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Abstract 

A challenge in the design of functional parts is the determination of the initial, undeformed 

shape such that under a given load a part will obtain the desired deformed shape. A shape 

optimization formulation might be used to determine the initial shape in the sense of an inverse 

problem via successive iterations of a direct mechanical problem. In this paper, we present a 

shape optimization formulation for elastoplastic materials with a constitutive model for 

anisotropic additive elastoplasticity in the logarithmic strain space. A discrete sensitivity 

analysis is performed and gives the analytical gradient of the objective function needed in the 

optimization algorithm. We found that the use of the coordinates of the functional component as 

design variables led to mesh distortions. Without a split of the total force applied on the 

component and an update of the undeformed configuration between two steps the optimization 

algorithm is not able to find an appropriate minimum. Three numerical examples in isotropic 

and anisotropic elastoplasticity illustrate the structure of such a recursive algorithm for avoiding 

mesh distortions. 

Keywords: inverse form finding, shape optimization, elastoplasticity, anisotropy, large strain 

1. Introduction 

The determination of the initial, undeformed shape such that under a given load a part will 

obtain the desired deformed shape is inverse to the standard (direct) kinematics analysis in 

which the undeformed shape is known and the deformed unknown. Inverse methods are useful 

tools and allow conceiving designs in less time and at lower costs than those involved with 

experiments or direct computational design. 

Govindjee et al. (1996, 1998) proposed a numerical procedure for the determination of the 

undeformed shape of a continuous body for isotropic compressible neo-Hookean and 

incompressible materials, respectively. The weak form of the balance of momentum of the 

inverse motion problem is formulated in terms of the Cauchy stress tensor. All quantities are 

parametrized in the spatial coordinates. Temperature changes in the undeformed and deformed 

configuration have been included in Govindjee (1999) for orthotropic nonlinear elasticity and 

axisymmetry using a St.Venant type material. Fachinotti et al. (2008) and Lu et al. (2007) 
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extended the formulation in Govindjee et al. (1996) to the case of anisotropic hyperelasticity. 

They wrote the constitutive equations in terms of Lagrangian variables, i.e. Piola-Kirchhoff 

stresses in terms of Green-Lagrange strains.  Germain et al. (2010a,b) extended the method 

originally proposed by Govindjee et al. (1996) to anisotropic hyperelasticity that is based on 

logarithmic (Hencky) strains. This work was further extended to anisotropic elastoplasticity in 

Germain et al. (2011a). They showed that the inverse mechanical formulation in elastoplasticity 

can be used if the plastic strains are previously given. This is the case when a desired hardening 

state is given.  

Shape optimization in a sense of an inverse problem via successive iterations of a direct 

mechanical problem allows to determine the undeformed configuration of a functional 

component knowing the deformed shape, the loading and the boundary conditions. Fourment et 

al. (1996) suggested a shape optimization method for non-linear and non-steady-state metal 

forming problem. Shapes are described using spline functions. The finite-element (FE) method, 

including remeshing, is used for the simulation of the process. Naceur et al. (2004) proposed a 

new numerical approach to optimize the shape of the initial blank in deep drawing of thin 

sheets. This new approach is based on the coupling between the inverse approach used for 

forming simulation and an evolutionary algorithm. Germain et al. (2011b) proposed a numerical 

shape optimization method for anisotropic elastoplastic materials that is based on logarithmic 

strains. The objective function that needs to be minimized in order to obtain the optimal 

undeformed workpiece is the quadratic difference between the node positions in the target and 

computed (current) deformed shape, i.e. the node coordinates of the FE-domain are chosen as 

design variables (nodes-based optimization). A discrete sensitivity analysis is presented and 

analytical gradients are performed. They used the Limited-memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) optimization algorithm proposed in Schmidt (2005) in theirs illustrations.  In 

Germain et al. (2011c) the inverse mechanical formulation proposed in Germain et al. (2010) 

and the shape optimization proposed in Germain et al. (2011b) have been compared in terms of 

computational costs for the determination of the initial shape in hyperelasticity. They found that 

when dealing with hyperelastic materials the inverse mechanical formulation is more efficient 

than the shape optimization formulation.  In Germain et al. (2012) an algorithm which updates 

the reference configuration during the optimization is added to the shape optimization 

formulation presented in Germain et al. (2011b) in order to avoid mesh distortions in metal 

forming processes. 

