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Abstract

A challenge in the design of functional parts is the determination of the initial, undeformed
shape such that under a given load a part will obtain the desired deformed shape. A shape
optimization formulation might be used to determine the initial shape in the sense of an inverse
problem via successive iterations of a direct mechanical problem. In this paper, we present a
shape optimization formulation for elastoplastic materials with a constitutive model for
anisotropic additive elastoplasticity in the logarithmic strain space. A discrete sensitivity
analysis is performed and gives the analytical gradient of the objective function needed in the
optimization algorithm. We found that the use of the coordinates of the functional component as
design variables led to mesh distortions. Without a split of the total force applied on the
component and an update of the undeformed configuration between two steps the optimization
algorithm is not able to find an appropriate minimum. Three numerical examples in isotropic
and anisotropic elastoplasticity illustrate the structure of such a recursive algorithm for avoiding
mesh distortions.
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1. Introduction

The determination of the initial, undeformed shape such that under a given load a part will
obtain the desired deformed shape is inverse to the standard (direct) kinematics analysis in
which the undeformed shape is known and the deformed unknown. Inverse methods are useful
tools and allow conceiving designs in less time and at lower costs than those involved with
experiments or direct computational design.

Govindjee et al. (1996, 1998) proposed a numerical procedure for the determination of the
undeformed shape of a continuous body for isotropic compressible neo-Hookean and
incompressible materials, respectively. The weak form of the balance of momentum of the
inverse motion problem is formulated in terms of the Cauchy stress tensor. All quantities are
parametrized in the spatial coordinates. Temperature changes in the undeformed and deformed
configuration have been included in Govindjee (1999) for orthotropic nonlinear elasticity and
axisymmetry using a St.Venant type material. Fachinotti et al. (2008) and Lu et al. (2007)
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extended the formulation in Govindjee et al. (1996) to the case of anisotropic hyperelasticity.
They wrote the constitutive equations in terms of Lagrangian variables, i.e. Piola-Kirchhoff
stresses in terms of Green-Lagrange strains. Germain et al. (2010a,b) extended the method
originally proposed by Govindjee et al. (1996) to anisotropic hyperelasticity that is based on
logarithmic (Hencky) strains. This work was further extended to anisotropic elastoplasticity in
Germain et al. (2011a). They showed that the inverse mechanical formulation in elastoplasticity
can be used if the plastic strains are previously given. This is the case when a desired hardening
state is given.

Shape optimization in a sense of an inverse problem via successive iterations of a direct
mechanical problem allows to determine the undeformed configuration of a functional
component knowing the deformed shape, the loading and the boundary conditions. Fourment et
al. (1996) suggested a shape optimization method for non-linear and non-steady-state metal
forming problem. Shapes are described using spline functions. The finite-element (FE) method,
including remeshing, is used for the simulation of the process. Naceur et al. (2004) proposed a
new numerical approach to optimize the shape of the initial blank in deep drawing of thin
sheets. This new approach is based on the coupling between the inverse approach used for
forming simulation and an evolutionary algorithm. Germain et al. (2011b) proposed a numerical
shape optimization method for anisotropic elastoplastic materials that is based on logarithmic
strains. The objective function that needs to be minimized in order to obtain the optimal
undeformed workpiece is the quadratic difference between the node positions in the target and
computed (current) deformed shape, i.e. the node coordinates of the FE-domain are chosen as
design variables (nodes-based optimization). A discrete sensitivity analysis is presented and
analytical gradients are performed. They used the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) optimization algorithm proposed in Schmidt (2005) in theirs illustrations. In
Germain et al. (2011c) the inverse mechanical formulation proposed in Germain et al. (2010)
and the shape optimization proposed in Germain et al. (2011b) have been compared in terms of
computational costs for the determination of the initial shape in hyperelasticity. They found that
when dealing with hyperelastic materials the inverse mechanical formulation is more efficient
than the shape optimization formulation. In Germain et al. (2012) an algorithm which updates
the reference configuration during the optimization is added to the shape optimization
formulation presented in Germain et al. (2011b) in order to avoid mesh distortions in metal
forming processes.

