres.4 One potential solution to
eventually cope with this problem is Space-Division Multiplexing (SDM).5–7 Of particular interest in SDM is
Mode-Division Multiplexing (MDM), a technique based in the use of orthogonal modes, first suggested in 1982
to increase the bandwidth capacity in optical fibre.8 In MDM each mode can carry an independent data stream,
thereby increasing the capacity and spectral efficiency by a factor equal to the number of modes used.9–12 Along
this line, Orbital Angular Momentum (OAM) has received special attention since its first demonstration in
1994.13 OAM multiplexing techniques have been extensively explored in both optical fibres and free space.14–20

Nevertheless, the true capacity limits on OAM-Division multiplexing are still controversial.21,22

The practical implementation of MDM systems requires enabling new mode multiplexing and demultiplexing
technologies. Hence, huge efforts have been made along this direction to provide with these technologies, specially
through the use of Spatial Light Modulators (SLMs).23–25 In this study, we focus on further increasing the
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number of multiplexed spatial modes to achieve higher transmission optical free space capacity using computer
generated holograms. Here we demonstrate a novel experimental technique for information encoding using
Laguerre-Gaussian (LG) modes.

The azimuthal dependence of LG modes has been extensively used in a variety of applications in fields as
diverse as, quantum optics, optical activity, laser remote sensing, fluid dynamics and optical manipulations to
mention just a few.26–32 Crucially, LG modes have two degrees of freedom: an azimuthal, related to the OAM
content, and a radial. However, in optical communication only the azimuthal component has been used, leaving
the radial component unexplored. Here, we describe a novel approach, that comprises the use of both degrees of
freedom, for free space optical communications.33 In a proof-of-concept experiment we successfully transmitted
grayscale and coloured RGB images using over 100 modes. For this, 35 spatial LG modes where generated and
multiplexed in three different wavelengths. Crucially, all modes can be generated and detected in real time
using a single SLM and a CCD camera. These demonstrations sets the basis to further increasing the capacity
in both free-space and optical communications systems. We further believe that the detection concept can be
implemented using other spatial mode basis, as for example Hermite-Gaussian.

2. RESULTS.

Laguerre-Gaussian modes of radial order p and azimuthal order ` at its waist plane (z = 0) are described by:
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where (r, φ) are the transverse coordinates, L
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p is the generalised Laguerre polynomial and w0 is a scalar

parameter corresponding to the Gaussian (fundamental mode) radius. The mode size is a function of the indices
and is given by wp` = w0

√
2p+ |`|+ 1. Such modes are shape invariant during propagation and reduce to

the special case of the Gaussian beam when p = ` = 0. We densely pack the available mode space in our
multiplexing and demultiplexing scheme, shown in Fig. 1, but making use of indices in both the radial and
azimuthal degrees of freedom, and without any gap in indices, from p = [0, 4] and ` = [−3, 4]. In the first
step we multiplex these modes using a spatial light modulator. The encoding is done so that the holograms
are wavelength independent (see Methods) so that we can add wavelength as a third degree of freedom. The
multiplexed beam was then propagated to a second SLM where it was demultiplexed into 105 channels and
detected on a single CCD camera. The creation and detection can be done with very high fidelity so long as
care is taken with the hologram generation (see Methods). Figure 2 shows the crosstalk between the input and
output modes, showing very good mode detection fidelity.

In this study we consider several encoding methods, as illustrated in Fig. 3. In the first we employ single bit
encoding, where each mode is assigned a particular grayscale. In the second we implement RGB encoding, where
the three primary colours are used to transfer information through modes of light. In the third we implement
multi-bit encoding. In this scheme, 256 levels of contrast can be achieved with just eight modes (28 = 256),
which together with assigning modes to represent the primary colours allows high contrast colour images to be
sent. The results for each are shown alongside the encoding method. In all cases the fidelity of transfer was very
high, exceeding 98%.