The paper is organized as follows: In section 2 we introduce the notations by presenting the 

kinematics of geometrically non linear continuum mechanics. The third section gives a 

constitutive model for isotropic and anisotropic additive elastoplasticity in the logarithmic strain 

space based on Miehe et al. (2002) and de Souza Neto et al. (2008). The next section resumes 

the formulation of a direct mechanical problem needed in the inverse problem formulation. 

Section 5 presents a discrete sensitivity analysis and generalizes the algorithm for avoiding 

mesh distortions presented in Germain et al. (2012). Three numerical examples for isotropic and 

anisotropic elastoplastic material illustrate the recursive algorithm presented in the previous 

section. 

2. Kinematics of geometrically non linear continuum mechanics 

Let       denote the undeformed (material) configuration of a continuum body   

parameterized by material coordinates X with respect to Cartesian basis    at time t=0.       

is the corresponding deformed (spatial) configuration parameterized by spatial coordinates x 

with respect to Cartesian basis    at time t, as depicted in Fig.1. Subsequently the bases    and 

   are taken to be coincident (I=1,2,3; i=1,2,3).      and     define the boundary surface of the 
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body    resp.   , where neither Dirichlet (   ̅) nor Neumann (   ̅) data appears.   is defined 

as a unit vector at X directed along the outward normal to an material surface element    

   ̅.  ̅ represents a given traction per unit area on the Neumann boundary in the material and 

spatial configuration. The direct deformation map  

    ( )        (1) 

gives the position of each spatial point      in function of its material counterpart      . 

 
 

Fig. 1. Material (right) and spatial (left) motions. 

The corresponding deformation gradient is given by 

          . (2) 

In an index notation the direct deformation gradient tensor is expressed by 

   ∑      
 
              

   

   
           , (3) 

where lowercase indices refer to spatial Cartesian coordinates and uppercase indices refer to 

material Cartesian coordinates. The Jacobian determinant of the direct deformation gradient, 

which describes the local change of the volume to the deformation, is considered as positive 

                             . (4) 

The inverse deformation map  

    ( )        (5) 

gives the position of each material point      as a function of its spatial counterpart      . 

The corresponding inverse deformation gradient is given by 

         . (6) 

In an index notation the inverse deformation gradient tensor is expressed as 

   ∑      
 
              

   

   
           . (7) 

The Jacobian determinant of the inverse deformation gradient is assumed to be positive 

                            . (8) 

From the above definitions it follows that the inverse deformation map denotes a nonlinear map 

inverse to the direct deformation map 

       . (9) 
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Thus the inverse and direct deformation gradients together with their Jacobian determinants are 

simply related through an algebraic inversion 

                   . (10) 

3. Constitutive model for anisotropic additive elastoplasticity in the logarithmic strain 

space 

In this section we summarize the work by Miehe et al. (2002) and de Souza Neto et al. (2008). 

The constitutive phenomenological model for anisotropic additive elastoplasticity in the 

logarithmic strain space mimics the small strain theory and is focused on metal plasticity.  An 

additive decomposition of the logarithmic (Hencky) strain into an elastic and a plastic part is 

assumed 

   
 

 
          , (11) 

where  

        (12) 

is the right Cauchy-Green tensor. The Clausius-Duhem inequality, on which the development of 

the constitutive model is based,  

       ̇   ̇   , (13) 

defines the local dissipation of the model with respect to unit volume. The total free energy 

density is decomposed into an elastic and a plastic part 

  (      )    (    )    ( )   

  (    )    (  )    ( ) . (14) 

The elastic part is defined as a quadratic free energy density in terms of the second-order elastic 

strain tensor and a constant elastic fourth-order material tensor 

   (  )  
 

 
         . (15) 