The paper is organized as follows: In section 2 we introduce the notations by presenting the
kinematics of geometrically non linear continuum mechanics. The third section gives a
constitutive model for isotropic and anisotropic additive elastoplasticity in the logarithmic strain
space based on Miehe et al. (2002) and de Souza Neto et al. (2008). The next section resumes
the formulation of a direct mechanical problem needed in the inverse problem formulation.
Section 5 presents a discrete sensitivity analysis and generalizes the algorithm for avoiding
mesh distortions presented in Germain et al. (2012). Three numerical examples for isotropic and
anisotropic elastoplastic material illustrate the recursive algorithm presented in the previous
section.

2. Kinematics of geometrically non linear continuum mechanics

Let B, € R® denote the undeformed (material) configuration of a continuum body B
parameterized by material coordinates X with respect to Cartesian basis E; at time t=0. B, ¢ R?
is the corresponding deformed (spatial) configuration parameterized by spatial coordinates x
with respect to Cartesian basis e; at time t, as depicted in Fig.1. Subsequently the bases E; and
e; are taken to be coincident (1=1,2,3; i=1,2,3). dB, and 9B, define the boundary surface of the
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body B, resp. B, where neither Dirichlet (9B®) nor Neumann (9B?) data appears. N is defined
as a unit vector at X directed along the outward normal to an material surface element dA €
OB'. T represents a given traction per unit area on the Neumann boundary in the material and
spatial configuration. The direct deformation map

x=@(X):B; - B, (€

gives the position of each spatial point x € B, in function of its material counterpart X € B,,.

oB?
Fig. 1. Material (right) and spatial (left) motions.

The corresponding deformation gradient is given by
F = Gradye . (2)

In an index notation the direct deformation gradient tensor is expressed by
F=Y}_,Fie; ®E; Fy = Z—zili L1=123, 3)

where lowercase indices refer to spatial Cartesian coordinates and uppercase indices refer to
material Cartesian coordinates. The Jacobian determinant of the direct deformation gradient,
which describes the local change of the volume to the deformation, is considered as positive

]=detF>0;dv=]dV;da=]F'dA. 4)
The inverse deformation map
X=¢x):B - B, ®)

gives the position of each material point X € B, as a function of its spatial counterpart x € B;.
The corresponding inverse deformation gradient is given by

f = grad,¢. (6)
In an index notation the inverse deformation gradient tensor is expressed as
f=Y3  fE ®e; fyy = ? 1=123. @)
The Jacobian determinant of the inverse deformation gradient is assumed to be positive
j=detf >0;dV =jdv;dA = jf'da. (8)

From the above definitions it follows that the inverse deformation map denotes a nonlinear map
inverse to the direct deformation map

b= ". 9)
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Thus the inverse and direct deformation gradients together with their Jacobian determinants are
simply related through an algebraic inversion

f=F'and j=]1. (10)

3. Constitutive model for anisotropic additive elastoplasticity in the logarithmic strain
space

In this section we summarize the work by Miehe et al. (2002) and de Souza Neto et al. (2008).
The constitutive phenomenological model for anisotropic additive elastoplasticity in the
logarithmic strain space mimics the small strain theory and is focused on metal plasticity. An
additive decomposition of the logarithmic (Hencky) strain into an elastic and a plastic part is
assumed

E=InC=E*+EP, (11)
where
C=F-F (12)

is the right Cauchy-Green tensor. The Clausius-Duhem inequality, on which the development of
the constitutive model is based,

D=TE—-{ >0, (13)

defines the local dissipation of the model with respect to unit volume. The total free energy
density is decomposed into an elastic and a plastic part

W(E, EP, @) = y°(E — EP) + P (0)
W(ES, @) = Y (E) + YP(0) . (14)

The elastic part is defined as a quadratic free energy density in terms of the second-order elastic
strain tensor and a constant elastic fourth-order material tensor

Pe(E®) = iEe: Ee: E° . (15)

The plastic part of the total free energy density is modeled by nonlinear isotropic hardening, i.e.
kinematic hardening is not considered,

PP(e) = P1*°(@) = Thot + (0, — 3) (o + ), (16)

where a is a scalar that models isotropic hardening, h is the hardening modulus, oy is the initial
yield stress, o,, is the infinite yield stress and w is the saturation parameter. T in Eqg. 13 is the
current stress tensor work-conjugate to the logarithmic strain measure E defined by

_EP —EP —EP
T = QWEED) _ OYE-EP) _ OWEEP) _ pe pe an
IE JE€ OEP

Considering Eq. 11 and 14 the reduced dissipation inequality can be written by
— T.pp _ ¥
D=TEP-—-a=0. (18)