3. DISCUSSION.

While we have demonstrated the encoding with Laguerre-Gaussian modes, it is also possible to use another mode
set: Hermite-Gaussian modes in rectangular symmetry or Bessel-Gaussian modes, for which tools already exist
for separating the radial and azimuthal components.34,35

Note that while we have used example encoding methods to illustrate the robustness of our link, in a standard
optical communication system the modes would be channels, modulated with conventional technology. In other
words, the two degrees of freedom of the LG modes with an additional degree of freedom from the wavelength
multiply the overall transmission capacity of the communication system by 3 × 35 orders of magnitude. With
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Figure 1. Schematic of the experimental setup. Our experimental setup consist of two stages: MULTIPLEXING
and DEMULTIPLEXING. For the first stage we used a continuum linearly-polarized Argon Ion laser. The different
components of the continuum laser were separated using a grating, three of this components with wavelengths λ1 = 457
nm, λ2 = 488 nm and λ3 = 514 nm were redirected to a HoloEye Pluto Spatial Light Modulator (SLM-1). The SLM
was split into three independent screens, one for each wavelength, and addressed with holograms to produce the set of
thirty five LGp` modes shown in Mode space inset. The information was encoded into the hundred and five options given
by the combinations of the three wavelengths and the thirty five different modes. The carrier modes were propagated
through free space and detected in the second stage using modal decomposition. This was done by passing the carrier
beams trough a modal filter. The modal filter consists of a hologram encoded onto SLM-2 where the complex conjugated
of all thirty five modes was multiplexed with different carrier frequencies. The far field of this projection, achieved with
a lens, was captured on a CCD camera (see top right inset). An on-axis intensity signifies the presence of a particular
mode while a null its absence.

Figure 2. Cross Talk. For each input mode (prepared mode) we measure the on-axis intensity distribution for all hundred
and five modes (measured modes). In all cases the measured mode with the highest intensity coincides with the input
mode. Hence our detection system is capable to detect the input mode with high accuracy.

the ability of employing 105 spatial modes able to convey independent information signals the CCD detector
in this case can be replaced by 105 photodetectors to recover the initially encoded information. One of the
key motivation of considering such a decoding technique is its simplicity linked to the dynamic generation of
customized digital hologram. Furthermore, the designed correlation filters are wavelength insensitive which allow
the technique to operate in large spectrum. However, existing mode (de) multiplexer are extremly wavelength
sensitive such as photonic lantern. We believe that this approach could be potentailly extended to several wave-
lengths and the number of the modes could increase if we employ higher resolution SLMs.
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Figure 3. Information encoding. (a) Gray images were encoded in two different ways, in a first approach we send pixel
by pixel. For this we assigned a specific LGp` mode and a specific wavelength to the gray level of each pixel, reaching
in total hundred five different levels of gray. In a second approach we sent three pixels at the same time by assigning
each pixel to each wavelength. With this approach we can increase the speed of information transfer at the expense of
decreasing the levels of gray. (b) RGB images can be encoded in a similar way by decomposing each pixel into its three
RGB components in such a way that λ1 carries the information of the different levels of red, λ2 the different levels of
green and λ3 the different levels of blue. (c) We also encoded information using an 8-bit approach. For this, the gray
level of each pixel was first converted to an 8-digit binary number. An specific LGp` mode was assigned to each digit.
The hologram encoded in SLM-1 consisted of a superposition of all the modes whose digit value is one. To apply this
technique for an RGB image, each colour intensity is encoded with the same manner as a gray-scale image but in a
particular wavelength.

In summary, we have presented a novel technique to encode and decode information using high order LG modes.
We showed a real time mode identification method from a set of more than 100 modes in three distincts wave-
lengths by making use of a single digital hologram. The presented results will surely be of relevance to those
working on mode division multiplexing communication in free space as well as in optical fibers.

4. METHODS

Experimental details. The source, a continuum linearly-polarized Argon Ion laser (Laser Physics: 457-514
nm), was expanded and collimated by a telescope (f1 = 50 mm and f2 = 300 mm) to approximate a plane wave.
Afterwards it was decomposed into its different wavelengths by means of a grating. Three of these components
(λ1 = 457 nm, λ2 = 488 nm and λ3=514 nm), propagating almost parallel to each other, where redirected to a
HoloEye Pluto Spatial Light Modulator (SLM, 1080×1920 pixels) with a resolution of 8 µm per pixel. The SLM
was split into three thirds, one for each beam, each of which could be manipulated independently. Each third was
addressed with holograms representing the set of Laguerre-Gaussian modes (LGp`), where p is the radial index
and ` the azimuthal index. For this experiment we used 35 different modes, resulting from the combinations of
p = [0, 1, 2, 3, 4] and ` = [-3, -2, -1, 1, 2, 3, 4]. It should be stressed that the selection of the modes was made
arbitrary and does not exclude any other combinations of LG modes. These modes were encoded via complex
amplitude modulation and only the first diffracted order from each third of the SLM was used. The information
encoding was achieved by specifically assigning a particular mode and wave length to a gray level, for example
the mode LG0−3 produced by λ1 can be assigned to the lowest gray level and the mode LG44 generated with λ3
to the highest. For the case of RGB images, the different Red labels can be associated to the 35 different modes
and to a particular wavelength, let’s say λ1 and similarly the Blue and Green levels can be associated to λ2 and
λ3.