The plastic part of the total free energy density is modeled by nonlinear isotropic hardening, i.e. 

kinematic hardening is not considered, 

   ( )      ( )  
 

 
    (     )(  

    

 
) , (16) 

where α is a scalar that models isotropic hardening, h is the hardening modulus, ζ0 is the initial 

yield stress, ζ∞ is the infinite yield stress and w is the saturation parameter. T in Eq. 13 is the 

current stress tensor work-conjugate to the logarithmic strain measure E defined by 

   
  (    )

  
 

  (    )

     
  (    )

          .  (17) 

Considering Eq. 11 and 14 the reduced dissipation inequality can be written by 

       ̇  
  

  
  ̇    . (18) 

Plastic flow occurs only on the yield surface 

   *      (  
  

  
)  √

 

 
    }, (19) 
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which represents a hypersurface. A quadratic yield function or level set function (Hill-type 

criterion)   

  (  
  

  
)  √      √

 

 
(   (     )(      )) (20) 

allows to define whether elastic straining or plastic yielding occurs. To model plastic 

incompressible flow as for metals, the plastic metric in Eq. 20 has to satisfy 

       . (21) 

For the usual isotropic von-Mises elastoplasticity  

        
 

 
    . (22) 

A specific formulation of    in the special case of an orthotropic response is presented in Miehe 

et al. (2002). The tensor   defined in the Voigt notation is governed by nine parameters. In a 

Cartesian coordinate system aligned to the axes of orthotropy the tensor appears in the simple 

coordinate representation 

   

[
 
 
 
 
 
         
         
         
       
       
       ]

 
 
 
 
 

 . (23) 

Eq. 21 is satisfied for the three dependencies 

    
 

 
(        )    

 

 
(        )    

 

 
(        ) . (24) 

Orthotropic plastic yielding for incompressible plastic flow is governed by six material 

parameters related to the initial yield stresses with respect to the principal axes of orthotropy 

    
 

 

  
 

   
     

 

 

  
 

   
     

 

 

  
 

   
    (25) 

    
 

 

  
 

   
     

 

 

  
 

   
     

 

 

  
 

   
 . (26) 

Setting              and             √ ⁄   is equivalent to Eq. 22 for isotropic 

plastic yielding. An alternative of the formulation presented in Miehe et al. (2002) to define the 

fourth-order tensor   is the use of Kelvin modes (Sutcliffe (1992)). For the case of a cubic 

representation,   might be defined in function of three parameters   ,    and    and three 

projection tensors   ,    and    as 

                 . (25) 

The variables   ,    and    are the eigenvalues of tensor   expressed in the Voigt notation. The 

principle of maximum plastic dissipation gives the following plastic flow rule and hardening 

law  

  ̇   ̇
   

√     
      ̇  √

 

 
 ̇ . (27) 

The Kuhn-Tucker-type loading-unloading conditions  
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   ̇     (  
  

  
)  √

 

 
            ̇( (  

  

  
)  √

 

 
  )     (28) 

allow to determine the plastic parameter. A radial-return mapping is used for solving the 

elastoplastic problem as in de Souza Neto et al. (2008) and Simo et al. (1998). 

4. Determining the deformed shape from equilibrium 

In this contribution we omit distributed body forces and inertia henceforth. The direct 

mechanical formulation uses a Piola formulation for the equilibrium. The following boundary 

value problem is solved 

     ( )         , (29) 

          ̅       ̅,  

    ̅       ̅.  

    ( ) denotes the material divergence operator with respect to the material coordinates X. The 

weak form of the given boundary value problem, with the test function     on the boundary 

surface    ̅, reads 

  (     )  ∫            
  

       ∫     ̅  
   

   . (30) 

Eq. 30 is the common virtual work statement with a parameterization of all quantities in the 

material coordinates X. The (symmetric) Piola–Kirchhoff stress is expressed as  

    
  

  
             

  

  
 (31) 

The corresponding linearization (directional derivative) of the weak form in the direction    at 

fixed material coordinates X, as needed in a Newton type solution scheme, is finally expressed 

as 

 
 

  
 (         )     ∫         

         . (32) 

The fourth-order tangent operator   decomposes into the material tangent operator 

                       
  

  
 (33) 

and a geometrical contribution 

   
      

  
 [  ̅̅̅  ]   [   ̅̅̅  ]    ̅̅̅  . (34) 

In Eq. 33 when elasticity occurs       and when plasticity occurs        (Miehe et al. 