Plastic flow occurs only on the yield surface

2

fy={T|q>(T,‘;—i’)— 200 = 0}, (19)
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which represents a hypersurface. A quadratic yield function or level set function (Hill-type
criterion)

®(T,2%) = VT T — \E(ha + (00 — 60)(1 — e™¥9)) (20)
allows to define whether elastic straining or plastic yielding occurs. To model plastic
incompressible flow as for metals, the plastic metric in Eq. 20 has to satisfy

H:1=0. (21)
For the usual isotropic von-Mises elastoplasticity
H=I"-21Q1. (22)

A specific formulation of H in the special case of an orthotropic response is presented in Miehe
et al. (2002). The tensor H defined in the Voigt notation is governed by nine parameters. In a
Cartesian coordinate system aligned to the axes of orthotropy the tensor appears in the simple
coordinate representation

[81 B+ Bs 0 O 0]

B+ B2 Bs 0O 0 O |

_|Bs Bs Bs 0 0 0
H = 06 05 0 B, 0 ol (23)

0 0 0 0 Bg O

0 0 0 0 0 B

Eqg. 21 is satisfied for the three dependencies

By = (Bs — By — B2).Bs =5 (By — B2 — B2). B = 5 (B, — B — Ba) . (24)

Orthotropic plastic yielding for incompressible plastic flow is governed by six material
parameters related to the initial yield stresses with respect to the principal axes of orthotropy

2 2 o2 2 o
By 3;°,Bz—3;’2°,83 3 (25)
By =52 ss Bg (26)

Setting B; =B, = Bz =0pand B, =Bg = By = 00/\/§ is equivalent to Eq. 22 for isotropic
plastic yielding. An alternative of the formulation presented in Miehe et al. (2002) to define the
fourth-order tensor H is the use of Kelvin modes (Sutcliffe (1992)). For the case of a cubic
representation, H might be defined in function of three parametersA;, A, and A; and three
projection tensors P, P, and IP; as

H = }\lpl + }\ZIP)Z +)L3 H))3. (25)

The variables A;, A, and A5 are the eigenvalues of tensor H expressed in the Voigt notation. The
principle of maximum plastic dissipation gives the following plastic flow rule and hardening
law

P — S )
E ymanda—\/;y. (27)

The Kuhn-Tucker-type loading-unloading conditions
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. a 2 . a 2
y >0, @(T,a—t)—\/;oo <0 and y(d)(T,%)—\/;co) =0 (28)

allow to determine the plastic parameter. A radial-return mapping is used for solving the
elastoplastic problem as in de Souza Neto et al. (2008) and Simo et al. (1998).

4. Determining the deformed shape from equilibrium

In this contribution we omit distributed body forces and inertia henceforth. The direct
mechanical formulation uses a Piola formulation for the equilibrium. The following boundary
value problem is solved

Div (P) = 0in By, (29)
[F-S]-N =Zon 9BF,
@ = @ on 0B®.

Div () denotes the material divergence operator with respect to the material coordinates X. The
weak form of the given boundary value problem, with the test function 7 = 0 on the boundary
surface dB®, reads

G(o,;;X) = fBO[Ft - Gradyn]:S dV — faBon -tdA=0. (30)

Eq. 30 is the common virtual work statement with a parameterization of all quantities in the
material coordinates X. The (symmetric) Piola—Kirchhoff stress is expressed as

=22 _T.Pwi =%
S—Zac—T.IP’WlthIP’—ZaC (31)

The corresponding linearization (directional derivative) of the weak form in the direction A¢ at
fixed material coordinates X, as needed in a Newton type solution scheme, is finally expressed
as

=G + €A, 1 X) |e=p = Jg, Gradyn : A: AF dV . (32)
The fourth-order tangent operator A decomposes into the material tangent operator
C=PLE"P+T:LwithL =25 (33)
and a geometrical contribution
_ O[FS] _ Sl e et o - S
A="—=[FRI:C[FFRI+i®S. (34)

In Eq. 33 when elasticity occurs E* = [E¢ and when plasticity occurs E* = E®P (Miehe et al.
(2002)). In Eq. 34 1 and i denote the material and spatial unit tensors with coefficients &;; and
8ij, respectively, ® denotes a non-standard dyadic product with [A@B]I,KL = ABy, and
1,JK,L,i,j =1...3. For the finite element solution the discretization formulation proposed in
Germain et al. (2010) is adopted.