The information decoding was achieved using modal decomposition, for this, the three beams were imaged
onto a second SLM using one to one image system (f3 = 150 mm). The second SLM was split into three thirds,
each third was addressed with a superposition of the 35 different modes, each with different spatial carrier fre-
quencies. The Fourier transform of the field at the plane of the SLM (i.e. the superposition of the thirty five
modes) was achieved with the use of a lens f = 20 mm and the first diffraction order captured on a CCD camera
(Point Grey Flea3 Mono USB3 1280×960). In our experiment, it was necessary to compensate for small spherical
aberrations, this was done by digitally encoding a cylindrical lens on the second SLM.
Hologram generation and Spatial-Multiplexing. In order to encode the LG modes [described mathemati-
cally in equation (1)] we make use of the complex-amplitude approach proposed by Arrizón et al in.36 We program
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a complex valued function, T (r) = A(r) exp[iΦ(r)] where A ∈ [0, 1] and Φ ∈ [−π, π] into a phase-only digital
hologram H(r) = exp[iφ(r)] where φ(A,Φ) is the encoded phase modulation. This phase modulation is deter-
mined from the following ansatz φ(A,Φ) = f(A) sin(Φ) where f(A) is obtained from inverting J1[f(A)] = 0.58A
where J1(x) is the first-order Bessel function. To separate the desired mode from the undiffracted mode (i.e. the
zero order), a sinusoidal grating was superimposed with the encoded phase modulation φ(A,Φ). Examples of
encoded phase profiles φ(A,Φ) are presented in the first column of fig. 4 (a) together with their experimentally
recorded (middle column) and theoretically calculated (last column) intensity images obtained in the far-field
plane of the first SLM.

The encoded phase profiles can be modified by implementing angular multiplexing to allow more than one
LG mode to be created and measured via modal decomposition. This involves superimposing a series of single
transmission functions Tn(r) each multiplied with a unique carrier frequency Kn [e.g. the three holograms given
in the top row of fig. 4 (b)] to produce a final transmission function T (r) [bottom, left image of fig. 4 (b)],

T (r) =
N∑

n=1

Tn(r) exp(iKnr) (2)

where N is the maximum number of multiplexed modes. In the Fourier plane the carrier frequencies Kn

manifest as separate spatial coordinates as illustrated in the bottom, right image of fig. 4 (b). This approach
allows multiple LG modes to be generated and detected simultaneously producing a high data transmission rate.

Figure 4. Complex-amplitude and spatial-multiplexed holograms. (a) Holograms encoded via complex-amplitude 
modulation for LG03, LG22 and LG41 with their corresponding experimental and theoretical intensity profiles. (b) Three 
LG holograms possessing different carrier frequencies are superimposed to obtain a multiplexed hologram (bottom, left) 
which, in the Fourier plane, produces the corresponding modes at three unique spatial positions (bottom, right).
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Figure 5. Normalization of detected signals. Plot of the the ratio of the energy in the generated modes with the
energy in the detected signals as a function of the selected LG modes. The blue (red) data points contain the normalised
(unnormalised) measured signals.