(2002)).  In Eq. 34 I and i denote the material and spatial unit tensors with coefficients     and 

   , respectively,  ̅̅̅ denotes a non-standard dyadic product with    ̅̅̅               and 

I,J,K,L,i,j =1...3. For the finite element solution the discretization formulation proposed in 

Germain et al. (2010) is adopted. 

5. Shape optimization 

The following section is based on the work of Germain et al. (2011b, 2012). 
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5.1. Discrete sensitivity analysis 

Shape optimization theory allows to predict the original shape of a functional component by 

iterating a direct mechanical formulation. The objective function (Eq. 35), which has to be 

minimized in order to find the solution, i.e. the undeformed shape, is defined by a least-square 

minimization of the difference between the target and the current deformed configuration of the 

workpiece 

  ( )  
 

 
‖                (             )‖

 
. (35) 

The material coordinates X are considered as the design variables. The target deformed 

configuration         corresponds to the known and given deformed configuration. The current 

deformed configuration          is computed by a direct mechanical formulation (Section 4) 

with the undeformed configuration               given by the optimization algorithm (for 

example L-BFGS). Numerical optimization algorithms are described in Nocedal et al. (2006). 

After setting the objective function a discrete sensitivity analysis is performed (Schwarz (2001) 

and Scherer et al. (2010)). The aim of the sensitivity analysis is to supply the gradients of the 

objective function and the constraints with respect to the design variables, which are necessary 

for the use of gradient-based optimization algorithms (Nocedal et al. (2006)). A restriction to 

unconstrained problems is achieved. Subsequently we are going trough the mathematical details 

for expressing the analytical gradient of the objective function in a discrete sensitivity analysis. 

By applying the chain rule on Eq. 35, we obtain 

 
  ( )

  
 

           

  
 

  

         

         

  
. (36) 

According to the implicit dependency of the objective function to the design variables X it 

follows that 

 
           

  
            

  ( )

  
 

  

         

         

  
. (37) 

The crucial step for computing the second term in Eq. 36 is the mechanical equilibrium 

equation (Scherer et al. (2010)) 

         ( )   (        ( )  )           ( 
       ( )  )    , (38) 

where rext and rint are the internal and external nodal forces. Applying the total differential on 

the above equation we obtain 

 
         

  
 

  

  
 

  

         

         

  
   . (39) 

After a rearrangement we deduce 

 
         

  
  *

  

         +
    

  
 . (40) 

Substituting Eq. 40 in Eq. 36 we obtain 

 
  ( )

  
 (                ) *

  

         +
    

  
 , (41) 

where 

 
  

              
   ∫         

   ̂  
  

  
           (42) 

and 
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   ∫         
   ̂  

  

  
          . (43) 

In Eq. 42 P denotes the non symmetric Piola stress tensor and in Eq. 43 σ denotes the 

symmetric Cauchy stress tensor. In Eq. 42 and 43 the operator [  ̂ denotes contraction with the 

second index of the corresponding tangent operator,     
    is an assembly operator with respect 

to the elements in a finite element formulation and N are the shape functions. 

Remark: 

Numerical gradients might also be provided to the optimization algorithm (Schmidt (2005)) by 

performing a finite difference. This approach is easy to implement but the numerical costs are 

very high. When the increment in the finite difference is not properly chosen it leads to relevant 

errors in the result (Schwarz (2001)).  