5. Shape optimization

The following section is based on the work of Germain et al. (2011b, 2012).
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5.1. Discrete sensitivity analysis

Shape optimization theory allows to predict the original shape of a functional component by
iterating a direct mechanical formulation. The objective function (Eq. 35), which has to be
minimized in order to find the solution, i.e. the undeformed shape, is defined by a least-square
minimization of the difference between the target and the current deformed configuration of the
workpiece

f(X) — % “xtarget _ xcurrent(xoptimization)”2. (35)

The material coordinates X are considered as the design variables. The target deformed
configuration x*'8t corresponds to the known and given deformed configuration. The current
deformed configuration x"ent js computed by a direct mechanical formulation (Section 4)
with the undeformed configuration X°ptimization given by the optimization algorithm (for
example L-BFGS). Numerical optimization algorithms are described in Nocedal et al. (2006).
After setting the objective function a discrete sensitivity analysis is performed (Schwarz (2001)
and Scherer et al. (2010)). The aim of the sensitivity analysis is to supply the gradients of the
objective function and the constraints with respect to the design variables, which are necessary
for the use of gradient-based optimization algorithms (Nocedal et al. (2006)). A restriction to
unconstrained problems is achieved. Subsequently we are going trough the mathematical details
for expressing the analytical gradient of the objective function in a discrete sensitivity analysis.
By applying the chain rule on Eq. 35, we obtain

df(x) afexplicite af dxcurrent
ax X axcurrent gy

(36)
According to the implicit dependency of the objective function to the design variables X it
follows that

afexplicite —0 and then df(X) _ af dxcurrent (37)
x dX ~ oxcurrent  gx

The crucial step for computing the second term in Eq. 36 is the mechanical equilibrium
equation (Scherer et al. (2010))

PNt (X) = P(XT(X),X) = Fegr — Ty (XUTN(X), X) = 0, (38)

where re and ri, are the internal and external nodal forces. Applying the total differential on
the above equation we obtain

drcurrent or or dxcurrent
X T ox T oxament ax 0 (39)
After a rearrangement we deduce
dxecurrent ar -1 or
= || & (40)
Substituting Eq. 40 in Eq. 36 we obtain
df(x) or 1 lor
x - (Xtarget — Xcurrent) [6xcurrent] & , (41)
where
or ~ OP
Jxcurrent = A221 fBS GradXN 4 IF GradXN dv (42)

and
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or __

X A%, e gradyN * 2—: gradyN dv. (43)

In Eq. 42 P denotes the non symmetric Piola stress tensor and in Eq. 43 ¢ denotes the
symmetric Cauchy stress tensor. In Eq. 42 and 43 the operator [*] denotes contraction with the
second index of the corresponding tangent operator, AL¢, is an assembly operator with respect
to the elements in a finite element formulation and N are the shape functions.

Remark:

Numerical gradients might also be provided to the optimization algorithm (Schmidt (2005)) by
performing a finite difference. This approach is easy to implement but the numerical costs are
very high. When the increment in the finite difference is not properly chosen it leads to relevant
errors in the result (Schwarz (2001)).

5.2. Recursive algorithm for avoiding mesh distortions

A drawback of choosing the material coordinates as design variables is possible occurrence of
mesh distortions. The optimization algorithm is not able to find appropriate minimums or gets
stuck after few iterations (Fig. 2 and Fig. 3). Fig. 2a shows the target deformed configuration of
a functional component in the [x;,x3] plan. The bottom of the shape is partially clamped and
forces are applied on the top of the shape. Fig. 2b shows the undeformed configuration in the
[X1,X3] plan after 14 iterations of the optimization algorithm (L-BFGS), where mesh distortions
are well identified. Fig. 3a and Fig. 3b show the target deformed configuration of a functional
component in the [Xg,xz] and [X1,X3] plan. The left side of the shape is clamped and forces are
applied on the right side (three dimensional extension of the classical two dimensional Cook’s
cantilever). Fig. 3c and Fig. 3d show the undeformed configuration in the [X;,X,] and [Xy,Xs]
plan after 4 iterations of the optimization algorithm (L-BFGS), where mesh distortions are well
identified.