5. SUPPLEMENTARY INFORMATION.

5.1 Normalization and Cross-Talk

Since the encoding technique employed for creating these holograms requires that the amplitude of the field be
normalized to unity, energy conservation is violated in the generated modes. To compensate for this power scaling,
a correction parameter is introduced for each transmission function. The correction parameter, αn, is calculated
as the ratio between the encoded optical field Ψ̃n(r) and the mode field Ψn(r), where αn = max{|Ψn(r)|}−1
and αn ∈ <+. In the case of the measurement procedure (i.e. performing the modal decomposition) the inner
product can now be expressed as

〈Ψ̃n|Ψ̃m〉 = 〈αnΨn|αmΨm〉 = αnαmδnm, (3)

where the correction coefficients are determined as a special case of equation (3)

α2
n = 〈Ψ̃n|Ψ̃n〉 (4)

From the detection signal (i.e. the measured on-axis intensity, In(r)), the correction coefficients may be
applied through the following relationship to normalise the signal to unit power:

In(r) =
Ĩn(r)

α2
n

(5)

The normalization is illustrated in fig. 5 where the ratio between the energy of the generated mode and the
energy of the demultiplexed signal is plotted for the various LG modes being used. The red data points contain
the unnormalised measured signals illustrating a wider spread from unity (marked by the dotted line), while the
blue data points contain the normalised signals which have a narrower spread.

The effect of the aperture size in the detection plane when performing a modal decomposition on the incoming
modes was also investigated. The selected LG modes (used as information carriers) were generated on SLM-1
and decomposed via an inner-product measurement at SLM-2 (depicted in fig. 1). The measurement results are
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presented in fig. 6 which illustrate the (a) expected and measured cross-talk between neighbouring modes for a
detection aperture size of (b) 24 µm (c) 9.6 µm and (d) 4.8 µm. In all cases [(b) - (d)] the strong diagonal and
weak off-diagonal terms imply a highly accurate and precise measurement system which is unaffected by the size
of the detection aperture.

Figure 6. Effect of aperture size in the detection plane. Plot of the relative fractions of the intensity at each
demultiplexed detector position for the selected LG modes. (a) The theoretical prediction and (b) - (d) measured cross-
talk for aperture sizes of 24 µm, 9.6 µm and 4.8 µm, respectively.

5.2 Gray-Scale and Colour

The concept of assigning colour values present in a 2D image [as depicted in fig. 3 (b) and (c)] was initially
tested with a simple image such as those in figs 7 (a) and 7 (c). This test required ensuring that the detector
positions were aligned correctly with the on-axis demultiplexed signals. Incorrect alignment would result in
incorrect colour values being decoded. The initial test images contain either 30 different gray-levels [7 (a)] or
RGB-values [7 (c)]. In both cases it is evident that the reconstructed images are in very good agreement with
the sent images illustrating the correct alignment of the demultiplex signals with the static detector positions.
The bottom image of fig. 7 (c) contains a reconstructed image acquired four days after the system was initially
aligned, illustrating its robustness and versatility. Additional gray-scale images [7 (b)] and RGB images [7 (c)],
containing detailed features and higher resolution, were transmitted via this protocol demonstrating very high
fidelity between the sent and received images.

Figure 7. Gray-scale and RGB test. (a) The sent and received test image for verifying the success of the gray-scale
encoding protocol. (b) Additional sent and received gray-scale images implemented with the gray-scale encoding scheme.
(c) The sent and received test image for verifying the success of the RGB encoding protocol. (d) Additional sent and
received colour images implemented with the RGB encoding scheme.
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5.3 8-Bit Encoding

In the gray-scale and RGB schemes the user is only concerned with detecting 1 signal out of a possible 35.
However, the 8-bit scheme involves detecting 256 unique combinations of either no signal incremented in unit
steps up to all possible 8 signals. Since the on-axis intensity is higher for a single signal as opposed to all 8
signals being present [demonstrated in fig. 8 (a)], the user needs to carefully select the range of thresholds for the
measured intensities. We investigated the impact the intensity threshold has on our encoding scheme and our
findings are presented in fig. 8 (b). The red border marks the sent image and the green border the successfully
reconstructed image obtained at a suitable threshold. The images in between denote the reconstructed images
when the threshold was initially set too low illustrating either extreme or mild cross-talk with neighbouring
gray-values. Most of the cross-talk occurs with the white colour-value because when the threshold is set too
low, the detectors detect noise - often resulting in 8 signals being detected which is the trademark of the white
colour-value [fig. 8 (a)].

Figure 8. Threshold test for 8-bit encoding scheme. (a) Four selected gray-scales with their corresponding binary
values and CCD images depicting the signals recorded at the detection plane. (b) The sent (red) and reconstructed
gray-scale images for varying threshold values. Green marks successful reconstruction.
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