5.2. Recursive algorithm for avoiding mesh distortions 

A drawback of choosing the material coordinates as design variables is possible occurrence of 

mesh distortions. The optimization algorithm is not able to find appropriate minimums or gets 

stuck after few iterations (Fig. 2 and Fig. 3). Fig. 2a shows the target deformed configuration of 

a functional component in the [x1,x3] plan. The bottom of the shape is partially clamped and 

forces are applied on the top of the shape. Fig. 2b shows the undeformed configuration in the 

[X1,X3] plan after 14 iterations of the optimization algorithm (L-BFGS), where mesh distortions 

are well identified. Fig. 3a and Fig. 3b show the target deformed configuration of a functional 

component in the [x1,x2] and [x1,x3] plan. The left side of the shape is clamped and forces are 

applied on the right side (three dimensional extension of the classical two dimensional Cook‘s 

cantilever). Fig. 3c and Fig. 3d show the undeformed configuration in the [X1,X2] and [X1,X3] 

plan after 4 iterations of the optimization algorithm (L-BFGS), where mesh distortions are well 

identified.  

 The idea of our strategy (introduce in Germain et al. (2012) for metal forming processes) 

for avoiding mesh distortions is to perform successive optimizations by replacing the 

undeformed configuration needed in the next optimization step by the previous optimized 

undeformed configuration.  

 At the initialization step material and optimization parameters are given.  The variable 

TotalForce, i.e. the known total force applied on the shape, is set. A variable StepForce 

representing the force increment is defined as StepForce << TotalForce. Furthermore 

at the beginning x
target

= x
current

 = X
current

. A direct mechanical problem is computed with 

X
current

 and the initial force Force
0
 according to Section 4 in the next step. The 

optimization then runs for step 0. At the end of this initial optimization we obtained the 

undeformed configuration X
optimization

 for Force
0
.  

 In the next step the new applied loading Force
n
 is equal to the previous force Force

n-1
 

augmented by StepForce. Taking the previous computed undeformed configuration 

X
optimization,n-1

 and the new loading Force
n
, the direct mechanical formulation is running 

in order to obtain the current deformed configuration x
current,n

 of the shape. The 

optimization algorithm can now be used and will give the undeformed configuration 

for Force
n
. This process is done until TotalForce is reached.  

 In this case the undeformed configuration X
optimization 

for the given total force is 

obtained.  

A pseudo algorithm of this process is described in Algo.1. 
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Algo. 1. Strategy for avoiding mesh distortions in inverse form finding problems. 

 
 

Fig. 2a.         in the [x1,x3] plan. 

 

 
 

Fig. 2c.               in the [X1,X3] plan. 

Fig. 2. Example for mesh distortions. 
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Fig. 3a.         in the [x1,x2] plan. Fig. 3b.         in the [x1,x3] plan. 

 

 

Fig. 3c.               in the [X1,X2] plan. Fig. 3d.               in the [X1,X3] plan. 

Fig. 3. Example for mesh distortions. 

6. Numerical examples 

The algorithm presented in the previous section is applied to three benchmark problems: in the 

first example a bar extended in the vertical direction illustrates the previous developments for 

an isotropic elastoplastic material. The second example is concerned with a three dimensional 

extension of the classical two dimensional Cook‘s cantilever. We aim to determine the 

undeformed shape for a given isotropic elastoplastic material and a given distributed force so 

that the deformed shape is a straight panel. In a third example we compute the undeformed 

configuration of a three dimensional circular sheet with a hole for a given anisotropic 
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elastoplastic material and a given distributed force so that the deformed shape is again a straight 

layer.   

6.1. Traction of a bar in isotropic elastoplasticity 

The target geometry of the deformed bar as well as the boundary and loading conditions are 

shown in Fig. 4. The dimensions of the bar is 10x10x20mm. The bottom of the bar is fixed in  

the three directions. The total applied distributed force TotalForce on the top of the bar is equal 

to 28 kN. The variable StepForce in Algo. 1 is equal to 1 kN. The domain is discretized using 

hexahedral finite elements with 16 elements and 45 nodes. An isotropic elastoplastic material is 

simulated with the material parameters in Table 1. The optimization parameters are resumed in 

Table 2 (lbfgs=Limited-Broyden-Fletcher-Goldfarb-Shanno). Fig. 5, 6 and 7 show the 

computed undeformed shape in the material configuration    for the steps, where the force is 

equal to 10 kN, 20 kN and 28 kN in the [X1,X3] plan, respectively. To confirm the obtained 

results, the direct problem was re-simulated starting with the coordinates of the computed 

undeformed shape with force equal to 28 kN (Fig. 7), the same boundary conditions and 

material parameters. The result is shown on Fig. 8 in the [x1,x3] plan with the obtained 

equivalent plastic strains.  