The idea of our strategy (introduce in Germain et al. (2012) for metal forming processes)
for avoiding mesh distortions is to perform successive optimizations by replacing the
undeformed configuration needed in the next optimization step by the previous optimized
undeformed configuration.

e At the initialization step material and optimization parameters are given. The variable
TotalForce, i.e. the known total force applied on the shape, is set. A variable StepForce
representing the force increment is defined as StepForce << TotalForce. Furthermore
at the beginning x®%'= x*"™" = X" A direct mechanical problem is computed with
X" and the initial force Force® according to Section 4 in the next step. The

optimization then runs for step 0. At the end of this initial optimization we obtained the

undeformed configuration X°P™#%" for Force’.

e In the next step the new applied loading Force" is equal to the previous force Force™*
augmented by StepForce. Taking the previous computed undeformed configuration
Xeoptimizationn-L and the new loading Force", the direct mechanical formulation is running
in order to obtain the current deformed configuration x*™™" of the shape. The
optimization algorithm can now be used and will give the undeformed configuration
for Force". This process is done until TotalForce is reached.

e In this case the undeformed configuration X°""™2%" for the given total force is
obtained.

A pseudo algorithm of this process is described in Algo.1.
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Initialization: material parameters, optimization parameters, TotalForce,
StepForce, Xtarget: ‘.currcnt :Xcurrent’ FOI’CCO

Solve the direct boundary value problem (Section 4) with Force®

x° urrent (F orc eO)
Eg. 35 in optimization algorithm — X“*™(Force")
Step n: While abs(Force®) < abs(TotalForce) do
1. Force™ Force™'+ StepForce
2. Xcunenl(l:;orcen-l)
!

Solve the direct boundary value problem (Section 4)
with Force®

Xc urrent (F ore en)
3. Eq. 35 in optimization algorithm — X“*™*(Force™)
4. n=nt+l
End while

Xuptimizatiun — Xcurrent(ljorcen)

Algo. 1. Strategy for avoiding mesh distortions in inverse form finding problems.

Fig. 2c. X°optimization jn the [X; X.] plan.
Fig. 2. Example for mesh distortions.
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Fig. 3a. x'8t in the [Xy,X,] plan. Fig. 3b. x'"8et in the [x1,X3] plan.

-5 5 15 25 35 45 5

Xy
Fig. 3c. X°optimization jn the [X; X,] plan. Fig. 3d. X°ptimization jn the [X, X,] plan.

Fig. 3. Example for mesh distortions.

6. Numerical examples

The algorithm presented in the previous section is applied to three benchmark problems: in the
first example a bar extended in the vertical direction illustrates the previous developments for
an isotropic elastoplastic material. The second example is concerned with a three dimensional
extension of the classical two dimensional Cook’s cantilever. We aim to determine the
undeformed shape for a given isotropic elastoplastic material and a given distributed force so
that the deformed shape is a straight panel. In a third example we compute the undeformed
configuration of a three dimensional circular sheet with a hole for a given anisotropic
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elastoplastic material and a given distributed force so that the deformed shape is again a straight
layer.

6.1. Traction of a bar in isotropic elastoplasticity

The target geometry of the deformed bar as well as the boundary and loading conditions are
shown in Fig. 4. The dimensions of the bar is 10x10x20mm. The bottom of the bar is fixed in
the three directions. The total applied distributed force TotalForce on the top of the bar is equal
to 28 kN. The variable StepForce in Algo. 1 is equal to 1 kN. The domain is discretized using
hexahedral finite elements with 16 elements and 45 nodes. An isotropic elastoplastic material is
simulated with the material parameters in Table 1. The optimization parameters are resumed in
Table 2 (Ibfgs=Limited-Broyden-Fletcher-Goldfarb-Shanno). Fig. 5, 6 and 7 show the
computed undeformed shape in the material configuration B, for the steps, where the force is
equal to 10 kN, 20 kN and 28 kN in the [X,X3] plan, respectively. To confirm the obtained
results, the direct problem was re-simulated starting with the coordinates of the computed
undeformed shape with force equal to 28 kN (Fig. 7), the same boundary conditions and
material parameters. The result is shown on Fig. 8 in the [xy,x3] plan with the obtained
equivalent plastic strains.