Young‘s modulus 211000 MPa  Method lbfgs 

Poisson‘ratio 0.3  HessianModify 1 

Hardening modulus 200 MPa  progTol 1.e-14 

Initial yield stress 450 MPa  optTol 1.e-4 

Infinite yield stress 700 MPa    

Saturation parameter 17    

     

Table 1. Material parameters. 
 

Table 2. Optimization 

parameters needed in Schmidt 

(2005). 

      

Fig. 4.         in the [x1,x2, x3] plan. Fig. 5.         (    ) in the [X1,X3] plan. 



Journal of the Serbian Society for Computational Mechanics / Vol. 6 / No. 1, 2012 

 

227 

      

Fig. 6.         (    ) in the [X1,X3] plan. Fig. 7.         (    ) in the [X1,X3] plan. 

     
 

Fig. 8.         (            ) in the [x1,x3] plan with equivalent plastic strains [-]. 

6.1. Cook’s problem in isotropic elastoplasticity 

The target geometry of the deformed cantilever as well as the boundary and loading conditions 

are shown in Fig. 9 in the [x1,x2] plan and in Fig. 10 in the [x1,x3] plan. The length L of the 

thick cantilever in    is equal to 48 mm, the height H1 is set to 44 mm, the height H2 is equal to 

16 mm and the width W is set to 8 mm. The left side of the thick cantilever is fixed in all 

directions, i.e. it is clamped. The total applied distributed force TotalForce is set to 300 N. The 

variable StepForce in Algo. 1 is equal to 10 N. The domain is discretized using hexahedral 

finite elements with 528 elements and 780 nodes. An isotropic elastoplastic material is 

simulated with the material parameters in Table 3. The optimization parameters are given in 

Table 4 (bb=Barzilai and Borwein Gradient). Fig. 11, 12, 13 and 14 show the computed 

undeformed shape in the material configuration    for the steps where the force is equal to 10 

N, 100 N, 200 N and 300 N in the [X1,X2] plan, respectively. To confirm the obtained results, 

the direct problem was re-simulated starting with the coordinates of the computed undeformed 

shape at force equal to 300 N (Fig. 14), the same boundary conditions and material parameters. 

The result is shown on Fig. 15 in the [x1,x2] plan with the obtained equivalent plastic strains.  
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Young‘s modulus 202000 MPa  Method bb  

Poisson‘ratio 0.33  HessianModify 1 

Hardening modulus 300 MPa  progTol 1.e-

14 

Initial yield stress 150 MPa  optTol 1.e-

4 

Infinite yield stress 300 MPa    

Saturation parameter 15    

     

Table 3. Material parameters. 
 

Table 4. Optimization 

parameters needed in Schmidt 

(2005). 

     

 

Fig. 9.         in the [x1,x2] plan. Fig. 10.         in the [x1,x3] plan. 
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Fig. 11.         (    ) in [X1,X2] plan. 
Fig. 12.         (     ) in the [X1,X2] 

plan. 

  

Fig. 13.         (     ) in the [X1,X2] 

plan. 

 

Fig. 14.         (     )               in 

the [X1,X2] plan. 
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Fig. 15.         (            ) in the [x1,x2] plan with equivalent plastic strains [-]. 