Young’s modulus 211000 MPa Method Ibfgs

Poisson’ratio 0.3 HessianModify 1

Hardening modulus 200 MPa progTol le-14

Initial yield stress 450 MPa optTol le4

Infinite yield stress 700 MPa

Saturation parameter 17

Table 1. Material parameters. Table 2. Optimization
parameters needed in Schmidt
(2005).

5
Xy

15 -5

Fig. 4. x"8°t in the [Xy,Xz, X3] plan. Fig. 5. Xewrrent(g = 10) in the [X;,Xs] plan.
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Fig. 6. Xcurrent(EF = 20) in the [Xy,Xs] plan.  Fig. 7. X°Wrent(F = 28) in the [Xy,X3] plan.

Fig. 8. xcurrent(xoptimzationy in the [x,,x5] plan with equivalent plastic strains [-].

6.1. Cook’s problem in isotropic elastoplasticity

The target geometry of the deformed cantilever as well as the boundary and loading conditions
are shown in Fig. 9 in the [xy,x;] plan and in Fig. 10 in the [x;,x3] plan. The length L of the
thick cantilever in B is equal to 48 mm, the height H1 is set to 44 mm, the height H2 is equal to
16 mm and the width W is set to 8 mm. The left side of the thick cantilever is fixed in all
directions, i.e. it is clamped. The total applied distributed force TotalForce is set to 300 N. The
variable StepForce in Algo. 1 is equal to 10 N. The domain is discretized using hexahedral
finite elements with 528 elements and 780 nodes. An isotropic elastoplastic material is
simulated with the material parameters in Table 3. The optimization parameters are given in
Table 4 (bb=Barzilai and Borwein Gradient). Fig. 11, 12, 13 and 14 show the computed
undeformed shape in the material configuration B, for the steps where the force is equal to 10
N, 100 N, 200 N and 300 N in the [X,X;] plan, respectively. To confirm the obtained results,
the direct problem was re-simulated starting with the coordinates of the computed undeformed
shape at force equal to 300 N (Fig. 14), the same boundary conditions and material parameters.
The result is shown on Fig. 15 in the [x3,X,] plan with the obtained equivalent plastic strains.
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Young’s modulus 202000 MPa Method bb
Poisson’ratio 0.33 HessianModify 1
Hardening modulus 300 MPa progTol le-
14
Initial yield stress 150 MPa optTol le-
4
Infinite yield stress 300 MPa
Saturation parameter 15
Table 3. Material parameters. Table 4. Optimization
parameters needed in Schmidt
(2005).

60

50

40 P/, -

20

5 5 15 25 35 45 55
x)

Fig. 9. x'r8et jn the [xy,X,] plan. Fig. 10. x"8et in the [xy,X3] plan.
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Fig. 13. Xeurrent(F = 200) in the [Xy,X,]

p|an_ Flg 14. Xcurrent(F — 300) = Xoptimzation i

the [X1,X5] plan.
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60
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40!

207

5 5 15 25 35 45 55
I

Fig. 15. xcurrent(xoptimzationy jn the [x,,X,] plan with equivalent plastic strains [-].

6.2 Anisotropic elastoplasticity

The target geometry of the deformed circular sheet with a hole in three dimension as well as the
boundary and loading conditions are shown in Fig. 16 in the [X;,X,] plan. The outer radius of the
sheet in B, is equal to 800 mm, the inner radius is set to 400 mm and the thickness is set to 10
mm. The upper and lower surfaces are fixed in the vertical direction. The total applied
distributed force TotalForce is set to 150 kN. The variable StepForce in Algo. 1 is equal to 10
kN. The domain is discretized using hexahedral finite elements with 320 elements and 720
nodes. An anisotropic elastoplastic material is simulated with the material parameters in Table
5. The optimization parameters are given in Table 6. Fig. 17, 18 and 19 show the computed
undeformed shape in the material configuration B, for the steps where the force is equal to 5
kN, 10 kKN and 15 kN in the [X1,X;] plan, respectively. To confirm the obtained results, the
direct problem was re-simulated starting with the coordinates of the computed undeformed
shape at force equal to 15 kN (Fig. 19), the same boundary conditions and material parameters.
The result is shown in Fig. 20 in the [x;,X,] plan with the obtained equivalent plastic strains.