6.2 Anisotropic elastoplasticity 

The target geometry of the deformed circular sheet with a hole in three dimension as well as the 

boundary and loading conditions are shown in Fig. 16 in the [x1,x2] plan. The outer radius of the 

sheet in    is equal to 800 mm, the inner radius is set to 400 mm and the thickness is set to 10 

mm. The upper and lower surfaces are fixed in the vertical direction. The total applied 

distributed force TotalForce is set to 150 kN. The variable StepForce in Algo. 1 is equal to 10 

kN. The domain is discretized using hexahedral finite elements with 320 elements and 720 

nodes. An anisotropic elastoplastic material is simulated with the material parameters in Table 

5. The optimization parameters are given in Table 6. Fig. 17, 18 and 19 show the computed 

undeformed shape in the material configuration    for the steps where the force is equal to 5 

kN, 10 kN and 15 kN in the [X1,X2] plan, respectively. To confirm the obtained results, the 

direct problem was re-simulated starting with the coordinates of the computed undeformed 

shape at force equal to 15 kN (Fig. 19), the same boundary conditions and material parameters. 

The result is shown in Fig. 20 in the [x1,x2] plan with the obtained equivalent plastic strains.  

Young‘s modulus 70000 MPa  Method lbfgs 

Poisson‘ratio 0.33  HessianModify 1 

Hardening modulus 100 MPa  progTol 1.e-14 

Initial yield stress 450 MPa  optTol 1.e-4 

Infinite yield stress 715 MPa    

Saturation parameter 16.5    

Normal yield stress (Miehe et al. (2002)) 400 MPa    

Shear yield stress (Miehe et al. (2002)) 450/√3 MPa    

     

Table 5. Material parameters. 
 

Table 6. Optimization 

parameters needed in 
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Schmidt (2005). 

 

Fig. 16.         in the [x1,x2] plan. 

  

Fig. 17.         (   ) in the [X1,X2] plan. Fig. 18.         (    ) in the [X1,X2] plan. 
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Fig. 19.         (    )               in 

the [x1,x2] plan. 

Fig. 20.         (            ) in the [x1,x2] 

plan with equivalent plastic strains [-]. 

7. Conclusion 

In this paper we presented a constitutive model for anisotropic additive elastoplasticity in the 

logarithmic strain space. A shape optimization is formulated in the sense of an inverse problem, 

where the goal is to find the undeformed shape of a functional component knowing the 

deformed configuration, the loads and boundary conditions. In order to avoid mesh distortions, 

which might occur when using the node coordinates as design variables, we proposed a 

recursive algorithm. The computed undeformed configuration of the previous step is used in the 

next step for the computation of the objective function.  The limitation of such a recursive 

algorithm is the computational time which grows when the incremental applied force is much 

lower than the total applied load. Three numerical examples for isotropic and anisotropic 

elastoplastic materials illustrated the application of this algorithm. We found that without this 

algorithm the optimizer is not able to find a solution for our inverse problem. Future works will 

be on the formulation of contact problem so that metal forming processes can be simulated and 

on an extension of the modeling to kinematic hardening elastoplasticity. 
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Резиме 

При пројектовању функционалних делова изазов је одређивање недеформисаног облика 

који ће се при задатом оптерећењу деформисати у жељени облик. Формулисање 

оптимизације облика може бити коришћено за одређивање почетног облика у смислу 

инверзног проблема преко узастопних итерација директног механичког проблема. У 

овом раду излажемо формулацију оптимизације облика за еластопластични материјал 

чији је конститутивни модел адитивна анизотропна еластопластичност у простору 

логаритамских деформација. Примењена је дискретна анализа осетљивости која даје 

аналитички градијент циљне функције потребне у оптимизационом алгоритму. Утврдили 

смо да коришћење координата функционалне компоненте као пројектних променљивих 

може довести до дисторзије мреже. Без коришћења инкременталног поступка у односу на 

укупну силу која делује на компоненту и без ажурирања недеформисане конфигурације 

између два корака, алгоритам оптимизације није у стању да нађе одговарајући минимум. 

Три нумеричка примера изотопне и анизотропне еластопластичности илуструју 

структуру овог рекурзивног алгоритма за избегавање дисторзије мреже. 

Кључне речи: налажење инверзног облика, оптимизација облика, еластопластичност, 

анизотропија, велике деформације  
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