Young’s modulus 70000 MPa Method Ibfgs
Poisson’ratio 0.33 HessianModify 1
Hardening modulus 100 MPa progTol le-14
Initial yield stress 450 MPa optTol le-4
Infinite yield stress 715 MPa

Saturation parameter 16.5

Normal yield stress (Miehe et al. (2002)) | 400 MPa

Shear yield stress (Miehe et al. (2002)) 450/N3 MPa

Table 5. Material parameters. Table 6. Optimization
parameters needed in
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Schmidt (2005).

Fig. 17. Xeurrent(F = 5) in the [Xy,X,] plan.  Fig. 18. XUent(F = 10) in the [Xy,X,] plan.
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Fig. 19. Xcurrent(F — 15) — Xoptimzation in Fig. 20. xcurrent (Xoptimzation) in the [lexz]
the [x1,%2] plan. plan with equivalent plastic strains [-].

7. Conclusion

In this paper we presented a constitutive model for anisotropic additive elastoplasticity in the
logarithmic strain space. A shape optimization is formulated in the sense of an inverse problem,
where the goal is to find the undeformed shape of a functional component knowing the
deformed configuration, the loads and boundary conditions. In order to avoid mesh distortions,
which might occur when using the node coordinates as design variables, we proposed a
recursive algorithm. The computed undeformed configuration of the previous step is used in the
next step for the computation of the objective function. The limitation of such a recursive
algorithm is the computational time which grows when the incremental applied force is much
lower than the total applied load. Three numerical examples for isotropic and anisotropic
elastoplastic materials illustrated the application of this algorithm. We found that without this
algorithm the optimizer is not able to find a solution for our inverse problem. Future works will
be on the formulation of contact problem so that metal forming processes can be simulated and
on an extension of the modeling to kinematic hardening elastoplasticity.
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Pe3ume

IIpu mpojexToBamy (HYHKIIMOHATHHUX JIEJIOBa M3a30B je onpehuBame HemehopMUCaHOT 00IIMKa
koju he ce mpum 3amatom omrepehemy aedopmucatn y xeibeHH 00mMHMK. Dopmynmcame
onrtuMm3anuje obnmka Moxke OmTm KopuinheHo 3a ofpeluBame MOYETHOT OOJHMKA Y CMHUCITY
MHBEP3HOT TpoOieMa MPeKo Y3aCTONHMX HTepalyja MUPEKTHOT MEXaHWYKOr mpobiema. Y
OBOM pajy u3naxkeMmo (opMylalyjy ONTHMHU3AIMjEe OOJIMKA 3a €NacTOINIACTHYHH MaTepujall
YMjU je KOHCTUTYTMBHM MOJEN aJUTHBHA aHM30TPOIHA EJacTOILIACTUYHOCT Yy IPOCTOPY
JoraputaMmckux naedopmanmja. [IpumemeHa je QUCKpeTHa aHalIM3a OCETJBMBOCTH KOja Jiaje
AQHAJMTHYKY IPaJMjeHT HuJbHEe QYHKIHMje MoTpeOHe y ONTUMHU3AMOHOM aJrOPUTMY. Y TBPAMIN
cMo Jia kopuiihewe KoopauHata (pyHKIMOHATHE KOMIIOHEHTE Kao MPOjeKTHUX HMPOMEHJBUBUX
MO>Ke JJOBECTH JI0 AUCTOp3uje Mpeske. bes kopuirhema HHKpEeMEHTaIHOT IOCTYIKA Y OJHOCY Ha
YKYIIHY CHITy KOja JIelyje Ha KOMIIOHEHTY U 0e3 axxypupama HeaegopMmucaHe KOHPUryparmje
nu3Mel)y 1Ba Kopaka, aaropuTaM ONTHMHU3AIMje HHje Y CTaky Aa Hahe oaroapajyhun MUHUMYM.
Tpun HyMmepHyka mpHMepa H30TONHE W AaHU30TPOIHE €JIACTOIUIACTUYHOCTH HIYCTPYjy
CTPYKTYPY OBOT PEKYP3HUBHOI AJITOPUTMa 3a M30eraBame TUCTOP3Uje MpeKe.

Kiby4yHe peun: Hanaxeme WHBEP3HOT OOJIMKa, ONTHMHU3aLMja OOJIMKA, €IaCTOIUIACTUYHOCT,
AQHM30TPOIHja, BENUKeE JieopManyje
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